
Lecture 2: Search - 1Lecture 2: Search - 1

Victor R. Lesser
CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s lectures lecture

• Why is search the key problem-solving technique in
AI?

• Formulating and solving search problems.

• Understanding and comparing several “blind” search
techniques.

Overview of Material You Should Know!!

You should have read material in Chapters 1-3

3V. Lesser CS683 F2004

Searching for SolutionsSearching for Solutions

• The state space model provides a formal definition of a
problem and what constitutes a solution to a problem.

– Complete and Partial Solutions

• A solution is found by searching through the state space until
a (goal) state with “specific” properties is found

– Local and Global Properties

• A solution is

– a sequence of operators that will change an initial state to a goal state

– the attributes of a state that has certain properties

• Search involves exploring (explicitly generating) parts of the
state space until a solution is found (or the entire space is
explored).

– The point of search is to find a solution without exploring the entire
state space (without generating the complete state space).

4V. Lesser CS683 F2004

Examples of Examples of ““toytoy”” problems problems

• Puzzles such as the 8-puzzle:

• Cryptarithmetic problems:

 SEND
 MORE

MONEY

!

5V. Lesser CS683 F2004

The 8-queens problemThe 8-queens problem

• A popular benchmark for AI search

• Solved for n up to 500,000

6V. Lesser CS683 F2004

Explicit solution for n Explicit solution for n !! 4 4

[Hoffman, Loessi, and Moore, 1969]

If n is even but not of the form 6k+2:

For j = 1, 2, ..., n/2 place queens on elements

(j, 2j), (n/2+j, 2j-1)

If n is even but not of the form 6k:

For j = 1, 2, ..., n/2 place queens on elements

(j, 1+[(2(j-1) + n/2 - 1) mod n]), (n+1-j, n-[(2(j-1) + n/2 - 1) mod n])

If n is odd:

Use case A or B on n-1 and extend with a queen at (n,n)

Is this a good benchmark problem for testing search
techniques?

7V. Lesser CS683 F2004

Real-world problemsReal-world problems

• Signal interpretation (e.g. speech understanding)

• Theorem proving (e.g. resolution techniques)

• Combinatorial optimization (e.g. VLSI layout)

• Robot navigation (e.g. path planning)

• Factory scheduling (e.g. flexible manufacturing)

• Symbolic computation (e.g. symbolic integration)

Can we find closed form solutions to
these problems?

8V. Lesser CS683 F2004

Formulating search problemsFormulating search problems

• States and state spaces

• Operators - representing possible

actions

– Successor function

• Initial state and goal test

• Path cost function

Examples: 8-puzzle, 8-queen, path planning, map

coloring. What are the corresponding states,

operators, initial state, goal test, and path cost.

9V. Lesser CS683 F2004

Example: The 8-puzzleExample: The 8-puzzle

• States: integer locations of tiles

• Actions: move blank left, right, up, down

• Goal test: goal state (given)

• Path cost: 1 per move

Note: Solving n-puzzle problems optimally is NP-hard
10V. Lesser CS683 F2004

Example: robot assemblyExample: robot assembly

• States: real-valued coordinates of robot joint

angles; parts of the object to be assembled

• Actions: continuous motion of robot joints

• Goal test: complete assembly

• Path cost: time to execute

11V. Lesser CS683 F2004

Example: Route FindingExample: Route Finding

State space representation:

– There is a state corresponding to each
city;

– Initial state is the start city state;

– Goal state is the destination city state;

– Operators correspond to roads:
– there is an operator “citya"cityb”

– Iff there is a road from citya to cityb.

12V. Lesser CS683 F2004

Example: Route Finding Example: Route Finding (cont(cont’’d)d)

– Initial state is Arad; Goal state is Bucharest.

Partial search tree:

The final search tree shows six partial solutions (open search nodes).

Sibiu

Arad

Timisoara Zerind

Arad

Sibiu

Arad

Timisoara Zerind

Fagaras Oradea Rimnicu VilceaArad

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

13V. Lesser CS683 F2004

What is a solution?What is a solution?

• A solution to a search problem is a sequence

of operators that generate a path from the

initial state to a goal state.

• An optimal solution is a minimal cost

solution.

• Solution cost versus search cost.

14V. Lesser CS683 F2004

Review of State Space TerminologyReview of State Space Terminology

• State space: a graph of the set of states reachable from the
initial states via some operator sequence.

(The state space is sometimes also called the problem
space or the search space.)

• Path: a sequence of operators from one state to some other
state.

• Solution: a path from an initial state to a goal state.

• Partial solution: a path from an initial state to a (non-dead-end)
intermediate state.

