
Using Organization Knowledge to Improve Routing
Performance in Wireless Multi-Agent Networks

Huzaifa Zafar, Victor Lesser, Daniel Corkill, Deepak Ganesan
Department of Computer Science

University of Massachusetts Amherst
{hzafar, lesser, corkill, ganesan}@cs.umass.edu

ABSTRACT
Multi-agent systems benefit greatly from an organization de-
sign that guides agents in determining when to communi-
cate, how often, with whom, with what priority, and so on.
However, this same organization knowledge is not utilized
by general-purpose wireless network routing algorithms nor-
mally used to support agent communication. We show that
incorporating organization knowledge (otherwise available
only to the application layer) in the network-layer routing
algorithm increases bandwidth available at the application
layer by as much as 35 percent. This increased bandwidth
is especially important in communication-intensive applica-
tion settings, such as agent-based sensor networks, where
node failures and link dynamics make providing sufficient
inter-agent communication especially challenging.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols; C.2.4 [Di-
stributed Systems]: Distributed Applications; I.2.11 [Dis-
tributed Artificial Intelligence]: Multi-Agent Systems

General Terms
Algorithms, Design, Experimentation, Verification

Keywords
Agents, Multi-Agent Sensor Networks, Organization Design,
Wireless Routing, Communication, Bandwidth

This work is supported in part by the AFRL “Advanced
Computing Architecture” program, under contract FA8750-
05-1-0039. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views con-
tained in this paper are the authors.’
This work was also supported by the Engineering Research
Centers Program of the National Science Foundation un-
der NSF Cooperative Agreement No. EEC-0313747. Any
Opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect those of the National Science Foundation.
Cite as: Using Organization Knowledge to Improve Routing Perfor-
mance in Wireless Multi-Agent Networks, Zafar H., Lesser V., Corkill
D., and Ganesan D., Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
In any multi-agent system (MAS), there is a cost in com-

municating among agents in the form of time delay and
bandwidth expenditure. In wireless networks, agents are
often multiple communication hops away from one another.
Supporting multi-hop communication involves an additional
network-layer exploration cost in determining communica-
tion paths to these agents. This exploration cost becomes
significant as the size of the network increases (Table 1) and
as network stability decreases. Exploration expenditures re-
duce the effective bandwidth available to the application, re-
sulting in additional time required in transferring the same
amount of application data from one agent to another.

Size of Grid OLSR DSDV
Total Per Agent Total Per Agent

9 agents 1038 115.33 178 19.77
16 agents 3880 242.5 521 32.56
25 agents 9401 376.04 1011 40.44
36 agents 17535 487.08 1654 45.94
49 agents 32353 660.26 2136 43.59

Table 1: Exploration costs increase with size of the net-

work. We use a wireless ad hoc grid network. Each

agent lies on the edge of the transmission range of its

neighboring agents, allowing for only 4 neighbors per

agent. The table shows the number of exploration mes-

sages sent in the first 60 seconds for OLSR (a standard

routing algorithm) and for DSDV (a standard proactive

distance-vector-based routing protocol)

CNAS (Collaborative Network for Atmospheric Sensing)
[3] is one such wireless MAS application. It is a collection
of sensor agents, spread sparsely over a geographical region.
CNAS makes an overall assessment of detailed local atmo-
spheric conditions by combining data from sensor agents
within predefined cluster areas. A hierarchy of communi-
cation is used, where all the sensor agents collect data from
their environment and transfer it to a dynamically desig-
nated sensor agent performing a second role of a cluster head.
The cluster head is responsible for aggregating and reporting
the conditions in its cluster area. Moreover, the cluster head
is also responsible for providing direction to the rest of the
agents in its cluster. Due to network dynamics such as agent
and link failures and changes in communication-link charac-
teristics, the network-level routing algorithm at each agent
in the network performs regular exploration of links to its
neighbors. This exploration determines neighbor availabil-

pp. 821-828.

821



ity and the utility of the links with them. Agents acting as
cluster heads communicate with a regional agent, but with
less frequency. Nevertheless, paths to the regional agent
must also be maintained. However, regional-agent commu-
nications are of extremely high priority and there are greater
consequences for delayed delivery.

