
Lecture 3: Search - 2Lecture 3: Search - 2

Victor R. Lesser
CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s lectures lecture

• Search and Agents
– Material at the end of last lecture

• Continuation of Simple Search

– The use of background knowledge to accelerate search

– Understand how to devise heuristics

– Understand the A* and IDA* algorithms

– Reading: Sections 4.1-4.2.

• Characteristics of More Complex Search

– Subproblem interaction

– More complex view of operator/control costs

– Uncertainty in search

– Non-monotonic domains

– Search redundancy

3V. Lesser CS683 F2004

Problem Solving by SearchProblem Solving by Search

There are four phases to problem solving :

1. Goal formulation
– based on current world state, determine an appropriate goal;

– describes desirable states of the world;

– goal formulation may involve general goals or specific goals;

2. Problem formulation
– formalize the problem in terms of states and actions;

– state space representation;

3. Problem solution via search
– find sequence(s) of actions that lead to goal state(s);

– possibly select “best” of the sequences;

4. Execution phase
– carry out actions in selected sequence.

4V. Lesser CS683 F2004

Agent vs. Conventional AI ViewAgent vs. Conventional AI View

• A completely autonomous agent would have to carry
out all four phases.

• Often, goal and problem formulation are carried out
prior to agent design, and the “agent” is given specific
goal instances (agents perform only search and
execution).

– general goal formulation, problem formulation, specific
goal formulation, etc.

• For “non-agent” problem solving:

– a solution may be simply a specific goal that is
achievable (reachable);

– there may be no execution phase.

• The execution phase for a real-world agent can be
complex since the agent must deal with uncertainty
and errors.

5V. Lesser CS683 F2004

Goals vs.Performance Measures (PM)Goals vs.Performance Measures (PM)

• Adopting goals and using them to direct problem
solving can simplify agent design.

• Intelligent/rational agent means selecting best
actions relative to a PM, but PMs may be complex
(multiple attributes with trade-offs).

• Goals simplify reasoning by limiting agent
objectives (but still organize/direct behavior).

• Optimal vs. satisficing behavior: best performance
vs. goal achieved.

• May use both: goals to identify acceptable states
plus PM to differentiate among goals and their
possible solutions.

6V. Lesser CS683 F2004

Problem-Solving PerformanceProblem-Solving Performance

• Complete search-based problem solving involves
both the search process and the execution of the
selected action sequence.

– Total cost of search-based problem solving is the sum of
the search costs and the path costs (operator sequence
cost).

• Dealing with total cost may require:

– Combining “apples and oranges” (e.g., travel miles and CPU
time)

– Having to make a trade-off between search time and solution
cost optimality (resource allocation).

– These issues must be handled in the performance measure.

7V. Lesser CS683 F2004

Knowledge and Problem TypesKnowledge and Problem Types

• Problems can vary in a number of ways that can
affect the details of how problem-solving (search)
agents are built.

• One categorization is presented in AIMA: (related
to accessibility and determinism)

– Single-state problems

• Agent knows initial state and exact effect of each action;

• Search over single states;

– Multiple-state problems

• Agent cannot know its exact initial state and/or the exact
effect of its actions;

• Must search over state sets;

• May or may not be able to find a guaranteed solution;

8V. Lesser CS683 F2004

Knowledge and Problem Types Knowledge and Problem Types (cont(cont’’d)d)

• Contingency problems

– Exact prediction is impossible, but states may be determined

during execution (via sensing);

– Must calculate tree of actions, for every contingency;

– Interleaving search and execution may be better

• Respond to state of world after execution of action with

uncertain outcome (RTA*);

• Exploration problems

– Agent may have no information about the effects of its

actions and must experiment and learn

– Search in real world vs. model.

9V. Lesser CS683 F2004

Uninformed/Blind Search StrategiesUninformed/Blind Search Strategies

• Uninformed strategies do not use any

information about how close a node might be

to a goal (additional cost to reach goal).

• They differ in the order that nodes are

expanded (and operator cost assumptions).

10V. Lesser CS683 F2004

Informed/Heuristic SearchInformed/Heuristic Search

• While uninformed search methods can in

principle find solutions to any state space

problem, they are typically too inefficient to

do so in practice.

