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Abstract

Large scale multi-agent systems (MAS) benefit greatly from an overlay organization design [5, 8] that
guides agents in determining when to communicate, how often, with whom, with what priority and so on.
However, this same organization knowledge is not utilized by general-purpose wireless network routing
algorithms normally used to support agent communication.

Here, we look at modifying the QRouting algorithm, in particular the confidence based extension of
QRouting called CQRouting, to take advantage of the following set of information; 1) The layout of the
organization in terms of roles and message flow, 2) Application knowledge in-terms of expected band-
width, response time and message priority and 3) Sleep cycle knowledge.

In this paper, we show an improved application-level bandwidth and response time by applying organi-
zation knowledge to network-level routing algorithms. This increased bandwidth and response time is
especially important in communication-intensive and power-limited application settings such as agent-
based sensor networks where node availability and link dynamics make providing sufficient inter-agent
communication especially challenging.
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1 Introduction

There has been a lot of work recently in deploying sensor networks for monitoring and assessment of harsh
environmental conditions. The characteristics of such networks include a limited power source and a dy-
namic network. This requires better management of unstable links and nodes while delivering packets in a
timely and energy conserving manner. CNAS (Collaborative Network for Atmospheric Sensing) [4] is one
such power-limited, wireless sensor network. It is a collection of power-aware sensor agents, spread sparsely
over a topological region. Even small topological distances can have significant differences in atmospheric
conditions. CNAS makes an overall assessment of detailed local atmospheric conditions by combining data
from sensor agents within predefined cluster areas. A hierarchy of communication is used, where all the
sensor agents collect data from their environment and transfer it to a dynamically designated sensor agent
performing a second role of a “cluster head” responsible for aggregating and reporting the conditions in its
cluster area. Moreover, the agent acting as the cluster head is also responsible for providing direction to the
rest of the agents in its cluster. Due to the harsh environmental conditions, the network-level routing algo-
rithm at each agent is working behind the scene to build dynamic paths for each message destination. These
network dynamics are due to failures and changes in communication-link characteristics. The network-level
routing algorithm at each agent in the network performs regular exploration of links to its neighbors. This
determines the availability of the neighbor and the utility of the link between them in order to maintain paths
to the cluster head. Also, agents acting as cluster heads communicate with a regional node, but with less
frequency. Nevertheless, paths to the regional node must also be maintained. However, this form of commu-
nication is of extremely high priority and there is a stronger penalty for delayed delivery or dropped messages.

A major part of the research work on wireless routing algorithms has been in conserving the limited battery
power available to the sensor nodes. Since the WiFi component is a major energy consumer [2], by balancing
load on the links, and regulating the number of messages being sent and received, routing algorithms can
have a strong influence on the longevity of the network. However there is only so much they can do. One
practical solution would be to turn off the WiFi at each node periodically in order to increase its lifetime.
In sparse networks like CNAS, there do not exist many paths a data message could take to its destination
node, so switching off nodes can lead to network disconnections [18]. Furthermore, it does not make sense to
have a certain percentage of the network go down periodically, as bottleneck nodes will die out faster (due
to lack of power), rendering the network ineffective. An alternative approach is to have the entire network
have a synchronous sleep cycle (provided there is no strong real-time demand for data). The task of the each
agent in CNAS is therefore to wake up, perform all its communication as quickly as possible, and then go
back to sleep again. Moreover an agent cannot go to sleep if another agent needs to use it as one of the hops
in communicating with another agent. In this situation, the routing protocol needs to perform quick path
discovery as soon as the network wakes up (even if the paths discovered are sub-optimal) as each agent tries
to minimize the time spent in the wake cycle, so as to conserve its energy. The agents can then use these
paths to quickly determine sleep cycles of the various nodes in the network based on their global critically
in sending messages to the cluster head.

Standard routing algorithms perform regular exploration messages through the network. These exploration
messages are used to handle the dynamics of the network, and are performed irrespective of the extent of
these dynamics. This translates to a delay in sending messages every time the network starts up while the
routing algorithm develops routes to the destination node. In cyclical networks like CNAS, this delay has
to be borne every wake cycle. Furthermore, routing algorithms do not have a way to transfer their routing
tables from one wake cycle to the next. Even though the a table from the past wake cycle can be used as
a seed for the next wake cycle, there is no way to determine the validity of the old table and the algorithm
has to re-explore. Finally, there has been no work done in embedding organization knowledge into routing
algorithms to better direct exploration.
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The focus of this research is to obtain better application bandwidth, response time and global utility in
power-limited wireless sensor networks by better directing exploration. We extend the CQRouting algorithm
(calling our algorithm eCQRouting) by using organization knowledge to guide exploration. We also use
Kalman filters to determine the mean and variance on the delay in sending a message from the source to the
destination and use this knowledge in determining which paths need to be explored. This learned mean and
variance can then be transferred from one sleep cycle to another and used in developing better paths upon
waking up.

2 CQRouting

In this paper, we modify the CQRouting algorithm [13] calling our extension eCQRouting. CQRouting is
itself an extension to the QRouting [1] protocol based on the distributed QLearning algorithm [17]1. QRout-
ing defines the network as a MDP where the rewards associated with actions change over time. This requires
constant exploration, in order to maintain the policies developed by the reinforcement learning algorithm.
Each node in the network represents a state in the MDP. An action is to transmit a message from the current
state to one of its neighboring states. A QValue, Qx(y, d), for node x states the expected time taken to
transfer a message to destination node d through neighbor node y. A policy determines which neighbor a
message is forwarded to so that it reaches its destination with minimum delay.

QRouting uses the “Full Echo” algorithm to perform exploration [1]. Each node in the network periodically
requests each of its neighbor the policy being used by that neighbor in determining paths to various nodes
in the network (which is defined by the routing table of that neighbor, and is based on the Bellman-Ford
Algorithm for routing, first described in the ARPANET [14]). The querying node then updates its own
tables based upon the following QLearning equation:

Qx(y, d) = Qx(y, d) + α(Qy(ẑ, d) + qy −Qx(y, d)) (1)

where α is the learning rate; Qy(ẑ, d) is the utility of neighbor y in sending a message to destination d
through ẑ, where ẑ is the next hop on the optimal path from y to d; and qy is the cost of sending a message
to neighbor y. QRouting is different from QLearning in that the objective of the policy is to minimize
QValues rather than to maximize it. This is because the QValue represents the expected cost in sending a
message to the destination rather than expected reward used in QLearning.