– Encompasses family of possible solutions

• Goal test: predicate that tests if a state is a goal state (goal
states may be explicitly listed or specified by a property).

• Path cost: function that assigns a cost to a path (often

denoted g).

• It is the sum of costs of the operators/actions of the path.

15V. Lesser CS683 F2004

Searching for Solutions (Searching for Solutions (concon’’dd.).)

• Search tree: tree (or graph) of states (really nodes)
explored by the search process.

– search tree (or search graph) is a subgraph of the state space.

• Search involves maintaining and incrementally
extending a set of partial solutions.

• We refer to these partial solutions as search nodes
(nodes in the search tree).

• The process of extending a partial solution is called
expanding a node.

– Basically, expanding a node involves using all/? operators
applicable to the latest state of the node to identify reachable
states and so generate new partial solutions (nodes).

– It is common to refer to nodes by their latest states, but a node
really represents a partial solution (operator sequence).

16V. Lesser CS683 F2004

Problem Formalization IssuesProblem Formalization Issues

• Key issues in defining states:

– which objects/relations to represent;

– which configurations need to be mapped into separate states.

• Key issues in defining operators:

– may have to make explicit, unstated assumptions in the problem
description;

– how state-specific/general should operators be;

– how much domain-specific knowledge should be “compiled” into
the operators.

• Developing an effective state space representation of
a problem is choosing an appropriate abstraction.

– Without abstraction, agents would be swamped by the details of
the real-world.

17V. Lesser CS683 F2004

AbstractionAbstraction

• There are two main aspects of abstraction:

– removing unnecessary detail from the state descriptions (and so the
operators);

– removing legal operators that are useless or inefficient for achieving
goals.

• A good abstraction:

– removes as much detail as possible to make it easy enough to find a
solution;

– maintains the validity of the solutions (for the conceptual goals).

• An abstract solution represents a large number of detailed
paths.

• Often there is a trade-off between simplicity and generality
(the representation becomes so specific to the given problem
that it cannot be used for even very similar problems).

18V. Lesser CS683 F2004

Abstraction ExamplesAbstraction Examples

Two standard AI search problems can be used to explore the
concept of abstraction.

Missionaries and Cannibals:

Three missionaries and three cannibals are on one side of a
river. There is a boat available that can hold up to two people and
can be used to cross the river. If the cannibals ever outnumber
the missionaries in any location then a missionary will get eaten.
Determine how the boat can be used to safely carry all the
missionaries and cannibals across the river.

Trip/route Planning:

Determine how to get from one location to another. Assume that
you know what city you are in, and have a map and a car.

19V. Lesser CS683 F2004

Missionaries and CannibalsMissionaries and Cannibals

Straightforward representation of states:

(boat-loc,m1-loc,m2-loc,...,c3-loc)

[loc $ {side1,side2,river/boat}].

Results in 37 = 2187 states.

Can you simplify by abstraction?

20V. Lesser CS683 F2004

Missionaries and Cannibals (Missionaries and Cannibals (contcont’’dd.).)

Abstraction Simplification
– the particular missionaries and cannibals on each

side do not matter—only numbers;

– do not have to have explicit states with people in
the boat (once in boat will only want to cross to
other side);

– now once know number of a type on one side
know number on the other side.

Abstract states:

(boat-side1?,#m's-side1,#c's-side1)

Results in 2 # 4 # 4 = 32 states.

21V. Lesser CS683 F2004

Missionaries and Cannibals (Missionaries and Cannibals (contcont’’dd.).)

State abstraction also usually reduces the number of

operators:

 “move 1 m and 1 c from side1 to side2”

vs. the previous

“move m1 and c1 from side1 to side2,”

“move m1 and c2 from side1 to side2,” etc.

I

22V. Lesser CS683 F2004

Missionaries and Cannibals (Missionaries and Cannibals (contcont’’dd.).)

Useless operators can also be removed:

(1,m,c) " (2,m- 1,c)

[single missionary goes to goal side in
boat].

The abstract solution using “move number
of people” operators

is still a valid solution to the conceptual goal

(simply have to randomly select particular
people when executing).

23V. Lesser CS683 F2004

Trip/Route PlanningTrip/Route Planning

• In its full generality, states for this problem would be very

complex since they would describe “complete”

configurations of the world:

“at latitude and longitude x-y, time is t, radio on, raining,

car z meters ahead, etc.”

• To simplify, we focus on the problem of finding a sequence

of city to city traversals that accomplish the goal.

In this case, our abstract states simply become: “in city x.”

• We can further simplify by identifying important cities (i.e.,

major cities and cities with road junctions) and identifying

the subset of relevant cities (we don't need to include

Amherst in the state space if we are trying to get to Boston

from Worcester).

