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Abstract A negotiation chain is formed when multiple related negotiations are
spread over multiple agents. In order to appropriately order and structure the nego-
tiations occurring in the chain so as to optimize the expected utility, we present an
extension to a single-agent concurrent negotiation framework. This work is aimed at
semi-cooperative multi-agent systems, where each agent has its own goals and works
to maximize its local utility; however, the performance of each individual agent is
tightly related to other agents’ cooperation and the system’s overall performance. We
introduce a pre-negotiation phase that allows agents to transfer meta-level informa-
tion. Using this information, the agent can improve the accuracy of its local model
about how other agents would react to the negotiations. This more accurate model
helps the agent in choosing a better negotiation solution for a distributed negotiation
chain problem. The agent can also use this information to allocate appropriate time
for each negotiation, hence to find a good ordering of all related negotiations. The
experimental data show that these mechanisms improve the agents’ and the system’s
overall performance significantly.
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1 Introduction

Effective negotiation for sophisticated task and resource allocation is crucial for the
next generation of multi-agent systems (MAS) applications. Groups of agents need to
efficiently negotiate over multiple related issues concurrently in a complex, distrib-
uted setting where there are deadlines by which the negotiations must be completed.
Multi-linked negotiation (MLN) is required when an agent needs to perform multiple
negotiations, each involving multiple other agents, and where the outcome of each
negotiation influences the other negotiations. This type of negotiation can arise from
acquiring either multiple resources for a single goal or resources for multiple goals
that need to be solved concurrently. For example, in a distributed surveillance system
(Bryant et al. 2008), multiple sensors belonging to different organizations are needed
to monitor a suspect target. Negotiations are performed to acquire these resources.
The negotiation outcome, when each sensor would be made available, affects the
negotiations for the other sensors given the time constraints on these data collection
tasks. Another example of MLN is a computer-assisted crisis management scenario
(Wagner et al. 2004). When a severe weather incident occurs, the responders from
different departments need to accomplish various tasks, such as to clear the road,
transport injured people to the hospital, and repair the power system. To coordinate
these activities, a large number of MLNs need to be performed efficiently. This is an
important research area where very little work has been done.

This work is aimed at semi-cooperative multi-agent systems, where each agent has
its own goals and works to maximize its local utility; however, the performance of
each individual agent is tightly related to other agents’ cooperation and the system’s
overall performance, such as, the total number of tasks being accomplished in the sys-
tem. There is no single unified global goal in such systems, either because each agent
represents a different organization/user or because it is difficult/impossible to design
one single global goal. This issue arises due to multiple concurrent tasks, resource
constraints, and uncertainties, and thus, no agent has sufficient knowledge or compu-
tational resources to determine what is best for the whole system (Zhang et al. 2006).
An example of such a system would be a virtual organization (Oliveira and Rocha
2001; Zheng and Zhang 2005); for example, a supply chain dynamically formed in an
electronic marketplace such as the one developed by the CONOISE project (Norman
et al. 2004). The virtual organization consists of a number of entities that respond to
a set of external requests over time. To accomplish tasks continuously arriving in the
virtual organization, cooperation and sub-task relocation are needed and preferred.
However, no single agent has authority over all other agents. There is no single global
goal since each agent may be involved in multiple virtual organizations. Each agent
has limited resources and capacity; it needs to decide what to do, when to do it, and
how to do it according to its own goals and performance measures. Similar issues of
coalition formation and their operation that require MLN support are also arising in
the next generation of distributed operating systems, such as the distributed version
of System S for stream processing being developed at IBM Research in Hawthorne
(Douglis 2006).

The negotiation in semi-cooperative multi-agent systems is not a zero-sum game,
a deal that increases both agents’ utilities can be found through efficient negotiation.
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Additionally, there are multiple encounters among agents since new tasks are arriving
all the time. In such negotiations, price may or may not be important, since it can be
fixed resulting from a long-term contract. Other negotiation factors like quality and
delivery time are important too and may affect the utility that is received as a result
of task completion. Further long-term contract relationships among agents may make
them more willing to accommodate the requests of others if there is no significant
negative influence on its local utility. Another effect of repeated interactions among
agents is that reputation mechanisms in the system become viable as a way of making
cheating unattractive from a long-term viewpoint (Teacy et al. 2005). Furthermore, it
is difficult to cheat effectively in such systems, given the incomplete/uncertain infor-
mation and the dynamic environment. To summarize, this work focuses on systems
where agents are self-interested because they primarily focus on their own goals; but
they are also semi-cooperative, meaning that with the existence of long-term contracts
and reputation mechanisms, they are willing to be truthful and collaborate with other
agents to find solutions that are beneficial to all participants, including themselves.
In other word, they are looking for balance between their short-term rewards with
their long-term interest. To maximize one’s utility in a single negotiation session with
strategic bargaining mechanism is not the most important goal for semi-cooperative
agents, they are more interested in finding feasible and efficient outcomes for multiple
interrelated negotiations. Self-interested agents can be semi-cooperative when their
own utility tightly relates to other agents’ utilities in the system. On the other hand,
agents in a cooperative system can also be semi-cooperative due to multiple current
goals, limited communication, and computation resources, and therefore, no agent has
the global view or complete knowledge to decide what is best for the system in this
situation; individual agents may be better off focusing on their local goals (Zhang et al.
2006). As part of the experimental work presented in this paper, we will also show
that the mechanisms developed here all also appropriate for cooperative systems.

The goal of this research is to develop a set of macro-strategies that allow the
agents to effectively manage multi-linked negotiations, including, but not limited to
the following decisions:

1. How much time should be spent on each negotiation? The more time is spent on
negotiation, the less time is available for task execution. The more time spent on
one negotiation means less time for another negotiation if these two negotiations
need to be performed in sequence.

2. How much flexibility (see formal definition in Formula 5) should be allocated for
each task in negotiation? This defines a range between the earliest start time and
the deadline for the task to be completed.

3. In what order should the negotiations be performed? This specifies a particular
ordering to perform the multiple related negotiations.

The above decisions are based on the attributes of each negotiation and the relationships
among their different negotiations that the agent is involved in, where the goal is to
increase the likelihood of successful negotiations by deadlines, decrease the possibility
of decommitting from previously made commitments (associated with decommitment
penalty), so as to optimize the overall expected utility. These macro-strategies are dif-
ferent from those micro-strategies that direct the individual negotiation thread, such
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as whether the agent should concede and how much the agent should concede, etc.
(Jennings et al. 2000). A major difference between this work and other work on nego-
tiation is that negotiation, here, is not viewed as a stand-alone process. Rather it is one
part of the agent’s activity which is tightly interleaved with the planning, scheduling,
and executing of the agent’s activities, which also may relate to other negotiations.
This work on negotiation is concerned more about the meta-level decision-making
process in negotiation rather than the basic protocols or languages. The negotiation
chain problem studied in this paper is different from the SCM game in the trading
agent competition (TAC SCM game description), where both Consumers and Suppli-
ers are programmed with pre-determined policies. The agent is solving a local optimal
problem focusing on planning, scheduling, and coordination with a relatively static
global context; it does not need to reason about the ordering and deadlines of multiple
related negotiations.

Our previous work on multi-linked negotiation (Zhang et al. 2005) described the
situation where one agent needs to negotiate with multiple agents about different sub-
jects (tasks, conflicts, or resource requirements), and the negotiation over one subject
affects the negotiations over other subjects in the same agent. A model we developed
for multi-linked negotiation allows the agent to reason about the relationships among
multiple related negotiations occurring in that agent. Based on this model, we also
developed a meta-level decision-making process for the agent to make decisions on
how to order these negotiations and how to assign value for those attributes (also
referred to as “features”) in negotiation so as to minimize the probability of conflicts
among concurrent negotiations and maximize the expected utility. These mechanisms
enable an agent to manage the multi-linked negotiations from its local perspective and
choose the appropriate negotiation strategy based on knowledge about its multiple
negotiations and the interrelationships among them.

However, an even more difficult problem occurs when multi-linked negotiations are
spread over multiple agents and form a distributed negotiation chain (i.e., in Fig. 1,
Customer—Store— PC Manufacturer—Distribution Center—Producers—Transport-
ers). These agents need to negotiate about the quantity, quality and delivery time of
the products/parts, and the start time and deadline of the transportation tasks. They
are also negotiating on the reward/payment and decommitment penalty if the commit-
ment is broken. The result of one negotiation can affect multiple other negotiations
occurring at different agents. If all these negotiations are processed sequentially, it
would take a very long time before a mutually agreeable solution is reached. The
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Fig. 1 A complex negotiation chain scenario
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negative consequence of this delay could cause the customer to choose another ven-
dor to provide the product. For example, in Fig. 1, the Store Agent has to wait for the
PC Manufacturer to finish its negotiations with the Transporter and the Distribution
Center before it can reply to the customer. To reply to the request from the PC Man-
ufacturer, the Distribution Center needs to first get replies from the CPU Producer,
the Memory Producer, and the Transporter, which causes additional waiting time for
the customer. If all these negotiations are processed in parallel, the possible conflicts
among the results of different negotiations could require some issues to be renegoti-
ated. For example, the PC Manufacturer has to renegotiate with the Store about the
delivery time after it discovers that the Transporter cannot deliver the computers to
the store as it promised in previous negotiation. This renegotiation (backtracking) can
then spread to other agents along the chain like a domino effect.1

In this paper, we extend our multi-linked negotiation model from a single-agent
perspective to a multi-agent perspective, so that a group of agents involved in chains
of interrelated negotiations can find nearly optimal macro negotiation strategies for
pursuing their negotiations. In order to accomplish this in a distributed way, we feel it
is very important for agents to have a broad view of the negotiation chain problem, so
each agent can build its local decision based not only on its local knowledge but also
on other agents’ knowledge of the negotiation chain. We see this exchange as feasible
in semi-cooperative or fully cooperative multi-agent systems. As part of this exten-
sion, we introduce a pre-negotiation phase that allows agents to exchange meta-level
information so they can adjust their local control parameters. By adjusting the local
model based on this transferred meta-level information, the individual multi-linked
negotiation problems are linked together, and each agent is able to incorporate some
non-local view in their local decision-making process (Sims et al. 2006). Therefore,
these local decision-making processes are better informed through the pre-negotia-
tion process, and the combination of local macro negotiation strategies is more likely
representing a good combined macro negotiation strategy from a global perspective.
Based on the transferred meta-level information, the agent can reason on how to allo-
cate appropriate time and flexibility for each related negotiation. This approach is a
completely distributed approach; there is no centralized authority or mediator in the
system and each agent has full control of its local activities. In addition, only a small
amount of meta-information needs to be transferred. This meta-information is the
abstract description of their problem-solving states, and the agents only transfer the
information before the first negotiation begins or when there is significant change in
the environment.

