
Lecture 5: Search - 4Lecture 5: Search - 4

Jiaying Shen

CMPSCI 683

Fall 2004

2Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

TodayToday’’s lectures lecture

• Anytime A*

• Hierarchical A*

• Other Examples of Hierarchical

Problem Solving

• Reviews of A* and its varations

3Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Anytime algorithmsAnytime algorithms

! Ideal (maximal quality in no time)

! Traditional (quality maximizing)

! Anytime (utility maximizing)

Decision
Quality

Time

Ideal

Traditional

Time cost

Anytime
Value

4Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Anytime A*Anytime A*

! A* is best first search with f(n) = g(n) + h(n)

! Three changes make it an anytime algorithm:

(1) Use a non-admissible evaluation function f’(n) to select

node to expand next so that sub-optimal solutions are found

quickly.

(2) Continue the search after the first solution is found, using

an auxiliary, admissible evaluation function f(n) to prune the

open list.

(3) When the open list is empty, the last solution generated is

optimal.

! How to choose a non-admissible evaluation function f’(n)?

5Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Weighted evaluation functionsWeighted evaluation functions

! Use f’(n) = (1 ! w)"g(n) + w"h(n)

! Higher weight on h(n) tends to search deeper.

! Admissible if h(n) is admissible and w # 0.5

! Otherwise, the search may not be optimal, but it
normally finds solutions much faster.

! An appropriate w makes possible a tradeoff between
the solution quality and the computation time

6Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Adjusting W Adjusting W DynamicallyDynamically

Suppose you had the following situations, how
would you adjust w.

• the open list has gotten so large that you are running
out of memory?

• you are running out of time and you have not yet
reached an answer?

• there are a number of nodes on the open list whose h
value is very small?

7Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Pruning States in Anytime A*Pruning States in Anytime A*

• For each node, store real f(n) = g(n)+h(n)

– f(n) is the lower bound on the cost of the best solution

path through n

• When find solution node n1

– f(n1) is an upper bound of the cost of the optimal

solution

– Prune all nodes n on the open list that have real f(n)

>= f(n1)

8Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Performance profile of w=.6Performance profile of w=.6

What would w=.75 look like?

time

quality

Heavier weights tend to create more of an anytime effect

9Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Hierarchical SearchHierarchical Search

• Idea: Find a high-level structure for a

solution, and then use to find detail solution

• Benefit: Potentially Reduce “significantly”

the size of the detail search space that

needs to be searched

10Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Hierarchical Search PerspectiveHierarchical Search Perspective

11Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Climbing the Hill for a Better ViewClimbing the Hill for a Better View

x dimension

z dimension

(potential)

y dimension
GOAL

Good View

12Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Types of abstractionsTypes of abstractions

– Ignoring features of the world

– Ignoring constraints

– Limiting the horizon

– Limiting the number of goals

13Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Naive Hierarchical A*Naive Hierarchical A*

• Operates like A* except that h(s) is computed by

searching at the next higher level of abstraction.

– h(s) = d($(s), $(goal))

• The result is combined with other estimates

(e.g. cheapest operator cost) to produce the

final h(s).

– h(s) >= to cheapest operator cost

• Heuristic values are being cached to improve

performance.

14Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

State-space Abstraction for A*State-space Abstraction for A*

• A mapping $ of states from state space
<S,d> into <S’,d’> is an abstraction
transformation iff:

d'($(s1), $(s2)) # d(s1, s2)

• Abstraction can be used in order to
automatically create admissible heuristic
functions
– h(s1) = d’($(s1), $(g))

– Searching in Abstraction Space to Compute h using
blind search

15Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Types of AbstractionsTypes of Abstractions

• Embedding = adding edges to the original

graph (corresponds to macro or relaxed

operators).

• Homomorphism = grouping together sets of

states to create a single abstract state

(corresponds to dropping a feature/variable

from the state representation).

16Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

EmbeddingEmbedding

Eliminate conditions

Make possible new operator

17Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Not always a useful idea...Not always a useful idea...

The primary risk in using a heuristic

created by abstraction is that the total

cost of computing h(-) over the course

of the search can exceed the savings.

18Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Generalized Generalized ValtortaValtorta’’ss Theorem Theorem

• If state s must be expanded by blind search, then

either s or $(s) must be expanded by A* using

h$(-).

– A state is necessarily expanded by blind search if its

distance from the start state is strictly less than the distance

from the start state to the goal state

• As a result

– no speed-up when $ is an embedding since $(s) not equal

to $(s’)

– possible speed-up when $ is a homomorphism

• Q. What speed-up can be achieved?

19Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

““Max-degreeMax-degree”” Star Abstraction Star Abstraction

• The state with the highest degree is grouped

together with its neighbors within a certain

distance (the abstraction radius) to form a

single abstract state.

20Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Star abstraction with radius = 2Star abstraction with radius = 2

State with the largest degree within a certain distance
is grouped together with neighbors, repeat for non-
grouped states

% %

start

goal

goal
goal

start

start

21Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Naive Hierarchical A*Naive Hierarchical A*

• A single base level search can spawn a large number
of searches at the abstract level

22Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Reducing Search in AbstractReducing Search in Abstract

SpacesSpaces

• Observation: all searches related to the

same base level problem have the same

goal.

• This allows additional types of caching of

values.

• It leads to breaking Valtorta’s barrier in 5 out

of 8 search spaces.

23Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Exploit Information for Blind Search inExploit Information for Blind Search in

Abstract SpaceAbstract Space

• Naïve Hierarchical A*

– Cache h in abstract space

• V1 - h*caching

– Cache exact h’s (h*) along optimal solution in abstract space

• Exploit in further searches in abstract space and cache for use in base
level search

– Does not preserve monotone properties (h* not comparable with h),
but don’t need to reopen nodes

• V2

– Cache optimal path in abstract space (optimal-path caching)

• V3

– Remember optimal path length in abstract search space (P-g
caching)

• P being optimal path length from start to goal in abstract space

24Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Hierarchical A*Hierarchical A*

25Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

The Granularity of AbstractionThe Granularity of Abstraction

• Increasing the radius of abstraction has two

contradictory effects:

+ abstract spaces contain fewer states and each

abstract search produces values for more

states, but

- the heuristic is less discriminating

• The best case breaks the Valtorta’s barrier in

every search space.

26Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

A* with best abstraction radiusA* with best abstraction radius

27Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Hierarchical Problem SolvingHierarchical Problem Solving

28Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Traditional vs. HierarchicalTraditional vs. Hierarchical

Problem SolverProblem Solver

• Traditional problem solver:

– Problem space

• Set of operators

• Set of states

– Problem

• Initial state

• Goal state

• Hierarchical problem solver:

– Generate abstraction space(s)

• Set of operators and states

– Produce solution in highest abstraction space

• Map from operators and states in ground space

– Refine down to ground level

• Map to operators and states in ground space

29Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

3-Disk Towers of Hanoi3-Disk Towers of Hanoi

Example OperatorExample Operator

(MOVE_DISK3_FROM_PEG2_TO_PEG3)

(preconds ((on disk3 peg2)

(not (on disk2 peg2))

(not (on disk1 peg2))

(not (on disk2 peg3))

(not (on disk1 peg3))))

(effects ((not (on disk3 peg2))

(on disk3 peg3))))

(MOVE_DISK2_FROM_PEG2_TO_PEG3)

(preconds ((on disk1 peg2)

(not (on disk1 peg2))

(not (on disk1 peg3))

 (effects ((not (on disk2 peg2))

(on disk2 peg3))))

A smaller disk can be always moved without
interfering with a large disk!!

P1 P2 P3

P1 P2 P3

D3

D3

D2

D2

D1

D1

30Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Producing Abstraction SpacesProducing Abstraction Spaces

• Idea: Abstraction spaces are formed by removing

sets of literals from the operators and states of the

domain

• Premise: Literals in a domain only interact with

some of the other literals

– literals in D3 moves do not interact with literals in D2 moves

• Method: Partition literals into classes based on their

interactions, and order the classes

• This forms a monotonic hierarchy of abstraction

spaces, that is, any plan to achieve a literal cannot

add or delete a literal higher in the hierarchy.

31Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Producing Abstraction Spaces:Producing Abstraction Spaces:

AlgorithmAlgorithm

Input: The set of operators for a domain.

Output: A hierarchy of monotonic abstraction spaces.

Create_Abstraction_Hierarchy(OPERATORS)

1. ForEach OP in OPERATORS

ForEach LIT1 in Effects(OP)

i. ForEach LIT2 in Effects(OP)

Add_Directed_Edge(LIT1,LIT2,GRAPH)

ii. ForEach LIT2 in Preconditions(OP)

Add_Directed_Edge(LIT1,LIT2,GRAPH)

2. Combine_Strongly_Connected_Components(GRAPH)

3. Topological_Sort(GRAPH)

• Complexity: O(o n2)

• o is number of operators

• n is number of different instantiated literals

32Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

3-Disk Towers of Hanoi3-Disk Towers of Hanoi

Constraints on the LiteralsConstraints on the Literals

(on disk3 peg1)

(on disk3 peg2) (on disk3 peg3)

(on disk1 peg1)

(on disk1 peg2) (on disk1 peg3)

(on disk2 peg1)

(on disk2 peg2) (on disk2 peg3)

Level 3

Level 2Level 1

A smaller disk can be

always moved without

interfering with a large

disk!!

