
Lecture 4: Search - 3Lecture 4: Search - 3

Jiaying Shen

CMPSCI 683

Fall 2002

2Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

h1= 2 8 3

number of misplaced tiles 1 6 4

7 5

4

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

6 4 6

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

5 5 6

8 3 2 8 3 2 3 2 3

2 1 4 7 1 4 1 8 4 1 8 4

7 6 5 6 5 7 6 5 7 6 5

6 7 5 7

1 2 3

8 4

7 6 5

5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

h2 = 2 8 3

sum of manhatten distance 1 6 4

7 5

5

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

7 5 7

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

7 5 7

2 3 2 3

1 8 4 1 8 4

7 6 5 7 6 5

5 7

1 2 3

8 4

7 6 5

5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

Example: tracing A* with two different heuristics

3Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

TodayToday’’s lectures lecture

• Space and time variations of A*

4Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Search with limited memorySearch with limited memory

Problem: How to handle the exponential growth

of memory used by admissible search

algorithms such as A*.

Solutions:

• IDA* [Korf, 1985]

• RBFS [Korf, 1993]

• SMA* [Russell, 1992]

5Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

IDA* - Iterative deepening A*IDA* - Iterative deepening A*

• Beginning with an f-bound equal to the f-value of the

initial state, perform a depth-first search bounded by

the f-bound instead of a depth bound.

• Unless the goal is found, increase the f-bound to the

lowest f-value found in the previous search that

exceeds the previous f-bound, and restart the depth

first search.

6Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Iterative-Deepening-A*Iterative-Deepening-A*

• Algorithm: Iterative-Deepening-A*

1) Set THRESHOLD = the heuristic evaluation of the
start state.

2) Conduct a depth-first search based on minimal
cost from current node, pruning any branch when its
total cost function (g + h´) exceeds THRESHOLD. If a
solution path is found during the search, return it.

3) Otherwise, increment THRESHOLD by the minimum
amount it was exceeded during the previous step, and
then go to Step 2.

• Start state always on path, so initial estimate is always
overestimate and never decreasing.

7Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

f-Cost Contoursf-Cost Contours

• Monotonic heuristics allow us to view A* in terms of exploring

increasing f-cost contours:

• The more informed a heuristic, the more the contours will be

“stretched” toward the goal (they will be more focused around the

optimal path).

8Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Stages in an IDA* Search forStages in an IDA* Search for

BucharestBucharest

Nodes are labeled with f = g +h. The h values are the straight-line
distances to Bucharest...

What is the next Contour??

9Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Experimental Results on IDA*Experimental Results on IDA*

• IDA* is asymptotically same time as A* but only O(d) in

space - versus O(bd) for A*

– Avoids overhead of sorted queue of nodes

• IDA* is simpler to implement - no closed lists (limited open

list).

• In Korf’s 15-puzzle experiments IDA*: solved all problems,

ran faster even though it generated more nodes than A*.

– A*: solved no problems due to insufficient space; ran slower

than IDA*
10Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RBFSRBFS - - Recursive Best-First SearchRecursive Best-First Search

• Mimics best-first search with linear

space

• Similar to recursive depth-first

– Limits recursion by keeping track of the f-value of

the best alternative path from any ancestor node

– If current node exceeds this value, recursion

unwinds back to the alternative path

– As recursion unwinds, replaces f-value of node

with best f-value of children

• Allows to remember whether to re-expand path at later

time

11Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RBFSRBFS - - Recursive Best-First Search AlgorithmRecursive Best-First Search Algorithm

12Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

13Copyright: S.Zilberstein & V.Lesser; CMPSCI 683 14Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

447

447

15Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RBFS -- ProRBFS -- Pro’’s and Cons and Con’’ss

• More efficient than IDA* and still optimal

• Like IDA* suffers from excessive node

regeneration

– Note mind changes in example

• IDA* and RBFS not good for graphs

– Can’t check for repeated states other than those on

current path

16Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SMA*SMA*(Simplified Memory-Bounded A*)(Simplified Memory-Bounded A*)

• Uses a given amount of memory to remember nodes
so that they don’t have to be repeatedly regenerated

• It will utilize whatever memory is made available to it.