The remainder of this paper is structured in the following manner. Section 2
describes the basic negotiation process and briefly reviews our previous work on a
single agent’s model of multi-linked negotiation. Section 3 introduces a complex sup-
ply chain scenario that is used as an example to explain related ideas. Section 4 details
how to solve those problems arising in distributed negotiation chain. Section 5 reports

1 Alternatively, re-negotiation can be replaced by accepting decommitment penalties (again with the con-
sequence to rearrange any affected issues by this decommitment). In our experimental work described later,
we adopt this approach—when an agent finds that it cannot fulfill the commitment it made before, it drops
the task, informs the other agent and pays the decommitment penalty.
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on the experimental work to evaluate the effect of different negotiation policies on
the agent’s performance and the system’s overall performance. Section 6 reports the
comparison of this distributed approach with a centralized approach. The generality
of this approach is discussed in Sect. 7. Section 8 discusses related work, and Sect. 9
presents conclusions and areas of future work.

2 Basic Negotiation Process and Previous Work

In this work, the negotiation process between any pair of agents is based on an extended
version of the contract net (Sandholm and Lesser 1995): the initiator agent announces
the proposal including multiple features; the responding agents evaluate it and respond
with either a yes/no answer or a counter proposal with some features modified. This
process can go back and forth until an agreement is reached or the agents decide to
stop. If an agreement is reached and one agent cannot fulfill the commitment as it has
promised, it needs to pay the other party a decommitment penalty as specified in the
commitment. Details of this protocol are described in Zhang et al. (2005).

A negotiation starts with a proposal that announces that a task (t) needs to be
performed. The proposal includes the following attributes:

1. earliest start time (est): the earliest start time of task t ; task t cannot be started
before time est .

2. deadline (dl): the latest finish time of the task; the task needs to be finished before
the deadline dl.

3. regular reward (r ): if the task is finished as the contract requested, the contractor
agent will get reward r .

4. early finish reward rate (e): if the contractor agent can finish the task earlier than
dl, it will get the extra early finish reward proportional to this rate.

5. decommitment penalty rate (p): if the contractor agent cannot perform the task as
it promised in the contract or if the contractee agent needs to cancel the contract
after it has been confirmed, it also needs to pay a decommitment penalty (p ∗ r )
to the other agent.

The above attributes are also called attribute-in-negotiation which are the features of
the subject (issue) to be negotiated. Depending on the actual application, some of these
attributes may be removed and others may be added to better specify the negotiation
subject in a particular domain. Another type of attribute is the attribute-of-negotiation,
which describes the negotiation process itself and is domain-independent, such as:

1. negotiation duration (δ(v)): the maximum time allowed for negotiation v to com-
plete, either reaching an agreed upon proposal (success) or no agreement (failure).

2. negotiation start time (α(v)): the start time of negotiation v. α(v) is an attribute
that needs to be decided by the agent.

3. negotiation deadline (ε(v)): negotiation v needs to be finished before this deadline
ε(v). The negotiation is no longer valid after time ε(v), which is the same as a
failure outcome of this negotiation.

4. success probability (ps(v)): the probability that v is successful. It depends on a
set of attributes, including both attributes-in-negotiation (i.e. reward, flexibility,
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etc.) and attributes-of-negotiation (i.e. negotiation start time, negotiation deadline,
etc.).

These attributes described above are similar to those used in project management;
however, the multi-linked negotiation problem cannot be reduced to a traditional sched-
uling problem. The multi-linked negotiation problem has two dimensions: the nego-
tiations and the subjects of negotiations. The negotiations are interrelated and the
subjects are interrelated; the attributes-of-negotiations and the attributes of the sub-
jects are interrelated as well. This two-dimensional complexity of interrelationships
distinguishes it from a classic scheduling problem, where all tasks to be scheduled are
local tasks and no negotiation is needed. For a more detailed explanation on this issue
see Zhang et al. (2005), which also explains why concurrent negotiation is not always
a good idea, and why the order of negotiation is important.

An agent involved in multiple related negotiation processes needs to reason on how
to manage these negotiations in terms of ordering them and choosing the appropriate
values for features. This is the multi-linked negotiation problem. We developed a for-
mal model of the multi-linked negotiation problem from a single agent’s perspective
(Zhang et al. 2005), presented below.

Definition 2.1 A multi-linked negotiation problem is defined as an undirected graph
(more specifically, a forest as a set of rooted trees): M = (V, E), where V = {v} is a
finite set of negotiations, and E = {(u, v)} is a set of binary relations on V . (u, v) ∈ E
denotes that negotiation u and negotiation v are directly linked. The relationships
among the negotiations are described by a forest, a set of rooted trees {Ti }. There is
a relation operator associated with every non-leaf negotiation v (denoted as ρ(v)),
which describes the relationship between negotiation v and its children. This relation
operator has two possible values: AND and OR.

The AND relationship associated with a negotiation v means that the successful
accomplishment of the commitment on v requires that all its children nodes have suc-
cessful accomplishments. The following example illustrates this idea. Figure 2 shows
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negotiation on Order Computer

negotiation on Order Hardware negotiation on Deliver Computer
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Transporter Agent B
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Fig. 3 The multi-linked negotiation problem for the PC manufacturer agent

the local task structures of the PC Manufacturer Agent and the Distribution Center.
For the PC Manufacturer Agent, the negotiation on task Order Computer node has
two children, negotiation on task Order Hardware and negotiation on task Deliver
Computer, each representing a subtask that cannot be done locally. These negotiations
are related because how and when task Order Hardware and task Deliver Computer
are performed directly affect task Order Computer. The multi-linked negotiation prob-
lem of PC Manufacturer Agent is shown in Fig. 3. The successful accomplishment of
the commitment on task Order Computer depends on the successful accomplishment
of both task Order Hardware and task Deliver Computer. On the other hand, the OR
relationship associated with a negotiation v means that the successful accomplishment
of the commitment on v requires that at least one child node has successful accom-
plishment, where the multiple children nodes represent alternatives to accomplishing
the same goal, such as to negotiate the same issue with different potential contractors.
For instance, if there are two transporter agents A and B, both can potentially deliver
the computer, two nodes negotiation with Transporter Agent A and negotiation with
Transporter Agent B can be added as the children for the node negotiation on deliver
computer in Fig. 2, with an OR relationship associated with it.

Given these interrelationships among negotiations and the decommitment penalty
in negotiation, the ordering of the negotiations becomes important because it affects
agents’ utilities. Assume that the PC Manufacturer Agent first negotiates with the
Consumer Agent on task Order Computer and finds a mutually agreed commitment.
Later in the negotiation on task Order Hardware and task Deliver Computer, it finds
that it cannot fulfill the commitment on task Order Computer because some attributes
in the later negotiations do not support the earlier commitment, such as the finish
time of the task. In this case, the PC Manufacturer Agent needs to pay a decommit-
ment penalty to the Consumer Agent. The optimal negotiation ordering of all related
negotiations should maximize the expected utility, which is the the expected reward
minus the expected decommitment penalty. The evaluation of a negotiation ordering
is based on the following issues: the probability of each negotiation succeeding, and
the decommitment penalty associated with each negotiation if the commitment has to
be revoked after other related negotiations fail. Additionally, the negotiation ordering
also affects the probability of a negotiation succeeding because the start time of a
negotiation affects the outcome of a negotiation in general, that is, a later negotiation
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start time limits the number of options that can be explored in the negotiation pro-
cess in finding a mutually agreeable contract; while an earlier negotiation start time
increases the likelihood of decommitting given that other related negotiation results
are yet unknown and they may be inconsistent with this negotiation outcome.

