
Lecture 6: Search - 5Lecture 6: Search - 5

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s lectures lecture

Local Search

• Hill-Climbing/Iterative Improvement

– Simulated Annealing (Stochastic Hill Climbing)

• Beam Search

– Genetic Algorithm

3V. Lesser CS683 F2004

Local SearchLocal Search

• Operate using a single current state
– Paths followed by search are not retained

• Contrast with open and closed node lists; search tree

– Little memory required -- usually a constant

• Sometimes the path to the goal is irrelevant:
– 8-queens problem, job-shop scheduling

– circuit design, computer configuration

– automatic programming, automatic graph drawing

• Optimization problems may have no obvious
“goal test” or “path cost”.
– Continuous functions

4V. Lesser CS683 F2004

Advantages of local searchAdvantages of local search

• Very simple to implement.

• Very little memory is needed.

• Can often find reasonable solutions in

very large (continuous) state spaces

for which systematic algorithms are

not suitable.

5V. Lesser CS683 F2004

Stochastic Stochastic vsvs. Systematic Search. Systematic Search

• Unsolvability -- Is there a solution?

– Systematic: can require exhaustive examination of exponential

search space

– Stochastic: cannot determine unsolvability

• Completeness/Optimality

– Systematic: complete

– Stochastic: incomplete

• Speed

– Neither is uniformly superior; each does better for different sorts of

problems

Local Search is an example of Stochastic Search
6V. Lesser CS683 F2004

Iterative ImprovementIterative Improvement
(Smart version of Generate & Test)(Smart version of Generate & Test)

• Start Search with complete but non-optimal
solution

• Modify incorrect/non-optimal solution to
move it closer to correct/optimal solution

7V. Lesser CS683 F2004

Iterative Improvement AlgorithmsIterative Improvement Algorithms
(Smart version of Generate & Test)(Smart version of Generate & Test)

• What is the search space

– Search space of complete solutions vs. partial

solutions

• When useful:

– “reasonable” complete solution can be generated

– Operator to modify complete solution

– Some notion of progress

• Measure of complete solution in terms of constraint violations

or an evaluate function

8V. Lesser CS683 F2004

Hill-Climbing SearchHill-Climbing Search

• The main iterative improvement algorithm is
hill-climbing:

Continually move in the direction of
increasing value of all successor

states until a maximum is reached.

– Trade-off between time to select a move (more) and
time to reach goal state (less)

• This is sometimes called steepest-ascent HC,
and is called gradient descent search if the
evaluation function is based on cost rather
than quality.

9V. Lesser CS683 F2004

Hill-climbing searchHill-climbing search

A simple form of local search: Continually move in the direction

of increasing value.

Greedy Local search;

grabs good neighbor

without thinking ahead

10V. Lesser CS683 F2004

Steepest Ascent Hill-ClimbingSteepest Ascent Hill-Climbing

Looks at all

successors

11V. Lesser CS683 F2004

An Example of Hill-Climbing ProblemsAn Example of Hill-Climbing Problems

Local: Add 1 point for every block that is resting on the thing it is supposed to be resting on. Subtract 1 point for every

block that is sitting on the wrong thing.

Global: For each block that has the correct support structure (i.e., the complete structure underneath it is exactly as it should

be), add 1 point for every block in the support structure. For each block that has an incorrect support structure, subtract one

point for every block in the existing support structure.

goal state

L= 4 G= -28
initial stateL=6 G= -21

A
H
G
F
E
D
C
B

H
G
F
E
D
C
B
AA

H
G
:
:
:
:
:

L= 8 G= 28

12V. Lesser CS683 F2004

An Example of Hill-Climbing Problems (contAn Example of Hill-Climbing Problems (cont’’d)d)

A

H

G

F

E

D

C

B

(a) (b) (c)

A

H

G

F

E

D

C

B A H

G

F

E

D

C

B

L=4 G= -28 L=4 G= -16 L=4 G= -15

Local criterion results in no available moves that increase evaluation

13V. Lesser CS683 F2004

Problems with Hill ClimbingProblems with Hill Climbing

• Can get stuck at a local maximum.

• Unable to find its way off a plateau.

• Cannot climb along a narrow ridge when almost all steps go
down (continuous space).