24V. Lesser CS683 F2004

Trip/Route Planning (Trip/Route Planning (contcont’’dd.).)

• Likewise, in its full generality, there would be a very
large number of operators to be considered and it
would take a very large number of operators to
achieve a solution:

– e.g., “go heading h at speed s,” “turn radio on,” etc.

• With the abstract states, operators are of the form:
“go from city a to city b” [where there is a road from
city a to city b].

• A solution to the abstract problem solves the basic
goal, but does not give us the detail required for,
say, a robot vehicle to actually navigate the trip.

• Still, the abstract problem solution allows us to see
if a solution is even possible and to judge its
approximate cost.

25V. Lesser CS683 F2004

Searching for solutionsSearching for solutions

Search control strategies

• Order in which the search space is explored

• The extent to which partial solutions are kept and
used to guide the search process

• The degree to which the search process is guided by
domain knowledge

• The degree to which control decisions are made
dynamically at run-time

26V. Lesser CS683 F2004

Basic to All Search ControlBasic to All Search Control

• Choose state(s) to expand next

• Choose operator(s) to expand the state(s)

• Execute the set of (state, operator) pairs

• Update the search graph with some of the new

states created

• Decide if search should be terminated

– Finding an acceptable solution

– There are no solutions to the problem

• Within resource constraints

27V. Lesser CS683 F2004

Search StrategiesSearch Strategies

• A key issue in search is limiting the portion

of the state space that must be explored to

find a solution.

• The portion of the search space explored can

be affected by the order in which states (and

thus solutions) are examined.

• The search strategy determines this order by

determining which node (partial solution) will

be expanded next.

28V. Lesser CS683 F2004

Searching for solutions (Searching for solutions (contcont’’dd))

• The extent to which partial solutions
are kept and used to guide the
search process

• The degree to which the search
process is guided by domain
knowledge

• The degree to which control
decisions are made dynamically at
run-time

29V. Lesser CS683 F2004

Evaluation of Search StrategiesEvaluation of Search Strategies

• Completeness - does it guarantee to find a
solution when there is one?

• Time complexity - how long does it take to
find a solution?

• Space complexity - how much memory does it
require?

• Optimality - does it return the best solution
when there are many?

30V. Lesser CS683 F2004

Search treesSearch trees

• A search tree is a graph representing

the search process

• Nodes are the data structures from

which the search tree is constructed

• Implicit graphs and explicit graphs

• Branching factor and solution depth

• Generating and expanding states

• Open and closed lists of nodes

31V. Lesser CS683 F2004

Representing a nodeRepresenting a node

 (defstructure node
 state

parent-node
operator
depth
path-cost)

32V. Lesser CS683 F2004

Example of a search treeExample of a search tree

2 8 3

1 6 4

7 5

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

33V. Lesser CS683 F2004

Tree search algorithmsTree search algorithms

• Basic idea: offline, simulate exploration of state

space by generating successors of already-

explored states

34V. Lesser CS683 F2004

Search Strategy ClassificationSearch Strategy Classification

• Search strategies can be classified in the

following general way:

– Uninformed/blind search;

– Informed/heuristic search;

– Multi-level/multi-dimensional/multi-direction;

– Game/Adversarial search

• Game search deals with the presence of an opponent that

takes actions that diminish an agent’s performance (see AIMA

Chapter 6).

35V. Lesser CS683 F2004

Blind search strategiesBlind search strategies

Blind or uninformed strategies use only the

information available in the problem definition

– Breadth-first search (open list is FIFO queue)

– Uniform-cost search (shallowest node first)

– Depth-first search (open list is a LIFO queue)

– Depth-limited search (DFS with cutoff)

– Iterative-deepening search (incrementing cutoff)

– Bi-directional search (forward and backward)

36V. Lesser CS683 F2004

Depth-first searchDepth-first search

(defun dfs (nodes goalp successors)

 (cond

 ((null nodes) nil)

 ((funcall goalp (first nodes))

 (first nodes))

 (t (dfs (append (funcall successors

 (first nodes)) (rest nodes))

 goalp successors))))

• Time and space complexity?

37V. Lesser CS683 F2004

Breadth-first searchBreadth-first search

(defun bfs (nodes goalp successors)

 (cond

 ((null nodes) nil)

 ((funcall goalp (first nodes))

 (first nodes))

 (t (bfs (append (rest nodes)

(funcall

 successors (first nodes)))

 goalp successors))))

• Time and space complexity?

38V. Lesser CS683 F2004

Bidirectional searchBidirectional search

• Time and space complexity: bd/2

 When is bidirectional search applicable?

