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Abstract— We overview the software architecture for a network of 
low-powered radars (sensors) that collaboratively and adaptively 
sense the lowest few kilometers of the earth’s atmosphere. We focus 
on the system’s main control loop – ingesting data from remote 
radars, identifying meteorological features in this data, and 
determining each radar’s future scan strategy based on detected 
features and end-user requirements. Our initial benchmarks show that 
that these components generally have sub-second execution times, 
making them well-suited for our NetRad system. 
 

I. INTRODUCTION 
 
Distributed Adaptive Collaborative Sensing (DCAS) of the 
atmosphere is a new paradigm for detecting and predicting 
hazardous weather using a dense network of low-powered 
radars to sense the lowest few kilometers of the earth’s 
atmosphere [McLaughlin 2005]. Distributed refers to the use 
of large numbers of small radars, spaced close enough to “see” 
close to the ground in spite of the Earth’s curvature and avoid 
resolution degradation caused by radar beam spreading. 
Collaborative operation refers to the coordination (when 
advantageous) of the beams from multiple radars to view the 
same region in space, thus achieving greater sensitivity, 
precision, and resolution than possible with a single radar. 
Adaptive refers to the ability of these radars and their 
associated computing and communications infrastructure to 
dynamically reconfigure in response to changing weather 
conditions and end-user needs. The principal components of 
the DCAS system include sensors (radars); meteorological 
algorithms that detect, track, and predict hazards; interfaces 
that enable end-users to access the system; storage; and an 
underlying substrate of distributed computation that 
dynamically processes sensed data and manages system 
resources.   
 
NetRad is a prototype DCAS system whose goal is to detect a 
tornado within 60 seconds of formation and to track its 
centroid with a temporal error no greater than 60 seconds. At 
the heart (or perhaps more appropriately, the “brains”) of 
NetRad is its Meteorological Command and Control (MC&C) 
component that performs the system’s main control loop – 
ingesting data from remote radars, identifying meteorological 

features in this data, reporting features to end-users, and 
determining each radar’s future scan strategy based on 
detected features and end-user requirements. In this sense, 
NetRad is truly an end-end system, from the sensing radars 
through the computing and communication infrastructure and 
algorithms, to the end users. 
 
In this paper, we describe the software architecture of 
NetRad’s MC&C and present initial benchmarks of its 
computational/communication requirements and performance.  
The important components of the MC&C that we study in the 
paper are (i) the data ingest, field retrieval, and meteorological 
detection algorithms, (ii) a feature repository that maintains a 
multi-level grid of feature values with associated user-based 
utilities, and that generates new sensing tasks for the 
networked radars, and (iii) a resource allocation/optimization 
process that determines the radars’ scan strategy for the next 
system heartbeat. We discuss event notification mechanisms, 
and the computation of user-based utilities for competing 
sensing requests. We also discuss how NetRad timing 
considerations are addressed by structuring the feature 
repository as a blackboard system that temporally decouples 
data ingest/processing from the generation/optimization of 
future sensing activity.  Our initial benchmarks, obtained by 
evaluating NetRad components using reflectivity and wind 
velocity data from the NOAA NEXRAD WSR88D system 
[NOAA 2005] show that that these components generally have 
sub-second execution times, making them well suited for use 
in the NetRad system. 
 
The remainder of this paper is structured as follows.  In the 
following section we briefly describe the overall NetRad 
system, and then dive down into the details of NetRad’s 
MC&C architecture. In section 3, we present benchmark 
execution times for various MC&C components.  Section 4 
summarizes this paper and discusses our future research 
efforts. 
 

II. NETRAD SYSTEM OVERVIEW AND THE MC&C 
ARCHITECTURE. 
 



We are currently building a NetRad prototype system to be 
deployed in southwestern Oklahoma, consisting of four 
mechanically scanned X-band radars atop small towers, and a 
central control site (later to be decentralized as the number of 
radars increases) known as the System Operations and Control 
Center (SOCC). The SOCC consists of a cluster of commodity 
processors and storage on which the MC&C components 
execute.  
 
NetRad radars are spaced approximately 30 km apart from each 
other and together scan an area of 80km x 80km and up to3 km 
in height. Each radar is tasked to scan an angular sector of up to 
360 degrees in 1-degree increments, with a range gate (radial 
voxel) size of 100 meters out to 30 km. With two elevation 
scans during each tasking, each radar can thus produce up to 
360*300*2 = 216K reflectivity and velocity values each time it 
is tasked. While existing meteorological radar systems such as 
NEXRAD generally operate in “sit and spin” mode (taking full 
360-degree volume scans independently of location and type of 
meteorological features present), NetRad radars are tasked by 
the MC&C to focus on volumes of high interest to end-users, 
as discussed below. 

