e Local Search

— Heuristic Repair
* CSP and 3-SAT

» Solving CSPs using Systematic Search.

Victor Lesser « The relationship between problem structure
CMPSCI 683 and complexity.
Fall 2004

V. Lesser CS683 F2004 2

Sy

Constr

arcs show constraints

A set of variables X,...X,,, and a set of

constraints C,...C,,. Each variable X;] @
haS a domaln D, Of pOSSible ValueS. LUESTERN AUSTRALIA (RN @"e

« A solution to a CSP: a complete R @‘@
assignment to all variables that N
satisfies all the constraints. °

* Representation of constraints as W o @
predicates_ Variables WA, NT, Q, NSW,V, SA, T —

_ Domains D; = {red, green, blue}
O Visualizing a CSP as a constraint graph_ Constraints: adjacent regions must have different colors

e.g., WA # NT (if the language allows this), or
(WA,NT) ¢ {(red, green), (red, blue), (green, red), (green, blue), ...}

V. Lesser CS683 F2004 3 V. Lesser C

Tas@

Solutions are assignments satisfying all constraints, e.g.,

{WA=red NT =green, Q@ =red, NSW =green,V =red, SA=blue, T = green}

TWO
+TWO
FOUR

- 0+0 = R+10-X1
© X, +W+W = U+10-X,
- X, +T+T = 0+10-X,

- X, =F
- alldiff(F,T,U,W,R,0) 3 or more variables
- BetweenO-9(F,T,U,W,R,0) constraints

* BetweenO-1 (X,,X,,X;)

V. Lesser CS683 F2004 6

* Finite domains: 8-queens, matching,
cryptarithmetic, job assignment
— Finite-domain C Boolean C 3SAT (NP-complete)

* Infinite domains: job scheduling
— Cannot enumerate all possibilities
» Over the range of integers
— Need a constraint language:

« StartJob, + 5 < StartJob,
» Bound range

V. Lesser CS683 F2004

* Representing preferences versus
absolute constraints.

—Weighted by constraints violated/satisfied

» Constraint optimization is generally
more complicated.

» Can be solved using local search
techniques.

» Hard to find optimal solutions.

V. Lesser CS683 F2004 8

Repair phase

Start state is some assignment of values to variables
that may violate some constraints.

— Create a complete but inconsistent assignment
Successor state: change value of one variable.

Use heuristic repair methods to reduce the number of

conflicts (iterative improvement).

— The min-conflicts heuristic: choose a value for a
variable that minimizes the number of remaining
conflicts.

— Hill climbing on the number of violated constraints

Repair constraint violations until a consistent

assignment is achieved.

Can solve the million-queens problem in an average
of 50 steps!

V. Lesser CS683 F2004

g
A
o

= ST

function MIN-CONFLICTS(csp, max-steps) returns a solution or failure
inputs; csp, a constraint satisfaction problem
max-steps, the number of steps allowed before giving up
local variables: current, a complete assignment
var, a variable
value, a value for a variable

current ¢ an initial complete assignment for csp
for i = | to max-steps do
var +a randomly chosen, conflicted variable from VARIABLES[csp]

value + the value v for var that minimizes CONFLICTS(var, v, current, csp)

set var=value in current

if current 1s a solution for csp then return current
end
return failure

V. Lesser CS683 F2004

Pre-processing phase to generate initial
assignment

— Greedy algorithm that iterates through rows

placing each queen on the column where it
conflicts with the fewest previously placed
queens

« Select (randomly) a queen in a specific row that is
in conflict and moves it to the column (within the
same row) where it conflicts with the fewest other
queens

V. Lesser CS683 F2004

|

A two-step solution of an 8-queens problem. The number of remaining

conflicts for each new position of the selected queen is shown. Algorithm

moves the queen to the min-conflict square, breaking ties randomly.

