
Meteorological Command and Control:
An End-to-end Architecture for a Hazardous Weather Detection Sensor Network

Michael Zink, David Westbrook, Sherief Abdallah, Bryan
Horling, Vijay Lakamraju, Eric Lyons, Victoria Manfredi,

Jim Kurose
Dept. of Computer Science, and

Center for Collaborative Adaptive Sensing of the Atmosphere
University of Massachusetts Amherst, MA 01003

Kurt Hondl
National Severe Storms Laboratory

National Oceanic and Atmospheric Administration
Norman, OK 73019, USA

Abstract— We overview the software architecture for a network of
low-powered radars (sensors) that collaboratively and adaptively
sense the lowest few kilometers of the earth’s atmosphere. We focus
on the system’s main control loop – ingesting data from remote
radars, identifying meteorological features in this data, and
determining each radar’s future scan strategy based on detected
features and end-user requirements. Our initial benchmarks show that
that these components generally have sub-second execution times,
making them well-suited for our NetRad system.

I. INTRODUCTION

Distributed Adaptive Collaborative Sensing (DCAS) of the
atmosphere is a new paradigm for detecting and predicting
hazardous weather using a dense network of low-powered
radars to sense the lowest few kilometers of the earth’s
atmosphere [McLaughlin 2005]. Distributed refers to the use
of large numbers of small radars, spaced close enough to “see”
close to the ground in spite of the Earth’s curvature and avoid
resolution degradation caused by radar beam spreading.
Collaborative operation refers to the coordination (when
advantageous) of the beams from multiple radars to view the
same region in space, thus achieving greater sensitivity,
precision, and resolution than possible with a single radar.
Adaptive refers to the ability of these radars and their
associated computing and communications infrastructure to
dynamically reconfigure in response to changing weather
conditions and end-user needs. The principal components of
the DCAS system include sensors (radars); meteorological
algorithms that detect, track, and predict hazards; interfaces
that enable end-users to access the system; storage; and an
underlying substrate of distributed computation that
dynamically processes sensed data and manages system
resources.

NetRad is a prototype DCAS system whose goal is to detect a
tornado within 60 seconds of formation and to track its
centroid with a temporal error no greater than 60 seconds. At
the heart (or perhaps more appropriately, the “brains”) of
NetRad is its Meteorological Command and Control (MC&C)
component that performs the system’s main control loop –
ingesting data from remote radars, identifying meteorological

features in this data, reporting features to end-users, and
determining each radar’s future scan strategy based on
detected features and end-user requirements. In this sense,
NetRad is truly an end-end system, from the sensing radars
through the computing and communication infrastructure and
algorithms, to the end users.

In this paper, we describe the software architecture of
NetRad’s MC&C and present initial benchmarks of its
computational/communication requirements and performance.
The important components of the MC&C that we study in the
paper are (i) the data ingest, field retrieval, and meteorological
detection algorithms, (ii) a feature repository that maintains a
multi-level grid of feature values with associated user-based
utilities, and that generates new sensing tasks for the
networked radars, and (iii) a resource allocation/optimization
process that determines the radars’ scan strategy for the next
system heartbeat. We discuss event notification mechanisms,
and the computation of user-based utilities for competing
sensing requests. We also discuss how NetRad timing
considerations are addressed by structuring the feature
repository as a blackboard system that temporally decouples
data ingest/processing from the generation/optimization of
future sensing activity. Our initial benchmarks, obtained by
evaluating NetRad components using reflectivity and wind
velocity data from the NOAA NEXRAD WSR88D system
[NOAA 2005] show that that these components generally have
sub-second execution times, making them well suited for use
in the NetRad system.

The remainder of this paper is structured as follows. In the
following section we briefly describe the overall NetRad
system, and then dive down into the details of NetRad’s
MC&C architecture. In section 3, we present benchmark
execution times for various MC&C components. Section 4
summarizes this paper and discusses our future research
efforts.