MAS applications use organization design to determine
when to communicate, how often, with whom, with what
priority, and so on [4, 5]. By being aware of which agents
are interested in communicating with whom at the network
level, we are able to direct network-layer exploration where
it is most beneficial, find optimal paths faster, and conserve
significant bandwidth for application use. We also make sure
of the organizational importance (priority) of various agent
communication. General-purpose routing algorithms treat
each message as having the same priority. These algorithms
spend the same amount of energy exploring paths for appli-
cation messages where it is extremely important to find the
best possible path, as they do exploring paths for messages
that are not as important, and can be delayed or routed less
directly. By using the organizational priority of communi-
cation, we are able to improve application performance with
fewer exploration messages.

We modified a pre-existing proactive routing protocol
(CQRouting [8]) to incorporate the organization knowledge
that specifies for each agent whom to communicate with,
the priority of the message being sent, and the frequency
with which the communication happens. Using a detailed
network-level simulation of CNAS we obtain a large reduc-
tion in the number of exploration messages relative to tradi-
tional routing protocols. This results in a significant increase
in the communication bandwidth available to the CNAS ap-
plication.

2. RELATED WORK
Developing a path to a destination agent is performed by

the underlying routing algorithm, and there has been consid-
erable research done in developing general-purpose routing
algorithms [1, 10, 11, 12]. However all proactive routing al-
gorithms (where the routing table is developed before send-
ing application-level messages) develop paths to every node
in the network, irrespective of the need for or importance of
the path. This results in significant discovery and mainte-
nance cost on the part of the routing algorithm due to the
assumption that every node wants to communicate with ev-
ery other node in an extremely dynamic network. Moreover,
routing algorithms explore more frequently as the dynamics
of the network increase. On the other hand, reactive rout-
ing algorithms suffer from an added exploration delay when
sending data messages (on top of the delivery delay) and are
not suitable for highly responsive agent networks.

2.1 OLSR
OLSR (Optimized Link State Routing protocol) [2] is the

most commonly used proactive routing protocol in wire-
less sensor networks. OLSR is optimized for large, dense,
wireless ad-hoc networks, and computes optimal forward-
ing paths by flooding exploration messages to all nodes in
the network. Exploration in OLSR happens in two stages.
The first stage performs a distributed election of a set of
multi-point relay (MPR) nodes that are solely responsible
for forwarding messages within the network. The MPR set
has the property that each node in the network is a direct

neighbor of an MPR, and that two MPRs are at most sepa-
rated by a single node. The second stage in OLSR develops
a routing table at each node that defines the next hop on
the path to every other node in the network. This is done by
having each node flood the network with topology control
(TC) messages, and using other TC messages in generating
its local routing table. By using only the MPR nodes to
propagate exploration messages, OLSR reduces some of the
redundancy of the flooding process. OLSR uses destination-
based exploration, where a node develops a table entry for
a destination only after it receives a TC message from that
destination.

2.2 CQRouting
CQRouting [8] is an extension to the QRouting [1] proto-

col based on the distributed QLearning algorithm [13]. The
network is constructed from a distributed collection of learn-
ers. A QValue, Qx(y, d), for a node, x, is the expected time
taken to transfer a message to destination node, d, through
neighbor node, y. A policy determines which neighbor a
message is forwarded to so that it reaches its destination
with minimum delay.

QRouting uses the “Full Echo” algorithm to perform ex-
ploration [1]. Each node in the network periodically requests
the policy being used by each of its neighbors in determining
paths to various nodes in the network (which is determined
by the routing table of that neighbor, generated using the
Bellman-Ford Algorithm for routing, first described in the
ARPANET [9]). The querying node then updates its own
tables based upon the following QLearning equation:

Qx(y, d) = Qx(y, d) + α(Qy(ẑ, d) + qy −Qx(y, d)) (1)

where α is the learning rate that regulates the effect of pre-
vious QValues on the current one. Qy(ẑ, d) is the delay in
sending a message from node y, through y’s best neighbor ẑ,
to node d. qy is the delay in sending a message from node x
to node y.

In CQRouting each node also maintains a confidence in
its QValues, and shares this confidence with other nodes
in the network along with its routing tables. The closer
the confidence value is to 1, the better the node expects
the QValue to reflect the state of the network. When an
agent updates its QValues from the policies received from its
neighbors, the agent uses the confidence its neighbor reports
in determining its own QValue as follows

Qx(y, d) = Qx(y, d) + αCx(y, d)(Qy(ẑ, d) + qy −Qx(y, d)) (2)

For each time step that the agent does not explore, its
confidence decays due to the expectation that the network
is dynamic and its QValues might not reflect the current
state of the network.