In CQRouting each node also maintains a confidence in its QValues, Cx(y, d). The confidence of node x in
sending a message to node d, through node y, represents the expectation of node x that current Qx(y, d)
value accurately represents the utility of using that path in sending future messages. Confidences ranges
from [0,1], where a value of 1 implies perfect knowledge. When sharing routing tables, a node updates its
confidence based on its neighbor’s confidence by using the learning Equation as shown below:

Cx(y, d) = Cx(y, d) + α(Cy(ẑ, d)− Cx(y, d)) (2)

The confidence of a node in sending a message itself is always 1. An agent then updates its own QValues by
using confidence as follows:

Qx(y, d) = Qx(y, d) + αCx(y, d)(Qy(ẑ, d) + qy −Qx(y, d)) (3)

Each node in the network, adapts to the new QValue provided for by its neighbors based on the its own
confidence (and correspondingly its neighbors confidence) on the new value being the right value. Moreover,

1CQRouting is used over standard wireless network routing algorithms in our research as it learns the utility of network
paths rather than using the current value. This provides for more stability when using Kalman filters in Section 4. Also,
CQRouting has a pre-defined confidence measure which we use for directing exploration in Section 5.4.
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for each time step the agent does not explore, its confidence decays due to the expectation that the network
is dynamic and its QValues might not reflect the current state of the network, effecting future updates of its
confidence.

3 eCQRouting

In the following subsections, we modify the CQRouting algorithm to allow for a smoother implementation
in wireless sensor networks.

3.1 Cycles

The CQRouting algorithm does not guarantee that paths are free from cycles. It tracks and stores at each
node a matrix of all possible next hops and their corresponding QValues to the destination. In case of link
failures, when nodes pick their second or third best paths, steps must be taken to make sure that no cycles
are generated. Currently we use two standard algorithms to prevent cycles, one is poison reverse [7], where
the cost of a path from node A to its destination through its neighbor B is infinity if B uses A as its next
hop to the same destination. This way, if the best path for A fails, A does not switch to B as its alternative
path, and searches for other alternatives. The second algorithm handles the scenario where A has no paths
to its destination except through B and is forced to use B. A cycle is prevented because each node on the
current path to the destination adds its address to the header of the data message being sent, and does not
send a message to a node already listed in that header.

3.2 Damping Factor

Consider the simple network shown in figure 1, where messages are being sent from the source node S to the
destination node D.

Figure 1: Small network example

At the end of the first exploration cycle, QValues are determined for each node that defines the expected
delay in sending a message to the destination node D. Figure 2 shows the link costs and the resultant
QValues. For the first cycle, since the QValues have yet to be initialized, we do not apply the learning factor
to it, this is for ease of understanding. Applying learning factor does not effect the example.

The second exploration cycle, updates the cost of sending a message from node A to node D to 2.3 units.
Figure 3 shows the resultant network, and the effect of applying Equation 1 with α = 0.80 to it.

At the end of the second exploration cycle, node A uses node S as its next hop. As additional exploration
is performed over that path, the QValue of both S and A increase, till the QValue of A using S as the next
hop becomes greater than 1.9, at which point the flaw is corrected.

Since every exploration message consumes potential application-level bandwidth, we fix this flaw by mod-
ifying the QRouting algorithm to dynamically adjust the learning factor each time an agent updates its
QValues. The new learning factor depends on the current QValue and the QValue provided by the agent’s
neighbor. For example, if we pick α at node S (and node A when updating its QMatrix for node S) to be
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Figure 2: Small network example after exploration cycle 1

Figure 3: Small network example after exploration cycle 2. α = 0.8 was used as the learning factor

greater than 0.9375, the QValues are corrected as shown in the example below (Figure 4). The policy then
picks the right path, without having to undergo additional exploration. By continuing to use the learning
factor, we retain the benefit of keeping the optimal path from flip-flopping between two close paths, at the
same time reducing the number of exploration messages required to develop cycle free optimal paths. α can
be calculated as follows:

Qx(y, d) + α(Qy(ẑ, d) + qy −Qx(y, d)) > Qy(ẑ, d)

α >
Qy(ẑ, d)−Qx(y, d)

Qy(ẑ, d) + qy −Qx(y, d)
(4)

The above value gives us a lower bound on the value of α, with the upper bound being 1. The new damping
factor is

α = 1− α̂ ∗ (1− Qy(ẑ, d)−Qx(y, d)
Qy(ẑ, d) + qy −Qx(y, d)

) (5)

Here α̂ is the new constant that regulates how close we want our learning rate to be to 1. For CQRouting,
we modified the α as follows:

α = 1− α̂ ∗ (1− Qy(ẑ, d)−Qx(y, d)
Cx(y, d) ∗ (Qy(ẑ, d) + qy −Qx(y, d))

) (6)
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Figure 4: Small network example after exploration cycle 2. α = 0.8 at node A when updating the QMatrix for next
hop D and 0.94 at node S and node A when updating the QMatrix for next hop S

3.3 Updated Utility Function

There are number of path metrics used for wireless routing algorithms, Expected Transmission Time (ETT)
[6] is one such example. ETT is a function of the loss rate and the bandwidth of the link defined by the
following formula:

ETT =
1

df ∗ dr
∗ timeDelay

packetSize
(7)

Where df is the probability of the packet successfully arriving its destination, dr is the probability of the ac-
knowledgment successfully arriving, timeDelay is the time taken to send the exploration message across and
packetSize is the size of the exploration message. The issue with ETT is the time and exploration messages
required in gaining a usable approximation of both df and dr, which makes the method very expensive for
energy conserving wireless networks. A cheaper approximation is provided by the time delay function used
in CQRouting. Qx(y, d) is defined as the expected time taken in sending a message from the source node x
to the destination node y. For any link in the network, the delay is high if the link is overused, has a lot of
interference, has a lot of collisions or if the bandwidth of the link is low.

