
Lecture 8: Search - 7Lecture 8: Search - 7

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

Lecture 8Lecture 8

• Continuation of Systematic Search

for CSPs

• More Complex Search

3V. Lesser CS683 F2004

Solving Solving CSPs CSPs using Systematic Searchusing Systematic Search

• Initial state: the empty assignment

• Successor function: a value can be
assigned to any variable as long as
no constraint is violated.

• Goal test: the current assignment is
complete.

• Path cost: a constant cost for every
step.

4V. Lesser CS683 F2004

Simple backtrackingSimple backtracking

5V. Lesser CS683 F2004

Part of the map-coloring search treePart of the map-coloring search tree

6V. Lesser CS683 F2004

Constraint propagationConstraint propagation

• Reduce the branching factor by deleting values that are

not consistent with the values of the assigned

variables.

• Forward checking: a simple kind of propagation

7V. Lesser CS683 F2004

Arc consistencyArc consistency

• An arc from X to Y in the constraint graph is
consistent if, for every value of X, there is
some value of Y that is consistent with X.

• Can detect more inconsistencies than forward
checking.
– Can be applied as a preprocessing step before search

– As a propagation step after each assignment during
search. -- how is this advantageous

• Process must be applied repeatedly until no
more inconsistencies remain. Why?

8V. Lesser CS683 F2004

ARC Consistency ExampleARC Consistency Example

No possible solution with WA=red and Q=green

Forward checking

(WA,Q)

Arc consistency NSW/SA

Update V/NSW,

Arc consistency SA/NT

9V. Lesser CS683 F2004

ARC Consistency AlgorithmARC Consistency Algorithm

WrongIf (x,y) arc consistency can not be satisfied with some value y in DOMAIN[Xj]

then delete x from DOMAIN[Xj]; remove<-true

; propagates effects thru network

10V. Lesser CS683 F2004

Complexity of arc consistencyComplexity of arc consistency

• A binary CSP has at most O(n2) arcs

• Each arc (X!Y) can only be inserted on the agenda d

times because at most d values of Y can be deleted.

• Checking consistency of an arc can be done in O(d2)

time.

• Worst case time complexity is: O(n2d3).

• Does not reveal every possible inconsistency!

11V. Lesser CS683 F2004

K-consistencyK-consistency

• A graph is k-consistent if, for any set of k variables,
there is always a consistent value for the kth variable
given any consistent partial assignment for the other
k-1 variables.
– A graph is strongly k-consistent if it is i-consistent for i = 1..k.

– IF k=number of nodes than no backtracking

• Higher forms of consistency offer stronger forms of
constraint propagation.
– Reduce amount of backtracking

– Reduce effective branching factor

– Detecting inconsistent partial assignments

• Balance of how much pre-processing to get graph to
be k consistent versus more search

12V. Lesser CS683 F2004

Intelligent backtrackingIntelligent backtracking

• Chronological backtracking: always backtrack to most recent

assignment. Not efficient!

• Conflict set: A set of variables that caused the failure.

• Backjumping: backtrack to the most recent variable assignment in the

conflict set.

• Simple modification of BACKTRACKING-SEARCH.

• Forward Checking can also generate conflict set based on variables

that remove elements from domain

Fixed variable ordering Q,NSW,V,T,SA,WA,NT

{Q,NSW,V,T}, SA=?; backup to T makes no sense

What Variable(s) Caused the Conflict

Backtrack to V, most recent variable set in conflict set

13V. Lesser CS683 F2004

More Advanced BacktrackingMore Advanced Backtracking

• Conflict-directed backjumping: better definition of conflict sets leads

to better performance -- bottom-up/top-down state integration

WA=red, NSW=red can never be solved

T= red, then assign NT,Q,V,SA (always fails)

How to know that (indirect) conflict set of NT is

WA and NSW since they don’t conflict with NT

Conflict set of NT is set of preceding variables that caused NT, together

with any subsequent variables, to have no consistent solutions

SA fails conflict {WA,NT,Q} based on forward propagation; backjump to Q

Q absorbs conflict set of SA minus Q {WA,NSW,NT}; backjump to NT

NT absorbs conflict set of Q minus NT {WA,NSW};

14V. Lesser CS683 F2004

Informed-Backtracking UsingInformed-Backtracking Using

 Min-Conflicts Heurist Min-Conflicts Heuristicic
Procedure INFORMED-BACKTRACK (VARS-LEFT VARS-DONE)

If all variables are consistent, then solution found, STOP.

Let VAR = a variable in VARS-LEFT that is in conflict (chosen randomly).

Remove VAR from VARS-LEFT.

Push VAR onto VARS-DONE.

Let VALUES = list of possible values for VAR ordered in ascending
order according to number of conflicts with variables
in VARS-LEFT. ; min-conflict heuristic

For each VALUE in VALUES, until solution found:

If VALUE does not conflict with any variable that is in VARS-DONE,

then Assign VALUE to VAR.

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

end if

end for

end procedure

Begin program

Let VARS-LEFT = list of all variables, each assigned an initial state

Let VARS-DONE = nil

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

End program

15V. Lesser CS683 F2004

Complexity and problem structureComplexity and problem structure

• The complexity of solving a CSP is strongly
related to the structure of its constraint graph.

• Decomposition into independent subproblems
yields substantial savings: O(dn) ! O(dc"n/c)

•

• Tree-structured problems can be solved in linear
time O(n"d2)

• Cutset conditioning can reduce a general CSP to
a tree-structured one, and is very efficient if a
small cutset can be found.