Each negotiation vi (vi ∈ V ) is associated with a set of attributes Ai = {ai j }. Each
attribute ai j either has already been determined or needs to be decided. How the values
for those features (referred as feature assignment) are selected is important because
they affect the negotiation outcome and hence affect the agent’s overall utility. In our
previous work on a single agent’s multiple related negotiations, we dealt with the
feature assignment problem in the following way (we use the example in Fig. 2 in the
following discussion, and the problem is analyzed from the PC Manufacturer Agent’s
viewpoint):

1. For attributes-in-negotiation, there are two possibilities. For incoming task require-
ment, that is, the task Order Computer, the values of most of these attributes, such
as earliest start time, deadline, regular reward, etc., have already been determined
by the Consumer Agent when it proposes this task. The PC Manufacturer Agent
needs to decide whether to accept this proposal and if so, determine the promised
finish time. It may receive some extra early finish reward, depending on the early
finish reward rate in the proposal. For outgoing task requirements, such as task
Order Hardware and task Deliver Computer, the values of these attributes-in-
negotiation are not pre-determined. The PC Manufacturer Agent needs to find out
the values for these attributes. In the negotiation context, the values are not single
values, but a range of acceptable values. For example, if the deadline of task Order
Hardware has a time range of [10, 15], it means that any time that falls within
this range is acceptable; in other words, there exists a feasible local schedule for
the PC Manufacturer Agent to fulfill the commitment on task Order Computer,
assuming the negotiation on task Deliver Computer reaches an agreement within
the assigned time ranges for its attributes. Such time ranges are also referred to as
consistent ranges; finding such ranges allows negotiations to be performed simul-
taneously. We developed a set of partial-order reasoning tools to find all possible
consistent ranges for temporal attributes and use these possible candidates as the
search space for the best overall solution in terms of the sequencing of negotiation
and their attributes. The search algorithm is described later.

2. For attributes-of-negotiation, it is more complicated because most of them are not
pre-determined. The negotiation start time depends on the negotiation ordering and
negotiation durations of other negotiations. The negotiation durations and negoti-
ation deadlines affect the decision on negotiation ordering. A negotiation ordering
is valid if all negotiations can be finished before their deadlines. The negotiation
deadline is determined by the agent who initializes the negotiation. Negotiation
duration represents how much time the agent wants to spend on this negotiation.
For example, if the PC Manufacturer Agent decides that the negotiation duration
for task Order Hardware is 5, given the negotiation ordering it selects, the start
time for this negotiation is 10, which means the negotiation deadline for this task
is 15. If an agreement cannot be found before time 15, this negotiation is consid-
ered a failure. For all outgoing tasks, the agent needs to decide how much time it
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should spend on each negotiation (the negotiation duration). This decision affects
the possible negotiation ordering and also affects the negotiation outcome. In our
previous work, we did not develop a strategy on how to make this decision; we
simply assume a fixed duration for all negotiations. However, we cannot use such a
simplified assumption when we extend this model to a negotiation chain scenario.
We solve this problem in Sect. 4. The success probability of negotiation is another
important attribute, which is used in the evaluation of a negotiation solution. The
success probability is modeled as a function of other attributes, the more accurate
this model, the better the agent’s performance. The second component of this work
is to use meta-level information from other agents to construct a more accurate
model of this function in a negotiation chain scenario.

Multi-linked negotiation problem is a local optimization problem. To solve a multi-
linked negotiation problem is to find a negotiation solution (φ, ϕ) with optimized
expected utility EU(φ, ϕ), which is defined as:

EU(φ, ϕ) =
2n∑

i=1

P(χi , ϕ) ∗ (R(χi , ϕ)− C(χi , φ, ϕ)). (1)

A negotiation ordering φ defines a partial order of all negotiation issues. A feature
assignment ϕ is a mapping function that assigns a value to each attribute that needs
to be decided in the negotiation. A negotiation outcome χ for a set of negotiations
{v j }, ( j = 1, . . . , n) specifies the result for each negotiation, either success or failure.
There are a total of 2n different outcomes for n negotiations: {χi }, (i = 1, . . . , 2n).
P(χi , ϕ) denotes the probability of the outcome χi given the feature assignment ϕ,
which is calculated based on the success probability of each negotiation. R(χi , ϕ)

denotes the agent’s utility increase2 given the outcome χi and the feature assignment
ϕ, and C(χi , φ, ϕ) is the sum of the decommitment penalties of those negotiations,
which are successful, but need to be abandoned due to the failure of other directly
related negotiations; these directly related negotiations are performed concurrently
with this negotiation or after this negotiation according to the negotiation ordering φ.

We have developed a heuristic search algorithm (Zhang et al. 2005) to solve the sin-
gle agent’s multi-linked negotiation problem that produces nearly optimal solutions.
The algorithm is briefly described as follows:

1. Find all the possible (consistent) feature assignments for all the attributes; partial
order reasoning tools are used to check the consistence of temporal attributes.

2. Perform a simulated annealing search starting with an initial negotiation ordering
φ.

3. Find the best feature assignment ϕφ for the given negotiation ordering φ, based
on the evaluation of expected utility EU(φ, ϕφ) defined in Eq. (1).

4. Modify the current negotiation ordering φ and get a new negotiation ordering
φnew, find the best feature assignment ϕφnew for this negotiation ordering φnew.

2 The values assigned to some features may affect the reward, i.e., the finish time affects the total reward
if there is additional early reward for finishing the task earlier than the requested deadline.
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5. If EU(φ, ϕφ) < EU(φnew, ϕφnew), φ ← φnew; otherwise replace φ with φnew

with a probability less than 1. Return to Step 4;
6. The algorithm stops after the number of repetitions has reached a pre-determined

limit.

Consider an example with three negotiations A, B, and C, assuming that the nego-
tiation start time τ = 0, and the negotiation duration of each negotiation is the same
δ(vi ) = 5. A POR represents a partial order relationship between two scheduling
elements. The negotiation schedule with no POR is: A[0, 5]B[0, 5]C[0, 5]; the nego-
tiation schedule with one POR (A → B): A[0, 5]B[5, 10]C[0, 5]; the negotiation
schedule with two PORs (A → B, A → C) is: A[0, 5]B[5, 10]C[5, 10]. There are
also some other possible schedules. The algorithm outputs the schedule with the best
value from all the possible schedules it has explored.

We still use the above search algorithm as the core of the decision-making for each
individual agent in the negotiation chain scenario, but introducing new mechanisms
for determining the values of some of the parameters, that is, negotiation deadlines
and success probabilities, to reflect that this negotiation is part of a negotiation chain.
In the rest of the paper, we present our work on how to improve the local solution of
a single agent in the global negotiation chain context. When an agent uses the deci-
sion-making process to choose its local negotiation decision, it needs to model how
other agents would react to its particular negotiation request. The more accurate this
model is, the higher the actual quality the solution gets. We propose to use meta-level
information to refine the agent’s local model about other agents, with the focus on
the following two aspects: how to use the meta-level information to construct a better
model of success probability function P(χi , ϕ) and how to make decisions on negotia-
tion duration and deadline. The experimental work demonstrates that these extensions
improve significantly the performance of the agents and the system where there are
negotiation chains. Table 1 summarizes the parameters used in this paper.

3 Negotiation Chain Problem

Figure 1 describes a complex negotiation chain scenario. The customer purchases com-
puters and memory chips from the Store Agent. The Store orders computers from the
PC Manufacturer and also orders memory chips from the Memory Producer. In order
to fulfill the order of the Store Agent, the PC Manufacturer needs to order hardware
from the Distribution Center and also ask the Transporter agent to deliver the PC to the
Store Agent. Meanwhile, in order to fulfill the order from the PC Manufacturer, the
Distribution Center needs to order CPU chips from the CPU Producer and order mem-
ory chips from the Memory Producer. It also needs the Transporter agent to deliver
the hardware to the PC Manufacturer. All these negotiations are interrelated and they
affect one another either directly or indirectly. The Store, the PC Manufacturer, the
Memory Producer, and the Distribution Center are all involved in multi-linked nego-
tiation problems. Figure 4 shows a distributed model of part of the negotiation chain
described in Fig. 1. Each agent has a local optimization problem— the multi-linked
negotiation problem (represented as an and-or tree), which can be solved using the
model and procedures described in the previous section. However, the local optimal
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Table 1 Parameters in multi-linked negotiations

Name Symbol Value determined by / affected by

Attributes-in-negotiation (about task)
Earliest start time est Their values are mostly determined by the initiator agent. The

responding agent may negotiate with the initiator agent about
the exact value within a range that is determined by the ini-
tiator agent. For initiator agent, these values are output. For
responding agent, these values are input but may be flexible
and can be changed during negotiation

Deadline dl
Regular reward r
Early finish reward rate e
Decommitment penalty rate p

Attributes-of-negotiation (about negotiation)
Negotiation duration δ(v) Their values need to be determined by the initiator agent. For

initiator agent, these values are output. For responding agent,
these values are input

Negotiation start time α(v)

Negotiation deadline ε(v)

Success probability ps (v) Affected by multiple factors including those listed above and
pbs listed belowOther internal parameters

Negotiation ordering φ Each agent determines the ordering of its multi-linked nego-
tiations

Feature assignment ϕ Each agent determines the values for its output attributes
Expected utility EU(φ, ϕφ) Depends on φ and ϕ

Negotiation count negCount Mate-level information collected during pre-negotiation
Likelihood of conflict Pci j Depends on the parameters of tasks with type i and type j
Likelihood of no conflict PnoCon f lict Depends on Pci j
Flexibility of task t f (t) Depends on est, dl and process_time of task t
Basic success probability pbs Depends on PnoCon f lict and f (tv)

Agent

F: Deliver Computer H: Get Memory I: Deliver Hardware I: Deliver Hardware

F: Deliver Computer

G: Get CPU

E: Get Hardware

and

TransporterDistribution Center

A: Purchase Computer B: Purchase Memory

C: Order Computer D: Order Memory

PC ManufacturerStore Agent

and

C: Order Computer

E: Order Hardware

Agent Agent

Fig. 4 Distributed model of negotiation chains

solution may not be optimal in the global context given the local model is neither
complete or accurate. The dash line in Fig. 4 represents the connection of these local
optimization problems through the negotiation subjects they have in common.

Negotiation chain problem O is a group of tightly coupled local optimization prob-
lems:

O = {O1, O2, . . . On}, Oi denotes the local optimization problem (multi-linked
negotiation problem) of agent Ai .

