
Lecture 7: Search - 6Lecture 7: Search - 6

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s lectures lecture

• Local Search

– Heuristic Repair

• CSP and 3-SAT

• Solving CSPs using Systematic Search.

• The relationship between problem structure

and complexity.

3V. Lesser CS683 F2004

Constraint Satisfaction Problems (CSP)Constraint Satisfaction Problems (CSP)

• A set of variables X1…Xn, and a set of

constraints C1…Cm. Each variable Xi

has a domain Di of possible values.

• A solution to a CSP: a complete

assignment to all variables that

satisfies all the constraints.

• Representation of constraints as

predicates.

• Visualizing a CSP as a constraint graph.

4V. Lesser CS683 F2004

Example: Map coloringExample: Map coloring

T

5V. Lesser CS683 F2004

A Valid Map AssignmentA Valid Map Assignment

6V. Lesser CS683 F2004

High-order constraintsHigh-order constraints

• O + O = R + 10•X1

• X1 + W + W = U + 10•X2
• X1 + T + T = O + 10•X3
• X3 = F

• alldiff(F,T,U,W,R,O)

• Between0-9(F,T,U,W,R,O)

• Between0-1 (X1,X2,X3)

T W O

 + T W O

F O U R

F T U W R O

X3 X2 X1

3 or more variables

constraints

7V. Lesser CS683 F2004

Finite vs. infinite domainsFinite vs. infinite domains

• Finite domains: 8-queens, matching,

cryptarithmetic, job assignment

– Finite-domain ! Boolean ! 3SAT (NP-complete)

• Infinite domains: job scheduling

– Cannot enumerate all possibilities

• Over the range of integers

– Need a constraint language:

• StartJob1 + 5 ! StartJob3

• Bound range

8V. Lesser CS683 F2004

Constraint optimizationConstraint optimization

• Representing preferences versus
absolute constraints.

– Weighted by constraints violated/satisfied

• Constraint optimization is generally
more complicated.

• Can be solved using local search
techniques.

• Hard to find optimal solutions.

9V. Lesser CS683 F2004

Local search for CSPs:Local search for CSPs:

Heuristic RepairHeuristic Repair

• Start state is some assignment of values to variables
that may violate some constraints.

– Create a complete but inconsistent assignment

• Successor state: change value of one variable.

• Use heuristic repair methods to reduce the number of
conflicts (iterative improvement).

– The min-conflicts heuristic: choose a value for a
variable that minimizes the number of remaining
conflicts.

– Hill climbing on the number of violated constraints

• Repair constraint violations until a consistent
assignment is achieved.

• Can solve the million-queens problem in an average
of 50 steps!

10V. Lesser CS683 F2004

Heuristic Repair AlgorithmHeuristic Repair Algorithm

11V. Lesser CS683 F2004

N-Queens Heuristic RepairN-Queens Heuristic Repair

• Pre-processing phase to generate initial

assignment

– Greedy algorithm that iterates through rows

placing each queen on the column where it

conflicts with the fewest previously placed

queens

• Repair phase

• Select (randomly) a queen in a specific row that is

in conflict and moves it to the column (within the

same row) where it conflicts with the fewest other

queens

12V. Lesser CS683 F2004

Example of min-conflicts:Example of min-conflicts:

N-Queens ProblemN-Queens Problem

A two-step solution of an 8-queens problem. The number of remaining

conflicts for each new position of the selected queen is shown. Algorithm

moves the queen to the min-conflict square, breaking ties randomly.

13V. Lesser CS683 F2004

Number of backtracks/repairs forNumber of backtracks/repairs for

NN-Queens algorithms -Queens algorithms (S. Minton et al.)(S. Minton et al.)