Each radar consists of three subsystems:  

• The Rotating Tower Top houses the radar unit and an 
embedded system that monitors the radar’s operational 
parameters and enables operator actions in the case of 
anomalies (e.g., mechanical problems).  

• The Non-rotating Tower Top Subsystem is located below 
the rotating joint and houses a data acquisition board (based 
on Field Programmable Gate Array (FPGA) technology), a 
radar controller, and a Gigabit Ethernet switch. The FPGA 
processes raw digitized data (at a rate of approximately 100 
Mbps) into packets that are sent via the switch over a fiber 
optic cable to the Tower Base Subsystem. The radar 
controller controls the movement of the radar pedestal.  

• The Tower Base Subsystem consists of a compute cluster 
(currently just a single node) and an IDE RAID storage 
system, connected via a Gigabit Ethernet switch to a router. 
The tower base takes raw radar data, computes so-called 
moment data (essentially an average of multiple radar-pulse 
measurements for a given voxel of space), while performing 
quality control (e.g., attenuation correction and range 
folding) on this data. The 1 Mbps moment data is sent to the 

SOCC over OneNet [OneNet 2005], an IP network operated 
by the Oklahoma state regents, which is configured to 
provide 4 Mbps connectivity from each radar to the SOCC. 
Raw data is archived at the tower base storage and can be 
transferred to SOCC storage in the background. 

The SOCC is a centralized compute cluster (later to be 
decentralized) interconnected via a Gigabit switch, on which 
the MC&C algorithms execute. As shown in Figures 1 and 2, 
the SOCC has five main components (i) data ingest and 
storage, (ii) meteorological feature detection and multi-radar 
merging, (iii) feature repository, (iv) utility and task generation, 
and (v) optimization.  We describe each of these functions 
below in more detail, roughly following the path taken by radar 
data through the MC&C, and the resulting re-tasking of the 
radars. 

A. Data Ingest and Storage  
One SOCC computer is responsible for data ingest, archiving 
and distribution. Here, moment data (as well as the higher rate 
raw data, which is transferred at low priority) is streamed from 
the sensor nodes to the MC&C detection algorithms, and 
written to storage. In the future, both moment and raw data will 
be available to end-users via a query interface.  

Data from each elevation scan is sent from a remote radar to 
the MC&C data ingest routines using LDM [LDM 2005], 
client/server middleware that reliably transfers radar data over 
a TCP connection. Given the pre-provisioning of OneNet 
bandwidth for NetRad use, congestion loss is not a concern in 
our initial testbed. However, we are currently developing a 
UDP-based transport protocol that uses application-specific 
selective dropping for congestion-control in bandwidth-
constrained environments [Banka 2005]. As illustrated in 
Figure 2, the per-radar received reflectivity and wind velocity 
data for an elevation scan are converted to NetCDF format, and 
stored in a file. An event is then posted and distributed among 
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the MC&C procedures using the Linear Buffer (LB) pub/sub 
construct of the WDSSII software [Hondl 2003]. In section 3, 
we report the time needed to transfer an elevation scan from 
sender to receiver over a Gigabit LAN switch using LDM, 
write the associated files and post/distribute an event. 

 

B. Meteorological Feature Detection, Multi-radar Data 
Merging 

Once the notifications of available per-elevation reflectivity 
and wind velocity data have been posted, various 
meteorological detection algorithms can then read this data and 
perform feature detection.  Figure 2 shows two such 
algorithms: LLSD (for which we provide per-elevation 
execution times in Section 3) computes wind shear and 
rotational divergence; TDA performs tornado vortex detection. 
Other per-radar detection algorithms can be easily “plugged in” 
using the LB pub/sub mechanism. Once a detection algorithm 
completes its execution, notification is provided through the 
LB. The merge procedure converts polar coordinate data to 
latitude/longitude coordinates, and fuses together spatially 
overlapping data from multiple radars. We benchmark the 
performance of the merge routine in Section 3. 