The issue with using time-delay comes from the coupling of all effects into one representation of the utility
function. In eCQRouting, we are interested in networks where path usage is likely to exceed its bandwidth
limitations. We would like our utility function to account for the minimum bandwidth across a path from
the source to the destination, in-effect capturing potential bottleneck nodes. The utility function should be
able to balance between paths where the response time is low and paths where the available bandwidth is
high. We redefine Qx(y, d) as follows:

Qx(y, d) = A ∗ current− response− time

average− response− time
+ B ∗ average− bandwidth

current− bandwidth
(8)

where average-response-time and average-bandwidth are constants provided by the application, and can
be calculated by estimating the response time and bandwidth available on the network before hand. The
function of the two constants are to normalize the two values for different units, and they do not have to be
precise. A and B are weights on each of the fraction so as to determine which of the two is more important
in determining the utility of the path and are constant too.
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3.4 Exploration

CQRouting uses the Full Echo’ algorithm for exploration as defined in Section 2. We call this kind of
exploration, where the source node is responsible for finding its destination, source based exploration. In
Section 5.3, we move to destination based exploration, where the destination node is responsible for informing
sources of its existence. However the criteria for exploration remains the same across the two methods. In
eCQRouting, exploration is triggered once the confidence of the source node in the utility of the path to the
destination drops below a certain threshold. In our experiments, the threshold is fixed at 0.5. In sending a
message from node y to node x, node y provides the current-response-time and current-bandwidth value of
the path used by its policy. Next each node locally calculates their new QValue as follows:

current− response− timex = current− response− timey + qy (9)
current− bandwidthx = min(current− bandwidthy, current− bandwidthx) (10)

Qx(y, d)new = A ∗ current− response− timex

average− response− time
+ B ∗ average− bandwidth

current− bandwidthy
(11)

Qx(y, d) = Qx(y, d) + αCx(y, d)(Qx(y, d)new −Qx(y, d)) (12)

hence replacing Equation 3 with the Equation 12.

The current bandwidth between two paths is calculated by sending two exploration messages consecutively,
and monitoring the added time delay in receiving the packet. The bandwidth is calculated by dividing the
size of the packet with this added delay.

4 Using Kalman Filters to develop confidences and direct explo-
ration

For cyclical networks, we would like to be able to model the QValues to accomplish two things: 1) We would
like to be able to generate QValues at the beginning of every wake cycle. This allows us to develop (possibly
suboptimal) paths to the destination without having to perform any exploration messages. 2) Exploration
has to be performed if the QValues do not accurately represent the state of the network. In order to be able
to determine the accuracy of our QValues, we want our model to tell us which parts of the network is most
likely to deviate from the current QMatrix and perform exploration to fix this deviation and find optimal
paths.

eCQRouting uses Kalman filters [9] to develop a mean and variance on the utility function defined in equa-
tion 8. The mean and variance is then used to measure confidence that the utility value remains unchanged
as the network transitions from one time step to another. Indirectly the confidence also measures the rel-
ative goodness of the decisions taken in the new time step based on the values from a previous time-step.
Exploration can then be performed to update the utility of taking a decision, only if the confidence for that
utility drops below a certain pre-defined threshold.

The validity of knowledge transferred from one time step to another depends on the stability of the net-
work. In an unstable network, especially when nodes wake up after having their WiFi radio turned off for
an extended period of time, the network could have changed enough from one time period to another to
invalidate most of the QValues. However in stable networks, its highly unlikely values and decisions have
changed much over time, and we can continue using paths from our previous time period. Given a model
of the past, a stable network will be able to better predict the future, resulting in high confidence and
low exploration. In unstable networks, confidences would remain low, resulting in more exploration. More-
over if there is some structure in the way the unstable network changes over time, our learning algorithms

8



may be able to catch that being reflected in the model of the QValues and be able to further lower exploration.

Kalman Filter is a mathematical procedure that allows for a least-squares estimation of any given model.
Its a two step algorithm. The first step, predicts a short term value using the model developed so far. In
eCQRouting, this prediction is used to develop the Q-Matrix and the corresponding Routing table at any
given time step. The second step, updates the model based on the next observation. The accuracy of its
prediction is modeled using the Gaussian estimation, providing a confidence on the QValue.

Each node uses the following model to develop the local estimation of the state of the network every-time
an exploration is performed.

Qx(y, d)k+1 = A ∗ expected− response− time

current− response− time
+ B ∗ current− bandwidth

expected− bandwidth
(13)

Qx(y, d)k+1 = Weight ∗Qx(y, d)k (14)

The Kalman Filter algorithm takes in A, B, Qx(y, d)k+1 and the model defined in Equation 14. It learns
the two fractions defined in Equation 14 based on its inputs.

Kalman filters also outputs a Gaussian based confidence depending on the variance in Qx(y, d). If the vari-
ance is high, the confidence on a value close to the mean would be lower than if the variance were low.
Finally, the further away the current value is as compared to the learned mean, the lower the confidence.
Also, if the number of updates provided is low, Kalman filters will be unable to learn an accurate mean, and
will output a low confidence value.

The confidence developed by the kalman filter, provides for a natural way to trigger exploration. Whenever
confidence drops below a certain threshold, nodes perform additional exploration so as to improve their local
models. As a result, while the model is being learned the frequency of exploration is high. With additional
messages, the model is able to represent the QValues better leading to higher confidences and reduced ex-
ploration.

To summarize, the QValue defined by Equation 8 (and updated using the QLearning Equation 3) is used by
eCQRouting to determine its policy. Confidence values from the Kalman filter is used to direct exploration.
The mean value learned by the Kalman filter is used to define an approximate QMatrix when the network
restarts after a sleep cycle before sending out exploration messages.

