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Review of Key Issues Review of Key Issues with respect towith respect to

ProbabilityProbability  TheoryTheory

• Uncertainty arises because of both laziness and

ignorance.

– inescapable in complex, dynamic, or inaccessible

worlds.

• Uncertainty means that many of the simplifications

that are possible with deductive inference are no

longer valid

– lack of modularity.

• Probabilities express the agent’s inability to reach a

definite decision regarding the truth of a sentence,

– summarize the agent’s degree of belief.
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Review of Key Issues Review of Key Issues with respect towith respect to

ProbabilityProbability  TheoryTheory

• Basic probability statements include prior probabilities

and conditional probabilities over simple and complex

propositions.

– Product rule, Marginalization(summing out) and

conditioning

• The axioms of probability specify constraints on

reasonable assignments of probabilities to propositions.

– An agent that violates the axioms will behave irrationally in

some circumstances.

• The joint probability distribution specifies the probability

of each complete assignment of values to random

variables

– It is usually far too large to create or use.
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BayesBayes’’  RuleRule

P(A,B,C,D,..) = P(A|B,C, D,..) P(B,C, D,..) ; product rule

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

Thus, Bayes’ Rule:

This allows us to compute a conditional probability from its inverse.

Bayes’ rule is typically written as: P(B | A)=!P(A | B)P(B)

(! is the normalization constant needed to make the P(B | A) entries

sum to 1, it eliminates the need to know P(A) )

P(B | A) =
P(A | B)P(B)

P(A)

E.g.,      P(disease | symptom) =

P(symptom | disease)P(disease)

P(symptom)
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Why isWhy is Bayes Bayes’’  Rule Useful?Rule Useful?

• P(object | image) proportional to:
P(image | object) P(object)

• P(sentence | audio) proportional to:
P(audio | sentence) P(sentence)

• P(fault | symptoms) ...
P(symptoms | fault) P(fault)

Basis of Abductive Inference -- From
Casual Knowledge to Diagnostic

Knowledge!!
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Combining evidenceCombining evidence

• Consider a diagnosis problem with multiple symptoms:

P(d|si,sj) = P(d)P(si,sj|d)/P(si,sj)

• For each pair of symptoms, we need to know P(si,sj|d) and P(si,sj).

Large amount of data is needed.

• Need to make independence assumptions:

P(si|sj) = P(si) -> P(si,sj)= P(si)P(sj) ;

Or conditional independence assumptions:

P(si|sj,d) = P(si|d)  P(si,sj|d) = P(si|d) P(sj|d)

      implicitly  d causes si and sj

• With conditional independence, Bayes’ rule becomes:

P(Z|X,Y) = ! P(Z) P(X|Z) P(Y|Z)
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Causal Causal vsvs. Diagnostic Knowledge. Diagnostic Knowledge

S =patient has a stiff neck

M =patient has meningitis

P(S/M) = .5

P(M) = 1/50,000

P(S) = 1/20

P(M/S) = P(S/M)P(M) = .5 X 1/50,000 = .0002

P(S) 1/20

Suppose given only P(M/S) based on actual observation of data…

what happens if there is a sudden outbreak of meningitis:

" P(M) goes up significantly

P(S/M) not affected

“Diagnostic knowledge is often more tenuous
than Causal knowledge.”
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Combining evidenceCombining evidence

• Consider a diagnosis problem with multiple symptoms:

P(d|si,sj) = P(d) P(si,sj|d)/P(si,sj)

• For each pair of symptoms, we need to know P(si,sj|d) and

P(si,sj).  Large amount of data is needed.

• Suppose we make independence assumptions:

P(si|sj) = P(si);   P(si,sj)= P(si|sj)P(sj)= P(si)P(sj)

• Or conditional independence assumptions:

P(si|sj,d) = P(si|d);  P(si,sj|d) = P(si| sj,d) P(sj|d)= P(si|d) P(sj|d)

• With conditional independence, Bayes’ rule becomes:

 P(d|si,sj) = ! P(d) P(si|d) P(sj|d)
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BayesBayes’’  Rule: Incremental EvidenceRule: Incremental Evidence
AccumulationAccumulation

Probabilistic inference involves computing probabilities

that are not explicitly stored by the reasoning system.

P(hypothesis | evidence) is a common value we want, and

we want to compute this incrementally as evidence

accumulates.

possible with conditional independence

P(H | E1,E2) = !P(E2 | H)P(E1 | H)P(H)

[P(E1 | H)P(H) is just the belief based on E1]
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Review of Key Issues Review of Key Issues with respect towith respect to

BayeBaye’’  RuleRule

• Bayes’ rule allows unknown probabilities to

be computed from known, stable ones.