Agent Ai ’s local optimal solution Slo
i maximizes the expected local utility based on

incomplete information and imperfect assumptions about other agents’ local strate-
gies. We defined such incomplete information and imperfect assumptions of agent i
as Ii . Such information is an estimation of how other agents would respond to a nego-
tiation request, such as, there is a 30 % chance that agent j will accept a task request
within the next 10 hours. In other words, Ii represents the estimation of other agents’
local strategies: {Slo

1 , . . . , Slo
i−1, Slo

i+1, . . . , Slo
n }:

U exp
i (Slo

i , Ii ) ≥ U exp
i (Sx

i , Ii ) for all x �= lo.
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U exp
i (Slo

i , Ii ) is the expected utility that agent i can achieve when it uses local
strategy Slo

i given the assumption of other agents’ local strategies as Ii . This
expected utility may be different from the actual utility that agent i achieves:
Ui ({Slo

1 , Slo
2 , . . . .Slo

n }), when it uses local strategy Slo
i and other agents use local

strategies {Slo
1 , . . . , Slo

i−1, Slo
i+1, . . . , Slo

n }, respectively. How different they are depends
on how close the estimation Ii is to the other agents’ local optimal strategies:
{Slo

1 , . . . , Slo
i−1, Slo

i+1, . . . , Slo
n }. If there is no difference between Ii and the other

agents’ local optimal strategies: {Slo
1 , . . . , Slo

i−1, Slo
i+1, . . . , Slo

n }, then the set of local
optimal strategies {Slo

1 , Slo
2 , . . . , Slo

n } represents a Nash Equilibrium, meaning no agent
can do better by using its local strategy Slo

i while other agents use local strategies
{Slo

1 , . . . , Slo
i−1, Slo

i+1, . . . , Slo
n }. This is based on the assumptions that every agent has

perfect knowledge, and also Slo
i can be found, which may not be possible given each

Slo
i (1 ≤ i ≤ n) is calculated depending on Slo

j (1 ≤ j ≤ n, j �= i).

However, the combination of these local optimal solutions {Slo
i } : {Slo

1 , Slo
2 , . . . .Slo

n }
can be sub-optimal to a set of better local optimal solutions {Sblo

i }:{Sblo
1 , Sblo

2 , . . . .Sblo
n }

if at least one agent’s local utility is improved without any other agent’s local util-
ity being decreased by using {Sblo

i }. In other words, {Slo
i } is dominated by {Sblo

i }
({Slo

i } ≺ {Sblo
i }) iff:

Ui ({Slo
1 , Slo

2 , . . . .Slo
n }) ≤ Ui ({Sblo

1 , Sblo
2 , . . . .Sblo

n })fori = 1, . . . n and

for at least onei, Ui ({Slo
1 , Slo

2 , . . . .Slo
n }) < Ui ({Sblo

1 , Sblo
2 , . . . .Sblo

n }).

There can be multiple sets of better local optimal solutions: {Sblo1
i }, {Sblo2

i }, …{Sblom
i }.

Some of them may be dominated by others. A set of better local optimal solutions

{Sblog
i } that is not dominated by any others is called best local optimal. If a set of best

local optimal solutions {Sblog
i } dominates all others, {Sblog

i } is called globally local
optimal. However, sometimes the globally local optimal set does not exist; instead,
there exist multiple sets of best local optimal solutions. Even if the globally local
optimal solution does exist in theory, finding it may not be realistic given that the
agents are making decisions concurrently. Furthermore, in a dynamic environment,
it is a very difficult and sometimes even impossible task to construct perfect local
information and assumptions about other agents (Ii ).

Therefore, the goal of this work is to improve each agent’s local model about other
agents (Ii ) through meta-level coordination. As Ii becomes more accurate, the agent’s
local optimal solution to its local multi-linked negotiation problem becomes a better
local optimal solution in the context of the global negotiation chain problem. We are not
arguing that this statement is a universally valid statement that holds in all situations,
but our experimental work shows that it is true in the environments we have tested.
Our experimental results show that the sum of the agents’ utilities in the system has
been improved by 95 % on average when meta-level coordination is used to improve
each agent’s local model Ii . In this work, we focus on improving the agent’s local
model through two directions. One direction is to build a better function to describe
the relationship between the success probability of the negotiation and the flexibil-
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ity allocated to the negotiation. The other direction is to build a better function for
allocating time more efficiently for each negotiation in the negotiation chain context.

4 New Mechanism: Meta-level Coordination

In order for an agent to get a better local model about other agents in the negotiation
chain context, we introduce a pre-negotiation phase into the local negotiation process.
During the pre-negotiation phase, agents communicate with other agents who have
task contracting relationships with them—they transfer meta-level information before
they decide on how and when to do the negotiations. Each agent tells other agents
what types of tasks it will ask them to perform, and the probability distributions of
some parameters of those tasks, that is, the frequency, the slack time, and the duration.
When such information is not available directly, agents can learn such information
from their past experience as we did in our experiments. We assume that each agent
provides the following information to other related agents:

• Whether additional negotiation is needed in order to make a decision on the con-
tracting task; if so, how many more negotiations are needed. negCount represents
the total number of additional negotiations needed for a task, including additional
negotiations needed for its subtasks that happen among other agents. In a nego-
tiation chain situation, this information is being propagated and updated through
the chain until every agent has accurate information. Let subNeg(T ) be a set of
subtasks of task T that require additional negotiations, then we have:

negCount (T ) = |subNeg(T )| +
∑

t∈subNeg(T )

negCount (t). (2)

For example, in the scenario described in Fig. 1, for the distribution center, task
Order Hardware consists of three subtasks that need additional negotiations with
other agents: Order Chips, Order Memory and Deliver Hardware. However, no
further negotiations are needed for other agents to make decisions on these sub-
tasks; hence, the negCount for each of these subtasks is 0. The following infor-
mation is sent to the PC Manufacturer agent by the Distribution Center agent:
negCount (Order_Hardware) = 3
This information does not mean that the Distribution Center agent will handle the
negotiations on the three subtasks sequentially, it just implies that there are three
further related negotiations existing for task Order Hardware. Given this informa-
tion and other information, the PC Manufacturer agent will decide how much time
to allocate on the negotiation for task Order Hardware, and by then the Distribution
Center agent will decide how to handle the negotiations on the three subtasks.
For the PC Manufacturer, task Order PC contains two subtasks that require addi-
tional negotiations: Deliver PC and Order Hardware. When the PC Manufacturer
receives the message from the Distribution Center, it updates its local information:
negCount (Order_PC) = 2 + negCount (Deliver_PC)(0) + negCount
(Order_Hardware)(3) = 5
and sends the updated information to the Store Agent.

123



Meta-Level Coordination for Solving Distributed Negotiation Chains

In order to calculate negCount , an agent needs to wait for replies from all its
related agents, who need replies from their related agents too. This process goes
further to the every end of each negotiation chain, and it stops if there is no cycle
in the multi-linked negotiation graph.
In the implementation of the pre-negotiation process, considering the possibility of
communication failure in reality, a time limit is set for waiting replies from other
agents. This limit is chosen based on the estimation of the length of the longest
negotiation chain in the current problem. This limit can be adjusted when there is
a reply message received after the waiting period; hence, a more accurate result
can be achieved in the next pre-negotiation phase.

• Whether there are other tasks competing with this task and what the likelihood of
conflict is. Conflict means that given all constraints, the agent cannot accomplish
all tasks on time; it needs to reject some tasks. The likelihood of conflict Pci j

between a task of type i and another task of type j is calculated based on the statis-
tical model of each task’s parameters, including earliest start time (est), deadline
(dl), task duration (dur ), and slack time (sl), using the following formula (Shen
et al. 2004):

Pci j = P(dli − est j ≤ duri + dur j ∧ dl j − esti ≤ duri + dur j )

= P(sli − dur j ≤ est j − esti ≤ duri − sl j )

=
+∞∑

z=−∞

+∞∑

y=z

y∑

x=z

Pest j−esti (x)Pduri−sl j (y)Psli−dur j (z). (3)

Zheng and Zhang (2005) shows that the calculation result using this formula is
reasonably close to the actual simulation result.
When there are more than two types of tasks, the likelihood of no conflict between
task i and the rest of the tasks is calculated using the following formula:3

PnoCon f lict (i) =
n∏

j=1, j �=i

(1− Pci j ). (4)

For example, the Memory Producer tells the Distribution Center about the task Order
Memory. Its local decision does not involve additional negotiation with other agents
(negCount = 0); however, there is another task from the Store Agent that competes
with this task; thus, the likelihood of no conflict is 0.5 (PnoCon f lict = 0.5). On the other
hand, the CPU Producer tells the Distribution Center about the task Order Chips: its
local decision does not involve additional negotiation with other agents, and there are
no other tasks competing with this task (PnoCon f lict = 1.0) given the current environ-
ment setting.4 Based on the above information, the Distribution Center knows that task

3 Given the experiment setting we used, the probability that there is a conflict with three tasks but no
pair-wise conflict for any two tasks out of the three is very low, so it is ignored in this formula. When such
probability is high enough, this formula needs to be revised to include this situation.
4 There are multiple Order Chips tasks arriving at different times; however, there is no conflict among them
given they are spaced out in time dimension in the current experimental setting.
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Order Memory needs more flexibility than task Order Chips in order to be successful in
negotiation. Meanwhile, the Distribution Center would tell the PC Manufacturer that
task Order Hardware involves further negotiation with other agents (negCount = 3)
and that its local decision depends on other agents’ decisions. This piece of information
helps the PC Manufacturer allocate appropriate flexibility for task Order Hardware
in negotiation. In this work, we introduce a short start-up period for agents to learn
the characteristics of those incoming tasks, including est, dl, dur , and sl, which are
used to calculate Pci j and PnoCon f lict for the meta-level coordination. An alternative
way to find PnoCon f lict is through direct learning based on the tightness of the agent’s
current schedule and the estimated arrival time and duration of the future tasks. Agents
are constantly monitoring these characteristics. An updated message will be sent to
related agents when there is significant change in the meta-level information.