Constructive Repair-based
Standard Most constrained Min-conflicts Min-conflicts

 n backtrack backtrack¨ hill-climbing backtrack
n = 101 53.8 17.4 57.0 46.8

n = 102 4473 (70%) 687 (96%) 55.6 25.0

n = 103 88650 (13%) 22150 (81%) 48.8 30.7

n = 104 * * 48.5 27.5

n = 105 * * 52.8 27.8

n = 106 * * 48.3 26.4

* = exceeded computation resources

14V. Lesser CS683 F2004

Potential Reasons for HeuristicPotential Reasons for Heuristic
Repair to be AdvantageousRepair to be Advantageous

• Nonsystematic search hypothesis

– Depth-first search badly organized

– Poorer choices are explored first at each branch point

– More solutions with first queen placed in center of first row

• Takes a very long time to recover from bad decision made early in search

– Backtracking program that randomly orders rows (and columns within

rows) still performs poorly

• Distribution of solutions

– Depth first does not perform well where solutions clustered in tree

– Random backtracking (Las Vegas algorithm) does better but still

problem

15V. Lesser CS683 F2004

Potential Reasons for HeuristicPotential Reasons for Heuristic
Repair to be Advantageous Repair to be Advantageous (cont(cont’’d)d)

• Informedness hypothesis

– Heuristic repair is better because it has more

information that is not available to a constructive

backtracking (more encompassing view of search

space)

– Mini-conflict heuristic — select a variable that is in

conflict and assign it a value that minimizes the

number of conflicts (number of other variables that

will need to be repaired)

16V. Lesser CS683 F2004

SAT- Satisfiability ProblemSAT- Satisfiability Problem

Given a propositional sentence, determine if it

is satisfiable, and if it is, show which

propositions have to be true to make the

sentence true. 3SAT is the problem of

finding a satisfying truth assignment for a

sentence in a special format

17V. Lesser CS683 F2004

Definition of 3SATDefinition of 3SAT

• A literal is a proposition symbol or its negation (e.g., P or ¬ P).

• A clause is a disjunction of literals; a 3-clause is a disjunction of

exactly 3 literals (e.g., P " Q " ¬ R).

• A sentence in CNF or conjunctive normal form is a conjunction of

clauses; a 3-CNF sentence is a conjunction of 3-clauses.

• For example,

(P " Q " ¬ S) # (¬ P " Q " R) # (¬ P " ¬ R " ¬ S) # (P " ¬ S " T)

Is a 3-CNF sentence with four clauses and five proposition symbols.

18V. Lesser CS683 F2004

Converting N-SAT into 3-SATConverting N-SAT into 3-SAT

A ! B !C ! D

"

(A ! B! E)#(~ E !C ! D)

A = T A = F A = F

B = F B = T B = F

C = F C = F C = T L L

D = F D = F D = F

E = F E = F E = T

2 - SAT polynomial time but can' t

map all problem into 2 - SAT

19V. Lesser CS683 F2004

Mapping 3-Queens into 3SATMapping 3-Queens into 3SAT

 At least 1 has a Q not exactly 2 have Q's not all 3 have Q's

 (Q
1,1

 ! Q
1,2

 ! Q
1,3

) " (Q
1,1

 ! ¬Q
1,2

 ! ¬Q
1,3

)

 " (¬Q
1,1

 ! Q
1,2

 ! ¬Q
1,3

)

 " (¬Q
1,1

 ! ¬Q
1,2

 ! Q
1,3

) " (¬Q
1,1

 ! ¬Q
1,2

 ! ¬Q
1,3

)

Do the same for each row, the same for each column, the same for each

diagonal, and'ing them all together.
 "

 (Q
2,1

 ! Q
2,2

 ! Q
2,3

) " (Q
2,1

 ! ¬Q
2,2

 ! ¬Q
2,3

)

" (¬Q
2,1

 ! Q
2,2

 ! ¬Q
2,3

) " (¬Q
2,1

 ! ¬Q
2,2

 ! Q
2,3

) " (¬Q
2,1

 ! ¬Q
2,2

 ! ¬Q
2,3

)

 "

 (Q
1,1

 ! Q
2,2

 ! Q
3,3

) " (Q
1,1

 ! ¬Q
2,2

 ! ¬Q
3,3

) " (¬Q
1,1

 ! Q
2,2

 ! ¬Q
3,3

)

" (¬Q
1,1

 ! ¬Q
2,2

 ! Q
3,3

) " (¬Q
1,1

 ! ¬Q
2,2

 ! ¬Q
3,3

)

 M
 etc.

