Jiaying Shen
CMPSCI 683
Fall 2004

Anytime A*

Hierarchical A*

Other Examples of Hierarchical
Problem Solving

Reviews of A* and its varations

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Decision A
Quality

Traditional
Ideal

Time cost

e ldeal (maximal quality in no time)
e Traditional (quality maximizing)
e Anytime (utility maximizing)

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

e A*is best first search with f(n) = g(n) + h(n)

® Three changes make it an anytime algorithm:

(1) Use a non-admissible evaluation function f(n) to select
node to expand next so that sub-optimal solutions are found
quickly.

(2) Continue the search after the first solution is found, using
an auxiliary, admissible evaluation function f(n) to prune the
open list.

(3) When the open list is empty, the last solution generated is
optimal.

® How to choose a non-admissible evaluation function f(n)?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

® Use f(n) =1 - w)xg(n) + wxh(n)

o Higher weight on h(n) tends to search deeper.
® Admissible if h(n) is admissible and w < 0.5

e Otherwise, the search may not be optimal, but it
normally finds solutions much faster.

e An appropriate w makes possible a tradeoff between
the solution quality and the computation time

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

* For each node, store real f(n) = g(n)+h(n)

— f(n) is the lower bound on the cost of the best solution
path through n

* When find solution node n1

— f(n1) is an upper bound of the cost of the optimal
solution

— Prune all nodes n on the open list that have real f(n)
>=f(n1)

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Suppose you had the following situations, how

would you adjust w.

+ the open list has gotten so large that you are running

out of memory?

+ you are running out of time and you have not yet

reached an answer?

+ there are a number of nodes on the open list whose h

value is very small?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

A
quality

rd

/N
%

»

What would w=.75 look like?

—>
time

Heavier weights tend to create more of an anytime effect

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

+ Idea: Find a high-level structure for a St g PP

solution, and then use to find detail solution p

- Benefit: Potentially Reduce “significantly” AN NI%

the size of the detail search space that ey~
Ch.nc space states are updated to reflect)
needs to be searched Filter information from projection space(s)

o o .0

o _,..cy-z’;”,l

?"}’.é.a‘?"
":afg"dd o

.o %p o~y ,
>,
o 050yl ,-‘3'

Bve S S B Samhd Spne

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 9 Copyright: S Zilberstein & V.Lesser; CMPSCI 683 10

y dimension

? z dimension
(potential)

—Ignoring features of the world

—Ignoring constraints

'/'} —Limiting the horizon
é;&fif";@zgg" —Limiting the number of goals
i T e

x dimension

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 11 Copyright: S Zilberstein & V.Lesser; CMPSCI 683 12

Jr'?*i.v -

¥

‘i

=
P

* A mapping ® of states from state space

- Operates like A* except that h(s) is computed by <S,d> into <S’,d’> is an abstraction
searching at the next higher level of abstraction. transformation iff:
= h(s) = d(®(s), (goal)) d'(®(s1), ®(s2)) < d(s1, s2)
* The result is combined with other estimates
(e.g. cheapest operator cost) to produce the * Abstraction can be used in order to
final h(s). automatically create admissible heuristic
. functions
— h(s) >= to cheapest operator cost ,
o _ _ — h(s1) = d'(®(s1), ©(g))
* Heuristic values are being cached to improve — Searching in Abstraction Space to Compute h using
performance. blind search
Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 13 Copyright: S Zilberstein & V.Lesser; CMPSCI 683

"

 Embedding = adding edges to the original
graph (corresponds to macro or relaxed
operators).

* Homomorphism = grouping together sets of
states to create a single abstract state
(corresponds to dropping a feature/variable E })
from the state representation).

Eliminate conditions
Make possible new operator

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 15 Copyright: S Zilberstein & V.Lesser; CMPSCI 683

The primary risk in using a heuristic
created by abstraction is that the total
cost of computing h(-) over the course
of the search can exceed the savings.

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 17

- If state s must be expanded by blind search, then
either s or ®(s) must be expanded by A* using
ha().