• It avoids repeated states as far as its memory allows.

• It is complete, provided the available memory is
sufficient to store the shallowest solution path.

• It is optimal, if enough memory is available to store
the shallowest optimal solution path. Otherwise, it
returns the best solution (if any) that can be reached
with the available memory.

• When enough memory is available for the entire
search tree, its behavior replicates that of A*

17Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SMA*SMA*

1. Expand deepest lowest f-cost leaf-node

2. Update f cost of nodes whose successors

have higher f-cost

3. Drop shallowest & highest f-cost leaf node;

remember best forgotten descendant

4. Paths longer than node limit get ! cost.

18Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Sketch of SMA* AlgorithmSketch of SMA* Algorithm

19Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SMA* ExampleSMA* Example

A

B

C D

E F

G

H I

J K

0+12=12

8+5=13

24+0=2416+2=18

24+5=2924+0=24

10+5=15

1010

1010

10

88

8

8

16

20+5=25

30+5=35 30+0=30

20+0=20

20Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SMA* SMA* Example (3-node limit)Example (3-node limit)

A A A A

B GG

H

B

12

15

13

15 13

13(15)

13

18

inf

12

21Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SMA* SMA* Example (3-node limit)Example (3-node limit) contcont..

A A AA

G G

I

B B B

C D

15(15)

24

15

15

15(24)

25

inf

20(24)

20(inf)

20

24(inf) 24 15

Why don’t we need to search anymore after finding D.

22Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Approaches for Reducing SearchApproaches for Reducing Search

CostCost

• Staged search involves periodically pruning
unpromising paths

– SMA* is an example of a staged search

• Node expansion may be so costly (because
the branching factor is high or the cost to
apply operators is high) that exhaustive node
expansion is not practical.

23Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Heuristic node expansionHeuristic node expansion

• Use a generator approach to incrementally

produce successors in order by quality (must

have operator-ordering function);

• Limit expansion so that only likely successors are

generated (often called plausible-move generator);

• Prune unpromising successors immediately

following node expansion;

• Delay state computation until expansion time

when possible (must be able to compute h without

state only on operator/previous state)

24Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Real-time problem solvingReal-time problem solving

• Practical and theoretical difficulties:

– Agents have limited computational power.

– They must react within an acceptable time.

– Computation time normally reduces the

value of the result.

– There is a high degree of uncertainty

regarding the rate of progress.

– The “appropriate” level of deliberation is

situation dependent.

25Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SimonSimon’’s s ““Bounded-RationalityBounded-Rationality””

“A theory of rationality that does not give an account

of problem solving in the face of complexity is sadly

incomplete. It is worse than incomplete; it can be

seriously misleading by providing “solutions” that are

without operational significance”

“The global optimization problem is to find the least-

cost or best-return decision, net of computational

costs.”

-- Herbert Simon, 1958

26Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

SatisficingSatisficing

• A Scottish word which means satisfying.

• Denotes decision making that searches until

an alternative is found that is satisfactory by

the agent's aspiration level criterion.

• Heuristic search as satisficing.

• Formalizing the notion of satisficing.

27Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Satisficing versus optimizingSatisficing versus optimizing

“It appears probable that, however adaptive

the behavior of organisms in learning and

choice situations, this adaptiveness falls far

short of the ideal “maximizing” postulated in

economic theory. Evidently, organisms adapt

well enough to ‘satisfice’; they do not, in

general, ‘optimize.’ ”

28Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Optimizing in the real-worldOptimizing in the real-world

“In complex real-world situations, optimization becomes

approximate optimization since the description of the real-

world is radically simplified until reduced to a degree of

complication that the decision maker can handle.

Satisficing seeks simplification in a somewhat different

direction, retaining more of the detail of the real-world

situation, but settling for a satisfactory, rather than

approximate-best, decision.”

! Which approach is preferable?

29Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RTA* - Real-Time A*RTA* - Real-Time A*

• Goal: reduce the execution time of A*.

