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TodayToday’’s lectures lecture

• The sources of uncertainty in intelligent systems.

• Representing and reasoning with uncertain

information.

• Bayesian reasoning.

• Chapter 13.1 -  13.6

“In complex environment, agent almost never

have access to the whole truth about their

environment (Russell&Norvig)”
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Sources of uncertaintySources of uncertainty

• Imprecise model of the environment
– medical diagnosis, weather forecast

• Stochastic environment
– random processes, moving obstacles

• Limited computational resources
– chess, planning with partial information -- Practical

Ignorance

• Limited communication resources
– distributed systems, MAS without global view --

Practical Ignorance
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Sources of uncertainty cont.Sources of uncertainty cont.

• Noisy sensory data
– object identification and tracking

• Imprecise model of the system
– Medical science -- Theoretical Ignorance

• Exceptions to our knowledge can
never be fully enumerated
– All birds fly -- Laziness

Probability provides a way of numerically
summarizing this uncertainty
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Reasoning About UncertaintyReasoning About Uncertainty

• Making decisions without knowing everything relevant but
using the best of what we do know

• Exploiting background and commonsense knowledge,
which is knowledge about what is generally true

• Difficult to easily represent in classical logic

– Introduce requirements for vagueness, uncertainty,
incomplete and contradictory information

• Very different approaches based on type of reasoning
required and assumptions about independence of evidence

• Crucial to the architecture of an agent that is interacting
with the “real” world

– The challenge is how to acquire the necessary qualitative
and quantitative relationships and devising efficient methods
for computing useful answers from uncertain knowledge
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Acting Under UncertaintyActing Under Uncertainty

• Because uncertainty is a fact of life in most domains,
agents must be able to act in spite of uncertainty.

• How should agents behave—What is the “right” thing to
do?

• The rational agent model: agents should do what is
expected to maximize their performance measure, given
the information they have -- Decision Theory.

• Thus, a rational decision involves knowing:

– The relative likelihood of achieving different states/goals --
Probability Theory.

– The relative importance (pay-off) for various states/goals  -- Utility
Theory.
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Uncertainty in First-Order LogicUncertainty in First-Order Logic

(FOL)(FOL)

• First-Order Logic (FOL) makes the epistemological
commitment that facts are either true, false, or
unknown.
–Contrast with Probability Theory: Degree of Belief in Proposition,
same epistemological commitment as FOL

–Contract with Fuzzy Logic: Degree of Truth in Proposition

• Deductive inference can be done only with
categorical facts (definitely true statements).

Thus, FOL (and logical agents) cannot deal with uncertainty.

This is a major limitation since virtually all real-world domains
involve uncertainty.

• Eliminating uncertainty would require that:
–the world be accessible, static, and deterministic;

–the agent has complete and correct knowledge;

–it is practical to do complete, sound inference.
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Belief and EvidenceBelief and Evidence

• Probability is about the agent’s belief
not directly about the world

– Analogous to saying whether a given logical
statement is entailed by the knowledge base

• Beliefs depend on the percepts that the
agent has received to date

• Percepts constitute the evidence on
which probability assertions are based

• Probabilities can change when more
evidence is acquired
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Uncertainty, Uncertainty, contcont’’dd

• Most real domains are inaccessible, dynamic, and non-

deterministic (at least from the agent’s perspective).

• In these domains, it is impossible for an agent to know the

exact state of its environment.

– Also, agents can rarely be assumed to have complete, correct

knowledge of a domain.

• The qualification problem: many rules about a domain will be

incomplete/incorrect because there are too many conditions to

explicitly enumerate them all.

– E.g., birds fly (unless they are dead, non-flying types, have

broken a wing, are caged, etc.).

• Finally, even where exact reasoning may be possible, it will

typically be impractical computationally.
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NonmonotonicityNonmonotonicity

• FOL assumes that knowledge is complete and
consistent.

• Leads to the property of monotonicity: once a fact is
true/believed, it must remain so.
– Thus, adding new knowledge always increases the size of the

knowledge base.