5 Integrating organization knowledge with the routing protocol

Most agent-based sensor networks, including CNAS, have an organizational structure that can be provided
to the routing algorithm. For each agent in the MAS, the organization knowledge defines which other agents
they will be communicating with, in effect defining the flow of messages in the overall network. For example,
consider the three level hierarchical organization used in CNAS (Figure 5a).

Every sensor agent in CNAS sends its observations to a cluster head (depicted as leader agents in Figure
5a). The leader agent then accumulates observations from all the sensor agents assigned to it, and sends it
to the regional agent. In the following subsections, we describe incorporating this knowledge in the routing
algorithm used at each agent and the corresponding routing-level exploration changes, given this knowledge.
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(a) (b)

Figure 5: CNAS — Organizational Design

5.1 Utility Function

As mentioned in Section 3.3 the application knowledge provides the average bandwidth and average response
time along with the weights on both to the routing algorithm. This is done for each source-destination pair
and is available to each node in the network. Since bandwidth represents both the frequency with which
messages are to be received and the size of the message, they don’t have to be represented separately in the
application knowledge or in the routing algorithm.

5.2 Knowledge of the organization

We represent the organization as a directed weighted graph (the weights will be described shortly). Each
agent role is a vertex in the graph, and the edge represents the direction in which messages are being sent.
Each agent has a copy of the graph, and it knows the roles it plays in the organization. This knowledge is
incorporated into the routing algorithm used at each agent, and exploration decisions are based on the roles
that a specific agent is assigned. Figure 5b shows the graphical representation for Figure 5a.

Figure 6a shows a second, more complicated organization as used in CASA (Collaborative Adaptive Sensing
of the Atmosphere) [12] another agent-based atmospheric sensor network with considerably higher band-
width requirements than CNAS. In CASA, there are four roles an agent can take; Rad(s) (Radar(s)), FD
(Feature Detector), FR (Feature Repository) and Opt (Optimizer). The organization is in the form of a
graph based hierarchy. Here an agent is responsible in communicating with other neighboring agents that
are performing the same role as itself as well as communicating with parent agents, however with a lower
priority. Also, agents with roles higher on the hierarchy communicate less frequently, and these messages
have a much higher priority than communications among agents that are lower in the hierarchy. The corre-
sponding graph is shown in Figure 6b.

Each agent is also provided with a table that lists all the other agents in the network, the roles they play,
and the destination agents they are interested in communicating with. We believe that providing this kind
of “global” view of the organization knowledge is reasonable as it is considerably more stable than the
routing tables used by the network-layer routing algorithms, and building this global perspective locally has
negligible costs when compared to sharing routing tables. As the size of the network increases the scale
of both the organization structure and the routing table increase. However the organizational knowledge
limits the size of the routing table by limiting destinations nodes each source node communicates with by
appropriately guiding exploration messages and consecutively path development.
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(a) (b)

Figure 6: CASA - Organizational Design

5.3 Exploration Based on the Organizational Representation

A destination agent in the organization knows (from its organizational knowledge) all the nodes that are
interested in communicating with it. Also, in most networks like CNAS the number of destination agents
is much smaller than the number of source agents. In eCQRouting, the destination node performs periodic
exploration of the network2. The extent and direction of the exploration is defined by the placement of
agents interested in communicating with it. The initial exploration messages are used by the destination
to find the other agents. Future exploration messages are then directed according to the location of agents
interested in communicating with the destination. The QValue at the source node is defined by the delay in
receiving the exploration messages.

5.4 Exploration based on Confidences in QValues

In eCQRouting, an agent explores when its confidence drops below a certain threshold. Since exploration
happens at the destination, while confidence is calculated at the source, confidence is piggybacked on ap-
plication messages from the source to its destination. The destination agent updates a local copy of the
confidences of all agents sending messages to it and uses its local copy to determine when to explore. Fur-
thermore the destination copies decay over time so that the agent can explore even if there are no application
messages sent to it.

5.5 Message Priority

In Section 5.2, we defined our organization knowledge as a weighted graph, the weight on an edge of the
graph is based on the priority of the messages sent from one agent to another. Figure 21 is an extension
of Figure 6b with priorities added. Messages that are critical have a much higher priority as compared to
other messages and require additional exploration to maintain the optimal path, even though the number of
messages sent might be much lower. For example, the part of the role of the “Optimizer” from the organiza-
tion design used in CASA is to define the scanning strategy for the “Radar” nodes. Lost scanning strategy
messages can be very expensive to the application as it could potentially mean radar nodes are following an
out-dated scanning strategy. Since CASA uses focused radars, this could lead to loss of tracking data.

2eCQRouting has its destination nodes perform the exploration over source nodes because if there is a change in the path
from the source to the destination node, the source has to send a message to the destination and wait for the return message
before it can make decisions based on the changed value. If the destination performs the exploration, the source node can take
advantage of the changes the moment the exploration message arrives. This cuts down the number of exploration messages to
half. Destination based exploration is performed in OLSR, while DSDV and CQRouting does source based exploration
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At the application level, an “Optimizer” node can delay sending messages to other “Optimizer” nodes if it
has a scanning strategy that needs to be communicated, by using a priority queue which regulates when to
send what message based on its importance. A problem with this strategy is priority-based starvation, where
low priority messages wait infinitely while high priority messages are added ahead of them in the queue. As
a routing algorithm however, we would like lower priority messages to be communicated using suboptimal
paths and be eventually delivered, while saving optimal paths for high priority messages.

In eCQRouting we solve this problem by using two techniques. The first technique uses an approximate
measure of message priority for each source-destination pair. The priority is then used to regulate the
frequency with which exploration is performed by the destination agent. In the second technique, each agent
has a local measure of the performance of the MAS based on the probability of dropping a message to the
destination. For each message, decisions are then taken based on this message probability.