Local maximum

Plateau

Ridge/Knife edges

dead-end

X

solution

dead-end

X

solution

14V. Lesser CS683 F2004

Variants of hill-climbingVariants of hill-climbing

Ways to overcome the weaknesses:
• Stochastic hill-climbing (Simulated Annealing):

choose at random an uphill move among the
successors

– Sometimes take downhill steps

– You may have to get worse to get better!!

• First-choice hill climbing: generate successors
randomly until finding an uphill move

• Random-restart hill climbing: restart search from
randomly generated initial states

15V. Lesser CS683 F2004

Simulated AnnealingSimulated Annealing

“Simulated annealing is a variation of hill climbing in

which, at the beginning of the process, some downhill

moves may be made. The idea is to do enough

exploration of the whole space early on so that the

final solution is relatively insensitive to the starting

state. This should lower the chances of getting caught

at a local maximum, a plateau, or a ridge.”

•Randomly jump to alternative non-locally optimal
moves based on p! = e-"E/T

– more time goes, less willing to explore non-optimal path

16V. Lesser CS683 F2004

Simulated Annealing AlgorithmSimulated Annealing Algorithm

1. Evaluate the initial state. If it is also a
goal state, then return it and quit.
Otherwise, continue with the initial
state as the current state.

2.Initialize BEST-SO-FAR as the current
state.

3.Initialize T according to the annealing
schedule

17V. Lesser CS683 F2004

Simulated Annealing AlgorithmSimulated Annealing Algorithm
(cont(cont’’d)d)

4. Loop until a solution is found or until there are no new operators
left to be applied in the current state.

a) Select an operator (randomly) that has not yet been applied to
the current state and apply it.

b) Evaluate the new state. Compute

"E = (value of current) - (value of new state)

– If the new state is a goal state, return it and quit.

– If it is not a goal state but is better than the current state, then make it
the current state.
• set BEST-SO-FAR to this new state if better than current BEST-SO-FAR .

– If it is not better than the current state, then make it the current state
with probability p´.

c) Revise T according to the annealing schedule

5. Return BEST-SO-FAR as the answer.

18V. Lesser CS683 F2004

Simulated Annealing AlgorithmSimulated Annealing Algorithm

19V. Lesser CS683 F2004

Hill Climbing Hill Climbing vs vs Beam SearchBeam Search

• Keep track of K states rather than just one

– Modified breadth-first, contour created dynamically

• Start with K randomly generated states

• Stop if any goal state

• Multiple Successors generated for each of the k

states

• Choose top K successor states in next cycle

• Contrast with Random Restart

– Positive -- Sharing information across different searches

– Negative - May eliminate diversity coming from random starting

points
20V. Lesser CS683 F2004

Evolutionary ComputationEvolutionary Computation

• Beam Search patterned after biological

evolution

– Learning as Search

• Metaphor of Natural Selection

– Offspring are similar to their parents

– The more fit are more likely to have children

– Occasionally random mutations occur

21V. Lesser CS683 F2004

Genetic (Search) AlgorithmsGenetic (Search) Algorithms

• Localized Beam Search
– Specialized approach for generating successors and

for selecting next states

– An individual solution is represented by a sequence of
“genes”.

– The selection strategy is randomized with probability
of selection proportional to “fitness”.

– Individuals selected for reproduction are randomly
paired, certain genes are crossed-over, and some are
mutated.

22V. Lesser CS683 F2004

Basic Operation of GeneticBasic Operation of Genetic

SearchSearch

• Selection

– More fit members are likely to be in next generation

• Mutation

– Random altering of characteristics

• Crossover

– Combine two members of population

• Cross-over is probably the key idea

• Exploit relative independence of certain subproblem
solutions imbedded in different members

23V. Lesser CS683 F2004

Key QuestionsKey Questions

–What is the fitness function?

–How is an individual represented?

–How are individuals selected?

–How do individuals reproduce?