3. eCQROUTING
We develop a new wireless routing protocol called eCQRouting,

that combines and extends OLSR and CQRouting. OLSR
pays a higher exploration penalty due to the communica-
tion required in setting up the MPR nodes and in devel-
oping nodes’ routing tables. In eCQRouting, organization
knowledge is used to determine the explorer nodes. The
rest of the nodes in the network take advantage of these ex-
ploration messages in developing their own routing tables by
eavesdropping on the exploration messages and their results.
Secondly, OLSR uses frequent network flooding to keep the

822



routing tables synchronized with fluctuations in the network.
Incorporating CQRouting with OLSR smooths the effect of
network fluctuations, reducing the need for frequent flooding
of exploration messages. Furthermore, by reducing flooding,
the benefit of electing MPRs is also reduced. This reduction
is enough that it does not justify the election cost of MPRs,
so we remove MPR development from eCQRouting. The
following subsections describe additions to the eCQRouting
protocol to allow for a smoother implementation in wireless
sensor networks.

3.1 Damping Factor
Use of a learning factor (α) in QLearning, introduces the

possibility of the utility of agent A dropping below the util-
ity of agent B, even though B is being used as its next hop.
Since we are interested in minimizing QValues, whenever A
sends its policy to B, B will switch to using A as its next hop
due to the lower utility. By performing multiple explorations
over that path, QLearning eventually overcomes this issue
and converges to the corrects QValues. However, because
every exploration message consumes potential application-
level bandwidth, we modified the QRouting algorithm to
dynamically adjust the learning factor each time an agent
updates its QValues. The new learning factor depends on
the current QValue and the QValue provided by the agent’s
neighbor. This allows for better and faster convergence of
QValues with fewer explorations while retaining the benefit
of the learning factor in keeping the optimal path from flip-
flopping between two close paths. The learning factor reg-
ulates how closely the current QValue reflects the “present”
delay to the destination verses the values calculated in the
“past.” This implies that the closer α is to being equal to
one, the stronger the guarantee that the QValue of any agent
to its destination is greater than the QValue of its next hop
to the destination. From the QLearning algorithm:

Qx(y, d) + α(Qy(ẑ, d) + qy −Qx(y, d)) > Qy(ẑ, d)

α >
Qy(ẑ, d)−Qx(y, d)

Qy(ẑ, d) + qy −Qx(y, d)
(3)

The above value gives us a lower bound on the value of α,
with the upper bound being 1. The new damping factor is:

α = 1− α̂ ∗ (1− Qy(ẑ, d)−Qx(y, d)

Qy(ẑ, d) + qy −Qx(y, d)
) (4)

By changing α̂, we are able to regulate how close we want
our α value to be to 1, but at the same time avoid damp-
ing issues. For eCQRouting, we modified the α formula as
follows

α = 1− α̂ ∗ (1− Qy(ẑ, d)−Qx(y, d)

Cx(y, d) ∗ (Qy(ẑ, d) + qy −Qx(y, d))
) (5)

4. ORGANIZATION AND ROUTING
We next describe incorporating organization knowledge

in the routing algorithm used at each agent and the corre-
sponding routing-level exploration changes, given this knowl-
edge.

4.1 Knowledge of the organization
The direction and priority of communication between each

agent role is represented as a weighted graph. A local copy of
the graph is to used to make exploration decisions based on
the roles an agent is assigned. Figure 1a shows the CNAS

organization. The corresponding communication graph is
depicted in Figure 1b.

Figure 2a shows a second, more complicated organiza-
tion as used in CASA (Collaborative Adaptive Sensing of
the Atmosphere) [7] another agent-based atmospheric sensor
network with considerably higher bandwidth requirements
than CNAS. In CASA, there are four roles an agent can
take; Rad(s) (Radar(s)), FD (Feature Detector), FR (Fea-
ture Repository) and Opt (Optimizer). The organization
is hierarchical. A CASA agent is responsible for commu-
nicating with other neighboring agents that are performing
the same role as itself as well as communicating with par-
ent agents, however with a lower priority. Also, agents with
roles higher on the hierarchy communicate less frequently,
and these messages have a much higher priority than com-
munications among agents that are lower in the hierarchy.
The corresponding graph communication graph with prior-
ities is shown in Figure 2b.

Each agent is also provided with a description of all the
other agents in the network (that are part of the organiza-
tion), the roles they play, and the destination agents they
communicate with. We believe that providing this kind of
“global” view of the organization knowledge is reasonable,
as it is considerably more stable than the routing tables
used by the network-layer routing algorithms and this global
perspective has negligible costs when compared to sharing
routing tables. As the size of the organization increases, the
scale of both the organization structure and the routing ta-
ble increases. However, the organizational knowledge limits
the size of the routing table by guiding exploration messages
(and consecutively path development) to only those destina-
tion agents reflected in the organization knowledge.