• In the general case, combining many pieces

of evidence may require assessing a large

number of conditional probabilities.

• Conditional independence brought about by

direct causal relationships in the domain

allows Bayesian updating to work effectively

even with multiple pieces of evidence.
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Probabilistic reasoningProbabilistic reasoning

• Can be performed using the joint probability
distribution:

• Problem:  How to represent the joint
probability distribution compactly to facilitate
inference.

• We will use a belief network as a data
structure to represent the conditional
independence relationships between the
variables in a given domain.
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Belief NetworksBelief Networks

A major advance in making probabilistic reasoning systems
practical for AI has been the development of belief networks
(also called Bayesian/probabilistic networks).

The main purpose of the belief network is to encode
the conditional independence relations in a domain.

- real domains have a lot of structure

This makes it possible to specify a complete probabilistic
model using far fewer (and more  natural/available)
probabilities while keeping probabilistic interference tractable.

• Considered one of the major advances in AI

– puts diagnostic and classification reasoning on a firm
theoretical foundation

– makes possible large applications
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JointJoint vs vs. Conditional Probabilities. Conditional Probabilities

Traditionally, probabilistic models are defined using
the joint.

Conditional probabilities are then defined in terms of
the joint:

Note that specifying the joint can require a huge
number of probabilities:

2n for n  Boolean random variables.

The Bayesian/subjectivist movement in AI views the
conditional probabilities as more basic (and more
compatible with human knowledge).

P(A | B) =
P(A, B)

P(B)
.
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Conditional IndependenceConditional Independence

In addition, in most domains there are independence relations

that make it possible to specify the joint more compactly

with conditional probabilities:

The product rule:

P(A | B,C) = P(A |C)
A is conditionally independent of B given C

, ) ( ) ( ) A, B )

,

| (P)P(

|

A

) C (( )B) A

(A PP B = A B P B or ( B = ( | A P )) 

B CP(AP , C = ( | , P B P C)

conditional "
P(A | C) " reduces tables

independence
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Belief (or Bayesian) networksBelief (or Bayesian) networks

• Set of nodes, one per variable

• Directed acyclic graph (DAG):

link represents “direct” influence

• Conditional probability tables (CPTs):

P(Child | Parent1, ..., Parentn)



17V. Lesser CS683 F2004

Earthquake example (Pearl)Earthquake example (Pearl)

Suppose that you have a new burglar alarm installed

at home.  It is fairly reliable at detecting a burglary,

but also responds on occasion to minor earthquakes.

You also have two neighbors, John and Mary, who

have promised to call you at work when they hear the

alarm.  John always calls when he hears the alarm,

but sometimes confuses the telephone ringing with

the alarm and calls then, too.  Mary, on the other

hand, likes rather loud music and sometimes misses

the alarm altogether.  Given the evidence of who has

or has not called, we would like to estimate the

probability of a burglary.
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Conditional probability tablesConditional probability tables

Burglary Earthquake P(A=True | B,E) P(A=False | B,E)

True True 0.950 0.050

True False 0.940 0.060

False True 0.290 0.710

False False 0.001 0.999

How much data is needed to represent a particular

problem?  How can we minimize it?
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Earthquake Example, Earthquake Example, ContCont’’dd

Belief network with probability information:

Burglary

JohnCalls

Earthquake

MaryCalls

Alarm

P(B)

.001

P(E)

.002

P(M)

.70

.01

A

T

F

P(J)

.90

.05

A

T

F

P(A)

.95

.94

.29

.001

B    E

T T

T F

F T

F F
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Earthquake example cont.Earthquake example cont.

EB

A

J M

Priors: P(B), P(E)

CPTs:  P(A|B,E),

P(J|A), P(M|A)

10 parameters in Belief Network

but 31 parameters in the 

5-variable Joint Distribution
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Ignorance /Laziness in ExampleIgnorance /Laziness in Example

• Not included

– Mary is currently listening to music

– telephone ringing and confusing John

• Factor summarized in

– Alarm # John calls

– Alarm # Mary calls

• Approximating Situation

– eliminating hard-to-get information

– reducing computational complexity
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Chest clinic exampleChest clinic example
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Example:

Car Diagnosis
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The semantics of belief networksThe semantics of belief networks

• Any joint can be decomposed into a product of

conditionals:
P(X1, X2, ..., Xn) = P(Xn|Xn-1, ...,X1)P(Xn-1, ...,X1) =

$ P(Xi|Xi-1, ..., X1)

• Value of belief networks is in “exposing”

conditional independence relations that 

make this product simpler:

P(X1, X2, ..., Xn) = $ P(Xi | Parents(Xi))
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Conditional independence inConditional independence in BNs BNs

• Each node is conditionally
independent of its non-descendants,
given its parents.
– Says nothing about other

dependencies

• Causality is intricately related to
conditional independence.