24V. Lesser CS683 F2004

Solutions as Binary StringsSolutions as Binary Strings

Represent

 IF Wind=Strong THEN PlayTennis=yes

by

Outlook Wind PlayTennis

 111 10 10

Represent

 (Outlook = Overcast ! Rain) " (Wind = Strong)

by

 Outlook Wind

 011 10

 Sunny(no) Weak(no)

25V. Lesser CS683 F2004

Operators for Genetic AlgorithmsOperators for Genetic Algorithms

Initial Strings Crossover Mask Offspring

Single-point crossover:
11101001000 11101010101

11111000000

00001010101 00001001000

Two-point crossover:
11101001000 11001011000

00111110000

00001010101 00101000101

Uniform crossover:
11101001000 10001000100

10011010011

00001010101 01101011001

Point mutation:
11101001000 11101011000

26V. Lesser CS683 F2004

GA (GA (Fitness, Fitness_threshold, p, r, mFitness, Fitness_threshold, p, r, m))

GA(Fitness,Fitness_ threshold, p,r,m)

•Initialize: P! p random hypotheses

•Evaluate: for each h in P, compute Fitness(h)

•While [maxh Fitness(h)] < Fitness_threshold

1. Select : Probabilistically select (1 - r) p

 members of P to add to P s.

 Pr(hi) =
Fitness(ih)

Fitness(jh)j =1
p"

2. Crossover : Probabilistically select
r # p

2
 pairs of hypotheses from P. For each

 pair, h1,h2 , produce two offspring by applying the Crossover operator. Add all

 offspring to P s.

27V. Lesser CS683 F2004

……continued from previous slidecontinued from previous slide

3. Mutate: Invert a randomly selected bit

in m# p random members of Ps

4. Update: P$ Ps

5. Evaluate: for each h in P, compute
Fitness(h)

• Return the hypothesis from P that has
the highest fitness.

Figure: The genetic algorithmFigure: The genetic algorithm

(a)
Initial Population

000110010111

111010101100

001110101001

111011011100

(e)
Mutation

111010010111

000110101100

111110101001

001110101101

(d)
Cross-Over

10010111

0001

1001

00111010

1110

10101100

11101010

1100

(c)
Selection

111010101100

000110010111

111010101100

001110101001

(b)
Fitness Function

8 32%

6 24%

6 24%

5 20%

In (a) we have an initial population of 4 individuals. They are scored by the fitness function in (b); the top individual
scores an 8 and the bottom scores a 5. It works out that the top individual has a 32% chance of being chosen on each
selection. In (c), selection has given us two pairs of mates, and the cross-over points (dotted lines) have been chosen.
Notice that one individual mates twice; one not at all. In (d), we see the new offspring, generated by cross-over of their
parents’ genes. Finally in (e), mutation has changed the two bits surrounded by boxes. This gives us the population for
the next generation.

29V. Lesser CS683 F2004

Selecting Most Fit HypothesesSelecting Most Fit Hypotheses

• Tournament Selection:
– Pick h1, h2 at random with uniform probability.

– With probability p, select the more fit

• Rank Selection:
– Sort all hypotheses by fitness

– Probability of selection is proportional to rank

Fitness proportionate selection:

…can lead to crowding (lack of diversity)

Fitness(ih)

 j=1

p!

Fitness(jh)

Pr(hi) =

30V. Lesser CS683 F2004

Gabil Gabil [[DeKong DeKong et al. 1993]et al. 1993]

Learn disjunctive set of propositional rules, competitive with C4.5

Fitness:

Fitness(h)=(correct(h))2

Representation:

IF a1=T a2=F THEN c=T; IF a2=T THEN c=F

represented by

a1 a2 c a1 a2 c

10 01 1 11 10 0

Genetic Operators:

•Want variable length rule sets as solutions

•Want only well-formed bitstring hypotheses

<

31V. Lesser CS683 F2004

Crossover with Variable LengthCrossover with Variable Length

BitstringsBitstrings

Start with

a1 a2 c a1 a2 c

h1: 1 0 01 1 11 1 0 0

h2: 0 1 1 1 0 10 01 0

1. Choose crossover points for h1, e.g. after bits 1, 8

2. Now restrict points in h2 to those that produce bitstrings with
well-defined semantics, e.g., %1, 3&, %1, 8&, %6, 8&.

If we choose %1, 3& , result is

a1 a2 c a1 a2 c
h3 : 11 10 0 11 10 0

 a1 a2 c a1 a2 c
h4 : 00 01 1 10 01 0

32V. Lesser CS683 F2004

Gabil Gabil ExtensionsExtensions

Add new genetic operators, also applied

probabilistically:

1. Add Alternative: generalize constraint on ai by
changing a 0 to 1

2. Drop Condition: generalize constraint on ai by
changing every 0 to 1.

And, add new field to bitstring to determine
whether to allow these

 a1 a2 c a1 a2 c AA DC
 01 11 0 10 01 0 1 0

So now the learning strategy evolves!