V. Lesser CS683 F2004

.af :J/) :

» Nonsystematic search hypothesis
— Depth-first search badly organized

M Repair-based — Poorer choices are explored first at each branch point
Standard Most constrained Min-conflicts Min-conflicts . . . s
n backtrack backtrack” hill-climbing backtrack — More solutions with first queen placed in center of first row
n=10" 53.8 17.4 57.0 46.8 + Takes a very long time to recover from bad decision made early in search
n =102 4473 (70%) 687 (96%) 55.6 25.0 . "
=103 88650 (13%) 22150 (81%) 48.8 30.7 — Backtracking program that randomly orders rows (and columns within
=104 . 2 48.5 27.5 rows) still performs poorly
n=10° . . 22:5 I « Distribution of solutions
n=108 48.3 26.4

— Depth first does not perform well where solutions clustered in tree

= exceeded computation resources — Random backtracking (Las Vegas algorithm) does better but still

problem

V. Lesser CS683 F2004 13 V. Lesser CS683 F2004 14

* Informedness hypothesis

— Heuristic repair is better because it has more
information that is not available to a constructive o
backtracking (more encompassing view of search propositions have to be true to make the

space) sentence true. 3SAT is the problem of
finding a satisfying truth assignment for a
sentence in a special format

Given a propositional sentence, determine if it
is satisfiable, and if it is, show which

— Mini-conflict heuristic — select a variable that is in
conflict and assign it a value that minimizes the
number of conflicts (number of other variables that
will need to be repaired)

V. Lesser CS683 F2004 15 V. Lesser CS683 F2004 16

| Definition

» Aliteral is a proposition symbol or its negation (e.g., P or = P).

» Aclause is a disjunction of literals; a 3-clause is a disjunction of
exactly 3 literals (e.g., P vQ v 7 R).

» A sentence in CNF or conjunctive normal form is a conjunction of
clauses; a 3-CNF sentence is a conjunction of 3-clauses.

* For example,

PvQvaS)A("PvQVR)A("PvTRvS)A(PvSvT)

Is a 3-CNF sentence with four clauses and five proposition symbols.

V. Lesser CS683 F2004 17

Viappin

Atleast 1 hasa Q not exactly 2 have Q's not all 3 have Q's
(Ql,l \/ Q1.2 \/ Q1,3) 2 (Ql.l A/ _'Ql,z A/ _'Ql,s)
A (=Q, vQ,vVv-Q,
A (_‘Qu v _'Ql,z v Q1‘3) A (_'Ql,l v _'Ql,z v _'Ql.a)

Do the same for each row, the same for each column, the same for each

diagonal, and'ing them all together.
A

(Qz,l v Qz,z v Qz,a) A (QZJ v _'Qz,z v _'Qz,s)
& (_'Qz,l v Qz.z v _'Qz,s) & (_'Qz.l v _'sz v Qz.a) & (_'Qz.l v _'Qz,z M _'Qz,s)

A
(Ql.l M Qz.z v Qa.a) & (Ql.l v _'Qz,z M _'Q3,3) & (_'Ql,l v Qz.z 4 _'Qa.a)
& (_'Ql,l M _'Qz,z v Q;.s) a (_'Ql.l v _'Qz,z v _'Qs,z)
M

etc.

V. Lesser CS683 F2004 19

(AvBv E)A(~EvCvD)

A=T A=F A=F

B=F B=T B=F

C=F C=F C=T LL
D=F D=F D=F

™
1l
b3g)
eo]
1l
Cg]
les]
1l
—

2 - SAT polynomial time but can' t
map all problem into 2 - SAT

V. Lesser CS683 F2004 18

(AvC)A(=AvC)A(Bv-0)
A (Av-B)

N

CAa(Bv-C)A—-B CA(Bv=-C)

M
M
. T
B
X

V. Lesser CS683 F2004 20

i el L

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which
the formula comes out true, or report that none exists.

procedure GSAT

Input: a set of clauses o, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of «, if found

begin
for i:= 1 to MAX-TRIES
T := arandomly generated truth assignment

forj := 1 to MAX-FLIPS

if T satisfies o then return T
p := a propositional variable such that a change in its truth assignment gives the largest

increase in total number of clauses of & that are satisfied by T.
T := T with the truth assignment of p reversed

end for

end for
return “no satisfying assignment found”

end
21

V. Lesser CS683 F2004

* Biased Random Walk
With probability p, follow the standard GSAT scheme,
— i.e., make the best possible flip.
With probability 1 - p, pick a variable occurring in some unsatisfied
clause and flip its truth assignment. (Note: a possible uphill move.)

formula GSAT f Stmul. Ann.