5.5.1 Exploration based on message priority

Starting with a very simple case, shown in Figure 7. After the first round of exploration is completed, S1

Figure 7: A simple network to illustrate priority behavior

and S2 both determine A to be the best path from themselves to D1 and D2 respectively. However as both
of them start using A as their next hop, the network discovers the bandwidth from A to D1 and D2 is
insufficient to transmit both sets of messages. This increases the time delay in sending messages from S1

and S2 to their respective destinations. The next time an exploration happens, both D1 and D2 explore,
find the path through B to be the better next hop and S1 and S2 both choose B causing an overload on B.

In eCQRouting however, we lower the threshold at which a destination node explores based on the priority by
using the formula threshold = priority∗sd−threshold. The sd-threshold is uniform for all source-destination
pairs. This tolerates a lower variance on the value of high priority messages before forcing exploration to
resolve them, resulting in better mean and variance development for those values. It also means if S1 has
a higher priority over S2, it will explore more, forcing it to pick a suboptimal path through B, in order to
make sure it resolves the bottleneck. Next time S2 explores, it would keep the optimal path through A. The
technique is suboptimal is a static network, but permits a high priority source-destination pair to be more
aware of the state of the network in developing paths to the destination.

The disadvantage of this algorithm is the system has to wait for the next exploration message to determine
new paths, which can delay decision making past a critical point.
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5.5.2 Per-Message decision depending on message loss

The second algorithm takes into account the expected effect of performance with relation to message loss
and performs local decisions based on that effect. For example, once S1 and S2 start sending messages, they
realize 10% of their messages are being dropped before they reach A. If the performance curve for messages
from S1 is such that it cannot handle the 10% loss, it will pick the path through B with the expectation
that that path will deliver more than 90% of its messages.

With exploration, the probabilities are shared in the following way. Lets assume the network in Figure 7 has
the probabilities shown in Figure 8. Here, E will share 1.0 with node C. Node C will share 0.93 ∗ 1.0 = 0.93

Figure 8: A simple network with probability of sending a message from one node to another

with A. A has two options 0.75 ∗ 0.99 ∗ 1.0 = 0.7425 and 0.97 ∗ 0.93 = 0.9021. Since 0.9021 is the greater, it
shares that value with S1. In making a decision S1 will either pick A knowing the probability of messages
to get through to be 0.866, or pick B assuming the probability of getting the message across is 1.

The disadvantage of this algorithm is it takes the next exploration to make a global decision, and a local
decision might not always be optimal. The second disadvantage is it takes time to learn the probability of
dropping messages on any link, which can be detrimental to the performance of the network.

6 Experimental Analysis

All experiments were conducted using NS2 [11], a standard network simulator. NS2 provides models for
standard network link dynamics as well as message interference, both of which strongly govern available
bandwidth. We also used the widely used NS2 implementation of OLSR developed at University of Murcia
[16] and the Kalman filter implementation from the Bayesian Filtering Library [10]. In our experimental
analysis, we explore the implications of learning the variance of the network, as well as adding organization
knowledge to the lower level routing algorithm by looking at 1) the effect of increasingly unstable networks 2)
the effect on performance with increasing number of exploration messages, 3) the scalability of the algorithm
as the number of non-application nodes increase, 4) the effect of bandwidth available on messages with
different priority

6.1 Performance in Non-Cycling Networks

In this section, we look at networks where the bandwidth available is insufficient for the demands of the ap-
plication, and exploration messages have to share space with application specific messages. Since bandwidth
available to the network remains relatively constant across sleep cycles, we start by looking at networks
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with no sleep/wake cycles. We evaluate the performance of our algorithm with standard proactive routing
algorithms OLSR and DSDV by measuring the bandwidth available for sending application messages.

6.1.1 The effect on performance with increasing number of exploration messages

In this experiment, we use the CNAS organization structure on a 1-D network shown in Figure 9.

Figure 9: 1D network

Here S represents a sensor agent, and D a cluster head agent. Next, we add neighbors to both the sensor
agent and the cluster head that are not used by the high-level application and thus not part of the organi-
zation structure. The neighbors are added such that they do not add additional paths from the source to
the destination. Figure 10 shows what the network looks like after adding 3 neighbors to both the source
and the destination.

Figure 10: Adding 3 neighbors to both source and destination in Figure 9

In this setting, with no additional neighbors, the maximum bandwidth available if no exploration were to be
done was determined to be 180Kbits/sec. Agent S sends 180 1Kbit messages to agent D every second for 150
seconds. The average number of messages that reach agent D every second determines the bandwidth for
that run. We performed 10 such runs and display the average bandwidth over the 10 runs. Also, the network
is completely stable. No links fail during the course of the experiment. As additional neighbors nodes are
added to the network, traditional routing algorithms (OLSR and DSDV in our experiments) performed ad-
ditional exploration messages to include these nodes in the routing tables of all other nodes in the network.
eCQRouting prevents this from happening by taking advantage of the CNAS structure in determining agent
D to be the only destination node in the network. The effect on the bandwidth available to agent S in
sending its data to agent D is shown in Figure 11

As the number of neighbors increase, the application level bandwidth available when using eCQRouting is
significantly better than the next best algorithm (OLSR), with performance improvements of 20.9% with
one neighbor to 36.55% with 10 neighbors. The algorithm also provides 30.5% additional bandwith with
one neighbor over CQRouting, which increases to 44% improvement with 10 neighbors. The reason for this
improvement is the limited number of exploration messages in eCQRouting. eCQRouting uses 15% of the
number of exploration messages in OLSR with one neighbor, which drops to 7% with 10 neighbors.
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Figure 11: Changes in bandwidth as number of neighbors (and in-effect the number of exploration messages) increase.
Bandwidth is calculated in KBits/sec and averaged over 150 seconds

6.1.2 Scalability of the algorithm with increasing number of nodes

In this experiment, we keep the CNAS application from the previous experiment, but move to a 2D grid
network. We now have 3 sensor agents, and 1 cluster head. The 4 agents lay at the 4 corners of the grid. We
explore grids of size 2x2 through 10x10. Figure 12 shows an example 5x5 grid layout. The sensor agents are
marked as “S” and the cluster head is marked as “D”. The density of the network is such that each agent
has at a maximum 4 neighbors.