II. NETRAD SYSTEM OVERVIEW AND THE MC&C
ARCHITECTURE.

We are currently building a NetRad prototype system to be
deployed in southwestern Oklahoma, consisting of four
mechanically scanned X-band radars atop small towers, and a
central control site (later to be decentralized as the number of
radars increases) known as the System Operations and Control
Center (SOCC). The SOCC consists of a cluster of commodity
processors and storage on which the MC&C components
execute.

NetRad radars are spaced approximately 30 km apart from each
other and together scan an area of 80km x 80km and up to3 km
in height. Each radar is tasked to scan an angular sector of up to
360 degrees in 1-degree increments, with a range gate (radial
voxel) size of 100 meters out to 30 km. With two elevation
scans during each tasking, each radar can thus produce up to
360*300*2 = 216K reflectivity and velocity values each time it
is tasked. While existing meteorological radar systems such as
NEXRAD generally operate in “sit and spin” mode (taking full
360-degree volume scans independently of location and type of
meteorological features present), NetRad radars are tasked by
the MC&C to focus on volumes of high interest to end-users,
as discussed below.

Each radar consists of three subsystems:

• The Rotating Tower Top houses the radar unit and an
embedded system that monitors the radar’s operational
parameters and enables operator actions in the case of
anomalies (e.g., mechanical problems).

• The Non-rotating Tower Top Subsystem is located below
the rotating joint and houses a data acquisition board (based
on Field Programmable Gate Array (FPGA) technology), a
radar controller, and a Gigabit Ethernet switch. The FPGA
processes raw digitized data (at a rate of approximately 100
Mbps) into packets that are sent via the switch over a fiber
optic cable to the Tower Base Subsystem. The radar
controller controls the movement of the radar pedestal.

• The Tower Base Subsystem consists of a compute cluster
(currently just a single node) and an IDE RAID storage
system, connected via a Gigabit Ethernet switch to a router.
The tower base takes raw radar data, computes so-called
moment data (essentially an average of multiple radar-pulse
measurements for a given voxel of space), while performing
quality control (e.g., attenuation correction and range
folding) on this data. The 1 Mbps moment data is sent to the

SOCC over OneNet [OneNet 2005], an IP network operated
by the Oklahoma state regents, which is configured to
provide 4 Mbps connectivity from each radar to the SOCC.
Raw data is archived at the tower base storage and can be
transferred to SOCC storage in the background.

The SOCC is a centralized compute cluster (later to be
decentralized) interconnected via a Gigabit switch, on which
the MC&C algorithms execute. As shown in Figures 1 and 2,
the SOCC has five main components (i) data ingest and
storage, (ii) meteorological feature detection and multi-radar
merging, (iii) feature repository, (iv) utility and task generation,
and (v) optimization. We describe each of these functions
below in more detail, roughly following the path taken by radar
data through the MC&C, and the resulting re-tasking of the
radars.

A. Data Ingest and Storage
One SOCC computer is responsible for data ingest, archiving
and distribution. Here, moment data (as well as the higher rate
raw data, which is transferred at low priority) is streamed from
the sensor nodes to the MC&C detection algorithms, and
written to storage. In the future, both moment and raw data will
be available to end-users via a query interface.

Data from each elevation scan is sent from a remote radar to
the MC&C data ingest routines using LDM [LDM 2005],
client/server middleware that reliably transfers radar data over
a TCP connection. Given the pre-provisioning of OneNet
bandwidth for NetRad use, congestion loss is not a concern in
our initial testbed. However, we are currently developing a
UDP-based transport protocol that uses application-specific
selective dropping for congestion-control in bandwidth-
constrained environments [Banka 2005]. As illustrated in
Figure 2, the per-radar received reflectivity and wind velocity
data for an elevation scan are converted to NetCDF format, and
stored in a file. An event is then posted and distributed among

Radar 1

LDM

LLSD

TDA

LLSD

TDA

LB
multi-level

grid
construct.