[i busic walk H naise)
ips iine ips ime Nips || tine_| flips

g cluuses time Hips tiime | 1lips time |
‘ Vl:;(z ‘ = 430 .4 ! 7554 2 2385 .6 975 .6 gg:g
’7 200 22 284693 4 27654 396534 21 1O
| 2.6 10° 59744 892048 75 552433
SOKIOS 241651 7.8x10° 427 2.7><10*
* 1.8 10% * * :
* 5.8%10°% N M
|

23x10°

*

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)

V. Lesser CS683 F2004

23

formulas ~
vars | clauses H
20) 0.4
T 301 340 11.4
150 430 200 2.5
120 516 €00 EL6
140 802 700 | 526
150 545 1200 | 1005
24T =50 2000 | 2285
250 1062 2800 | 263.6
300 1275 6000 | 231.8
400 1700 8000 | 4409
a00 2150 10000 | 6558
Domain: n-queens
formulas
Queens vars | clauses
; B4 736
29 400 L2560
30 960 43240
a0 2500 1 203400 | 1320
100 | 10000 | 1 5x10% | soe |

V. Lesser CS683 F2004

GSAT versus
Davis-Putnam

(a backtracking
style algorithm)

Domain: hard
random 3CNF
formulas, all satisfiable
(hard means chosen
from a region in which
about 50% of problems
are unsolvable)

22

» Easy -- Few Satisfiable problems

of DP calls

el

;
£

S 20-variable formulas
IR 40-variable formulas +
50--variable formulas

]
e

[s € . '

Ratio of clauses-to-variables
Fia. Salving 35AT problems.

V. Lesser CS683 F2004

Fraction of unsatisfiable

formulae

Easy -- Sastifiable problems where many solutions
Hard -- Sastifiable problems where few solutions

Y, i

L 5 . ' +

Ratio of clauses-to-variables

Fig. 2 Fraction of unsatisfiable 3SAT problems,

Assumes concurrent search in the satisfiable space and the non-
satisfiable space (negation of proposition)

24

* Naive appllcatlon of search to CSPs

— Branching factor is n -d at the top level, then
(n-1)d, and so on for n levels.

— The tree has n!-d" leaves, even though there
are only d" possible complete assignments!

» Naive formulation ignores commutativity
of all CSPs.

— Solution: consider a single variable at each
depth of the tree.

V. Lesser CS683 F2004 25

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING([], esp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var = SELECT-UNASSIGNED-VARIABLE(VARIABLES|csp), assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then

result + RECURSIVE-BACKTRACKING([var = value—assignment], csp)
if result # failure then return result

end

return failure

V. Lesser CS683 F2004 27

Initial state: the empty assignment

Successor function: a value can be
assigned to any variable as long as
no constraint is violated.

Goal test: the current assignment is
complete.

Path cost: a constant cost for every
step.

V. Lesser CS683 F2004 26

e i

Part'ofth

WA=green WA=blue
WA=red WA=red
NT=green NT=blug
\
WA=red WA=red
NT=green NT=green
Q=red Q=blue
[e

V. Lesser CS683 F2004 28

» CSP search complexity may be affected by:

— The order in which variables are assigned values;
— The domain values chosen for assignment.

+ Variable-ordering heuristics reduce the bushiness of
the search tree by moving failures to upper levels.

+ Value-ordering heuristics move solutions to the
“left” of the search tree so they are found more
quickly by backtracking search.

* Good heuristics can reduce search complexity by
nearly an order of magnitude.