Figure 12: 5x5 grid layout for the CNAS organization

As the size of the network increases, the number of exploration messages also increase. However, because
we keep the density of the network the same, the number of hops to the destination also increases. The
algorithm needs to be able to generate paths, that are viable over the longer distances. Sensor agent sends
180 1Kbit messages to agent D every second for 150 seconds. The average number of messages received by
agent D every second determines the application-level bandwidth for the run. We performed 10 runs and
display the average. Again, the network is completely stable. Figure 13 shows the effect of this increasing
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size on the bandwidth.

Figure 13: Changes in bandwidth as size of the grid network increases. Bandwidth is the average bandwidth over
150 seconds, measured in KBits/sec

The figure shows an initial drop in the bandwidth available, as the destination node is no longer 1 hop
away from the sensor agents. The reduction in application-level bandwidth diminishes as additional hops
are added between the source and the destination. The performance improvement in this setting range
from 10% for the 2x2 grid network to 35% for the 10x10 grid network over OLSR. The improvement over
CQRouting goes from 16.5% for the 2x2 network to 66% for the 10x10 network. Both DSDV and CQRouting
have very similar performance due to similar source based exploration algorithms. As the number of hops
increase, the time to converge to the optimal path also increases.

6.1.3 Scalability of the algorithm with increasing density

In this experiment, we start with the 5x5 grid layout defined in Figure 12 with the CNAS organization
structure. We keep the area constant, and add 25 to 200 nodes in random positions within the network.
This increases the density of the network, which inturn increases the number of paths from the source nodes
to the destination node. Figure 14 shows the result of running the experiment. We performed 20 runs for
each density variation and calculate the average application bandwidth over the 20 runs. Each run is for
150 seconds.

Figure 14 shows, eCQRouting does about 17% better than OLSR in the 5x5 grid network with minimal den-
sity. When density is doubled, the performance improvement increases to about 19%. At triple the density,
the performance improvement is at 10%. When the density reaches 8 times the minimal density, OLSR
starts outperforming eCQRouting. This is because OLSR determines multi-point relay (MPR) nodes, which
it uses to curb the increasing rebroadcasts of destination messages with increasing density. MPR nodes are
selected such that it is the minimal subset of nodes that rebroadcast an exploration message, while making
sure the entire network receives them. It is this optimization that causes OLSR to do much better than all
routing algorithms in extremely dense networks like the one used in this experiment.

Secondly, as the density increases, the number of paths to the destination nodes increase, which inturn
increases bandwidth. However, after a certain point, the cost of exploring the increasing number of paths,
outweighs the bandwidth benefit, and the application level bandwidth drops. OLSR drops the slower than
the rest, due to the MPR optimization.
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Figure 14: Changes in bandwidth as network density increases

6.1.4 Scalability of the algorithm with increasing source and destination nodes

In this experiment, we take the 10x10 grid network, keeping the CNAS organization. Every node in this
network is a source node (therefore we have 100 source nodes). We randomly place destination nodes all
across the network. Each source node communicates with the destination nodes nearest to it. We performed
20 runs for each destination node count, and calculate the average bandwidth over the 20 runs. In Figure
15 we plot the total bandwidth as the number of destination nodes in the network increases.

Figure 15: Changes in bandwidth with increasing number of destination nodes in a 10x10 grid network with CNAS
organization structure. Bandwidth is the average bandwidth over 150 seconds, measured in KBits/sec

Figure shows, eCQRouting increases its performance improvement from about 20% with 1% destination
nodes to 25% with 10% destination nodes. With increasing destination nodes, the number of exploration
messages increases in eCQRouting. However the performance improvement over other routing algorithms also
increase as exploration messages guided by the organization design are not spread over the entire network.

6.2 Performance in Sleeping Networks

In this section, we introduce sleep/wake cycle in selected networks from the past section, and analyze the
effect of our routing algorithm on them. In most of our experiments, the network sleeps for 40 seconds fol-
lowed by a 20 second wake cycle. There are a total of 10 such sleep cycles. We are interested in monitoring
the delay in sending the first message from each source to the destination node.
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The delay is denoted as response time and is calculated as follows:

ResponseT ime(cyclei) =
∑numberOfNodes

i=1 delay(nodei)
numberOfNodes

(15)

AverageResponseT ime =
∑10

i=1 ResponseT ime(cyclei)
10

(16)

Where ResponseT ime(cyclei) is defined as the response time for the ith cycle. numberOfNodes is the
number of source nodes in the network. delay(nodei) is the time taken for the first application message from
node i to reach its destination. The graphs in the following subsections depict the result of Equation 16.

6.2.1 Effect on performance with increasing number of exploration message

In this experiment, we use the network from Section 6.1.1 (and depicted in Figure 10). Table 1 shows the
results.

Routing Algorithm Response Time
eCQRouting with Kalman Filters 0.7 Seconds
eCQRouting w/o Kalman Filters 3.2 Seconds

OLSR 4.3 Seconds
DSDV 6.2 Seconds

CQRouting 6.5 Seconds

Table 1: Response Time for various routing algorithms

As the number of neighbors increase the response time remains the same. This is because, time delay is
usually dependent on the number of hops from the source to the destination and the usage of the path. In
our experiment, the number of hops to the destination node remains constant. Usage on the other hand
does increase. However, usage effects time delay only if the number of exploration messages is greater than
the bandwidth of the link. In sending the first message, the bandwidth of the path is not exceeded, and
increasing the number of exploration messages does not make any difference.

eCQRouting with Kalman Filters shows a significant performance improvement over the other algorithms
due to the transfer of knowledge from one sleep-cycle to another. In stable networks like the one used in
this experiment, there is minimal change between consecutive wake cycles. By modeling and transferring
knowledge from one cycle to another, the average response time drops significantly as compared to other
routing algorithms. This improvement in response time complements the bandwidth improvement (shown
in Figure 11). Low response time implies the routing algorithm is able to send its first message relatively
quickly, while the high application-bandwidth allows for future messages to have a much lower response time.