• Conditional independence is
one type of knowledge that we use.
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d-separation:d-separation:

Direction-Dependent SeparationDirection-Dependent Separation

• Network construction

– Conditional independence of a node and its
predecessors, given its parents

– The absence of a link between two variables does not
guarantee their independence

• Effective inference needs to exploit all
available conditional independences

– Which set of nodes X are conditionally independent of
another set Y, given a set of evidence nodes E

• P(X,Y/E) = P(X/E) . P(Y/E)

– Limits propagation of information

– Comes directly from structure of network
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d-separationd-separation

Definition:  If X, Y and E are three disjoint

subsets of nodes in a DAG, then E is said to d-

separate X from Y if every undirected path from X

to Y is blocked by E.  A path is blocked if it

contains a node Z such that:

(1) Z has one incoming and one outgoing arrow; or

(2) Z has two outgoing arrows; or

(3) Z has two incoming arrows and neither Z nor any

     of its descendants is in E.
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d-separation cont.d-separation cont.

X YE

Z

Z

Z
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d-separation cont.d-separation cont.

• Property of belief networks: if X and Y are d-

separated by E, then X and Y are conditionally

independent given E.

• An “if-and-only-if” relationship between the graph

and the probabilistic model cannot always be

achieved.
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d-separation exampled-separation example

Whether there is Gas in the car and whether the car Radio plays are independent
given evidence about whether the SparkPlugs fire (case 1).

P(R,G/I) = P(R/I) . P(G/I)

P(G/I,R) = P(G/I)

    Gas and Radio are independent if it is known if the battery works (case2).

P(R/B,G) = P(R/B)

Battery

Radio Ignition Gas

Starts

Moves
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d-separation example:d-separation example:

. Gas and Radio are independent given no evidence at all.  But they are

dependent given evidence about whether the car Starts.  For example, if

the car does not start, then the radio playing is increased evidence that

we are out of gas.  Gas and Radio are also dependent given evidence

about whether the car Moves, because that is enabled by the car

starting.

Battery

Radio Ignition Gas

Starts

Moves
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Earthquake example revisitedEarthquake example revisited

• Suppose you need:

P(J,E) = % P(J,m,a,b,E)

• P(J,m,a,b,E) =

P(J|m,a,b,E) P(m|a,b,E) P(a|b,E) P(b|E) P(E)

• Conditional independence saves us:

P(J,m,a,b,E) = P(J|a) P(m|a) P(a|b,E) P(b) P(E)

EB

A

J M
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Representation of Conditional ProbabilityRepresentation of Conditional Probability

TablesTables

• Canonical distributions

• Deterministic nodes

– No uncertainty in decision

If x1=a and x2=b " x3=c

• Noisy - OR

– Generalization of logical/OR

– Each cause has an independent chance of causing the effect

– All possible causes are listed

• Add “miscellaneous cause”

– Inhibition of causality independent among causes

– O(k) vs O(2k) parameters need to specify P(H/C
i
)

– P(~H/C1, … C
n
) = product of (1-P(H/C

i
)) for all C

i
=T
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Example of Noisy-ORExample of Noisy-OR

P(Fever/Cold) = .4

P(Fever/Flu) = .8

P(Fever/Malaria) = .9
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Benefits of belief networksBenefits of belief networks

• Individual “design” decisions are

understandable: causal structure and

conditional probabilities.

• BNs encode conditional independence,

without which probabilistic reasoning is

hopeless.

• Can do inference even in the presence of

missing evidence.
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Constructing belief networksConstructing belief networks

Loop:

• Pick a variable Xi to add to the graph.

• Find (minimal )set of parents such that

P(Xi|Parents(Xi)) = P(Xi|Xi-1, Xi-2, ..., X1) or

I(Xi,Ui-Parents(Xi)|Parents(Xi)).

• Draw arcs from Parents(Xi) to Xi.

• Specify the CPT: P(Xi|Parents(Xi)).
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Constructing belief networksConstructing belief networks

cont.cont.

Properties of the algorithm:

• Graph is always acyclic.

• No redundant information => consistency

with the axioms of probability.

• Network structure/compactness depends

on the ordering of the variables.
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Example:  Ordering M,J,A,B,EExample:  Ordering M,J,A,B,E

Earthquake

Alarm

Burglary

JohnCalls
MaryCalls
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Example:  Ordering M,J,E,B,AExample:  Ordering M,J,E,B,A

Alarm

MaryCalls

Earthquake
JohnCalls

Burglary
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Next LectureNext Lecture

• Inference in Belief Networks

• Belief propagation

• Approximate inference techniques

• Alternative approaches to uncertain

reasoning