C. The Feature Repository 
NetRad system is a "real-time" system in the sense that radars 
must be re-tasked by the MC&C every 30 seconds – the system 
“heartbeat” interval.  This heartbeat interval was chosen based 
on the physical properties of the mechanically-scanned radars, 
the timescale over which atmospheric conditions change, and 
the system goal of detecting and tracking tornados within 60 
seconds. A notion of heartbeat also allows the radars to easily 
synchronize their operation (e.g., having overlapping radars 
scan the same volume in order to perform 3D wind retrieval), 
and also helps simplify the optimization of radar targeting.  As 
we evolve from mechanically-scanned radars to rapidly 
reconfigurable solid-sate radars, we expect to relax the notion 
of a system heartbeat. 

As discussed above, radars are retasked based on detected 
meteorological features and the projected future evolution of 
these features. In order to decrease the timing dependencies 
between the ingest/processing of radar data and the generation 
of radar commands, the MC&C adopts a blackboard-like 
architecture [Jaganathan 1989]. At the heart of the MC&C is 
the feature-repository, a multi-level grid that stores both the 
underlying per-voxel reflectivity and wind velocity data, as 
well as higher-level spatially-coherent meteorological “objects” 
such as storms cells, areas of high wind shear or precipitation, 
and tornados. Each object also has a position, a spatial extent 
for non-point objects, and a tag representing the meteorological 
phenomenon that the object represents (e.g., storm-cell, 
mesocyclone, and tornado). The multi-level grid-construction 
procedure writes this information into the feature repository as 
needed data becomes available via the linear buffer, as shown 
in Figure 2.  

The generation of radar commands (the lower half of the 
control loop in Figures 1 and 2) proceeds asynchronously from 
the input processing of data (the upper half of the control loop). 

In this decoupled architecture, detection algorithms 
continuously post their results to the feature repository. As 
shown in Figure 3, at 30 second intervals the task generation 
component posts a set of tasks based on current state of the 
feature repository, and the optimization component then 
processes this task set and generates a scan strategy for the 
radars for the next 30 second cycle. In this design, we have 
relieved the time pressure on the detection components and 
somewhat relieved the time pressure on the MC&C 
components, task generation and optimization. One 
consequence of this design is that data that is not processed and 
posted on the feature repository before the task generation 
begins will not be acted upon until the next cycle of the system. 
This allows the system to avoid stalling, while waiting for late-
arriving data (e.g., due to unanticipated network and processing 
delays). We are interested in the effects of this "decision lag" 
and also its relationship to the selection of the value of the 
system heartbeat. 

Figure 3 illustrates that the data-driven streaming retrieval and 
detection algorithms write the results of their execution into the 
feature repository.  Starting Δ time units (where Δ is the 
execution time of the task generation and optimization 
algorithms) before the radars are to be re-targeted, the task 
generation process executes, followed by the optimization 
process. These processes may use all data available (in both the 
current time step, and previous time steps) in their 
computations.  Once the optimization process has completed, 
the radars are then re-targeted for the next 30 second cycle. 

We note here that the feature repository is the central system 
“data structure.” It is from here that meteorological objects can 
be obtained and subsequently delivered/displayed to end users.  
It is here that assimilated exogenous data (e.g., from satellite or 
from NEXRAD) can be stored and merged with NetRad-
generated data.  

D. Utility, Prediction, and Task Generation 
Within the feature repository, each voxel and each object has 
an associated utility that represents the “value” of scanning that 
voxel/object during in the next heartbeat.  The utility value 
weights considerations such as the time since the voxel/object 
was last scanned, the object type (e.g., scanning an area with a 
tornado vortex will have higher utility than sensing clear air), 
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and user-based considerations such as the distance from a 
population center (e.g., among two objects with identical 
features, the one closer to a population center will have higher 
utility).   

We are currently developing a predicting component (shown 
with dashed lines in Figure 2) that tracks meteorological 
phenomena (e.g., a storm’s centroid) and predicts their future 
locations. New objects, corresponding to the predicted future 
locations of the phenomena, can then be added into the feature 
repository – allowing these predicting modules to be easily 
integrated into the current architecture.  In section 3, we present 
measured execution times of several different algorithms for 
storm-cell centroid tracking. 

The MC&C task-generation component takes objects from the 
feature repository and produces tasks, with an associated 
utility, for the optimization component. We use K-means 
clustering [Jain 1999] to generate the tasks. The initial 
centroids of the clusters are chosen by sorting the objects by 
utility and using the K spatially-separated objects with the 
highest utility as our starting points. This simple pre-clustering 
step is designed to ensure good spatial coverage for our 
clusters. The K-means distance metric uses a 4-dimensional 
vector of parameters: an objects X, Y position, utility, and 
meteorological type. The relative weighting of these parameters 
can be adjusted to give differing emphasis to each parameter. 
After clustering is complete, a final filtering step removes tasks 
with utility below a given threshold.  