• Informed search methods use problem-

specific knowledge to improve average

search performance.

11V. Lesser CS683 F2004

What are heuristics?What are heuristics?

• Heuristic: problem-specific knowledge that reduces
expected search effort.

• Informed search uses a heuristic evaluation
function that denotes the relative desirability of
expanding a node/state.

• often include some estimate of the cost to reach
the nearest goal state from the current state.

• In blind search techniques, such knowledge can be
encoded only via state space and operator
representation.

12V. Lesser CS683 F2004

Examples of heuristicsExamples of heuristics

• Travel planning

– Euclidean distance

• 8-puzzle

– Manhattan distance

– Number of misplaced tiles

• Traveling salesman problem

– Minimum spanning tree

Where do heuristics come from?

13V. Lesser CS683 F2004

Heuristics from relaxed modelsHeuristics from relaxed models

• Heuristics can be generated via simplified

models of the problem

• Simplification can be modeled as deleting

constraints on operators

• Key property: Heuristic can be calculated

efficiently

14V. Lesser CS683 F2004

Best-first searchBest-first search

• Idea: use an evaluation function for

each node, which estimates its

“desirability”

• Expand most desirable unexpanded

node

• Implementation: open list is sorted in

decreasing order of desirability

15V. Lesser CS683 F2004

 Best-First SearchBest-First Search

1) Start with OPEN containing just the initial state.

2) Until a goal is found or there are no nodes left on OPEN do:

(a) Pick the best node on OPEN.

(b) Generate its successors.

(c) For each successor do:

i. If it has not been generated before, evaluate it, add
it to OPEN, and record its parent.

ii. If it has been generated before, change the parent
if this new path is better than the previous one.
In that case, update the cost of getting to this
node and to any successors that this node may
already have.

16V. Lesser CS683 F2004

Avoiding repeated states in searchAvoiding repeated states in search

• Do not re-generate the state you just came

from

• Do not create paths with cycles

• Do not generate any state that was generated

before (using a hash table to store all

generated nodes)

17V. Lesser CS683 F2004

Greedy searchGreedy search

• Simple form of best-first search

• Heuristic evaluation function h(n)

estimates the cost from n to the closest

goal

• Example: straight-line distance from n to

Bucharest

• Greedy search expands the node that

appears to be closets to the goal

• Properties of greedy search?

18V. Lesser CS683 F2004

Problems with best-first searchProblems with best-first search

• Uses a lot of space?

• The resulting algorithm is complete (in finite

trees) but not optimal?

19V. Lesser CS683 F2004

Informed Search StrategiesInformed Search Strategies

• Search strategies:

– Best-first search (a.k.a. ordered search):

• greedy (a.k.a. best-first)

• A*

• ordered depth-first (a.k.a. hill-climbing)

– Memory-bounded search:

• Iterative deepening A* (IDA*)

• Simplified memory-bounded A* (SMA*)

– Time-bounded search:

• Anytime A*

• RTA* (searching and acting)

– Iterative improvement algorithms (generate-and-test approaches):

• Steepest ascent hill-climbing

• Random-restart hill-climbing

• Simulated annealing

– Multi-Level/Multi-Dimensional Search

20V. Lesser CS683 F2004

State Space CharacteristicsState Space Characteristics

There are a variety of factors that can affect the choice
of search strategy and direction of search:
– Branching factor;

– Expected depth/length of solution;

– Time vs. space limitations;

– Multiple goal states (and/or initial states);

– Implicit or Explicit Goal State specification

– Uniform vs. non-uniform operator costs;

– Any solution vs. optimal solution;

– Solution path vs. state;

– Number of acceptable solution states;

– Different forward vs. backward branching factors;