V. Lesser CS683 F2004

* Relate decisions about search
control to characteristics of the
problem space

» Characterize the problem topology
by a set of texture measures

» Static and Dynamic Meta-Level
Information

V. Lesser CS683 F2004

29

31

Key questions:

1. Which variable should be assigned next and
in what order should the values be tried?

2. What are the implications of the current
variable assignments for the other
unassigned variables?

3. When a path fails, can the search avoid
repeating this failure in subsequent paths?

V. Lesser CS683 F2004 30

Variable ordering

 The most-constrained-variable heuri
— has the fewest “legal” values
-] -]

— reduce branching factor
* The most-constraining-variable heuristic

— involved in largest number of constraints
— likely reduce future branching factors
-] (-]
-
-

Value ordering

* The least-constraining-value heuristic
— rules out the fewest choices for neighboring vars
— reduce likelihood of backtracking

V. Lesser CS683 F2004

o

(Vi EJ}:’J-EIB Jﬁ) Jalue G

/AR, v T

* Define: The probability that the assignment of

a particular value to a particular variable leads Sucaron 3 = LA
. w earen (S,6.% h 10,
to an overall solution to the problem Domain (013 [S N
(shart hined
NG no¥
e ‘T})) E
. . ,3) se !
+ Compute: The ratio of complete assignments o Chred
that are solutions to the problem and have (Yalae Gesdoess Variasle A
. @: # solultoas =15
that value for the variable over the total + solatons with B 0 10//5 = &7
. N & soluhons wi = ¢ s = .
number of possible assignments e e bls e T e
= Choose @ =0
\HCur:s‘\'c l'.
* Heuristic: The number of constraints on the value % Cooslaids
variable involving that value ! N
V. Lesser CS683 F2004 33 V. Lesser :D Onocse B = O 34

» Define: The probability that an assignment consistent with all the
problem constraints that do not involve a given variable does not
result in a solution. Variable tightness is the backtracking

Exact Variable Tightness Textures Measures

State Deconstrained Solutions Non-Solutions Variable Tightness

probability when the variable in question is the last one instantiated. CT 24 0 0.00
])] MA 72 48 0.67
* Compute: The ratio of the number of solutions to the problem with ME 12 0 0.00
constraints on the variable in question removed that could not be NH 36 12 0.33
. § . f RI 12 0 0.00
solutions to the fully-constrained problem to the total number o VT 12 0 0.00 OT (e
solutions to the problem with constraints on the variable removed. NOT (blue, blue)
. . . Heuristic Variable Tightness Texture Measures WO
— Let ¢’ = the set of constraints involving v ME
. . State Number of Constraints
— Let B = the problem without ¢’ in A ot p - .
* (solutions to B not solutions to A) / (solutions B) MA 12 7.
. . ME 3
» High means variable should be bound early NH 9 o u
* Heuristic: The number of constraints on the variable 1\2,11, g 3-color map coloring New England

V. Lesser CS683 F2004 35 V. Lesser CS683 F2004 36

. Summary, of Heuristicsfor CSPs .~ Con
L : _ ; :1‘1 i = 1 :.-...' o :. o '.-',_ o - . fpeg,

* Most-constraining variable + Reduce the branching factor by deleting values that are
— Select for assignment the variable that is involved in not consistent with the values of the assigned
the largest number of constraints on unassigned variables.
variables; + Forward checking: a simple kind of propagation
— Also called the search-rearrangement method, WA - o NSW v A .
Initialdomains |[RGB|RGB|RGB|RGB|RGB|RGB|RGB
.. After WA=red ® GB|RGB|RGB|RGB GB|RGB
* Least-constraining value After Q=green | El © |R BIRGB ElRGB
— Select a value for the variable that eliminates the After V=blue ® B] © [R RGB
smallest number of values for variables connected "D
with the variable by constraints; ()
— i.e., maximize the number of assignment options still ®"‘
o GG
V. Lesser CS683 F2004 37 V. Lesser CS683 F2004 @ o 38

« An arc from X to Y in the constraint graph is > ()
consistent if, for every value of X, there is ®‘ ‘
some value of Y that is consistent with X. @ @‘®

» Can detect more inconsistencies than forward <>
ChECking. WA NT a NSW v sA T

» Can be applied as a preprocessing step before s]| 2 E{EEEe XECE| WEON
search or as a propagation step after each —~—
assignment during search. wa T a New v sa T

* Process must be applied repeatedly until no | sjmews xxim| (= om]|
more inconsistencies remain. Why? <