E. Optimization 
The input to the radar targeting components is a list of objects 
that can potentially be scanned and their associated utility. The 
optimization module determines, for each radar, the angular 
sector to be scanned (targeted) by that radar for the next 30-
second cycle. The overall utility of a given configuration of the 
radars, will depend not only on the utility of the objects 
scanned, but also the size of the sector (since larger sectors 
imply less time spent sensing a given radial) and the number of 
radars targeting a given volume (since more radars illuminating 
a volume implies higher accuracy of measurement). For our 
first testbed, a simple “brute-force” approach towards 
optimization is used that enumerates all possible configurations 
and computes the associated overall utility.  In section 3, we 
present measured execution times for this approach. Other, 
more scalable, approaches towards optimization are currently 
being investigated. 

III. BENCHMARKING OF INDIVIDUAL MC&C COMPONENTS 
In this section, we present empirical measurements of the 
execution times of various NetRad MC&C components 
highlighted in Figure 2. All measurements were performed on a 
PC (3.2 GHz Intel CPU, 1 GB RAM) running Linux (RedHat 
2).  

NetRad MC&C component execution times will depend on the 
radar data ingested by the system.  Since, the NetRad system is 
not completely build or deployed, we use existing NEXRAD 
[NOAA 2005] radar data and other sources, as described 
below, as input to the NetRad MC&C components. Recall that 
NEXRAD radars operate in “sit and spin” mode and thus the 
data ingested in one time period has no influence on the radars’ 
scan strategy in a subsequent time period. Before presenting 
component runtimes, let us describe the radar data inputs used. 
Unless otherwise noted, we use the following six NEXRAD 
radar data sets, which provide per-radial range-gate reflectivity 
and wind velocity data.  The data sets can be obtained from 
[CASA NEXRAD-data 2005]. The data in cases 1-4 are 
generated by a single radar; in cases 5 and 6 data comes from 
two partially overlapping radars. Each data set consists of sets 
of elevation scans, with a set of scans taken every five minutes. 
These sets of elevation scans are the input to our MC&C 
algorithms. 
Test 
Case 

Location Date of 
event 

Description of Events Single/Mul
ti Radar 

1 KLCH 
Lake 
Charles  
LA 

11/02 
2004 

Late season thunderstorm 
activity with scattered 
weak mesocyclones, 

tornadoes, waterspouts. 

Single 

2 KTLX 
Tulsa OK 

5/03 
1999 

Extreme supercell outbreak 
including an F-5 tornado, 

costliest tornado in history.   

Single 

3 KFSD 
Sioux 
Falls 
SD 

5/30-31 
1998 

Tornado outbreak with a 
number of vortices in close 

proximity to each other. 

Single 

4 KMLB 
Melbourn

e 
FL 

9/0
5 2004 

Hurricane Frances as it 
approaches Atlantic Coast 
of Florida at Category 2/3 
with large, well defined 
eye and intense banding. 

Single 

5 KDDC 
Dodge 
City 
KS 

6/06 
2004 

A strong bow-echo 
sweeping across the state 

of Kansas.   

Multi 

6 KICT 
Wichita 

KS 

6/06 
2004 

A view of the 
aforementioned bow-echo 
case from a radar located 

further from the event.   

Multi 

Table 1: NEXRAD input data sets 
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Figure 4: LDM to LDM, NetCDF file creation, event posting 

 



We begin our benchmarking of the MC&C by considering the 
time needed to transfer radar data from a remote radar to the 
SOCC, store the per-elevation data in NetCDF format at the 
SOCC and post a notification event on the LB.  Our 
measurements show that approximately one second is needed 
to compress and transfer a per-elevation scan from radar to 
SOCC over a Gigabit switch.  We note that the nominal media 
transmission time (transmitting 20 KB of data into a Gigabit 
link) would increase from .00001 sec to .01sec if the link 
speed were changed to 1 Mbps.  Thus, computing times rather 
than network media transmission times are the dominant factor 
here. We also note that these run times are for TCP transfers. 
We are currently developing a radar transport protocol that 
uses recent throughput measurements to avoid a slow-start 
phase [Schmitt 2002], and an application-specific congestion 
control/packet drop protocol [Banka 2005], as discussed in 
section 3.  Once data arrives at the SOCC, reflectivity and 
velocity data files are created and an event is posted. Figure 4 
shows that less than a second of runtime is needed to perform 
these operations. 
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Figure 6:  merge runtime, single and multi -radar cases  

  

B. Detection Algorithms 
Figure 5 shows the per-elevation scan runtime needed by the 
LLSD algorithm. The standard deviation of the runtime is 
shown by the lower-valued super-imposed bar. LLSD requires 
less than 0.3 seconds per elevation scan on average, with the 
runtime decreasing with an increasing elevation angle. This 
behavior results from the fact that radar beams e aimed higher 
in the atmosphere, see decreased meteorological activity. 