In the above discussion, it is assumed that there is a statistical model about the
characteristics of the incoming tasks, so that the agent can learn this model through its
experience. However, such a statistical model may not exist in some real-world appli-
cations or there is only single-shot interaction between agents, and it is impossible for
agents to learn such a model. In this type of situation, the detailed calculation such
as Formula 3 cannot be used but the pre-negotiation phase can still be advantageous
when other types of meta-level information is transferred, such as the flexibility of
current schedule, the finish time of the latest task, the size of the biggest slack window
in current schedule, etc. Such information can also be used by other agents to adjust
their local models about how agent Ai would respond in future negotiations, though
we did not implement this in our experiments.

It can be questioned whether this pre-negotiation really works for self-interested
agents who might be lying about the transferred information. We feel that this mech-
anism is realistic in semi-cooperative multi-agent systems for the following reasons.
First, lying is not necessarily beneficial for the agent when there are competitors. For
example, if the transporter agent pretends to be extremely busy in order to gain more
flexibility from the PC Manufacturer, the manufacturer can find other transporters.
Neither is it wise to pretend to be very free, which only results in conflicts and failure
in negotiation. Secondly, when there are multiple encounters repeated among agents, it
is possible to develop mechanisms (Ashri et al. 2005) to verify how reliable the agents
are, which provides another incentive for agents to be truthful. Finally, if the agents
in the chain are in a virtual enterprise such as in the CONOISE project (Norman et al.
2004), they have an incentive for the enterprise to be successful since their reward will
be dependent on the success of the enterprise. In our scenario, each agent is motivated
to provide local information for other agents so as to maximize the success probabil-
ity of the negotiation, since the agent only collects reward when it fulfills a contract
resulting from a successful negotiation.

Next, we will describe how the agent uses the meta-level information transferred
during the pre-negotiation phase. This information will be used to improve the agent’s
local model by affecting the values of some features that are used in the agent’s local
decision-making process. Especially, we will be concerned with two features that have
strong implications for the agent’s macro strategy for the multi-linked negotiations and
hence also significantly affect the performance of a negotiation chain. The first is the
amount of flexibility specified in the negotiation parameter. For example, if Order
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Hardware is expected to take 11 time units, the earliest start time is specified as time
40, and the deadline is specified as time 51, there is no flexibility in the outcome of
the negotiation process. Either it is started at time 40 or it cannot be done. A more
flexible negotiation structure would be one that specifies the deadline as 60; thus, the
agent working on Order Hardware (the Distribution Center) has more freedom to find
a way to accomplish this task given it may have already committed to other tasks.

The second feature we will explore is the time allocated for the negotiation process
to complete. This feature is called negotiation duration, which is determined by the
agent who initiates the negotiation session. A deadline for replying is set in the initial
proposal; the negotiation outcome is considered a failure if no commitment is reached
by this deadline. The initiator agent needs to decide how long the negotiation dura-
tion is for a particular negotiation session. For instance, in the previous example, the
negotiation on Order Hardware definitely should be completed by time 39, which is
a hard deadline for the negotiation on Order Hardware. The question is, when should
the negotiation on Order Hardware be started? It could be started once the PC Man-
ufacturer knows it needs the negotiation on Order Hardware (suppose at time 20), or
it can be started after the PC Manufacturer completes another negotiation on Order
Computer (could be time 30). These two decisions would result in different durations
allowed for the negotiation on Order Hardware—19 (39–20) versus 9 (39–30), which
would affect the negotiation outcomes. Another possible approach is to complete the
negotiation on Order Hardware before starting the negotiation on Order Computer.
In this case, the negotiation on Order Hardware needs to be completed before time 30
so there is time left for negotiation on Order Computer. The time allocated for each
negotiation affects the possible ordering of those negotiations, and it also affects the
negotiation outcome.5 Details are discussed in the following sections.

4.1 Flexibility and Success Probability

Agents not only need to deal with complex negotiation problems, they also need to
handle their own local scheduling and planning process that are interleaved with the
negotiation process. Figure 2 shows the local task structures of the PC Manufacturer
and the Distribution Center Agent. Some of these tasks can be performed locally by the
PC Manufacturer, such as Get Software and Install Software, while other tasks (non-
local tasks) such as Order Hardware and Deliver Computer need to be performed by
other agents. The PC Manufacturer needs to negotiate with the Distribution Center
and the Transporter about whether they can perform these tasks, and if so, when and
how they will perform them.

When the PC Manufacturer negotiates with other agents about non-local tasks, it
needs to have the other agents’ arrangement fit into its local schedule. Since the PC

5 We recognize that the importance of efficient managing related negotiations is driven by the tight deadline
and the need for urgent responses to tasks; in other words, the negotiation duration and the task execution
duration have similar magnitudes. This is not the case for traditional supply chain application where pro-
duction tasks take hours or days but electronic negotiation may only take seconds. However, for most
cyberspace application such as dynamic target tracking with distributed sensor networks, the execution
time for some tasks is at the similar magnitude as the negotiation duration.
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Order_Hardware

Deliver_Computer

[34, 40]

process time: 4

process time: 3

[11, 28]

[11, 28]

process time: 11

Get_Software

Install_Software

[28, 34]

process time: 2

Order_Computer starts at time 11 and finishes by 40

Fig. 5 A sample local schedule of the PC manufacturer

Manufacturer is dealing with multiple non-local tasks simultaneously, it also needs to
ensure that the commitments on these non-local tasks are consistent with each other.
For example, the deadline of task Order Hardware cannot be later than the start time
of task Deliver Computer. Figure 5 shows a sample local schedule of the PC Manufac-
turer. According to this schedule, as long as task Order Hardware is performed during
time [11, 28] and task Deliver Computer is performed during time [34, 40], there exists
a feasible schedule for all tasks and task Order Computer can be finished by time 40,
which is the deadline promised to the Customer. These time ranges allocated for task
Order Hardware and task Deliver Computer are called consistent ranges; the nego-
tiations on these tasks can be performed independently within these ranges without
worrying about conflict. Notice that each task should be allocated with a time range
that is large enough to accommodate the estimated task process time. The larger the
range is, the more likely the negotiation will succeed, because it is easier for another
agent to find a local schedule for this task. Then, the question is, how big should this
time range be? We defined a quantitative measure called flexibility.

Given a task t , suppose the allocated time range for t is [est, dl], est is the earliest
start time and dl stands for the deadline, the flexibility of task t is defined as f (t):

f (t) = dl − est − process_t ime(t)

process_time(t)
. (5)

Flexibility of a task is an important attribute in negotiation, because it directly
affects the possible outcome of the negotiation on this task. The success probability
of a negotiation v on task tv can be described as a function of the flexibility. In this
work, we adopt the following formula for the success probability function based on
the flexibility of task tv in this negotiation v:

ps(v) = pbs(v) ∗ (2/π) ∗ (arctan( f (tv)+ c))). (6)

This function describes a phenomenon where initially the likelihood of a successful
negotiation increases significantly as the flexibility grows, and then levels off after-
ward, which mirrors our experience from previous experiments. This is also consistent
with the usual observation in human negotiations for real-world problems: the chance
of successfully scheduling a job increases when the flexibility of this job increases to a
certain point, additional flexibility does not has significant impact afterward. The suc-
cess probability function described here in Eq. (6) is only one of many possible forms.
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Fig. 6 Different success
probability functions
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The most appropriate form of this function should be decided upon the knowledge of
the application domain and individual agents scheduling mechanism and negotiation
strategy, if they are available. Learning from previous interaction experience is an
alternative to build a more accurate form of this function, when other agents private
information is not available. pbs is the basic success probability of this negotiation v

when the flexibility f (tv) is very large. c is a parameter used to adjust the relationship.
Different function patterns can result from different parameter values, as shown in Fig.
6. This function describes the agent’s assumption about how the other agent involved
in this negotiation would respond to this particular negotiation request, when it has
flexibility f (tv). This function is part of the agent’s local model about other agents’
situation in this negotiation chain. To improve the accuracy of this function and make
it closer to the reality, the agent adjusts these two values according to the meta-level
information transferred during pre-negotiation phase. The values of c depends on
whether there is further negotiation involved and whether there are other tasks com-
peting with this task tv for common resources. If so, more flexibility is needed for task
tv and hence c should be assigned a smaller value. In our implementation, the follow-
ing procedure is used to calculate c based on the meta-level information negCount
and PnoCon f lict :

if(PnoCon f lict > 0.99) // no other competing task
c = Clarge − negCount

else // competing task exists
c = Csmall

This procedure works as follows: when there is no other competing task, c depends
on the number of additional negotiations needed. The more additional negotiations
that are needed, the smaller value c has, hence more flexibility will be assigned to this
issue to ensure the negotiation is successful. If no further negotiations are needed, c is
assigned to a large number Clarge, meaning that less flexibility is needed for this issue.
When there are other competing tasks, c is assigned to a small number Csmall , meaning
that more flexibility is needed for this issue. In our experimental work, we have Clarge

as 5 and Csmall as 1. These values are selected according to our experience; however,
a more practical approach is to have agents learn and dynamically adjust these values.
This is also part of our future work.
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pbs is calculated based on PnoCon f lict , f (tv) (the flexibility of task tv in previous
negotiation), and c, using the reverse format of Eq. 6.

pbs(v) = max(1.0, PnoCon f lict (tv) ∗ (π/2)/(arctan( f (tv)+ c))) (7)

For example, based on the scenario described above, the agents have the following
values for c and pbs based on the meta-level information transferred:

• PC Manufacturer, Order Hardware: pbs = 1.0, c = 2;
• Distribution Center, Order Chips: pbs = 1.0, c = 5;
• Store Agent, Order Memory: pbs = 0.79, c = 1;

Figure 6 shows the different patterns of the success probability function given dif-
ferent parameter values. Based on such patterns, the Store Agent would allocate more
flexibility to the task Order Memory to increase the likelihood of success in negoti-
ation. In the agent’s further negotiation process, Formula 6 with different parameter
values is used in reasoning on how much flexibility should be allocated to a certain
issue.