V. Lesser CS683 F2004 39 V. Lesser CS683 F2004 40

(F)@x)---Ax) (61 € D)t € Dy)...(%, E D,) Py(x1) A Py (x)--- A P(xn) A Pyl
X2) A Pi3(is XA oo A Py Pyt Xn)

function AC3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, X3, ... X,,}
local variables: gueue, a queue of arcs, initially all the arcs in csp

loop while gueue is not empty do
(X, X;) < REMOVE-FRONT(quee)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;] do
add (X3, X;) to queue
end

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff we remove a value
removed «— false
loop for each x in DOMAIN[X;] do
if (x,y) satisfies the constraint for some value i in DOMAIN[X;] Wrong
then delete x from DOMAIN[X;]; removed « frue
end
return removed
end
if(x,y) can not be satisfied with some value y in DOMAIN[Xj] then
delete x from DOMAIN[Xi]; remove<-true

V. Lesser CS683 F2004 42

« A binary CSP has at most O(n?) arcs

» Each arc (X—Y) can only be inserted on the agenda d
times because at most d values of Y can be deleted.

» Checking consistency of an arc can be done in O(d?)
time.

* Worst case time complexity is: O(n?d°).

* Does not reveal every possible inconsistency!

V. Lesser CS683 F2004 43

+ A graph is k-consistent if, for any set of k variables,
there is always a consistent value for the kth variable
given any consistent partial assignment for the other
k-1 variables.

— A graph is strongly k-consistent if it is i-consistent for j = 1..k.
— IF k=number of nodes than no backtracking
* Higher forms of consistency offer stronger forms of
constraint propagation.
— Reduce amount of backtracking
— Reduce effective branching factor
— Detecting inconsistent partial assignments
« Balance of how much pre-processing to get graph to
be k consistent versus more search

V. Lesser CS683 F2004 44

« Chronological backtracking: always backtrack to most
recent assignment. Not efficient!

« Conflict set: A set of variables that caused the failure.

+ Backjumping: backtrack to the most recent variable
assignment in the conflict set.

+ Simple modification of BACKTRACKING-SEARCH.

» Every branch pruned by backjumping is also pruned
by forward checking!

+ Conflict-directed backjumping: better definition of
conflict sets leads to better performance.

V. Lesser CS683 F2004 45

* The complexity of solving a CSP is strongly
related to the structure of its constraint graph.

* Decomposition into independent subproblems
yields substantial savings: O(d") — O(d°-n/c)

* Tree-structured problems can be solved in linear
time O(n-d?)

+ Cutset conditioning can reduce a general CSP to
a tree-structured one, and is very efficient if a
small cutset can be found.

V. Lesser CS683 F2004 47

Procedure INFORMED-BACKTRACK (VARS -LEFT VARS- DONE)
If all variables are consistent, then solution found, STOP.
Let VAR = a variable in VARS-LEFT that is in conflict.
Remove VAR from VARS-LEFT.
Push VAR onto VARS-DONE.

Let VALUES = list of possible values for VAR ordered in ascending
order according to number of conflicts with variables
in VARS-LEFT.

For each VALUE in VALUES, until solution found:
If VALUE does not conflict with any variable that is in VARS-DONE,
then Assign VALUE to VAR.
Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)
end if
end for
end procedure
Begin program
Let VARS-LEFT = list of all variables, each assigned an initial state
Let VARS-DONE = nil
Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)
End program
V. Lesser CS683 F2004 46

T

r\UJerf-.___

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

Q B
(B0 (AHBHKSOHENE
© B

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)

3. For j from 1 to n, assign X; consistently with Parent(X;)

V. Lesser CS683 F2004 48

i)

s

Al g orithm for: N fsi;fj)ngi

=)
=

Conditioning: instantiate a variable, prune its neighbors’ domains
U@ O—g
@ L1 @
O O

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d° - (n — ¢)d?), very fast for small ¢

* Interacting Subproblems

* Multi-level Search
— blackboard

V. Lesser CS683 F2004 51

V. Lesse

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per nod
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

[terative min-conflicts is usually effective in practice o