Figure 6 shows the merge runtime for the 6 test cases. We took 
measurements for all six single radar cases and the additional 
case where the data for KICT and KDDC is merged. These 
radars have an overlap of roughly 50% percent. The results 
show that the runtime increases by approximately 30% with 
this amount of overlap. The difference between the single radar 
and the multiple radar case (KICT/KDDC) is that both 
coordinate conversion and data fusion must be performed for 
the overlapping region. Again, we see sub-second runtimes for 
this component. 

C. Task Generation, Prediction 
Recall from our earlier discussion, that the input to the task and 
utility generation routines is a multi-level grid of lat/long 
reflectivity and wind velocity values, with higher level 
“objects” superimposed on this grid. In order to use NEXRAD 
data in a NetRad MC&C environment, we assume that the 
NEXRAD data covers an 80km x 80km area. 

Two different timing values are collected. The first is the run 
time of the K-Means algorithm, the second is the time taken 
posting features to the feature repository. Additional data 
collected includes the number of points being clustered and the 
number of iterations required before the K-Means stabilizes on 
a set of clusters. Figure 7 also shows the runtime for 
hypothetical scenarios for coarser and finer grid sizes. 

We have also investigated the computational requirements of 
three approaches towards storm cell tracking: the WDSS II 
SCIT algorithm [Johnson 1998], a simple Kalman filtering 
algorithm, and a switched Kalman filtering algorithm A 
comparison of the tracking performance of these three 
algorithms is beyond the scope of this paper; see [Manfredi 
2005] for details.  Here, we note each algorithm requires less 
than 30 msec of execution time to perform one-step prediction, 
over 35 storm cell centroid tracks provided by NSSL. 

D. Radar Scanning Optimization 
The final step in closing the control loop is for the optimization 
module to determine the sectors to be scanned by the radars.  
The execution time of the optimization algorithm will depend 
on the number of radars, the extent to which the radars overlap, 
and the number/location/size of the meteorological objects in 
the radars’ field. 

 
Figure 5:  LLSD Run Time Per-Elevation Scan 



Figure 8 plots the average run time and standard deviation for 
the optimization module under several different scenarios, 
using the KFSD data.  Along the x-axis we vary the number of 
radars symmetrically placed in the 80x80 grid. We control the 
amount of overlap of the radars’ footprint by changing the 
radius of each radar’s circular footprint.  Three runtime curves 
are plotted for the case of zero overlap (the edges of the radars’ 
footprint are coincident but non-overlapping), 33% overlap, 
and 67% overlap.  For the case of 4 radars placed on 80km x 
80km grid with 33% overlap, we see that the expected runtime 
is approximately 30 ms. 
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IV. CONCLUSIONS AND OUTLOOK 
In this paper, we have described the software architecture of 
the meteorological command and control (MC&C) component 
of a NetRad prototype system currently under development – a 
dense network of low-powered radars that collaboratively and 
adaptively sense the lowest few kilometers of the earth’s 
atmosphere The MC&C performs the system’s main control 
loop – ingesting data from remote radars, identifying 
meteorological features in this data, reporting features to end-
users, and determining each radar’s future scan strategy based 
on detected features and end-user requirements. Our initial 
benchmarks, obtained by evaluating NetRad components 
using NEXRAD data show that that these components 

generally have sub-second execution times, making them well-
suited for use in the NetRad system. Our future research will 
include the deployment and demonstration of the NetRad 
system, and continued enhancement of the detection, tracking, 
and optimization components.   Thus far we have focused on a 
centralized view of the command and control architecture, 
which is appropriate given the relatively small number of 
radars in the initial testbed.  However, several factors make 
control more difficult as the network scales, and preclude a 
purely centralized architecture. We are thus currently 
investigating distributed MC&C architectures that take 
advantage of the limited coupling among radars over large 
geographic areas. 
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Figure 7: Task generation processing time  