• Non-monotonicity: the addition of new knowledge may
require the retraction/removal of previously derived
conclusions.

• Using incomplete and/or uncertain knowledge leads to
non-monotonicity:
– Will require that assumptions be made;

– Inferences may not be deductively valid.

• Probability exhibits non-monotonicity:
– P(A | E1, E2) not determined by P(A | E1).
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Reasoning under uncertaintyReasoning under uncertainty

More realistic approach to many applications, but
reasoning under uncertainty is more difficult:

• Non-monotonic: need to examine previously made
conclusions based on new or modified evidence

• Non-modular: all the available evidence must be
considered.

• Uncertainty measures characterize invisible facts: how
do the exceptions to A ! B interact with the exceptions
to B ! C  to yield the exceptions to A ! C?.

– Probability as a way of summarizing the uncertainty that
comes from our ‘laziness and ignorance”
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SymbolicSymbolic vs  vs Numeric approachesNumeric approaches

• Symbolic approaches represent the

different possibilities without measuring

their likelihood.

– Can potentially combine?

• There are several different numeric

approaches: probabilities, certainty

factors, belief functions (Dempster-Shafer),

fuzzy logic.

• We will focus on probabilistic reasoning.

(faced lots of early objections)



13V. Lesser CS683 F2004

Cons (probabilities)Cons (probabilities)

• McCarthy and Hayes claimed that probabilities
are “epistemologically inadequate,” leading AI
researchers to stay away from it. [“Some
philosophical problems from the standpoint of artificial

intelligence,” Machine Intelligence, 4:463-502, 1969.]

• Arguments against a probabilistic approach
– Use of probability requires a massive amount of data

– Use of probability requires the enumeration of all
possibilities

– Hides details of character of uncertainty

– People are bad probability estimators

– We do not have those numbers

– We find their use inconvenient
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Pros (probabilities)Pros (probabilities)

“The only satisfactory description of uncertainty is probability.
By this it is meant that every uncertainty statement must be
in the form of a probability; that several uncertainties must
be combined using the rules of probability, and that the
calculation of probabilities is adequate to handle all
situations involving uncertainty.  In particular, alternative
descriptions of uncertainty are unnecessary.”

-- D.V. Lindey,
Statistical Science 2:17-24, 1987.

“Probability theory is really about the structure of reasoning.”
-- Glen Shafer
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Probability versus CausalityProbability versus Causality

“When I began writing Probabilistic Reasoning in Intelligent
Systems (1988), I was working within the empiricist
tradition. In this tradition, probabilistic relationships
constitute the foundations of human knowledge, whereas
causality simply provides useful ways of abbreviating and
organizing intricate patterns of probabilistic relationships.
Today, my view is quite different. I now take causal
relationships to be the fundamental building blocks both of
physical reality and of human understanding of that
reality, and I regard probabilistic relationships as but the
surface phenomena of the causal machinery that
underlies and propels our understanding of the world.”

-- Judea Pearl.  CAUSALITY: Models, Reasoning, and Inference.
Cambridge University Press, January 2000.
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MYCINMYCIN’’s s Certainty FactorsCertainty Factors

A rule-based expert system developed in the mid 1970’s
for automated diagnosis of infectious diseases.

Used certainty factors to represent likelihood.

Example:

if:   the stain of the organism is gram-positive, and

  the morphology of the organism is coccus, and

  the growth conformation of the organism is clumps

then: (.7) the identity of the organism is staphyloccus.

Early and Simplified Approach to Dealing with
Uncertainty and Incompleteness of Knowledge

and Evidence (data)
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Certainty FactorsCertainty Factors

• Certainty factors are real numbers between
"1 and +1 attached to facts and rules.

• Positive and negative values indicate

increase and decrease in the degree of

belief.

• Certainty factors are relative measures 

(do not translate to absolute level of belief).
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Certainty Factors cont.Certainty Factors cont.

• The user provides uncertain observations

with certainty factors attached to them.