20V. Lesser CS683 F2004

Davis-Putnam AlgorithmDavis-Putnam Algorithm
(Depth-First Search)(Depth-First Search)

(A!C)"(¬A!C)" (B!¬C)

 " (A!¬B)

C!(B"¬C)!¬B C!(B"¬C)

 M

 M

F
A

T

F

B

T

x

21V. Lesser CS683 F2004

GSAT AlgorithmGSAT Algorithm

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which

the formula comes out true, or report that none exists.

procedure GSAT

Input: a set of clauses $, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of $, if found

begin

for i:= 1 to MAX-TRIES

T := a randomly generated truth assignment

for j := 1 to MAX-FLIPS

if T satisfies $ then return T

p := a propositional variable such that a change in its truth assignment gives the largest

increase in total number of clauses of $ that are satisfied by T.

T := T with the truth assignment of p reversed

end for

end for

return “no satisfying assignment found”

end

22V. Lesser CS683 F2004

GSAT PerformanceGSAT Performance

GSAT versus

Davis-Putnam

(a backtracking

style algorithm)

Domain: hard

random 3CNF

formulas, all satisfiable

(hard means chosen

from a region in which

about 50% of problems

are unsolvable)

23V. Lesser CS683 F2004

GSAT Performance GSAT Performance (cont(cont’’d)d)

• Biased Random Walk

• With probability p, follow the standard GSAT scheme,

– i.e., make the best possible flip.

• With probability 1 - p, pick a variable occurring in some unsatisfied
clause and flip its truth assignment. (Note: a possible uphill move.)

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)

24V. Lesser CS683 F2004

3SAT Phase Transition3SAT Phase Transition

20--variable formulas %

40--variable formulas +

50--variable formulas !

Ratio of clauses-to-variables

#
 o

f
D

P
 c

a
ll
s

Ratio of clauses-to-variables

F
ra

c
ti

o
n

 o
f

u
n

s
a
ti

s
fi

a
b

le
fo

rm
u

la
e

• Easy -- Sastifiable problems where many solutions

• Hard -- Sastifiable problems where few solutions

• Easy -- Few Satisfiable problems

• Assumes concurrent search in the satisfiable space and the non-
satisfiable space (negation of proposition)

25V. Lesser CS683 F2004

CommutativityCommutativity

• Naïve application of search to CSPs:
– Branching factor is n•d at the top level, then

(n-1)d, and so on for n levels.

– The tree has n!•dn leaves, even though there
are only dn possible complete assignments!

• Naïve formulation ignores commutativity
of all CSPs.

– Solution: consider a single variable at each
depth of the tree.

26V. Lesser CS683 F2004

Solving Solving CSPs CSPs using Systematic Searchusing Systematic Search

• Initial state: the empty assignment

• Successor function: a value can be
assigned to any variable as long as
no constraint is violated.

• Goal test: the current assignment is
complete.

• Path cost: a constant cost for every
step.

27V. Lesser CS683 F2004

Simple backtrackingSimple backtracking

28V. Lesser CS683 F2004

Part of the map-coloring search treePart of the map-coloring search tree

29V. Lesser CS683 F2004

Intelligent Backtracking forIntelligent Backtracking for CSPs CSPs

• CSP search complexity may be affected by:

– The order in which variables are assigned values;

– The domain values chosen for assignment.

• Variable-ordering heuristics reduce the bushiness of

the search tree by moving failures to upper levels.