The pre-negotiation communication occurs before negotiation, but not before every
negotiation session. Agents only need to communicate when the environment changes,
for example, new types of tasks are generated, the characteristics of tasks changes, the
negotiation partner changes, etc. If no major change happens, the agent can just use
the current knowledge from previous communications. The communication and com-
putation overhead of this pre-negotiation mechanism is very small, given the simple
information collection procedure, the short message length and the limited number of
messages to be transferred. We will discuss the effect of this mechanism in Sect. 5.

4.2 Negotiation Duration and Deadline

In the agent’s local model, there are two attributes that describe how soon the agent
expects the other agent would reply to the negotiation v: negotiation duration δ(v) and
negotiation deadline ε(v). These are two important attributes that affect the negotiation
solution. Part of the negotiation solution is a negotiation ordering φ which specifies in
what order the multiple negotiations should be performed. In order to control the nego-
tiation process, every negotiation should be finished before its negotiation deadline,
and the negotiation duration is the time allocated for this negotiation. If a negotiation
cannot be finished during the allocated time, the agent has to stop this negotiation
and consider it as a failure. The decision about the negotiation order depends on the
success probability, reward, and decommitment penalty of each negotiation. A good
negotiation order should reduce the risk of decommitment and hence reduce the de-
commitment penalty. A search algorithm has been developed to find such negotiation
order described in Zhang et al. (2005).

For example, Table 2 shows some of the negotiations for the Distribution Center
and their related attributes. Given enough time (negotiation deadline is greater than
16), the best negotiation order is: 4→ 3→ 2→ 1. The most uncertain negotiation
(4: Deliver Hardware) is performed first. The negotiation with the highest penalty (1:
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Table 2 Examples of
negotiations (δ(v): negotiation
duration, s.p.: success
probability)

Index Task-name δ(v) Reward s.p. Penalty

1 Order hardware 4 6 0.99 3

2 Order chips 4 1 0.99 0.5

3 Order memory 4 1 0.80 0.5

4 Deliver hardware 4 1 0.70 0.5

Order hardware) is performed after all related negotiations (2, 3, and 4) have been
completed so as to reduce the possibility and cost of decommitment. If the negotiation
deadline is less than 12 and greater than 8, the following negotiation order is preferred:
(4, 3, 2)→ 1, which means negotiation 4, 3, 2 must be performed in parallel, and 1
needs to be performed after them. If the negotiation deadline is less than 8, then all
negotiations have to be performed in parallel, because there is no time for sequencing
negotiations.

In the original model for a single agent (Zhang et al. 2005), the negotiation deadline
ε(v) is assumed to be given by the agent who initiates the contract. The negotiation
duration δ(v) is an estimation of how long the negotiation takes based on experience.
However, the situation is not that simple in a negotiation chain problem. Consider the
following scenario: when the customer posts a contract for task Purchase Computer,
it could require the Store Agent to reply by time 20. Time 20 can be considered as
the negotiation deadline for Purchase Computer. When the Store Agent negotiates
with the PC Manufacturer about Order Computer, what negotiation deadline should
it specify? How long should the negotiation on Order Computer take depends on
how the PC Manufacturer handles its local multiple negotiations: whether it replies
to the Store Agent first or waits until all other related negotiations have been settled.
However, the ordering of negotiations depends on the negotiation deadline on Order
Computer, which should be provided by the Store Agent. The negotiation deadline
of Order Computer for the PC Manufacturer is actually decided based on the nego-
tiation duration of Order Computer for the Store Agent. How much time the Store
Agent would like to spend on the negotiation Order Computer is its duration and also
determines the negotiation deadline for the PC Manufacturer.

Now the question arises: how should an agent decide how much time it should
spend on each negotiation, which actually affects the other agents’ negotiation deci-
sions. The original model does not handle this question since it assumes the negotiation
duration δ(v) is known. We propose to use the meta-level information to help decid-
ing negotiation duration for each negotiation (meta-info-deadline policy). To evaluate
how well it works, we compare this policy with two other straightforward approaches:
same-deadline policy and evenly divided-deadline policy.

1. same-deadline policy. Use the same negotiation deadline for all related negotia-
tions, which means allocate all available time to all negotiations:
δ(v) = total_available_time
For example, if the negotiation deadline for Purchase Computer is 20, the Store
Agent will tell the PC Manufacturer to reply by 20 for Order Computer (ignor-
ing the communication delay). This strategy allows every negotiation to have the
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largest possible duration; however, it also eliminates the possibility of perform-
ing negotiations in sequence—all negotiations need to be performed in parallel
because the total available time is the same as the duration of each negotiation.

2. meta-info-deadline policy. Allocate time for each negotiation according to the
meta-level information transferred in the pre-negotiation phase. A more compli-
cated negotiation, which involves further negotiations, should be allocated addi-
tional time. For example, the PC Manufacturer allocates a duration of 12 for
the negotiation Order Hardware, and a duration of 4 for Deliver Computer. The
reason is that the negotiation with the Distribution Center about Order Hardware
is more complicated because it involves further negotiations between the Dis-
tribution Center and other agents. In our implementation, we use the following
procedure to decide the negotiation duration δ(v):

if(negCount (v) >= 3) // more additional negotiation needed
δ(v) = (negCount (v)− 1) ∗ basic_neg_cycle

else if(negCount (v) > 0) // one or two additional negotiations needed
δ(v) = 2 ∗ basic_neg_cycle

else //no additional negotiation
δ(v) = basic_neg_cycle + 1

basic_neg_cycle represents the minimum time needed for a negotiation cycle
(proposal-think-reply), which is 3 in our system setting including communication
delay. One additional time unit is allocated for the simplest negotiation because
it allows the agent to perform a more complicated reasoning process in thinking.
During this process, the agent can reason on all related negotiations and choose
a best local solution {Slo

i } to handle these multiple related negotiations. Again,
the structure of this procedure is selected according to experience, and it can be
learned and adjusted by agents dynamically.

3. evenly divided-deadline policy. Evenly divide the available time among the n
related negotiations:
δ(v) = total_available_time/n
For example, if the current time is 0, and the negotiation deadline for Order Com-
puter is 21, given two other related negotiations, Order Hardware and Deliver
Computer, each negotiation is allocated with a duration of 7.

We will discuss some experimental results related to this question in Sect. 5.

5 Experiments

To verify and evaluate the mechanisms presented for the negotiation chain problem,
we implemented the scenario described in Fig. 1 using the MASS simulator environ-
ment (Horling et al. 2000). New tasks were randomly generated with decommitment
penalty rate p ∈ [0, 1], early finish reward rate e ∈ [0, 0.3], and deadline dl ∈ [10, 60]
(this range allows different flexibilities available for those sub-contracted tasks) and
arrived at the store agent periodically. We performed two sets of experiments to study
how the success probability functions and negotiation deadlines affect the negotiation
outcome, the agents’ utilities and the system’s overall utility. Each agent’s utility is the
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sum of the regular reward and the early reward it receives from all its finished tasks
minus the subcontract payments to other agents and the penalty it pays for canceling
any commitments. The system’s overall utility is the sum of each individual agent’s
utility. The negotiation protocol used in this work is a two-step proposal and counter
proposal process based on the contract net protocol. Once an agreement is reached and
one agent cannot fulfill the commitment, it needs to pay the other party a decommit-
ment penally as specified in the commitment. Details of this protocol are described in
Zhang et al. (2005). In this experiment, agents need to make decision on negotiation
ordering and feature assignment for multiple attributes including: earliest start time,
deadline, promised finish time, and those attributes-of-negotiation. To focus on the
study of flexibility, in this experiment, the regular rewards for a task of a specified
type is fixed and not under negotiation. Here, we only describe how agents handle
the negotiation duration and negotiation deadlines because these two attributes are
affected by the pre-negotiation phase. All other attributes involved in negotiation are
handled according to how they affect the feasibility of local schedule (time-related
attributes), how they affect the negotiation success probability (time- and cost-related
attributes) and how they affect the expected utility. The search algorithm and a set of
partial order scheduling algorithms are used to handle these attributes.

In the pre-negotiation phase, agents exchange meta-level information about dif-
ferent negotiation issues, such as whether there is further negotiation related to this
negotiation (negCount), and if there are other tasks that are potentially competing
with this task and what the likelihood of conflict (PnoCon f lict ) is. According to this
information, the local agent adjusts the parameters (Pbs, c) in the success probability
function ps(v) to reflect how the probability of success is related to the flexibility of
the task. The time needed for pre-negotiation depends on the length of the negotia-
tion chain. Every agent updates its local information and sent updated information to
related agents when it receives a piece of new information from another agent.