— A state is necessarily expanded by blind search if its

distance from the start state is strictly less than the distance
from the start state to the goal state

* As aresult

— no speed-up when @ is an embedding since ®(s) not equal
to @(s’)
— possible speed-up when ® is a homomorphism

* Q. What speed-up can be achieved?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 18

* The state with the highest degree is grouped
together with its neighbors within a certain
distance (the abstraction radius) to form a
single abstract state.

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 19

State with the largest degree within a certain distance
is grouped together with neighbors, repeat for non-
grouped states

start

//’—-\\\

7/ AN

4 \
K \ start
1 1

O'\=> ' 0O L => 0

\ | " goal
\ /

\\ . /l

So //

goal

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 20

LA T

’u—‘-:_;_j';‘
S - o h
TABLE 1. Naive Hierarchical A*. (abstraction radius = 2) .
Search Size (F states) Nodes Hxpanded * Observation: all searches related to the
Space All | Base | Blind Hierarchical A* same base level problem have the same
Levels | Level | Search | AllLevels | Base Level goal_
Blocks-5 1166 866 389 2766 118
5-puzzle 961 720 348 3119 224
Fool’sDisk | 4709 | 4096 | 1635 12680 629 * This allows additional types of caching of
Hanoi-7 2894 | 2187 | 1069 18829 701 TS
KL.2000 3107 | 2736 | 1236 7059 641 .
MC 60-40-7 | 2023 | 1878 934 2412 702
Permute-6 731 720 286 806 77 . . , .
Words 5330 | 4493 | 1923 19386 604 It leads to breaking Valtorta’s barrier in 5 out

of 8 search spaces.
* A single base level search can spawn a large number
of searches at the abstract level

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 21 Copyright: S Zilberstein & V.Lesser; CMPSCI 683 22

+ Naive Hierarchical A*

— Cache h in abstract space TABLE 2. Hierarchical A¥. (abstraction radius = 2)
* V1 - h*caching Nodes Expanded # problems
— Cache exact h’s (h*) along optimal solution in abstract space Search Blind Hierarchical A* V3<BS
+ Exploit in further searches in abstract space and cache for use in base Space Search | Naive V1 V2 V3 (out of 200)
5 'eve':eamh t s (1 ot Sowith Blocks-5 389 | 2766 | 1233 | 478 | 402 96
— Does not preserve monotone properties (h* not comparable wi ,
but don't need to reopen nodes S—puzzlg 348 3119 lel6 854 560 14
V2 Fool’s Disk 1635 12680 8612 | 3950 | 1525 132
Hanoi-7 1069 18829 | 10667 | 5357 | 3174 0
— Cache optimal path in abstract space (optimal-path caching) KL2000 1236 7059 3490 1596 | 1028 171
+ V3 MC 60-40-7 934 2412 | 1531 | 1154 | 863 128
— Remember optimal path length in abstract search space (P-g Permute-6 286 206 482 279 242 L13
caching) Words 1923 | 19386 | 7591 | 2849 | 1410 124

» P being optimal path length from start to goal in abstract space

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 23 Copyright: S Zilberstein & V.Lesser; CMPSCI 683 24

* Increasing the radius of abstraction has two
contradictory effects:

+ abstract spaces contain fewer states and each
abstract search produces values for more
states, but

- the heuristic is less discriminating

¢ The best case breaks the Valtorta’s barrier in
every search space.

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

o

..

adius

meta-aperators, o

Projection
Search Spaces

projection
operators, wy
. base
mﬂPP'"B“D operators
operators. Base Search
Space, £ Problem Selver's
intemnal state 7

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

TABLE 3. Hierarchical A*, (best abstraction radius)
Nodes Expanded # problems CPU seconds
Search Radins | Blind | Hierarchical A* V3 «<BS Blind V3
Space Search | Naive V3 (outof 200) | Search
Blocks-5 5 389 611 309 123 69 86
5-puzzle 12 348 354 340 131 36 40
Fool’s Drisk 4 1635 1318 1172 194 872 902
Hanoi-7 20 1069 1097 1055 117 102 108
K1.2000 5 1236 1306 1072 178 398 384
MC 60-40-7 4 934 822 803 144 266 253
Permute-6 5 286 201 194 192 82 67
Words 3 1923 9184 1356 128 1169 12773
Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 26