16V. Lesser CS683 F2004

Algorithm for Tree Structured Algorithm for Tree Structured CSPsCSPs

1 ….. n

17V. Lesser CS683 F2004

Algorithm for Nearly-Tree Structured Algorithm for Nearly-Tree Structured CSPsCSPs

18V. Lesser CS683 F2004

SummarySummary

19V. Lesser CS683 F2004

More Complex SearchMore Complex Search

– Multi-Level/Hierarchical Search

– Interdependence of Search Paths

– Non-Monotonic Domain

– Cost of Control

– Non-uniform cost of operator application

20V. Lesser CS683 F2004

Simple Heuristic SearchSimple Heuristic Search

• Operators applicable to a search node are

not affect by path to node

– Markov-like assumption

• Rating of one search node doesn’t affect

rating of others nodes on different paths

– Near Independence of search Paths

Contrast

• Drilling example -- samples taken from one

well may change the likelihood of other well

being successful

21V. Lesser CS683 F2004

Crossword Puzzle SearchCrossword Puzzle Search

Heuristic Search

• States/Operators?

•Each numbered row (1,4,7,8) and column (2,3,5,6)

• Independence of States/Operators?

•If 4=“Line” then no way to fill in 5

 Word List

Aft
Laser

Ale
Lee

Eel
Line

Hike Sails

Hoses Sheet

Keel Steer

Knot Tie

1

4

2

5

6

3

7

8

H O S E S

A T

H I K E

A L E E

L A S E R

E L

1

4

2

5

6

3

7

8

Crossword PuzzleCrossword Puzzle

Search asSearch as

InteractingInteracting

SubproblemsSubproblems

Waltz Filtering:

Exploiting Pair-Wise Constraints

(#$1)(#$2)…(#$n)($1 %

D1)($2 % D2)…($n % Dn)

P1($1) & P2 ($2)… & Pn($n) & P12($1, $2) &

P13($1, $3)& … & Pn-1 , Pn($n-1, $n)

23V. Lesser CS683 F2004

Make the Crossword PuzzleMake the Crossword Puzzle

More ComplexMore Complex

• What happens if you add in more constraints among

words?

– Grammar/Theme

• What happens if you add in speech input?

– Probablistic knowledge about word likelihood

– Constraint satisfaction vs constraint optimization

• Hard and soft constraints

How does the interaction among subproblems change?

24V. Lesser CS683 F2004

SubgoalSubgoal//SubproblemSubproblem
InteractionsInteractions

Subgoals B and C cannot be solved independently

From the perspective of subgoal B, subgoal D appears to be

the best solution (cost of 2 vs. cost of 5 using subgoal C), but

since C must also be satisfied to solve A, the overall best

solution is subgoal C.

A

B

DC

g(C)=5 g(D)=2

25V. Lesser CS683 F2004

Example: Blocks WorldExample: Blocks World

• Simple blocks world problem:

• Initial state: ON(C,A),CLR(B),CLR(C)

• Goal state: ON(B,C),ON(A,B),CLR(A)

Operators:

1) Clear-Blk:ON($,y) & CLR($) ! CLR(y)

2) Put-On:CLR($) & CLR(y) ! ON($,y)

B

C

A

A

B

C

Initial Final

26V. Lesser CS683 F2004

Example: Blocks WorldExample: Blocks World

• Decomposition with subgoal interactions:

• Cannot just combine the solutions to ON(B,C) and ON(A,B)

since each solution makes the other solution invalid.

ON(B,C), ON(A,B)

ON(A,B)ON(BC)

CLR(B) CLR(C) CLR(B)CLR(A)

ON(A,C) CLR(C)

Put-On Put-On

Clear-Blk

27V. Lesser CS683 F2004

Constraints fromConstraints from Subproblem Subproblem

InteractionInteraction

• Take into account the existence of other

states or solution to other subproblems

– ARC consistency

• Re-evaluate rating node/operator

– Reduce variance, uncertainty in rating

– Decrease cost of operator application

• eliminates certain states as infeasible

28V. Lesser CS683 F2004

Nearly Decomposable ProblemsNearly Decomposable Problems

• Some problems are nearly decomposable:

Their subproblems have only a “small amount”
of interaction.

• A goal that can be decomposed into a set of
subgoals is nearly decomposable if:

– most of the time, independently considered
solutions to the subgoals can be combined into
a consistent solution to the goal;

– Only a subset of the subgoal solutions interact
so as to be inconsistent;

– Consistent solutions can be found without
completely re-solving the joint subproblem

29V. Lesser CS683 F2004

Nearly Decomposable ProblemsNearly Decomposable Problems

(cont(cont’’d)d)

• Many AI techniques have been developed to
handle nearly decomposable problems

• Typically, this involves independently solving
the subproblems and then “repairing” the
solutions to deal with any interactions.

• How does it relate to success of Heuristic
Repair/Local Search success

– Dynamically evolving interacting subproblems

30V. Lesser CS683 F2004

Another Version of MonotoneAnother Version of Monotone
AssumptionAssumption

• Two states both apply to same operator&data

• Two nodes A & B, rating(A) > rating(B)

If extended by same data then rating(A1) >
rating (B1)

Non-Monotone Example

31V. Lesser CS683 F2004

Next lectureNext lecture

• Blackboard Systems