4.1.1 Exploration Based on Organization
A destination agent in the organization knows (from its

organizational knowledge) all the agents that communicate
with it. Also, in most networks like CNAS, the number
of destination agents is much smaller than the number of
source agents. In eCQRouting, the destination agent per-
forms periodic exploration of the network1. The extent and
direction of an agent’s exploration is based on the placement
of agents that communicate with it. The initial exploration
messages are used by the destination agent to find the other
agents. Future exploration messages are then directed ac-
cording to the location of agents that communicate with the
destination. The QValue at the source agent is defined by
the delay in receiving the exploration messages.

4.1.2 Exploration based on Confidences in QValues
In eCQRouting, an agent explores when its confidence

drops below a certain threshold. Since exploration happens
at the destination, yet confidence is calculated at the source,
confidence is piggybacked on application messages from the
source to its destination. The destination agent updates a
local copy of the confidences of all agents that send messages
to it and uses its local copy to determine when to explore.
Furthermore the destination agent confidences decay over
time so it will explore even if there are no application mes-
sages sent to it.

1We assume communication links between nodes are bi-
directional and symmetrical. Even though this is not true
for most wireless sensor networks, both OLSR and CQRout-
ing assume the same.

823



(a) (b)

Figure 1: (a) CNAS Organizational Design and (b) CNAS communication directions and priorities

(a) (b)

Figure 2: (a) CASA Organizational Design and (b) CASA communication directions and priorities

4.2 Message Priority
In Section 4.1, we defined our organization knowledge as

a weighted graph, where the weight on an edge of the graph
is based on the priority of the messages sent from one agent
to another. Messages that are critical have a much higher
priority as compared to other messages and require more ex-
ploration in order to maintain the optimal path, even though
the number of messages sent might be much lower. For ex-
ample, the “Optimizer” role in CASA includes setting the
scanning strategy for the “Radar” agents. Lost scanning
strategy messages can be very detrimental to the applica-
tion as it could potentially mean radar agents are following
an out-dated scanning strategy. CASA uses focused radars,
so this could lead to loss of tracking data.

At the application level, an “Optimizer” agent can delay
sending messages to other“Optimizer”agents if it has a scan-
ning strategy that needs to be communicated. Each agent
uses a priority queue which regulates when to send what
message based on its importance. A problem with this strat-
egy is priority-based starvation, where low priority messages
wait infinitely while high priority messages are added ahead
of them in the queue. As a routing algorithm however, we
would like lower priority messages to be communicated using
suboptimal paths and be eventually delivered, while saving
optimal paths for high priority messages.

In eCQRouting we solve this problem by using two tech-
niques. The first technique uses an approximate measure

of message priority for each source-destination pair. The
priority is then used to regulate the frequency with which
exploration is performed by the destination agent. In the
second technique, each agent has a local measure of the per-
formance of the MAS based on the probability of dropping
a message to the destination. For each message, decisions
are then taken based on this local measure.

4.2.1 Exploration based on message priority
Consider a simple case shown in Figure 3. After the first

Figure 3: Priority behavior in a simple network. S1 →
D1 has a much higher communication priority than S2 →
D2

round of exploration is completed, S1 and S2 both deter-

824



mine A to be the best path from themselves to D1 and D2

respectively. However as both of them start using A as their
next hop, the network discovers the bandwidth from A to
D1 and D2 is insufficient to transmit both sets of messages,
resulting in an increased time delay. The next time an ex-
ploration happens, both D1 and D2 explore, find the path
through B to be the better next hop and S1 and S2 both
choose B causing an overload on B.

In eCQRouting however, we lower the threshold at which
a destination agent explores based on the priority using
the formula threshold = priority ∗ sd-threshold. The sd-
threshold is uniform for all source-destination pairs. This
tolerates a lower variance on the value of high priority mes-
sages before forcing exploration to resolve them, and results
in better mean and variance development for those values.
It also means that if S1 has a higher priority over S2, it will
explore more, forcing S1 to pick a suboptimal path through
B, in order to make sure that S1 resolves the bottleneck.
The next time S2 explores, it would keep the optimal path
through A. The technique is suboptimal is a static network,
but in a dynamic network permits a high priority source-
destination pair to be more aware of the state of the network
in developing paths to the destination.