39V. Lesser CS683 F2004

Comparing search strategiesComparing search strategies

Breadth-
first

Depth-
first

Depth-
limited

Iterative
deepening

Bi-
directional

Time

O(bd+1)
Time

O(bm)
Time

O(bl)
Time

O(bd)
Time

O(bd/2)
Space

O(bd+1)
Space

O(bm)
Space

O(bl)
Space

O(bd)
Space

O(bd/)2

Optimal?

Yes*
Optimal?

No
Optimal?

No
Optimal?

Yes*
Optimal?

Yes*
Complete?

Yes*
Complete?

No
Complete?

Yes*
(if l !d)

Complete?

Yes*
Complete?

Yes*

40V. Lesser CS683 F2004

Repeated statesRepeated states

Failure to detect repeated states can turn a

linear problem into an exponential one!

41V. Lesser CS683 F2004

Avoiding Repeated StatesAvoiding Repeated States

• Do not re-generate the state you just

came from.

• Do not create paths with cycles.

• Do not generate any state that was

generated before (using a hash table to

store all generated nodes)

42V. Lesser CS683 F2004

Problem Solving by SearchProblem Solving by Search

There are four phases to problem solving :

1. Goal formulation
– based on current world state, determine an appropriate goal;

– describes desirable states of the world;

– goal formulation may involve general goals or specific goals;

2. Problem formulation
– formalize the problem in terms of states and actions;

– state space representation;

3. Problem solution via search
– find sequence(s) of actions that lead to goal state(s);

– possibly select “best” of the sequences;

4. Execution phase
– carry out actions in selected sequence.

43V. Lesser CS683 F2004

Agent vs. Conventional AI ViewAgent vs. Conventional AI View

• A completely autonomous agent would have to carry
out all four phases.

• Often, goal and problem formulation are carried out
prior to agent design, and the “agent” is given specific
goal instances (agents perform only search and
execution).

– general goal formulation, problem formulation, specific
goal formulation, etc.

• For “non-agent” problem solving:

– a solution may be simply a specific goal that is
achievable (reachable);

– there may be no execution phase.

• The execution phase for a real-world agent can be
complex since the agent must deal with uncertainty
and errors.

44V. Lesser CS683 F2004

Goals vs.Performance Measures (PM)Goals vs.Performance Measures (PM)

• Adopting goals and using them to direct problem
solving can simplify agent design.

• Intelligent/rational agent means selecting best
actions relative to a PM, but PMs may be complex
(multiple attributes with trade-offs).

• Goals simplify reasoning by limiting agent
objectives (but still organize/direct behavior).

• Optimal vs. satisficing behavior: best performance
vs. goal achieved.

• May use both: goals to identify acceptable states
plus PM to differentiate among goals and their
possible solutions.

45V. Lesser CS683 F2004

Problem-Solving PerformanceProblem-Solving Performance

• Complete search-based problem solving involves
both the search process and the execution of the
selected action sequence.

– Total cost of search-based problem solving is the sum of
the search costs and the path costs (operator sequence
cost).

• Dealing with total cost may require:

– Combining “apples and oranges” (e.g., travel miles and CPU
time)

– Having to make a trade-off between search time and solution
cost optimality (resource allocation).

– These issues must be handled in the performance measure.

46V. Lesser CS683 F2004

Knowledge and Problem TypesKnowledge and Problem Types

• Problems can vary in a number of ways that can
affect the details of how problem-solving (search)
agents are built.

• One categorization is presented in AIMA: (related
to accessibility and determinism)

– Single-state problems

• Agent knows initial state and exact effect of each action;

• Search over single states;

– Multiple-state problems

• Agent cannot know its exact initial state and/or the exact
effect of its actions;

• Must search over state sets;

• May or may not be able to find a guaranteed solution;

47V. Lesser CS683 F2004

Knowledge and Problem Types Knowledge and Problem Types (cont(cont’’d)d)

• Contingency problems

– Exact prediction is impossible, but states may be
determined during execution (via sensing);

– Must calculate tree of actions, for every
contingency;

– Interleaving search and execution may be better;

• Exploration problems

– Agent may have no information about the effects
of its actions and must experiment and learn

– Search in real world vs. model.

48V. Lesser CS683 F2004

Next lectureNext lecture

• Continuation of Simple Search
– How to use heuristics (domain knowledge) in order to accelerate

search?

– Reading: Sections 4.1-4.2.

• Characteristics of More Complex Search

– Subproblem interaction

– More complex view of operator/control costs

– Uncertainty in search

– Non-monotonic domains

– Search redundancy