• Ex.  0.9  organism is gram-positive.

 0.4  morphology of the organism is coccus.

 0.7  the organism grows in clumps.

• Belief in (a conjunction of) premises is

calculated by: max[0,min(0.9,0.4,0.7)] = 0.4

• Belief in conclusion =

CF x belief in premises = 0.7 x 0.4 = 0.28
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Combining Support of Different RulesCombining Support of Different Rules

B12 = B1 + B2 (1 - |B1|) when both positive or negative
when both positive/negative

B12 = (B1 + B2)/(1 - min(|B1|,|B2|)) with opposite
signs     opposite signs

• Ex.  Combining 0.4 with 0.6 gives:
0.4 + 0.6 (1 - 0.4)  =  0.76

• More (positive) evidence will always increase
the certainty factor.

• Evidence combination rule is commutative
and associative hence order is unimportant.
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Performance of MYCINPerformance of MYCIN

• Evaluations of MYCIN show that it is as good

or better than most human experts.

• But certainty factors have no operational

definition

– Hard to use in decision making.

• Surprisingly good with appropriate knowledge

engineering and limited forms of deduction
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Difficulties with Certainty FactorsDifficulties with Certainty Factors

• Connecting information derived from
different paths

– Bi-directional inferences (explaining away)

– Correlated (non-independent) sources of evidence

• Retracting conclusions (monotonicity)
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What if the observations are notWhat if the observations are not

independent?independent?

Scenario (c):

Events:

S: sprinkler was on last night

W: grass is wet

R: it rained last night

MYCIN-style rules:

If:the sprinkler was on last night

then there is suggestive evidence (0.9) that

the grass will be wet this morning

If:the grass is wet this morning

then there is suggestive evidence (0.8) that

it rained last night

Combining rules, we get:

MB[W,S]= 0.8 {sprinkler suggest wet}

MB[R,W]= 0.8 * 0.9 = 0.72 {wet suggests rain}

So sprinkler made us believe rain.
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Review of Elementary ProbabilisticReview of Elementary Probabilistic

ReasoningReasoning

• Let At = leave for airport t minutes before the flight.

Will At get me there on time?

• Problems: inaccessible world (road state) noisy

sensors (traffic reports) uncertain actions (blow-out).

• Suppose:

P(A25)=.04,  P(A90)=.6,  P(A120)=.9,  P(A1440)=.9995

Which action to choose?

• Depends on preferences (“utilities”)

Decision theory = probability + utility
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Axioms of Probability TheoryAxioms of Probability Theory

Assign  a numerical degree of belief to propositions
and ground sentences

0 # P(A) # 1

P(True) = 1 P(False) = 0

P(A $ B) = P(A) + P(B) " P(A % B)

Other properties can be derived:

1= P(True) = P(A v ¬A)  =  P(A) + P(¬A) " P(A % ¬A) =
P(A) + P(¬A)

So:  P(¬A) = 1 " P(A)
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Probability theoryProbability theory

• Random experiments and uncertain

outcomes.

• Event Set - refer to possible outcomes of a

random experiment.

• Elementary events - the most detailed events

of interest.

• The number of distinct events and their

definitions are totally subjective and depend

on the decision-maker.
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Random variablesRandom variables

• Represent the result of random experiments.

• Notation: x, y, z   represent particular values

of the variables X, Y, Z.

• Sample space - the domain of a random

variable (set of all elementary events).

• Ex.   Sample space = graduating students.

  Elementary events = {John, Mary, ...}

  Event set = Females graduating in civil

    engineering
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Random VariablesRandom Variables

• For random variables we are interested in

equalities like    P(X= x1) = 0.7

• &xi
P(X =xi) = 1 since the values are

exhaustive and mutually exclusive.

• Can refer to the probabilities of all values at

once as a vector: P(X) ='0.7,0.1,0.2(.

• E.g., for Weather= 'sunny, cloudy, rainy, snowy (

can have P(Weather) = ' 0.7,0.2,0.08,0.02(.