The disadvantage of this algorithm is the system has to
wait for the next exploration message to determine new
paths, which delay decisions.

4.2.2 Exploration based on message loss
The second technique takes into account the expected ef-

fect of performance relative to message loss and performs
local decisions based on that effect. Suppose S1 and S2

start sending messages and realize 10% of their messages
are being dropped before they reach A. If the performance
curve (see Figure 10a) for messages from S1 is such that S1

cannot handle the 10% loss, S1 will pick the path through B
with the expectation that that path will deliver more than
90% of its messages.

As agents explore, link probabilities are shared in the
following way; assume that the network in Figure 3 has
the probabilities shown in Figure 4. Here, E will share

Figure 4: A simple network with probability of sending

a message from one agent to another

1.0 with agent C. Agent C will share 0.93 ∗ 1.0 = 0.93
with A. A has two options: 0.75 ∗ 0.99 ∗ 1.0 = 0.7425 and
0.97 ∗ 0.93 = 0.9021. Since 0.9021 is greater, A shares that
value with S1. In making a decision S1 will either pick A
(knowing the probability of messages to get through to be
0.866) or pick B (assuming the probability of getting the
message across is 1).

The disadvantage of this technique is it takes the next
exploration to make a global decision and a local decision
might not always be optimal. The second disadvantage is
that it takes time to learn the probability of dropping mes-
sages on any link.

5. EXPERIMENTAL ANALYSIS
All experiments were conducted using NS2 [6], a standard

network simulator. NS2 provides models for standard net-
work link dynamics as well as message interference, both of
which strongly govern available bandwidth. We also used
the widely used NS2 implementation of OLSR developed
at University of Murcia.2 In our experimental analysis, we
evaluate the benefit of adding organization knowledge to the
lower level routing algorithm (eCQRouting). We measure:
1) the effect on performance with increasing number of ex-
ploration messages, 2) the scalability of the algorithm as the
number of non-application agents increase, 3) the scalabil-
ity of the algorithm as the density of agents increase, and 4)
the effect of bandwidth available on messages with different
priority.

5.1 The effect of exploration on performance
This experiment used the CNAS organization structure

on the 1-D network shown in Figure 5.

Figure 5: 1D network

Here S represents a sensor agent and D a cluster head
agent. Next, neighbors that are not used by the high-level
application and thus not part of the organization structure,
are added to both the sensor agent and the cluster head
in order to increase the number of exploration messages on
the path from S to D. The neighbors are added such that
they do not add additional paths from the source to the
destination (Figure 6 shows an example network after adding
3 neighbors).

Figure 6: Adding 3 neighbors to both source and desti-

nation in Figure 5

With no additional neighbors, the maximum bandwidth
available if no exploration were to be done was determined
to be 180Kbits/sec. Agent S sends 180 1Kbit messages to
agent D every second for 150 seconds. The average number
of messages that reach agent D every second determines the
bandwidth. We performed 10 runs and averaged the band-
width over the 10 runs. The network is completely stable:
no links fail during the course of the experiment. As addi-
tional neighbor agents are added to the network, traditional

2http://masimum.dif.um.es/?Software:UM-OLSR

825



routing algorithms (OLSR and DSDV3 in our experiments)
use additional exploration messages in order to include these
agents in the routing tables of all other agents in the net-
work. eCQRouting prevents this from happening by taking
advantage of the CNAS organization knowledge that spec-
ifies that agent D to be the only destination agent in the
network. The effect on the bandwidth available to agent S
in sending its data to agent D is shown in Figure 7

Figure 7: Changes in bandwidth as the number of neigh-

bors (and in-effect the number of exploration messages)

increases. Bandwidth is calculated in KBits/sec and av-

eraged over 150 seconds

As the number of neighbors increases, the application level
bandwidth available when using eCQRouting is significantly
better than the next best algorithm (OLSR), with perfor-
mance improvements of 20.9% with one neighbor to 36.55%
with 10 neighbors. The algorithm also provides 30.5% addi-
tional bandwidth with one neighbor over CQRouting, which
increases to 44% improvement with 10 neighbors. The rea-
son for this improvement is the reduced number of explo-
ration messages in eCQRouting. eCQRouting uses 15% of
the number of exploration messages in OLSR with one neigh-
bor, which drops to 7% with 10 neighbors.

5.2 Scalability in number of agents
We again use the CNAS organization, however the agents

are now randomly placed within a predefined area. Net-
works of size 4 through 100 were evaluated. The density
of the network remains the same throughout. Three sensor
agents and one cluster are head placed randomly along with
other agents as needed. The network is no longer stable: a
link between two agents fails randomly every second with a
probability of 0.2.