* Traditional problem solver:

— Problem space
< Set of operators
« Set of states
— Problem
« Initial state
« Goal state

* Hierarchical problem solver:

— Generate abstraction space(s)
< Set of operators and states
— Produce solution in highest abstraction space
* Map from operators and states in ground space
— Refine down to ground level
« Map to operators and states in ground space

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 28

(MOVE_DISK3_FROM_PEG2_TO_PEG3)

(preconds ((on disk3 peg2)
(not (on disk2 peg2))
(not (on disk1 peg2))
(not (on disk2 peg3))
(not (on disk1 peg3)))) P1 P2
((not (on disk3 peg2))
(on disk3 peg3))))

(effects

(MOVE_DISK2_FROM_PEG2_TO_PEG3) v
(preconds ((on disk1 peg2)

(not (on disk1 peg2))

(not (on disk1 peg3))

((not (on disk2 peg2)) P1 P2

(on disk2 peg3))))

(effects

A smaller disk can be always moved without
interfering with a large disk!!

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

P3

P3

Produc

» |dea: Abstraction spaces are formed by removing
sets of literals from the operators and states of the
domain

* Premise: Literals in a domain only interact with
some of the other literals

— literals in D3 moves do not interact with literals in D2 moves

 Method: Partition literals into classes based on their
interactions, and order the classes

* This forms a monotonic hierarchy of abstraction
spaces, that is, any plan to achieve a literal cannot
add or delete a literal higher in the hierarchy.

29 Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 30

Input: The set of operators for a domain.

Output: A hierarchy of

Create_Abstraction_Hierarchy(OPERATORS)
1. ForEach OP in OPERATORS
ForEach LIT1 in Effects(OP)
i. ForEach LIT2 in Effects(OP)
Add_Directed_Edge(LIT1,LIT2,GRAPH)
ii. ForEach LIT2 in Preconditions(OP)
Add_Directed_Edge(LIT1,LIT2,GRAPH)
2. Combine_Strongly_C d_Comg (GRAPH)
3. Topological_Sort(GRAPH)

» Complexity: O(o n2)
* 0 is number of operators
* n is number of different instantiated literals

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

A smaller disk can be
always moved without
interfering with a large
disk!!

(on disk3 pegl)

YA

(on disk3 peg2) 4 (on disk3 peg3)

Level 3
A directed edge
indicates that the first
literal must be at a
higher or the same level

(on disk1 pegl)

27 NN

(on disk1 peg2) *—(on disk1 peg3)

(on disk2 pegl)

2 NN

(on disk2 peg2) 3) (on disk2 peg3)

Level 1 Level 2

31 Copyright: S Zilberstein & V.Lesser; CMPSCI 683 32

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

* Plans using a hierarchy of abstraction spaces.

» Tries to avoid backtracking by working on “more

important” goals first.

+ Criticality assigned to preconditions by user and
adjusted by system based on ability of operators to

achieve them.

« At each level, planner would assume less critical

preconditions to be true.

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

33

35

» Solution to an n-disk problem will require 2" steps

» Backtracking across abstraction levels or
subproblems within an abstraction level is never

required

» Search space reduction is from exponential, O(b'), to
linear, O(L), in length of the solution, where b is the

branching factor.

— Never factored in construction of abstraction space; assumption used

over and over for many problems

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Pour coffee Have brewed coffee Problem solved

34

Not have brewed coffee Have brewed coffee

In kitehen In kitchen
Have grinder Have grinder
Have money Have money
Have boiling water Have boiling water
[(pour cotteey I
Precomasttens: |

Have brewed cotfes |

o=

Make cofiee Have beans Have brewed coffee
Have grinder
Have boiling water .
Be in the kiwchen .
Buy something B s store Have something
Have money
Gosomeplace Place exists Be at place
Not at any other place
Get money Be at bank Have money
Boil water Be in the kitchen Have boiling water
{ otake cottes)
Preconditions:

| Have beans. Have grinder,...