– Can the same state be reached with different operator
sequences

21V. Lesser CS683 F2004

Minimizing total path cost: A*Minimizing total path cost: A*

• Similar to best-first search except that the

evaluation is based on total path (solution)

cost:

f(n) = g(n) + h(n) where:

g(n) = cost of path from the initial state to n

h(n) = estimate of the remaining distance

22V. Lesser CS683 F2004

h1= 2 8 3

number of misplaced tiles 1 6 4

7 5

4

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

6 4 6

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

5 5 6

8 3 2 8 3 2 3 2 3

2 1 4 7 1 4 1 8 4 1 8 4

7 6 5 6 5 7 6 5 7 6 5

6 7 5 7

1 2 3

8 4

7 6 5

5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

h2 = 2 8 3

sum of manhatten distance 1 6 4

7 5

5

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

7 5 7

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

7 5 7

2 3 2 3

1 8 4 1 8 4

7 6 5 7 6 5

5 7

1 2 3

8 4

7 6 5

5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

Example: tracing A* with two different heuristics

23V. Lesser CS683 F2004 24V. Lesser CS683 F2004

25V. Lesser CS683 F2004

Admissibility and MonotonicityAdmissibility and Monotonicity

• Admissible heuristic = never overestimates the
actual cost to reach a goal.

• Monotone heuristic = the f value never decreases
along any path.

• When h is admissible, monotonicity can be
maintained when combined with pathmax: f(n") =
max(f(n), g(n")+h(n"))

Does monotonicity in f imply admissibility?

26V. Lesser CS683 F2004

Optimality of A*Optimality of A*

Intuitive explanation for monotone h:

• If h is a lower-bound, then f is a lower-bound on

shortest-path through that node.

• Therefore, f never decreases.

• It is obvious that the first solution found is optimal (as
long as a solution is accepted when f(solution) ! f(node)

for every other node).

27V. Lesser CS683 F2004

Proof of optimality of A*Proof of optimality of A*

Let O be an optimal solution with path cost f*.

Let SO be a suboptimal goal state, that is g(SO) > f*

Suppose that A* terminates the search with SO.

Let n be a leaf node on the optimal path to O

f* ! f(n) admissibility of h

f(n) ! f(SO) n was not chosen for expansion

f* ! f(n) ! f(SO)

f(SO) = g(SO) SO is a goal, h(SO) = 0

f* ! g(SO) contradiction!

28V. Lesser CS683 F2004

Completeness of A*Completeness of A*

A* is complete unless there are infinitely many
nodes with f(n) < f*

A* is complete when:

 (1) there is a positive lower bound on

the cost of operators.

 (2) the branching factor is finite.

29V. Lesser CS683 F2004

A* is maximally efficientA* is maximally efficient

• For a given heuristic function, no optimal

algorithm is guaranteed to do less work in

terms of nodes expanded.

• Aside from ties in f, A* expands every node

necessary for the proof that we’ve found the

shortest path, and no other nodes.

30V. Lesser CS683 F2004

LocalLocal Monotonicity Monotonicity in A*in A*

“locally” admissible if h(Ni) - h(Nj) ! cost(Ni, Nj) & h(goal)=0

Each state reached has the minimal g(N)

f(N1) < f(N2) # f(N3 via N1) ! f(N3 via N2)

N1 always expanded before N2

Not necessary to expand N2$N3 if expanded N1 $ N3 also f(N1)
! f(N3)

s

N2

N3

N1

a

b

Triangle inequality

a+b! c

Ni

G

cost(Ni,Nj)

hjhi

Nj

31V. Lesser CS683 F2004

QuestionsQuestions

• What is the implications of local monotonicity
– Amount of storage

• What happens if h1<=h2<=h for all states
– h2 dominates h1

• What are the implications of overestimating h
– Suppose you can bound overestimation

32V. Lesser CS683 F2004

Relationships among searchRelationships among search algs algs..

best-

 first

A*

h < h* h = 0

uniform

 cost

depth-first
Any

f = breadth-first

f = wg + (1%w)h

33V. Lesser CS683 F2004

Heuristic Function PerformanceHeuristic Function Performance

• While informed search can produce dramatic real (average-case)
improvements in complexity, it typically does not eliminate the
potential for exponential (worst-case) performance.

• The performance of heuristic functions can be compared using several
metrics:

– Average number of nodes expanded (N)

– Penetrance (P = d/N)

– Effective branching factor (b*)

• If solution depth is d then b* is the branching factor that a uniform search tree
would have to have to generate N nodes

(N = 1 + b* + (b*)2 + … + (b*)d;

• EBF tends to be relatively independent of the solution depth.