1 2 3 4 5 6 7 8 9
A G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3 B G

3

G

3

G

3

G

3

G

3

G

3

G

3

G

3

G

3 C G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3 D G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3 E G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3 F G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3 G G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3
G

3 H R

1
R

1
R

2
R

2
R

1
G

3
C

2
G

3
G

3 I R

1
F 1 F 2

,
 R
1

F 2,H

2

R

1

G

3

C

2

G

3

G

3 J R

1
H

1
, F
1

H

1
, F
1

T 2,R

1
R

1
G

3
C

2
G

3
G

3 K R

1
H

1
T 2,H

1
T 2,R

1
R

1
G

3
G

3
G

3
G

3

Feature
Repository

feature repository

utility gen.

policy
task

generation

scan strategies
to radars optimization

merge

Figure 2: MC&C details and measurement points

store

reflectivity

velocity
LB

LLSD

TDA

LDM

data ingest/storage feature detection/merging

reflectivity

velocity
LB

prediction

the MC&C procedures using the Linear Buffer (LB) pub/sub
construct of the WDSSII software [Hondl 2003]. In section 3,
we report the time needed to transfer an elevation scan from
sender to receiver over a Gigabit LAN switch using LDM,
write the associated files and post/distribute an event.

B. Meteorological Feature Detection, Multi-radar Data
Merging

Once the notifications of available per-elevation reflectivity
and wind velocity data have been posted, various
meteorological detection algorithms can then read this data and
perform feature detection. Figure 2 shows two such
algorithms: LLSD (for which we provide per-elevation
execution times in Section 3) computes wind shear and
rotational divergence; TDA performs tornado vortex detection.
Other per-radar detection algorithms can be easily “plugged in”
using the LB pub/sub mechanism. Once a detection algorithm
completes its execution, notification is provided through the
LB. The merge procedure converts polar coordinate data to
latitude/longitude coordinates, and fuses together spatially
overlapping data from multiple radars. We benchmark the
performance of the merge routine in Section 3.

C. The Feature Repository
NetRad system is a "real-time" system in the sense that radars
must be re-tasked by the MC&C every 30 seconds – the system
“heartbeat” interval. This heartbeat interval was chosen based
on the physical properties of the mechanically-scanned radars,
the timescale over which atmospheric conditions change, and
the system goal of detecting and tracking tornados within 60
seconds. A notion of heartbeat also allows the radars to easily
synchronize their operation (e.g., having overlapping radars
scan the same volume in order to perform 3D wind retrieval),
and also helps simplify the optimization of radar targeting. As
we evolve from mechanically-scanned radars to rapidly
reconfigurable solid-sate radars, we expect to relax the notion
of a system heartbeat.

As discussed above, radars are retasked based on detected
meteorological features and the projected future evolution of
these features. In order to decrease the timing dependencies
between the ingest/processing of radar data and the generation
of radar commands, the MC&C adopts a blackboard-like
architecture [Jaganathan 1989]. At the heart of the MC&C is
the feature-repository, a multi-level grid that stores both the
underlying per-voxel reflectivity and wind velocity data, as
well as higher-level spatially-coherent meteorological “objects”
such as storms cells, areas of high wind shear or precipitation,
and tornados. Each object also has a position, a spatial extent
for non-point objects, and a tag representing the meteorological
phenomenon that the object represents (e.g., storm-cell,
mesocyclone, and tornado). The multi-level grid-construction
procedure writes this information into the feature repository as
needed data becomes available via the linear buffer, as shown
in Figure 2.

The generation of radar commands (the lower half of the
control loop in Figures 1 and 2) proceeds asynchronously from
the input processing of data (the upper half of the control loop).