I (Buy brewea cottae) |
Procondivions:

; (Buy beans)
| Preconditions:

1
P
H
" Have money, At beaz store |

{ (Buy grinder)
| Preconditions: :
iHave zoney, At grinder etore |

1
i

TRUE | Go to srore) |

(ot woney) | | (Go to etore) |
Preconditions: | | Preconditions: | Preconditions: |
At bank | |Store sxiets | {Store exisva |
i
[———— — —_—
o to bank) | TRUE § L FALSE |

Preconditione: |
Bank exigts

|
{TRuE

. . . Planning I
Copyright: S.Zilberstein & V.Lesser;

5,

Assign precondition c¢riticalities:

- 3 bt
 ABSTRIRS

e

- N Precandition . Crticality
. Bean store exists - 5
Breved-colfee store tists

cont’dy

Have beans. boiliax water. monsy
Be at brewed-eoffae store, bean store. hank

:
3
i
oraas

The coffee example revisited:

B © (Make coffée} : OF [(Buy brewed coffes)
Levei 5 No preronditions » ¥o precoadivions
ief cricicalicy s:» “of cricicalivy 5
Level 4 ‘ Preconditions: | ¥o preconditions
, Have grinder : of criticatity 4
(Buy grinderd

: (6o 1o grinder store) ©
Preconditdans:
Orinder svore ewists

FALSE: revurs vo tevel §.

Level 3: I No precontitions
¢ of criticality 3
Level 2: Preconditionu:
{Ges momey) ————————— Have momey.
Level 12 " Freconditices: ;

_Be st bank Bo st coffee store

(Go te bank) !

Plaaning I

Copyright: S.Zilberstein & V.Lesser; CMPSCI o553 37

(e) After expanding Fagaras

449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

646=280+366

591=338+253 450=450+0

526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 39

(a) The initial state

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374

Cmaa D@D

646=280+366 415=239+176 526=146+380 413=220+193

(d) After expanding Rimnicu Vilcea

447=118+329 449=75+374

646=280+366 415=239+176 526=146+380

Copyright: ¢ 526=366+160 417=317+100 553-300+253 38

* What are open list and closed list? Why do we
need them?
* Why is A* optimal?

Why does A* suffer from high memory
requirement?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 40

Nad.

F=0+366

=366

Sibiu Zerind

1401253 =1181320 FT54374 Arad
=303 =447 =440
Sibiu Zorind
f=118+329 [=75+374
=447 =449
Arad Arad
T=2R04366 F=230+178 [=146+380 2204193
=idh =417 =526 =413
Zarind
F=118+32% [=75+374
=447 =449
Arad
f=2R04366 2304174 =146+380
=h4h =417 =52
Craiova Sibiu
F=366+160 [=317+08 [=300+253
=526 =415 =553
Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 41

(b) After unwinding back to Sibiu
and expanding Fagaras

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 43

How is IDA* different from standard iterative
deepening?

What is the f-bound of each iteration?

Why does IDA* use less memory than A*?
What problems does IDA* suffer from?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 42

(c) Atfter switching back to Rimnicu Vilcea
and expanding Pitesti

418 615 607

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 44

* Why do we need to memorize the best
alternative path?

* Why do we need to memorize the best
descendent of a forgotten node?

* Why does RBFS need less space than A*?
* Why is RBFS optimal?
* What problem does RBFS suffer from?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 45

413(447)

(h) (k)

415(447)
[0}
@)

415(447)

415(447)
(m)

(0]

Inf(inf)

Do we end here?
Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 47

Csibu Dses Timisoara> 447

Fagaras) 415

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

(0)

)

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

413(447)

(f)

413

413(447)

(9)

Rimnicu Vilcea

Inf 526~
46

450(526)

450(inf)

Solution found! Is it optimal?

48

* Why do we need to back up the best f-value of
all the successors of a node?

* Why do we need to back up the f-value of a
node’s best forgotten child?

* Is SMA* optimal? Why?

* Why is SMA* guaranteed not to get stuck in a
loop?

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 49

* lterative Improvement
— Simulated Annealing (Hill Climbing)
— Solution Repair/Debugging
— GSAT

* Heuristics for CSP

— texture measures

Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

50