• Note that these definitions completely ignore the cost of applying the
heuristic function.

34V. Lesser CS683 F2004

Measuring the heuristic payoffMeasuring the heuristic payoff

35V. Lesser CS683 F2004

Meta-Level ReasoningMeta-Level Reasoning

• Search cost involves both the cost to
expand nodes and the cost to apply
heuristic function.

• Typically, there is a trade-off between the
cost and performance of a heuristic
function.

– E.g., we can always get a “perfect” heuristic function
by having the function do a search to find the
solution and then use that solution to compute
h(node).

36V. Lesser CS683 F2004

Meta-Level Reasoning (Meta-Level Reasoning (contcont’’dd))

This trade-off is often referred to as the meta-
level vs. base-level trade-off:

• Base-level refers to the operator level, at
which the problem will actually be solved;

• Meta-level refers to the control level, at
which we decide how to solve the
problem.

We must evaluate the cost to execute the heuristic function
relative to the cost of expanding nodes and the reduction in

nodes expanded.

37V. Lesser CS683 F2004

IDA* - Iterative deepening A*IDA* - Iterative deepening A*

(Space/time trade-off)(Space/time trade-off)

• A* requires open (& close) list for
remembering nodes

– Can lead to very large storage requirements

• Exploit the idea that:

f = g + h ! f* (actual cost)

– create incremental subspaces that can be searched
depth-first; much less storage

• Key issue is how much extra computation

– How bad an underestimate f, how many steps does it
take to get f = f*

– Worse case N computation for A*, versus N2 for IDA*

^

^ ^ ^

38V. Lesser CS683 F2004

IDA* - Iterative deepening A*IDA* - Iterative deepening A*

• Beginning with an f-bound equal to the f-value
of the initial state, perform a depth-first
search bounded by the f-bound instead of a
depth bound.

• Unless the goal is found, increase the f-bound
to the lowest f-value found in the previous
search that exceeds the previous f-bound,
and restart the depth first search.

39V. Lesser CS683 F2004

Advantages of IDA*Advantages of IDA*

• Use depth-first search with f-cost limit

instead of depth limit.

• IDA* is complete and optimal but it uses

less memory [O(bf*/c)] and more time

than A*.

40V. Lesser CS683 F2004

Iterative DeepeningIterative Deepening

Iteration 1. Iteration 2.

Iteration 3. Iteration 4.

41V. Lesser CS683 F2004

Iterative-Deepening-A*Iterative-Deepening-A*

• Algorithm: Iterative-Deepening-A*

1) Set THRESHOLD = the heuristic evaluation of the
start state.

2) Conduct a depth-first search based on minimal
cost from current node, pruning any branch when its
total cost function (g + h´) exceeds THRESHOLD. If a
solution path is found during the search, return it.

3) Otherwise, increment THRESHOLD by the minimum
amount it was exceeded during the previous step, and
then go to Step 2.

• Start state always on path, so initial estimate is always
overestimate and never decreasing.

42V. Lesser CS683 F2004

f-Cost Contoursf-Cost Contours

• Monotonic heuristics allow us to view A* in terms of exploring increasing f-cost
contours:

• The more informed a heuristic, the more the contours will be “stretched” toward
the goal (they will be more focused around the optimal path).

43V. Lesser CS683 F2004

Stages in an IDA* Search forStages in an IDA* Search for

BucharestBucharest

Nodes are labeled with f = g +h. The h values are the straight-line distances
to Bucharest...

What is the next Contour??

44V. Lesser CS683 F2004

Experimental Results on IDA*Experimental Results on IDA*

• IDA* is asymptotically same time as A* but only O(d) in space - versus

O(bd) for A*

– Avoids overhead of sorted queue of nodes

• IDA* is simpler to implement - no closed lists (limited open list).

• In Korf’s 15-puzzle experiments IDA*: solved all problems, ran faster

even though it generated more nodes than A*.

– A*: solved no problems due to insufficient space; ran slower than

IDA*

45V. Lesser CS683 F2004

Next lectureNext lecture

• Continuation of Discussion of IDA*

• Other Time and Space Variations of A*

– RBFS

– SMA*

– RTA*