• Value-ordering heuristics move solutions to the

“left” of the search tree so they are found more

quickly by backtracking search.

• Good heuristics can reduce search complexity by

nearly an order of magnitude.

30V. Lesser CS683 F2004

Heuristics that can helpHeuristics that can help

Key questions:

1. Which variable should be assigned next and

in what order should the values be tried?

2. What are the implications of the current

variable assignments for the other

unassigned variables?

3. When a path fails, can the search avoid

repeating this failure in subsequent paths?

31V. Lesser CS683 F2004

Problem TexturesProblem Textures

• Relate decisions about search
control to characteristics of the
problem space

• Characterize the problem topology
by a set of texture measures

• Static and Dynamic Meta-Level
Information

32V. Lesser CS683 F2004

Variable and Value orderingVariable and Value ordering

Variable ordering

• The most-constrained-variable heuristic
– has the fewest “legal” values

– reduce branching factor

• The most-constraining-variable heuristic
– involved in largest number of constraints

– likely reduce future branching factors

Value ordering

• The least-constraining-value heuristic
– rules out the fewest choices for neighboring vars

– reduce likelihood of backtracking

33V. Lesser CS683 F2004

(Variable) Value Goodness(Variable) Value Goodness

• Define: The probability that the assignment of

a particular value to a particular variable leads

to an overall solution to the problem

• Compute: The ratio of complete assignments

that are solutions to the problem and have

that value for the variable over the total

number of possible assignments

• Heuristic: The number of constraints on the

variable involving that value

34V. Lesser CS683 F2004

VVG-examplesVVG-examples

35V. Lesser CS683 F2004

Variable TightnessVariable Tightness

• Define: The probability that an assignment consistent with all the

problem constraints that do not involve a given variable does not

result in a solution. Variable tightness is the backtracking

probability when the variable in question is the last one instantiated.

• Compute: The ratio of the number of solutions to the problem with

constraints on the variable in question removed that could not be

solutions to the fully-constrained problem to the total number of

solutions to the problem with constraints on the variable removed.

– Let c’ = the set of constraints involving v

– Let B = the problem without c’ in A

• (solutions to B not solutions to A) / (solutions B)

• High means variable should be bound early

• Heuristic: The number of constraints on the variable

36V. Lesser CS683 F2004

Variable Tightness - ExampleVariable Tightness - Example

Exact Variable Tightness Textures Measures

 State Deconstrained Solutions Non-Solutions Variable Tightness

CT 24 0 0.00

MA 72 48 0.67
ME 12 0 0.00
NH 36 12 0.33
RI 12 0 0.00
VT 12 0 0.00

Heuristic Variable Tightness Texture Measures

 State Number of Constraints

CT 6

 MA 12
ME 3
NH 9
RI 6
VT 6

ME

VT NH

RICT

MA

3-color map coloring New England

NOT (red, red)

NOT (blue, blue)

NOT (yellow,yellow)

37V. Lesser CS683 F2004

Summary of Heuristics forSummary of Heuristics for CSPs CSPs

• Most-constraining variable
– Select for assignment the variable that is involved in

the largest number of constraints on unassigned
variables;

– Also called the search-rearrangement method;

• Least-constraining value
– Select a value for the variable that eliminates the

smallest number of values for variables connected
with the variable by constraints;

– i.e., maximize the number of assignment options still
open.

38V. Lesser CS683 F2004

Constraint propagationConstraint propagation

• Reduce the branching factor by deleting values that are

not consistent with the values of the assigned

variables.

• Forward checking: a simple kind of propagation

39V. Lesser CS683 F2004

Arc consistencyArc consistency

• An arc from X to Y in the constraint graph is
consistent if, for every value of X, there is
some value of Y that is consistent with X.

• Can detect more inconsistencies than forward
checking.

• Can be applied as a preprocessing step before
search or as a propagation step after each
assignment during search.

• Process must be applied repeatedly until no
more inconsistencies remain. Why?