5.1 Experiment with Different Flexibility Policies

The first set of experiments is to explore the performance of different flexibility poli-
cies, which guide how agents allocate flexibilities among multiple related negotiation
issues. We tried two different flexibility policies.

1. local-info-flexibility policy: the agent models the success probability as ps(v) =
pbs(v), the value of pbs(v) is determined according to its local knowledge and
estimation.

2. meta-info-flexibility policy: the agent uses the function ps(v) = pbs(v) ∗ (2/π) ∗
(arctan( f (v)+c))) to model the success probability. It also adjusts those parame-
ters (pbs(v) and c) according to the meta-level information obtained in pre-nego-
tiation phase as described in Sect. 4. Table 3 shows the values of those parameters
for some negotiations.

Figure 7 shows the results of this experiment. This set of experiments includes 22
system runs, and each run is for 1,000 simulating time units. In the first 200 time
units, agents are learning about the task characteristics such as the distribution of the
frequency, the slack time and the duration using a basic inductive learning algorithm.
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Table 3 Parameter values
without/with meta-level
information

Negotiation Local-info-flex Meta-info-flex

pbs pbs c

Order PC 0.95 1.0 0

Order memory (1) 0.95 0.79 1

Order hardware 0.95 1.0 2

Deliver PC 0.95 1.0 1

Deliver hardware 0.95 1.0 5

Order chips 0.95 1.0 1

Order memory (2) 0.95 0.76 1

Fig. 7 Different flexibility policies

These task characteristics will be used to calculate the conflict probabilities Pci j .
At time 200, agents perform meta-level information communication, and in the next
800 time units, agents use the meta-level information in their local reasoning process.
The data were collected over the 800 time units after the pre-negotiation phase.6 One
Purchase PC task is generated every 20 time units, and two Purchase Memory tasks
are generated every 20 time units. The deadline for task Purchase PC is randomly
generated in the range of [30, 60], the deadline for task Purchase Memory is in the
range of [10, 30]. The decommitment penalty rate is randomly generated in the range
of [0, 1].
This setting creates multiple concurrent negotiation chain situations; there is one long
chain:
Customer—Store—PC Manufacturer—Distribution Center—Producers—Transporter
and two short chains (each chain is for one Purchase Memory task):

6 We only measure the utility collected after the learning phase because the learning phase is relatively
short compared with the evaluation phase. Also during the learning phase, no meta-level information is
used, so some of the policies are invalid.
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Customer—Store—Memory Producer
This demonstrates that this mechanism is capable of handling multiple concurrent
negotiation chains.

The results in Fig. 7 are the averages of the 22 system runs. T-Test result, with
value in the range from 5E-20 to 5E-16, strongly supports that there is a statistical
significant different between the results using the two different flexibility policies.
All agents perform better in this example (gain more utility) when they are using the
meta-level information to adjust their local control through the parameters in the suc-
cess probability function (meta-info-flex policy). Especially for those agents in the
middle of the negotiation chain, such as the PC Manufacturer and the Distribution
Center, the flexibility policy makes a significant difference. When the agent has a
better understanding of the global negotiation scenario, it is able to allocate more flex-
ibility for those tasks that involve complicated negotiations and resource contentions.
Therefore, the success probability increases and fewer tasks are rejected or canceled
(90 % of the tasks have been successfully negotiated over when using meta-level infor-
mation, compared to 39 % when no pre-negotiation is used), more reward is received
and less decommitment penalty is paid, resulting in both the agent and the system
achieving better performance.

5.2 Experiment with Different Negotiation Deadline Policies

The second set of experiments studies how different negotiation deadline policies
affect the performance in the negotiation chain. We compare three negotiation dead-
line policies described in Sect. 4.2 when using the meta-info flexibility policy described
above. The initial result (using the same task frequencies as described in Sect. 5.1,
not presented here) shows that the same-deadline policy and the meta-info-dead-
line policy perform almost the same when the amount of system workload level is
moderate; tasks can be accommodated given sufficient flexibility. In this situation,
with either of the policies, most negotiations are successful, and there are few de-
commitment occurrences, so the ordering of negotiations does not make too much
difference.

In this second set of experiments, we use a different setup than the first one. We
increase the number of new tasks generated to raise the average workload in the sys-
tem. One Purchase PC task is generated every 15 time units, three Purchase Memory
tasks are generated every 15 time units, and one task Deliver Gift (directly from the
customer to the Transporter) is generated every 10 time units. This setup generates
a higher level of system workload, which results in some tasks not being completed
no matter what negotiation ordering is used. In this situation, we found the meta-
info-deadline policy performs much better than same-deadline policy (See Fig. 8).
The results in Fig. 8 are the averages of the 22 system runs. T-Test was performed
between the performance using the same-deadline policy and the performance using
the meta-info-deadline policy; it is shown that there is a statistical significant dif-
ference between the results using these two different negotiation deadline policies.
When an agent uses the same-deadline policy, all negotiations have to be performed
in parallel. In the case that one negotiation fails, all related tasks have to be can-
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Fig. 8 Different negotiation deadline policies

celed, and the agent needs to pay multiple decommitment penalties. When the agent
uses the meta-info-deadline policy, complicated negotiations are allocated more time
and, correspondingly, simpler negotiations are allocated less time. This also has the
effect of allowing some negotiations to be performed in sequence. The consequence
of sequencing negotiation is that, if there is failure, an agent can simply cancel the
other related negotiations that have not been started. In this way, the agent does not
have to pay decommitment penalty for those canceled negotiations because no com-
mitment has been established yet. The evenly divided-deadline policy performs much
worse than the meta-info-deadline policy. In the evenly divided-deadline policy, the
agent allocates negotiation time evenly among the related negotiations; hence, the
complicated negotiation does not get enough time to complete. For example, when
the PC Manufacturer evenly divides the 6 time units among the two negotiations
(Produce Computer and Deliver Computer), each get 3 time units. Thus, the Distri-
bution Center must reply within 2 time units about task Produce Computer (1 time
unit has already been spent on the communication). In our current system setting,
this is an urgent request that necessitates the agent bypassing the local negotiation
control process (which arranges the appropriate flexibility for each negotiation) and
instead adopts a quick reply process, where no detailed reasoning on flexibility is
involved. Therefore, even if the meta-info-flexibility policy is used in this experiment,
it may not affect the negotiation strategy since there is insufficient time for nego-
tiation. This explains the bad performance of the evenly divided-deadline policy in
Fig. 8.

From the above experiment results, we conclude that the meta-level information
transferred among agents during the pre-negotiation phase is critical in building a
more accurate model of the negotiation problem. The reasoning process based on this
more accurate model produces an efficient negotiation solution, which improves such
agent’s and the system’s overall utility significantly. This conclusion holds for those
environments where the system is facing moderate heavy load and tasks have rela-
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tively tight time deadline (like in our experiment setup); the efficient negotiation is
especially important in such environments.

6 Comparison with a Centralized Approach

To further evaluate the performance of our distributed negotiation approaches, we
compare the experimental results in Sect. 5 with the total utility achieved by all agents
using a centralized scheduler. In this centralized approach, a centralized scheduler is
used to decide which tasks are to be performed, and when, for all agents in the system.
It is assumed that the information about what tasks are available and who can perform
them is available when the scheduling is performed. This centralized scheduler used
in this experiment is developed by the Global InfoTek Inc., as part of the DARPA
Coordinator project effort. This centralized scheduler is based on the Mixed Integer
Linear Programming (MILP) approach, and it schedules tasks for multiple agents with
the goal to maximize overall utility achievement.

This centralized scheduler requires constructing a global task structure. Figure 9
shows the task structure we generated to match the first experiment setting we used
to test different flexibility policies. In the experiment we described in Sect. 5.1, tasks
are generated periodically with random deadlines and random early reward reward
rates within specific ranges. Since this centralized scheduler is performing an exhaus-
tive search and cannot handle a task structure with hundreds of tasks, we take one
period of 20 time clicks as a sample scenario and model all tasks generated during this
time period, which include one Purchase PC task and two Purchase Memory tasks.
Each task is generated with a random deadline and a random early reward reward
rate drawn from the same range as the experiment setting described in Sect. 5.1. This
experiment is repeated for 20 times using the same task structure but each task has
different parameter values. The result for centralized approach shown in Table 4 is an
average of these 20 experiments. The task structure depicted in Fig. 9 is then sent to
this centralized scheduler, and a multi-agent schedule is generated for each agent in
the system. The utility is calculated based on all tasks that are accomplished within the
deadline constraints according to such schedule. Additional early reward is also cal-
culated based on the actual finish time, the deadline, and the early reward rate of each
task. The sum of the normal reward and the early reward is the actual utility achieved
by the system in such time period. This utility then is multiplied by the repetition
times (40) of such period (20 time clicks) during the whole distributed experiment
setting (800 time clicks), and the result is considered as the total utility the system can
achieve when using such a centralized approach. This number is used as a baseline to
compare with the distributed approach. A similar process has been performed for the
experimental setting described in Sect. 5.2.

In this periodical modeling approach, it is assumed that there is no time conflict
between tasks from different time periods, which is not always true for the continu-
ally distributed setting, where the previously committed task may have conflict with a
task that arrives later. On the other hand, this periodical modeling approach does not
provide the opportunity for agents to interleave the execution of tasks that belongs to
different time period, which sometimes happen in a continuous setting. The effects
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Table 4 Comparison with centralized approach

Exp. Set #1 Centralized Local-info-
flexibility

% Meta-info-
flexibility

%

1106 338 30.6 823 74.4

Exp. Set #2 Centralized Same-deadline % Meta-info-
deadline

% Evenly
divided-
deadline

%

1308 884 67.6 1192 91.1 289 22.1 %

Fig. 9 Global task structure for the system

of these two issues actually cancel each other, and further both of them happen very
rarely in the continuous experiments. Therefore, the overall effect of the periodical
approach is very close to the continuous setting.