6.2.2 Effect on performance with increasing number of nodes

In this experiment, we use the network from Section 6.1.2 (see Figure 12). However, we increase the wake
time from 20 seconds to 1 minute. The sleep time is increased from 40 seconds to 4 minutes. This is to
account for the high response times for both DSDV and CQRouting. The rest remains the same from the
previous experiment. Figure 16 shows the results.

In small networks, the number of hops from the source node to the destination node is small. Because of
this, there is no effect of the exploration messages on the response time. However, as the number of hops
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Figure 16: Changes in performance time as the size of the grid network increases

(and in-effect the size of the network increases), there is a corresponding increase in the response time. With
100 nodes, the response time for eCQRouting with Kalman Filters is 37% of OLSR.

6.2.3 Effect of performance on networks with increasing density

This experiment uses the same setting from Section 6.1.3. Figure 17 shows the results.

As the figure shows, with 25 nodes, eCQRouting requires 43% of the time required by OLSR in sending
the first message from the source to the destination. At about 150 nodes, this increases to 59%. However,
after this point, even though OLSR is able to reduce the number of exploration messages, and perform much
better bandwidth wise, it does not have the same effect on the time taken to send the first message and even
at 250 nodes, eCQRouting takes 59% of the time. This is mainly because of being able to transfer knowledge
learnt in one sleep cycle to another, and being able to direct exploration better.

6.3 Performance in unstable networks

For the rest of the experiments, we move from the CNAS organization structure to the CASA organization
structure. This allows for both increasing the percentage of destination nodes in the network and exploring
the implication of priority on different messages. In the following experiment, we also evaluate the effective-
ness of the routing algorithm on unstable networks, and its performance when compared to other pro-active
routing protocols. We use the CASA organization on a 5x5 grid network. The density of the network is
such, that each node is at the edge of the WiFi transmission capacity of its neighboring node and hence has
at most 4 neighbors. We have 4 source nodes and 4 destination nodes as shown in Figure 18. The figure is
to be interpreted as follows: Each node in the network plays two roles. Messages are sent with respect to the
organizational structure shown in Figure 6. However, in-order to better regulate the follow of the network,
each node is interested in communicating with the node diagonally across it on the network. The role that
comes in play when sending messages is labeled as the source role, and the other role is the destination role.
By having nodes send messages diagonally across the network, each source-destination pair is required to
explore the entire network or potential paths.
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Figure 17: Changes in performance time as the density of the network increases

Each link in the network fails at each time step with a certain probability. In this setting, the maximum total
bandwidth available if no exploration were to be done was set at 150Kbits/sec. With the CASA network,
the majority of the messages are between the Radars and the Feature Detectors (FD in Figure 18). In our
experiment the Rad node sends 100 1Kbit messages to the FD node every second. Next, FD nodes send
25 1Kbit messages to the FR nodes per second. FR nodes send 20 1Kbit messages to the Opt node and
finally Opt nodes send 5 1Kbit message per second. The average total number of messages that reach agent
destination agent every second determines the bandwidth for that run. We performed 10 such runs. Figure
19 displays the average bandwidth over the 10 runs.

As the probability of link failure increases, the effective bandwidth drops. eCQRouting is able to maintain
a higher application-level bandwidth throughout. As the failure rates increase, additional exploration mes-
sages are required to find new paths, because of which the percentage improvement eCQRouting without
Kalman Filter has over OLSR [3] and DSDV [15] drops. However eCQRouting with Kalman filter, measures
and uses the mean and variance of the link for the time period that it is available. Because of which it is
able to maintain a better bandwidth when there is high link failure rates. However once the probability
increases to 0.7, there is a sharp drop as links are un-available for a majority of the time period and the
routing algorithm is unable to use its learned values.

For the second part of this experiment, we have the network sleep for 40 seconds and wake for the remaining
20 seconds in a minute. Figure 20 shows the results of this experiment. We do not display the results
from DSDV and CQRouting as their response time is greater than the 20 seconds the network is awake for,
because of which no messages are able to get through.

As we can see, the response time for eCQRouting with Kalman Filters remains low when compared to OLSR.
eCQRouting takes into account the sleeping cycles, and transfers knowledge from one sleep cycle to another.
Because of this the average time for sending the first message is quite low. As the probability of link nodes
failing increases, eCQRouting is unable to learn much about the network in each cycle, causing its response
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Figure 18: 5x5 grid network using the CASA organizational structure, showing the 4 source and 4 destination nodes

Figure 19: Changes in bandwidth as the probability of link failure increases

time to increase. However the response time for OLSR increases at a much faster rate with the lack of this
information.

6.4 Effect of the bandwidth available on messages with different priority

In this section, we explore the effect of a significant drop in the percentage of messages that get across from
the source to the destination using the CASA organization structure. We show how using priority helps
maintain global utility.

6.4.1 Effect where performance is related to priority

To explore the effect of priority, we used the CASA structure in a 5x5 grid network similar to the one used
in the previous experiment (Figure 18). We added priorities on the messages between agents as shown in
Figure 21
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Figure 20: Changes in response time as probability of link failures increases

Figure 21: Role Priorities

In this experiment, we keep the probability of link failure at 0.2%. We know from the previous experiment,
that the cumulative application-level bandwidth obtainable by eCQRouting in this network (with this set-
ting) is about 135 Kbits/sec. In this experiment, each source agent sends 32 1Kbit messages to the destination
agent per second for 150 seconds. At 135 Kbits/sec, each agent is able to send all its messages to the desti-
nation node. Figure 22 shows the effect of reducing the effective bandwidth on the global utility. The global
utility is calculated by assigning a score equal to the priority of the message for every 32 messages received
at the destination node. For example, if the Radar agent receives 4000 messages from the optimizer agent
during the course of the run, the utility contributed towards the global utility would be 4000/32∗0.9 = 112.5.