• Method: limit the search horizon of A* and
select an action (single move) in constant
time.
– Make decision about next move in real-world without

a complete plan (path) to reach goal state

– Intermix partial search with execution of action

• Two stages
– Make individual move decision: Perform minimin

search with alpha pruning

– Make a sequence of decisions to arrive at a solution

• recovering from inappropriate actions
• avoid loops

30Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

First Phase - First Phase - MiniminMinimin Search Search

with Alpha-Pruningwith Alpha-Pruning

• Minimin lookhead search (see next slide)
– Returns back-up f value for a node from looking ahead

to the frontier node at the horizon

– Viewed as simply a more accurate and computationally
expensive heuristic function

– Reason: If the heuristic function h is consistent and
admissible, then the error in the backed-up cost
estimate cannot increase with search depth

• Alpha pruning
– If current minimum f of horizon node is less than f of an

intermediate node, the intermediate node (and any
successors) can be eliminated from further
consideration

– Reason: f is monotonic and you are only searching to
horizon (don’t need goal state to prune)

31Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Basis of RTA*Basis of RTA*

•h(a) $ g(a to c) + h(c) $ h*(a);
– assuming you need to go to the goal state thru c from a

•As a result of exploring in the search space from a to c,
you can replace h(a) with the better (more informed)
estimate g(a to c) + h(c)

•This leads to a more informed decision at S whether to
take the “action in the real world of moving” to either
state y, a, or x.

a

y

S

x

a b c

h(c)

h(a)

32Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Procedure for Calculating Backed-UpProcedure for Calculating Backed-Up

Value of a MoveValue of a Move

procedure evaluate(move,limit)
/* return backed-up estimate f´ (move) by "-pruning search to

depth limit */

1. Open # {move}; "# !
2. f (move) # g (move) + h (move);
3. While (open not empty) do
4. node # pop (Open);
5. expand node; for each child of node do
6. g (child) # g (node) + move-cost;
7. f (child) # g (child) + h (child);
 Prune child if f (child) >= "
8. if f (child) < " do
9. if (depth = limit or goal(child)) then

 "# f (child);
10. else put child on Open; od od od
11. Return ";

33Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RTA* - Controlling the SequenceRTA* - Controlling the Sequence

of Moves Executedof Moves Executed

Basic Principle:

“One should backtrack to a previously visited state when the

estimate of solving the problem from that state plus the

cost of returning to that state is less than the estimated cost

of going forward from the current state.” - Korf

• Merit of every node f(n) = g(n) + h(n) is measured relative to

the current position of the problem solver in the real-world

– initial state is irrelevant

• If one moves back to a previously visited real-world state,

then it needs to take into account that one already has

taken action there

– value of state is next best f

34Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

RTA* AlgorithmRTA* Algorithm

• Maintains in a hash table a list of those nodes that have been
visited by an actual move of the problem solver;

• At each cycle, the current state is expanded and the heuristic
function, possibly augmented by look-ahead search, is applied to
each state which is not in the hash table;

• The f value for of each neighboring state is computed by adding
the h value plus the cost of the link to the current state;

• The neighbor with the minimum f value is chosen for the current
state;

• The second best f value is stored in the hash table for the current
state

– Represents the estimated h cost of solving the problem by returning
to this state

– Second best avoids loops

35Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Example of RTA*Example of RTA*

4 5

1

9

3 2

6

8 7

e i

b

a

d c
3

2

1

h fnode

e

a

i

4d

3c

2b

3

2

1

3

h fnode

e

a

i

4d

3c

2b

5

4

3

2

1

3

h fnode

5e

4a

6i

4d

3c

2b

5

4

3

2

5

3

h fnode

5e

4a

6i

4d

3c

b

5

4

3

2

5

3

h fnode

5e

4a

6i

4d

3c

6b

5

4

3

2

5

4

h fnode

5e

a

6i

4d

3c

6b

36Copyright: S.Zilberstein & V.Lesser; CMPSCI 683

Next lectureNext lecture

• Anytime A*

• Hierarchical A*