33V. Lesser CS683 F2004

GABIL ResultsGABIL Results

• Performance of GABIL comparable to
symbolic rule/tree learning methods C4.5,
ID5R, AQ14

• Average performance on a set of 12 synthetic
problems:

– GABIL without AA and DC operators: 92.1%

accuracy

– GABIL with AA and DC operators: 95.2% accuracy

– Symbolic learning methods ranged from 91.2 to

96.6

34V. Lesser CS683 F2004

Genetic ProgrammingGenetic Programming

Population of programs represented by
trees sin(x) + 'x2 + y

+

sin

x +

y(

x 2

35V. Lesser CS683 F2004

CrossoverCrossover

+

sin

x +

y+

x y

+

sin

x +

y(

x 2

+

sin

x +

yx

2

(

+

sin

x

2x

2

(

(

36V. Lesser CS683 F2004

Five Major Preparatory StepsFive Major Preparatory Steps

• Determining the set of terminals

• Determining the set of functions

• Determining the fitness measure

• Determining the parameters

• Determining the method for designating

a result and the criterion for terminating

a run.

37V. Lesser CS683 F2004

Learning Boolean Even-k-ParityLearning Boolean Even-k-Parity

FunctionFunction

1. TERMINAL SET T

T = {D0, D1, D2, … , Dk}

2. FUNCTION SET F

F = {AND, OR, NAND, NOR}

3. FITNESS MEASURE

The fitness cases are the 2k combinations of the k terminals in T.

The standardized fitness of an S-expression is the sum, over the 2k fitness

cases, of the error (Hamming distance) between the Boolean value

returned by the S-expression and the correct value of the target function

(Boolean even-k-parity function).

38V. Lesser CS683 F2004

4. CONTROL PARAMETERS

• Population Size M = 4,000

• Generations G = 51

5. TERMINATION CRITERIA AND RESULT DESIGNATION

• Terminate when fitness equals 0 (2k hits)

 or after G = 51 generations

• Designate best-so-far individual as the solution

Learning Boolean Even-k-Parity Function,Learning Boolean Even-k-Parity Function,
p2p2

39V. Lesser CS683 F2004

Two OffspringTwo Offspring

(OR (AND (NOT D0) (NOT D1))

(AND D0 D1))

(OR (OR D1 (NOT D0))

 (NOT D1))

OR

ANDAND

NOTNOT NOT

AND

D0 D1

D0D0 D1

OR

OR

D1 NOT

NOTNOT

D1D1

D0

40V. Lesser CS683 F2004

Two Parents in CrossoverTwo Parents in Crossover

 (OR (NOT D1)

(AND D0 D1))

 (OR (OR D1 (NOT D0))

 (AND (NOT D0) (NOT D1))

OR

NOTNOT AND

D0 D1D1

OR

OR

D1 NOT

ANDAND

D0D0D0

NOTNOT NOTNOT

D1D1

1

2

3

4

5 6

1

2

3 4

5

6

7

8

9

10

41V. Lesser CS683 F2004

Genetic ProgrammingGenetic Programming

 More interesting example: design electronic

filter circuits

• Individuals are programs that transform

beginning circuit to final circuit, by

adding/subtracting components and

connections

• Use population of 640,000, run on 64-node

parallel processor

• Discovers circuits competitive with best

human designs

42V. Lesser CS683 F2004

Summary: Genetic algorithmsSummary: Genetic algorithms

• Have been applied to a wide range of
problems.

• Results are sometimes very good and
sometimes very poor.

• The technique is relatively easy to
apply and in many cases it is beneficial
to see if it works before thinking about
another approach.

43V. Lesser CS683 F2004

Next lectureNext lecture

• Repair/Debugging

– GSAT Interacting Subproblems

• More on CSP problems

– texture measures

• Multi-level Search

– blackboard