As the bandwidth available to the source nodes drop, the utility of the application drops, since not all
messages are delivered. However, the global utility of eCQRouting with priority drops at a much slower rate,
as it is able to generate better paths for those agents where the priority is higher by performing more frequent
exploration. The majority of the available bandwidth is then used by the agents with higher priority, leading
to more of their messages being delivered and a higher global utility. However once the available bandwidth
drops to 42% of the required bandwidth, the routing algorithm is unable to find better paths for higher
priority messages and the benifit of priority is lost.
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Figure 22: Change in global utility as the available bandwidth drops

6.4.2 Effect where performance is related to message loss

Here we look at networks where the MAS can handle the loss of a certain percentage of messages without
significant loss in performance. We use the CASA organization structure from previous experiments, while
changing the global utility computation. In this experiment, the performance degradation with message lost
from the Feature Detector (FD) node to the Feature Repository (FR) and messages lost from FR nodes to
Optimizer (Opt) node is linear as shown in Figure 23a

Messages from Radars (Rad) to FR nodes have some slack, which allows for a greater percentage of messages
to be dropped before there is a significant effect on performance. This is shown in Figure 23b. Messages
from Optimizers to Radars have almost no slack, and there is a significant drop in performance with drop
in messages. This is shown in Figure 24a

For this experiment, we modify the priority of the messages to reflect the importance of messages as per the
above structure. The priority of most of the messages remain the same as shown in Figure 21. Since mes-
sages from FD to FR and Rad to FD have the same performance degradation, we gain no additional benefit
by analyzing the two separately, and can perform better analysis by merging the role of FR and FD into
a single role (calling it the FR/FD role). The priority is averaged and the modification is shown in Figure 24b

We use the sparse 4x4 network. The network is divided into 4 clusters. Next we increase the density of
the network by keeping the area the nodes are spread over, but moving from 16 nodes to 160 nodes. These
nodes are added randomly across the network. For each cluster, we randomly assign the role of Opt to 1
node. The role of FR/FD to another node. The rest of the nodes are all Radar nodes. An example 25 node
network looks as shown in Figure 25. The figure shows a random placement of 25 nodes in the network, with
random assignment of FR/FD role, and the Opt role. Nodes on the border between two clusters interact
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(a) (b)

Figure 23: (a) Performance degradation as messages get dropped for messages from FD nodes to FR nodes and FR
nodes to Opt nodes (b) Performance degradation as messages get dropped for messages from Rad nodes to FD nodes

(a) (b)

Figure 24: (a) Performance degradation as messages get dropped for messages from Optimizers to Radars. (b)
Corresponding priority of messages

with clusters where their center lies. All un-marked nodes are Radar nodes. The Rad node sends 100 1Kbit
messages to the FD/FR node every second. FR/FD nodes send 25 1Kbit messages to the Opt node and
finally Opt nodes send 5 1Kbit message per second to the Rad nodes.

In this experiment, we start with enough bandwidth to make sure all messages get through. Next, the band-
width is reduced till a certain amount of messages are dropped for each routing algorithm. The threshold
before 10% of messages are dropped for example is different for different routing algorithms. We calculate
the effect of dropping messages, and the values are calculated at different bandwidths. Figure 26 shows the
performance degradation with messages loss. Note, the global performance across the three message types
is calculated as the product of individual performances.

As we can see from Figure 26, the global performance is much higher for the eCQRouting algorithm because
the low priority messages are dropped before high priority messages. OLSR, DSDV and CQRouting all
performed the same, when forced to drop a certain percent of messages, since the message loss is equivalent
across all messages types for each of the three algorithms. Interestingly, the experiment shows no improve-
ment in using either one of the two priority techniques described in Section 5.5 (represented as eCQRouting
with priority for the simple priority based measure and eCQRouting with performance measure for the
message-loss based approach). This is primarily because both algorithms attempt to do the same optimiza-
tion on the network. The differences arise in when the evaluation occurs and the degree of evaluation. With
the priority based representation, the status of network and the goodness of the path are evaluated at the
time of exploration. Exploration happens more frequently for source-destination pairs where the priority of
messages is much higher, hence allowing them to find sub-optimal paths that provide better probabilities of
message delivery. However, if the state of the network changes between exploration messages, the technique
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Figure 25: Example 25 node network

will have to suffer a delayed reaction to it. On the other hand, the per-message decision is based on local
knowledge of the next hop, and an expectation of the rest of the network. However the benefit of having
global information is lost. In this experiment, it seems the global and local benefit balance each other,
resulting in similar results when used individually and about 2% improvement when combined.

7 Conclusion and Future Work

In this paper, we showed that using application-level knowledge of the agent organization in network-level
routing significantly improves application-level bandwidth and response time relative to standard network-
level routing. In a 10x10 grid simulation of the CNAS sensor network, we obtain an increase in available
application bandwidth of 35% as compared to OLSR, one of the more widely used routing algorithm for
wireless ad hoc networks. Moreover, we show a 37% imporvement in response time over OLSR in the same
setting. Additionally we show an increase in global utility by focusing path exploration and, in turn, gener-
ating better paths for those source-destination pairs where communication has higher priority.

In this work, information flowed from the application-level organization to the lower-level routing algorithms.
We assumed that the organizational structure was appropriate given the network structure. If we relax
this assumption, an obvious extension of this work would be to allow the organizational structure to be
modified based on the changing characteristics of the network. The network-level routing algorithm produce
network capability and status information that can be used as input for possible adaptive or redesign of the
organizational structure. Furthermore, as the organization structure changes, the updated information is
passed to the routing algorithm, increasing application bandwidth. For example, cluster heads are picked
dynamically in CNAS. However, we made the assumption that the cluster head was already chosen in the
organizational knowledge provided to the routing algorithm. In practice, the routing layer could provide the
sensor agent with a list of all other agents that it can currently communicate with that are within its cluster
area. A sensor agent can then decide which of these nodes is the cluster head. This selection is then made
available to the routing algorithm. Moreover, with the increasing research in emergent organizational design,
a MAS application can start with no organizational structure, and use the routing information to develop
an initial organization design, which provides exploration direction to the routing algorithm for better paths
and bandwidth.
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Figure 26: Performance degradation with loss of messages
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