In this decoupled architecture, detection algorithms
continuously post their results to the feature repository. As
shown in Figure 3, at 30 second intervals the task generation
component posts a set of tasks based on current state of the
feature repository, and the optimization component then
processes this task set and generates a scan strategy for the
radars for the next 30 second cycle. In this design, we have
relieved the time pressure on the detection components and
somewhat relieved the time pressure on the MC&C
components, task generation and optimization. One
consequence of this design is that data that is not processed and
posted on the feature repository before the task generation
begins will not be acted upon until the next cycle of the system.
This allows the system to avoid stalling, while waiting for late-
arriving data (e.g., due to unanticipated network and processing
delays). We are interested in the effects of this "decision lag"
and also its relationship to the selection of the value of the
system heartbeat.

Figure 3 illustrates that the data-driven streaming retrieval and
detection algorithms write the results of their execution into the
feature repository. Starting Δ time units (where Δ is the
execution time of the task generation and optimization
algorithms) before the radars are to be re-targeted, the task
generation process executes, followed by the optimization
process. These processes may use all data available (in both the
current time step, and previous time steps) in their
computations. Once the optimization process has completed,
the radars are then re-targeted for the next 30 second cycle.

We note here that the feature repository is the central system
“data structure.” It is from here that meteorological objects can
be obtained and subsequently delivered/displayed to end users.
It is here that assimilated exogenous data (e.g., from satellite or
from NEXRAD) can be stored and merged with NetRad-
generated data.

D. Utility, Prediction, and Task Generation
Within the feature repository, each voxel and each object has
an associated utility that represents the “value” of scanning that
voxel/object during in the next heartbeat. The utility value
weights considerations such as the time since the voxel/object
was last scanned, the object type (e.g., scanning an area with a
tornado vortex will have higher utility than sensing clear air),

t - 30 t+ 3 0 t
str e a m i ng

r e tr ie va l, d ete ct io n
str e a m i ng

r e tr ie va l, d ete ct io n

! !

data

ingest

task
generation,

optimization

1 2 3 4 5 6 7 8 9
A G3 G3 G3 G3 G3 G3 G3 G3 G3
B G3 G3 G3 G3 G3 G3 G3 G3 G3
C G3 G3 G3 G3 G3 G3 G3 G3 G3
D G3 G3 G3 G3 G3 G3 G3 G3 G3
E G3 G3 G3 G3 G3 G3 G3 G3 G3
F G3 G3 G3 G3 G3 G3 G3 G3 G3
G G3 G3 G3 G3 G3 G3 G3 G3 G3
H R1 R1 R2 R2 R1 G3 C2 G3 G3
I R1 F 1 F 2, R1 F 2,H2 R1 G3 C2 G3 G3
J R1 H1 , F1 H1 , F1 T 2,R1 R1 G3 C2 G3 G3
K R1 H1 T 2,H1 T 2,R1 R1 G3 G3 G3 G3

Feature Repository

feature repository

Figure 3: Feature repository: decoupling data ingest

processing from periodic generation of radar commands

and user-based considerations such as the distance from a
population center (e.g., among two objects with identical
features, the one closer to a population center will have higher
utility).

We are currently developing a predicting component (shown
with dashed lines in Figure 2) that tracks meteorological
phenomena (e.g., a storm’s centroid) and predicts their future
locations. New objects, corresponding to the predicted future
locations of the phenomena, can then be added into the feature
repository – allowing these predicting modules to be easily
integrated into the current architecture. In section 3, we present
measured execution times of several different algorithms for
storm-cell centroid tracking.

The MC&C task-generation component takes objects from the
feature repository and produces tasks, with an associated
utility, for the optimization component. We use K-means
clustering [Jain 1999] to generate the tasks. The initial
centroids of the clusters are chosen by sorting the objects by
utility and using the K spatially-separated objects with the
highest utility as our starting points. This simple pre-clustering
step is designed to ensure good spatial coverage for our
clusters. The K-means distance metric uses a 4-dimensional
vector of parameters: an objects X, Y position, utility, and
meteorological type. The relative weighting of these parameters
can be adjusted to give differing emphasis to each parameter.
After clustering is complete, a final filtering step removes tasks
with utility below a given threshold.