A directed edge

indicates that the first

literal must be at a

higher or the same level

33Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

3-Disk Towers of Hanoi3-Disk Towers of Hanoi

Abstraction HierarchyAbstraction Hierarchy

34Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

AnalysisAnalysis

• Solution to an n-disk problem will require 2n steps

• Backtracking across abstraction levels or

subproblems within an abstraction level is never

required

• Search space reduction is from exponential, O(bL), to

linear, O(L), in length of the solution, where b is the

branching factor.
– Never factored in construction of abstraction space; assumption used

over and over for many problems

35Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

ABSTRIPS - ABSTRIPS - SacerdotiSacerdoti

• Plans using a hierarchy of abstraction spaces.

• Tries to avoid backtracking by working on “more

important” goals first.

• Criticality assigned to preconditions by user and

adjusted by system based on ability of operators to

achieve them.

• At each level, planner would assume less critical

preconditions to be true.

36Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

STRIPS ExampleSTRIPS Example

37Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

ABSTRIPSABSTRIPS
contcont’’dd

38Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

A*

39Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 40Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

QuestionsQuestions

• What are open list and closed list? Why do we

need them?

• Why is A* optimal?

• Why does A* suffer from high memory

requirement?

41Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

IDA*IDA*

42Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

QuestionsQuestions

• How is IDA* different from standard iterative

deepening?

• What is the f-bound of each iteration?

• Why does IDA* use less memory than A*?

• What problems does IDA* suffer from?

43Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RBFS

44Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

447

447

45Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

QuestionsQuestions

• Why do we need to memorize the best

alternative path?

• Why do we need to memorize the best

descendent of a forgotten node?

• Why does RBFS need less space than A*?

• Why is RBFS optimal?

• What problem does RBFS suffer from?

46Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SMA* with memory of 4 nodesSMA* with memory of 4 nodes

Arad 366(a)

(b)

(c)

Sibiu

Arad 393

393

Sibiu

Arad 393(449)

393 Timisoara 447

Arad 646

Sibiu

Arad 393(449)

393(646) Timisoara 447

Fagaras 415

(d)

Timisoara 447 Zerind 449

Sibiu

Arad 393(447)

393(646)

Fagaras 415

(e)

Oradea 671

Sibiu

Arad 413(447)

413(646)

Fagaras 415

(f)

Rimnicu Vilcea 413

Sibiu

Arad 413(447)

413(415)
(g)

Rimnicu Vilcea 413

Craiova Inf 526

47Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Sibiu

Arad 413(447)

413(415)
(h)

Rimnicu Vilcea 413(inf)

Pitesti Inf 417

Sibiu

Arad 415(447)

415(415)(i)

Rimnicu Vilcea inf(inf)

Sibiu Inf 553

Sibiu

Arad 415(447)

415

Arad 646

(j)

Rimnicu Vilcea Inf(inf)

Sibiu

Arad 415(447)

415(646)

Fagaras 415

(l)

Sibiu Inf 591

Sibiu

Arad 415(447)

415(646)

Fagaras 450(inf)

(m)

Bucharest 450

Do we end here?

Sibiu

Arad 415(447)

415(inf)

Arad 646

(k)

Fagaras 415

48Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Sibiu

Arad 447(447)

450(450)(n)

Rimnicu Vilcea inf(inf)

Sibiu Inf 553

Sibiu

Arad 447(450)

450(450)(o)

Rimnicu Vilcea inf(inf)

Timisoara 447

Sibiu

Arad 450(450)

450(450)(p) Zerind 526

Oradea 526

Sibiu

Arad 450

450(646) Zerind 526(526)

Fagaras 415

(q)

Sibiu

Arad 450(526)

450(646)

Fagaras 450(inf)

(r)

Bucharest 450

Solution found! Is it optimal?

49Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

QuestionsQuestions

• Why do we need to back up the best f-value of

all the successors of a node?

• Why do we need to back up the f-value of a

node’s best forgotten child?

• Is SMA* optimal? Why?

• Why is SMA* guaranteed not to get stuck in a

loop?

50Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Next lectureNext lecture

• Iterative Improvement

– Simulated Annealing (Hill Climbing)

– Solution Repair/Debugging

– GSAT

• Heuristics for CSP

– texture measures