• Propositions are Boolean random variables.
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Probability distributionsProbability distributions

• An assignment of probability to each event in

the sample space.

• Discrete vs. continuous distributions.

• Ex.  P(Weather) = (0.7, 0.2, 0.08, 0.02)  

  [sunny,rain,cloudy,snow]

• Q. What are those numbers?  

Where do they come from?
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Objective ProbabilityObjective Probability

• Probabilities are precise properties of the

universe.

• Value can be obtained by reasoning, for

example, if a coin is perfect, use symmetry.

• When probability of elementary events are

equally likely

– Pr[event] = size of event set / size of sample space.

• Exist only in “artificial” domains.

• Require high degree of symmetry.
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Subjective ProbabilitySubjective Probability

• Represent degrees of belief

• More realistic approach to representing

“expert opinion”.

• Examples:

– The likelihood of a patient recovering from a heart

attack.

– The quality of life in a certain city.

31V. Lesser CS683 F2004

Probabilities as FrequenciesProbabilities as Frequencies

• Probability as frequency of occurrence

• Pr[event] = number of time event occurs /

number of repeated random experiments

• Problem: Need to gather infinite amount of

data and assume that the probability does

not change over time.

• Some experiments cannot be repeated:
o  Success of oil drilling at a particular location

o  Success of marketing a new PC operating system

o  Success of the UMass basketball team in 2005
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Prior ProbabilitiesPrior Probabilities

•The appropriate probability to associate with

a proposition depends on the knowledge

(information) that is available.

•P(A) denotes the prior probability (prior):

– The probability that A  is true in the absence of any

(specific) knowledge.

•Once an agent has some knowledge

(evidence), the prior is no longer applicable.
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Conditional (posterior) probabilityConditional (posterior) probability

• P(A | E) denotes the conditional probability (posterior
probability): the probability that A  is true given that
all we know is E..
– Probabilistic reasoning is inherently non-monotonic because

there are no constraints on how conditional probabilities can
vary: e.g., we can have P(A | E1) = 1, but P(A | E1 + E2) = 0.

– Contrast this with FOL in which if KB1 |= ) then KB1 + E  |= ).

• Ex.  P(Cavity|Toothache) = 0.8

• Similarly, can use P(A|B,C), etc.
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Conditional (posterior) ProbabilityConditional (posterior) Probability

• The notation P(X|Y) refers to the two
dimensional table:  P(X=xi|Y=yi)

• Conditional probability can be
defined in terms of unconditional
probabilities:

• P(A|B) = P(A,B)/P(B)   when P(B) > 0,
or

• P(A,B) = P(A|B) P(B) (the product
rule)
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The Joint Probability DistributionThe Joint Probability Distribution

• A probabilistic model consists of a set of random variables
that can take on particular combinations of values with certain
probabilities.

• An atomic event is an assignment of values to all the

variables—e.g., X 1=x 1i1
,…, Xn=xnin .

• Atomic events are mutually exclusive and collectively
exhaustive.

• The joint probability distribution (joint)

P(X1,…,Xn) assigns probabilities to all possible atomic events.

• Thus, it completely specifies the probability assignments for
all propositions in the domain:

P(A % B) = P(A,B)

P(A $ B) = P(A) + P(B) - P(A,B)

P(A) = &iP(A,Bi) -- marginalization or summing out

P(A) = &iP(A | Bi) P(Bi) -- conditioning
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Joint probability distributionsJoint probability distributions

• Given X1, ..., Xn, the joint probability distribution

P(X1, ..., Xn) assigns probabilities to each set of

possible values of the variables.  Example:

Toothache   ¬Toothache

       Cavity    0.04      0.06

 ¬Cavity    0.01      0.89

• From the joint distribution we can compute the

probability of any complex proposition such as:

P(Cavity v Toothache)  or  P(Cavity | Toothache)

• Why not use the joint probability distribution?
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BayesBayes’’  RuleRule

• From the product rule:

P(A,B) = P(A|B) P(B) = P(B|A) P(A)

Hence:  P(B|A) = (P(A|B) P(B))/P(A)

• Don’t really need P(A): Normalization

P(B|A) = ) P(A|B) P(B); P(¬ B|A) = ) P(A| ¬ B) P(¬ B); 

or:

• We can condition on background knowledge:

P(B|A,E) = (P(A|B,E) P(B|E)) / P(A|E)

P(yi | x) =
P(x | yi)P(yi)

P(x | yj)P(yj )
j

!