E. Optimization
The input to the radar targeting components is a list of objects
that can potentially be scanned and their associated utility. The
optimization module determines, for each radar, the angular
sector to be scanned (targeted) by that radar for the next 30-
second cycle. The overall utility of a given configuration of the
radars, will depend not only on the utility of the objects
scanned, but also the size of the sector (since larger sectors
imply less time spent sensing a given radial) and the number of
radars targeting a given volume (since more radars illuminating
a volume implies higher accuracy of measurement). For our
first testbed, a simple “brute-force” approach towards
optimization is used that enumerates all possible configurations
and computes the associated overall utility. In section 3, we
present measured execution times for this approach. Other,
more scalable, approaches towards optimization are currently
being investigated.

III. BENCHMARKING OF INDIVIDUAL MC&C COMPONENTS
In this section, we present empirical measurements of the
execution times of various NetRad MC&C components
highlighted in Figure 2. All measurements were performed on a
PC (3.2 GHz Intel CPU, 1 GB RAM) running Linux (RedHat
2).

NetRad MC&C component execution times will depend on the
radar data ingested by the system. Since, the NetRad system is
not completely build or deployed, we use existing NEXRAD
[NOAA 2005] radar data and other sources, as described
below, as input to the NetRad MC&C components. Recall that
NEXRAD radars operate in “sit and spin” mode and thus the
data ingested in one time period has no influence on the radars’
scan strategy in a subsequent time period. Before presenting
component runtimes, let us describe the radar data inputs used.
Unless otherwise noted, we use the following six NEXRAD
radar data sets, which provide per-radial range-gate reflectivity
and wind velocity data. The data sets can be obtained from
[CASA NEXRAD-data 2005]. The data in cases 1-4 are
generated by a single radar; in cases 5 and 6 data comes from
two partially overlapping radars. Each data set consists of sets
of elevation scans, with a set of scans taken every five minutes.
These sets of elevation scans are the input to our MC&C
algorithms.
Test
Case

Location Date of
event

Description of Events Single/Mul
ti Radar

1 KLCH
Lake
Charles
LA

11/02
2004

Late season thunderstorm
activity with scattered
weak mesocyclones,

tornadoes, waterspouts.

Single

2 KTLX
Tulsa OK

5/03
1999

Extreme supercell outbreak
including an F-5 tornado,

costliest tornado in history.

Single

3 KFSD
Sioux
Falls
SD

5/30-31
1998

Tornado outbreak with a
number of vortices in close

proximity to each other.

Single

4 KMLB
Melbourn

e
FL

9/0
5 2004

Hurricane Frances as it
approaches Atlantic Coast
of Florida at Category 2/3
with large, well defined
eye and intense banding.

Single

5 KDDC
Dodge
City
KS

6/06
2004

A strong bow-echo
sweeping across the state

of Kansas.

Multi

6 KICT
Wichita

KS

6/06
2004

A view of the
aforementioned bow-echo
case from a radar located

further from the event.

Multi

Table 1: NEXRAD input data sets

A. Data Transmission, Storage, Event Posting

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

KLCH KMLB KTLX KFSD KDDC & KICT

Test Case

T
im

e
 (

s
)

Figure 4: LDM to LDM, NetCDF file creation, event posting

We begin our benchmarking of the MC&C by considering the
time needed to transfer radar data from a remote radar to the
SOCC, store the per-elevation data in NetCDF format at the
SOCC and post a notification event on the LB. Our
measurements show that approximately one second is needed
to compress and transfer a per-elevation scan from radar to
SOCC over a Gigabit switch. We note that the nominal media
transmission time (transmitting 20 KB of data into a Gigabit
link) would increase from .00001 sec to .01sec if the link
speed were changed to 1 Mbps. Thus, computing times rather
than network media transmission times are the dominant factor
here. We also note that these run times are for TCP transfers.
We are currently developing a radar transport protocol that
uses recent throughput measurements to avoid a slow-start
phase [Schmitt 2002], and an application-specific congestion
control/packet drop protocol [Banka 2005], as discussed in
section 3. Once data arrives at the SOCC, reflectivity and
velocity data files are created and an event is posted. Figure 4
shows that less than a second of runtime is needed to perform
these operations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