However, in this centralized approach, decommitment penalty is not considered. It is
assumed that based on the centralized schedule generated in the beginning, the system
can reject all tasks that cannot be handled in time and hence not paying any decommit-
ment penalty. Given this assumption, we believe that the centralized approach provides
an upper-bound for the performance the system can achieve, which we referred as opti-
mal performance in later discussion.

Table 4 describes the comparison of the system performance of the distributed
approach with different negotiation meta-strategies to the optimal performance using
a centralized approach. In experiment set #1, we compare the system performance
achieved when using local-info-flexibility policy (338) and meta-info-flexibility policy
(823) with the system performance achieved by centralized approach (1106). It shows
that when agents use the meta-level information to decide how to allocate flexibility
(meta-info-flexibility), the system achieves 74.4 % of the performance achieved by
the centralized approach. In experiment set #2, we compare the system performance
achieved using different deadline policies with the system performance achieved by
centralized approach (1308). When the agents uses the meta-level information both to
manage both negotiation deadline and also to allocate flexibilities (meta-info-deadline)
(1192), the system achieves 91.1 % of the performance achieved by the centralized
approach.
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Table 5 Detailed comparison of different negotiation policies

Tasks
received

Tasks
accepted

Tasks
canceled

Total
penalty
paid

Total
early
reward

Total
utility

W/o
penalty

W/o
early
reward

W/o
both

Local-
info-flex

123 109 90 144 189 338 482 149 293

Meta-info-
flex

123 103 16 24 370 823 847 453 477

Same-
deadline

220 148 40 92 319 884 976 565 657

Evenly
divided-
deadline

220 154 100 253 157 289 542 163 415

Meta-info-
deadline

220 141 13 15 436 1192 1206 755 770

7 Discussion About Generality

In Sect. 5, we have shown that the pre-negotiation phase that transfers meta-level
information among the agents significantly improves the system’s performance under
the semi-cooperative system setup described in Sect. 2. Now we would like to under-
stand how general this conclusion is. Is it still valid for a system where there is no
decommitment penalty or early reward? Can this approach be applied to a completely
cooperative system, such as the Coordination Decision Support Assistants (Coordi-
nator) problem —a DARPA project aiming to create distributed intelligent software
systems that will help fielded units adapt their mission plans as the situation around
them changes and impacts their plans? (DARPA project) In such a completely coop-
erative system, the performance of each individual agent is not considered, instead,
the overall performance of the system is the only key issue that matters. To fully
understand these questions, we plot a detailed analysis of the the experimental data in
Table 5.

Table 5 shows the system’s overall performance under different negotiation poli-
cies, including the total number of outside tasks coming in the system, the number of
outside tasks accepted by the system, and the number of tasks canceled by the system.
These tasks are originally accepted and then canceled due to the failure to establish all
the necessary commitments, which is caused by negotiation failures inside the system.
The system refers to all the agents located inside the box in Fig. 1, the outside tasks
are generated by the Customer agent. The utility in Table 5 is the sum of the utilities
of individual agents in the system, given the reward of the outside tasks is distributed
among these agents. The penalty measures the decommitment penalty paid toward the
outside Customer agent, the inside decommitment penalty is not counted because it
does not affect the system’s overall utility. Similarly, the early reward measures the
early reward the system earns from outside.

Table 5 shows that by using metal-level information to choose local negotiation
strategies ( meta-info-flex and meta-info-deadline policies), the system successfully
accomplishes more tasks because fewer tasks are canceled due to negotiation failures.
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In addition, more tasks are finished earlier, which results in more early reward. The
general conclusion is that the better negotiation strategies based on meta-level infor-
mation increases the system’s throughput, in terms of more tasks were finished and
finished earlier. The absolute number of the utility, penalty, and early reward cannot be
generalized, because they depend on the setting of the task reward, penalty rate, and
early reward rate. However, the data show that the system’s performance is improved
even if neither decommitment penalty nor early reward is considered in the analysis.

We conclude that the more accurate model of negotiation chain is important for
the agent to find a better local optimal solution toward the multi-linked negotiation
problem in a setting with negotiation chains. A set of better local optimal solutions
improves the system’s overall performance by allowing more tasks to be accomplished
and finished earlier, which indicates that the local scheduling and planning processes
are producing solutions that fit better with the global context. This conclusion holds
also for complete cooperative systems, where there is no notion for individual reward
and decommitment penalty inside the system. However, even in such system, we feel
that some artificial individual reward and decommitment penalty can be useful in order
to communicate how important a task is globally, so that each agent can exploit this
information in its local considerations (Zhang et al. 2006).

Another aspect of generality is related to the uncertainty in task execution time.
In the experiments described in Sect. 5, it is assumed that there is no uncertainty in
task execution time. In fact, uncertainty can be accommodated in this framework by
one of the following two approaches. The first approach is to model uncertainty in
the success probability function, a parameter related to uncertainty can be introduced
in Formula 6 to ensure that the task with higher uncertainty needs more flexibility in
order to succeed. Another approach is to introduce a renegotiation mechanism which
allows the agents to adjust the original commitment within a pre-specified range when
task takes longer than expected to finish. Such renegotiation mechanism has been
described in Zhang et al. (2004), which fits into the overall framework we described
here.

8 Related Work

Most prior work on negotiation such as Lai et al. (2006) studied decision-making
process in bilateral negotiation. Fatima et al. (2002) studied the multiple issues in
negotiation in terms of the agenda and negotiation procedure. However, their work
involves only a single agent’s perspective without any understanding that the agent may
be part of a negotiation chain. Mailler and Lesser (2006) have presented an approach to
distributed resource allocation problems where the negotiation chain scenario occurs.
It models the negotiation problem as a distributed constraint optimization problem
(DCOP) and a cooperative mediation mechanism is used to centralize relevant por-
tions of the DCOP. In our work, the negotiation involves more complicated issues
such as reward, penalty, and utility; also, we adopt a distribution approach where no
centralized control is needed. A mediator-based partial centralized approach has been
applied to the coordination and scheduling of complex task network (Sims et al. 2006),
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which is different from our work since the system is a completely cooperative system
and individual utility of single agent is not of concern.

Aknine (2011) presented a protocol for overlapping negotiation, using a hierar-
chical contract net model where the negotiations are conducted at different levels.
This approach is quite different from ours, where each agent makes it own decisions
regarding how to manage multiple related negotiations using meta-level information
transferred among agents.

Munroe and Luck (2005) has proposed to select dynamically the negotiation oppo-
nents based on the consideration of balancing conflict and cost. Selection of negotiation
opponents also belongs to issues concerned in the construction of the macro negoti-
ation strategy, the framework proposed in this work can accommodate this decision
problem as shown in Fig. 3, though we have not implement it in the example scenario.
Urbig and Schroter (2004) introduced C-IPS approach for negotiation agents for spec-
ifying dynamic interdependencies between issues, partners and steps. However, C-IPS
approach is mainly focused on one bilateral negotiation, the interdependencies among
multiple negotiations was not addressed.

A combinatorial auction (Hunsberger and Grosz 2000; Walsh et al. 2000; Sandholm
2007) could be another approach to solving the negotiation chain problem. However,
in a combinatorial auction, the agent does not reason about the ordering of negotia-
tions, since all items are announced at the same time, meaning all issues are negotiated
concurrently. This would lead to a problem similar to those we discussed when the
same-deadline policy is used. Also, a combinatorial auction is unrealistic for this prob-
lem because the range of possible bids each agent can make with respect to how it can
schedule its local tasks/resources is enormous. Even though bid elicitation (Conen and
Sandholm 2001) is a possible approach to reducing the number of bids that need to be
generated, it does not seem feasible for this type of problem because of the complex
nature of the temporal constraints in each agent.

9 Conclusion and Future Work

In this paper, we have solved distributed negotiation chain problems by extending our
single-agent multi-linked negotiation model to multiple agents. Instead of solving the
negotiation chain problem using a fully centralized approach, we adopt a distributed
approach where each agent acquires an extended local model and uses it in its deci-
sion-making process. We have introduced a pre-negotiation phase that allows agents to
exchange meta-level information on negotiation issues. Using this information, each
agent can build a more accurate model of the multi-linked negotiations in terms of
modeling the relationship of flexibility and success probability. This more accurate
model helps the agent choose the most appropriate local negotiation solution. The
agent can also use this information to allocate appropriate time for each local negotia-
tion, so as to find a good ordering of all related negotiations. It turns out that this simple
and infrequent exchange of meta-level information and several simple rules actually
have profound effect. The experimental data show that these mechanisms improve the
agent’s and the system’s overall performance significantly, and enable an achievement
of 91 % of optimal performance achieved by a centralized approach.
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The model we describe here can be extended to include the modeling of other agent’s
negotiation strategies, which affect the negotiation outcomes significantly. Different
success probability function models can be built based upon the other agent’s specific
strategy used in the negotiation, if such knowledge and estimation are available. The
agent can choose an appropriate model depending on the negotiation partner. Such
improved model has the potential to further improve the agent’s local performance
and the system’s overall performance.

Future extension of this work includes developing mechanisms to verify how reli-
able the agents are in exchanging meta-level information. Additionally, we would like
to develop a learning mechanism that enables the agent to learn how to use the meta-
level information from previous experience. Also we would like to introduce some
coordinating mediators (agents who are responsible for part of the negotiation chain)
and examine whether it would further facilitate the process.
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