38V. Lesser CS683 F2004

Why isWhy is Bayes Bayes’’  Rule Useful?Rule Useful?

• P(object | image) proportional to:
P(image | object) P(object)

• P(sentence | audio) proportional to:
P(audio | sentence) P(sentence)

• P(fault | symptoms) ...
P(symptoms | fault) P(fault)

Abductive Inference!!
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Abduction as the Basis of InterpretationAbduction as the Basis of Interpretation

Abduction: if As can cause Bs and know of a B then
hypothesize A as an explanation for the B

Abductive inferences are uncertain/plausible inferences (as
opposed to deductive/logical inferences)

The existence of B provides evidence for A— i.e., a reason
to believe A

Evidence from abductive inference is uncertain because
there may be some other cause/explanation for B

Abduction is the basis for medical diagnosis:

If disease D can cause symptom S then if a patient has
symptom S hypothesize that she suffers from disease D
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Model of Model of AbductiveAbductive

UncertaintyUncertainty

CONCLUSION

(EXPLANATION)

ab
d
u
ct

iv
e 

in
fe

re
n
ce

PREMISE

May be uncertain if inference is

valid (due to uncertain attributes

in premise and conclusion)

premise may have

alternative explanations

(constructed or possible)

conclusion may not have

complete supporting evidence:

unknown vs. negative

premise may be uncertain

due to uncertainty in

supporting evidence

conclusion may not

have explanation:

unknown vs. negative



41V. Lesser CS683 F2004

Sources of UncertaintySources of Uncertainty

    

Hypothesis B based on the evidence, {Aj }, where the complete

evidence is {Ai}and {Aj} !{Ai}.

Potential sources of uncertainty in hypothesis :

        -Partial evidence- i.e.,  {Aj} "  {Ai}.

        - Uncertain evidence satisfies the inference axiom i.e.,  

           uncertain some Ak
 # {A j} is # {Ai}.

        - Uncertain premise - i.e.,  some Ak
 # {Aj} is uncertain. 

        - Possible alternative interpretations for evidence- i.e.,

           for some Ak
 # {Aj} the correct inference is Ak

 $  C.

        - Possible altrernative evidence for the hypothesis -  i.e.,  for 

          some Ak
 # {Aj} the correct evidence is actually {A l}. 
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Instance of Instance of Abductive Abductive UncertaintyUncertainty

Vehicle

Position=(t3,x3,y3)
VID={VID1,VID2}

Track
Positions=(t1,x1,y1)(t2,x2,y2))
VID={VID2}

partial-support [t4…]

(missing support for t4…)

no-explanation

uncertainty in supporting evidence
(premise uncertainty)
possible-alt-explanation-types
acoustic-ghost, acoustic-noise,
acoustic sensor-malfunction

possible-alt-explanation-hyp
(i.e., may be part of an
alternative track)

ab
d
u
ct

iv
e 

in
te

rf
er

en
ce

partial-consistency

{VID1,VID2} vs. {VID2}
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ExampleExample

3 pennies are placed in a box (2-headed, 2-

tailed, fair).  A coin is selected at random and

tossed.  What is the probability that the 2H coin

was selected given that the outcome is H?