KLCH KMLB KTLX KFSD KDDC KICT KICT/KDDC

Test Case

T
im

e
 (

s
)

Figure 6: merge runtime, single and multi -radar cases

B. Detection Algorithms
Figure 5 shows the per-elevation scan runtime needed by the
LLSD algorithm. The standard deviation of the runtime is
shown by the lower-valued super-imposed bar. LLSD requires
less than 0.3 seconds per elevation scan on average, with the
runtime decreasing with an increasing elevation angle. This
behavior results from the fact that radar beams e aimed higher
in the atmosphere, see decreased meteorological activity.

Figure 6 shows the merge runtime for the 6 test cases. We took
measurements for all six single radar cases and the additional
case where the data for KICT and KDDC is merged. These
radars have an overlap of roughly 50% percent. The results
show that the runtime increases by approximately 30% with
this amount of overlap. The difference between the single radar
and the multiple radar case (KICT/KDDC) is that both
coordinate conversion and data fusion must be performed for
the overlapping region. Again, we see sub-second runtimes for
this component.

C. Task Generation, Prediction
Recall from our earlier discussion, that the input to the task and
utility generation routines is a multi-level grid of lat/long
reflectivity and wind velocity values, with higher level
“objects” superimposed on this grid. In order to use NEXRAD
data in a NetRad MC&C environment, we assume that the
NEXRAD data covers an 80km x 80km area.

Two different timing values are collected. The first is the run
time of the K-Means algorithm, the second is the time taken
posting features to the feature repository. Additional data
collected includes the number of points being clustered and the
number of iterations required before the K-Means stabilizes on
a set of clusters. Figure 7 also shows the runtime for
hypothetical scenarios for coarser and finer grid sizes.

We have also investigated the computational requirements of
three approaches towards storm cell tracking: the WDSS II
SCIT algorithm [Johnson 1998], a simple Kalman filtering
algorithm, and a switched Kalman filtering algorithm A
comparison of the tracking performance of these three
algorithms is beyond the scope of this paper; see [Manfredi
2005] for details. Here, we note each algorithm requires less
than 30 msec of execution time to perform one-step prediction,
over 35 storm cell centroid tracks provided by NSSL.

D. Radar Scanning Optimization
The final step in closing the control loop is for the optimization
module to determine the sectors to be scanned by the radars.
The execution time of the optimization algorithm will depend
on the number of radars, the extent to which the radars overlap,
and the number/location/size of the meteorological objects in
the radars’ field.

Figure 5: LLSD Run Time Per-Elevation Scan

Figure 8 plots the average run time and standard deviation for
the optimization module under several different scenarios,
using the KFSD data. Along the x-axis we vary the number of
radars symmetrically placed in the 80x80 grid. We control the
amount of overlap of the radars’ footprint by changing the
radius of each radar’s circular footprint. Three runtime curves
are plotted for the case of zero overlap (the edges of the radars’
footprint are coincident but non-overlapping), 33% overlap,
and 67% overlap. For the case of 4 radars placed on 80km x
80km grid with 33% overlap, we see that the expected runtime
is approximately 30 ms.