40V. Lesser CS683 F2004

ARC Consistency ExampleARC Consistency Example

Waltz Filtering: Exploiting Pair-Wise Constraints

('(1)('(2)…('(n)((1) D1)((2) D2)…((n) Dn) P1((1) # P2 ((2)… # Pn((n) # P12((1,

(2) # P13((1, (3)# … # Pn-1 , Pn((n-1, (n) 42V. Lesser CS683 F2004

ARC Consistency AlgorithmARC Consistency Algorithm

if(x,y) can not be satisfied with some value y in DOMAIN[Xj] then

delete x from DOMAIN[Xi]; remove<-true

Wrong

43V. Lesser CS683 F2004

Complexity of arc consistencyComplexity of arc consistency

• A binary CSP has at most O(n2) arcs

• Each arc (X&Y) can only be inserted on the agenda d

times because at most d values of Y can be deleted.

• Checking consistency of an arc can be done in O(d2)

time.

• Worst case time complexity is: O(n2d3).

• Does not reveal every possible inconsistency!

44V. Lesser CS683 F2004

K-consistencyK-consistency

• A graph is k-consistent if, for any set of k variables,
there is always a consistent value for the kth variable
given any consistent partial assignment for the other
k-1 variables.
– A graph is strongly k-consistent if it is i-consistent for i = 1..k.

– IF k=number of nodes than no backtracking

• Higher forms of consistency offer stronger forms of
constraint propagation.
– Reduce amount of backtracking

– Reduce effective branching factor

– Detecting inconsistent partial assignments

• Balance of how much pre-processing to get graph to
be k consistent versus more search

45V. Lesser CS683 F2004

Intelligent backtrackingIntelligent backtracking

• Chronological backtracking: always backtrack to most

recent assignment. Not efficient!

• Conflict set: A set of variables that caused the failure.

• Backjumping: backtrack to the most recent variable

assignment in the conflict set.

• Simple modification of BACKTRACKING-SEARCH.

• Every branch pruned by backjumping is also pruned

by forward checking!

• Conflict-directed backjumping: better definition of

conflict sets leads to better performance.

46V. Lesser CS683 F2004

Informed-Backtracking UsingInformed-Backtracking Using

 Min-Conflicts Heurist Min-Conflicts Heuristicic
Procedure INFORMED-BACKTRACK (VARS-LEFT VARS-DONE)

If all variables are consistent, then solution found, STOP.

Let VAR = a variable in VARS-LEFT that is in conflict.

Remove VAR from VARS-LEFT.

Push VAR onto VARS-DONE.

Let VALUES = list of possible values for VAR ordered in ascending
order according to number of conflicts with variables
in VARS-LEFT.

For each VALUE in VALUES, until solution found:

If VALUE does not conflict with any variable that is in VARS-DONE,

then Assign VALUE to VAR.

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

end if

end for

end procedure

Begin program

Let VARS-LEFT = list of all variables, each assigned an initial state

Let VARS-DONE = nil

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

End program

47V. Lesser CS683 F2004

Complexity and problem structureComplexity and problem structure

• The complexity of solving a CSP is strongly
related to the structure of its constraint graph.

• Decomposition into independent subproblems
yields substantial savings: O(dn) & O(dc*n/c)

•

• Tree-structured problems can be solved in linear
time O(n*d2)

• Cutset conditioning can reduce a general CSP to
a tree-structured one, and is very efficient if a
small cutset can be found.

48V. Lesser CS683 F2004

Algorithm for Tree Structured Algorithm for Tree Structured CSPsCSPs

49V. Lesser CS683 F2004

Algorithm for Nearly-Tree Structured Algorithm for Nearly-Tree Structured CSPsCSPs

50V. Lesser CS683 F2004

SummarySummary

51V. Lesser CS683 F2004

Next lectureNext lecture

• Interacting Subproblems

• Multi-level Search

– blackboard