P(2H|H) =

    P(H|2H) P(2H)

   P(H|2H)P(2H) + P(H|2T)P(2T) + P(H|F)P(F)

= 1 * 1/3 / [1 * 1/3 + 0 * 1/3 + 1/2 * 1/3]  = 2/3

P(yi | x) =
P(x | yi)P(yi)

P(x | yj)P(yj )
j

!
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Combining evidenceCombining evidence

• Consider a diagnosis problem with multiple symptoms:

P(d|si,sj) = P(d)P(si,sj|d)/P(si,sj)

• For each pair of symptoms, we need to know P(si,sj|d)

and P(si,sj).  Large amount of data is needed.

• Need to make independence assumptions:

P(si|sj) = P(si)

• Or conditional independence assumptions:

P(si|sj,d) = P(si|d)  P(si,sj|d) = P(si|d) P(sj|d)

      implicitly  d causes si and sj

• With conditional independence, Bayes’ rule becomes:

P(Z|X,Y) = ) P(Z) P(X|Z) P(Y|Z)



45V. Lesser CS683 F2004

ExampleExample

Given: P(Cavity|Toothache) = 0.8

P(Cavity|Catch) = 0.95

Compute: P(Cavity|Toothache,Catch)

 = P(Toothache,Catch|Cavity) P(Cavity) / P(...)
– Need to know  P(Toothache,Catch|Cavity)??

Assuming conditional independence:

P(X|Y,Z) = P(X|Z)  and Bayes' rule becomes:

P(Z|X,Y) = ) P(Z) P(X|Z) P(Y|Z)

– P(Catch|Cavity) P(Toothache|Cavity)
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The three prisonerThe three prisoner’’s paradoxs paradox

Three prisoners, A, B, and C, have been tried for

murder, and their verdicts will be read and their

sentences executed tomorrow morning.  They

know that only one of them will be declared

guilty and will be hanged while the other two

will be set free;  the identity of the condemned

prisoner is revealed to a very reliable prison

guard, but not to the prisoners themselves.
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The three prisonerThe three prisoner’’s paradoxs paradox

In the middle of the night, Prisoner A calls the guard and

makes the following request: “Please give this letter to

one of my friends - to one who is to be released.  You

and I know that at least one of them will be freed.”  The

guard takes the letter and promises to do as told.  An

hour later prisoner A calls the guard again and asks,

“Can you tell me which of my friends you gave the letter

to? It should give me no clue regarding my own status

because each of my friends has an equal chance of

receiving my letter.”
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The three prisonerThe three prisoner’’s paradoxs paradox

The guard answers, “I gave the letter to prisoner
B; he will be released tomorrow.” Prisoner A
returns to his bed and thinks, “Before I talked to
the guard, my chances of being executed were
one in three. Now that I was told that B will be
released, only C and I remain, and my chances
of dying have gone from 33.3% to 50%. What did
I do wrong? I made certain not to ask any
information relevant to my own fate...”

Problem: Did the guard reveal any information to
prisoner A regarding his fate?
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The three prisonerThe three prisoner’’s paradoxs paradox

Let IX stand for “prisoner X will be declared innocent”

Let GX stand for “prisoner X will be declared guilty”

Then:

P(IB|GA)*P(GA) P(GA)       1/3      1

P(GA|IB)  =                             =               =         = 

                   P(IB) P(IB)       2/3      2
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The three prisonerThe three prisoner’’s paradoxs paradox

But, IB = “B will be declared innocent”

was inferred from a more direct observation,

I'B = “Guard said that B received the letter”

if we compute P(GA|I'B) we get the correct answer:

           P(I'B|GA)*P(GA)   1/2*1/3 1

P(GA|I'B) =                                =                =

                               P(I'B)      1/2      3
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More on Conditional ProbabilityMore on Conditional Probability

• Consider the following results of a test of two types
of drugs on a group of people:

   Drug A    Drug B

   lived died lived died

  Men    550 500 20 10

Women 100 200 280 390

Survival for men:  DRUG A = 0.52, DRUG B = 0.67

Survival for women:  DRUG A = 0.33, DRUG B = 0.42

For the total population:  DRUG A = 0.48, DRUG B = 0.43

Is this a paradox?
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Next lectureNext lecture

• Probabilistic reasoning with belief networks.
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