0.0001

0.001

0.01

0.1

1

10

1 4 9 16

Nuber of Radars

T
im

e
 (

s
)

Overlap 0% Overlap 33% Overlap 66%
Figure 8: Optimization module runtime

IV. CONCLUSIONS AND OUTLOOK
In this paper, we have described the software architecture of
the meteorological command and control (MC&C) component
of a NetRad prototype system currently under development – a
dense network of low-powered radars that collaboratively and
adaptively sense the lowest few kilometers of the earth’s
atmosphere The MC&C performs the system’s main control
loop – ingesting data from remote radars, identifying
meteorological features in this data, reporting features to end-
users, and determining each radar’s future scan strategy based
on detected features and end-user requirements. Our initial
benchmarks, obtained by evaluating NetRad components
using NEXRAD data show that that these components

generally have sub-second execution times, making them well-
suited for use in the NetRad system. Our future research will
include the deployment and demonstration of the NetRad
system, and continued enhancement of the detection, tracking,
and optimization components. Thus far we have focused on a
centralized view of the command and control architecture,
which is appropriate given the relatively small number of
radars in the initial testbed. However, several factors make
control more difficult as the network scales, and preclude a
purely centralized architecture. We are thus currently
investigating distributed MC&C architectures that take
advantage of the limited coupling among radars over large
geographic areas.

V. ACKNOWLEDGEMENTS
We are grateful to Mark Simms for supplying scripts for
processing WDSS II data, and Jerry Brotzge for many
insightful conversations regarding the MC&C. This work was
supported in part by the National Science Foundation under
grant EEC-0313747 001

VI. REFERENCES
 [Banka 2005] T. Banka, B. Donovan, V. Chandrasekar, A.

Jayasumana, J. Kurose, “Data Transport Challenges in Emerging
High-Bandwidth Real-Time Collaborative Adaptive Sensing
Systems (poster)” to appear, IEEE Infocom 2005.

 [CASA NEXRAD-data 2005]
http://www.casa.umass.edu/eesr_data_sets

 [Hondl 2002] K. Hondl, “Capabilities and Components of the
Warning Decision and Support System – Integrated Information
(WDSS-II), Proc. American Meteorological Society Annual
Meeting, Jan. 2003 (Long Beach).

[Horling 2005] B. Horling, V. Lesser, “Distribution Strategies for
Collaborative and Adaptive Sensor Networks..” Proc. Int. Conf.
Integration of Knowledge Intensive Multi-Agent Systems (KIMAS
2005). April 2005. To appear.

[Jaganathan 1989] V. Jagannathan, R. Dodhiawala, L. Baum,
Blackboard Architectures, Applications. Academic Press, 1989.

[Jaim 1999] A. K. Jain, M. N. Murty, P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264-323, 1999

[Johnson 1998] J. Johnson, et al., “The Storm Cell Identification and
Tracking Algorithm: an Enhanced WSR-88D algorithm,” Weather
and Forecasting, 13: 263-276, 1998.

 [LDM 2005] University Corporation for Atmospheric Research,
“Local Data Manager (LDM).”
http://my.unidata.ucar.edu/content/software/ldm/index.html

[NOAA 2005] National Oceanic and Atmospheric Administration,
“Radar Resources,”
http://www.ncdc.noaa.gov/oa/radar/radarresources.html

[Manfredi 2005] V. Mandfredi, S. Mahadevan, J. Kurose, “Kalman
Filters for Prediction and Tracking in an Adaptive Sensor
Network,” Technical Report 05-07, CS Dept., U. Massachusetts.

[McLaughlin 2005] D. McLaughlin, V. Chandrasekar, K.
Droegemeier, S. Frasier, J. Kurose, F. Junyent, B. Philips, S. Cruz-
Pol, J. Colom, “Distributed Collaborative Adaptive Sensing for
Improved Detection, Understanding, and Predicting of
Atmospheric Hazards, Proc. Ann. Am. Meteorological Soc. Mtg.

 [OneNet 2005] OneNet, “Oklahoma’s Technology Network”,
http://www.onenet.net

[Schmidtt 2002] J. Schmitt, M. Zink, S. Theiss, R. Steinmetz,
“Improving the Startup Behavior of TCP-Friendly Media
Transmission,“ Proc. Int. Network Conference (INC02).

0

1000

2000

3000

4000

5000

6000

20x20 40x40 80x80 120x120 160x160 200x200

Grid Size

T
im

e
 (

m
s
)

Figure 7: Task generation processing time