As the size of the network increases, the number of explo-
ration messages also increases. However, since the density
of the network remains the same, the number of hops to the
destination also increases. The algorithm needs to be able

3DSDV is a table driven routing algorithm for adhoc wire-
less networks based on the Bellman Ford Algorithm. Its
similar to CQRouting in that agents share routing tables
(rather than sharing QValues) with their neighbors and use
the shared tables in developing local routing algorithms.

to generate paths that are viable over the longer distances.
Each sensor agent sends 180 1Kbit messages to the cluster
head agent every second for 150 seconds. We measure the
average number of messages received by the cluster head
every second; which defines the application-level bandwidth
for the run. Figure 8 shows the effect of this increasing size
on the bandwidth averaged over 10 runs.

Figure 8: Changes in bandwidth as size of the grid net-

work increases. Bandwidth is the average bandwidth

over 150 seconds, measured in KBits/sec

Figure 8 shows an initial drop in the bandwidth available,
as the destination agent is no longer 1 hop away from the
sensor agents. The reduction in application-level bandwidth
diminishes as additional hops are added between the source
and the destination. The performance improvement in this
experimental setting of eCQRouting over OLSR range from
10% for the 4 agent network to 35% for the 100 agent net-
work. The improvement over CQRouting goes from 16.5%
for the 4 agent network to 66% for the 100 agent network.
Both DSDV and CQRouting have similar performance due
to similar source-based exploration algorithms. As the num-
ber of hops increase, the time to converge to the optimal
path also increases.

5.3 Scalability in agent density
We start with the 25 agent CNAS layout defined in the

previous section. We keep the area constant, and add 25 to
200 agents at random positions within the network. This
increases the density of the network, which in turn increases
the number of paths from the source agents to the destina-
tion agent. Figure 9 shows the average application band-
width of 20 runs for each density variation.

Figure 9 shows eCQRouting performs about 17% better
than OLSR in the 25 agent network with minimal density.
When density is doubled, the performance improvement in-
creases to 19%. At triple the density, the performance im-
provement is 10%. When the density reaches 8 times the
minimal density, OLSR outperforms eCQRouting. This is
because the benefit of building MPR agents outweigh its
costs at this density, allowing OLSR to do much better than
all other routing algorithms.

5.4 Effect of the bandwidth available on mes-
sages with different priority

To explore the effect of priority, we used the CASA or-
ganization with priorities on messages as shown in Figure
2b. In particular, we look at networks where the MAS can
tolerate the loss of a certain percentage of messages with-

826



Figure 9: Changes in bandwidth as network density in-

creases. Bandwidth is the average bandwidth over 150

seconds, measured in KBits/sec

out significant loss in performance. We use curves shown
in Figure 10a. The performance degradation with message
lost from the Feature Detector (FD) agent to the Feature
Repository (FR) and messages lost from FR agents to Op-
timizer (Opt) agent is linear. Messages from Radars (Rad)
to FR agents have some slack, which allows for a greater
percentage of messages to be dropped before there is a sig-
nificant effect on performance. Messages from Optimizers to
Radars have almost no slack, and there is a significant drop
in performance with drop in messages.

Since messages from FD to FR and Rad to FD have the
same performance degradation, we gain no additional benefit
by analyzing the two separately, and can perform better
analysis by merging the role of FR and FD into a single role
(calling it the FR/FD role). The priority is averaged and
the modification is shown in Figure 10b

We use a sparse 16 agent network. The network is divided
into 4 clusters. The density of the network is increased by
keeping the area constant, but moving from 16 agents to 160
agents, placed randomly. An example 25 agent network is
shown in Figure 11 (agents on the border between two clus-
ters belong to the cluster where their center lies). For each
cluster, we randomly assign the role of Opt to one agent and
the role of FR/FD to another agent. The rest of the agents
(unmarked in the figure) are all Radar agents. The Rad
agent sends 100 1Kbit messages to the FD/FR agent every
second. FR/FD agents send 25 1Kbit messages/second to
the Opt agent and Opt agents send 5 1Kbit messages/second
to the Rad agents.

In this experiment, we start with enough bandwidth to
allow all messages to get through. Next, the bandwidth is
reduced until a certain percentage of messages are dropped
for each routing algorithm. For example, the threshold be-
fore 10% of messages are dropped is different for different
routing algorithms. The effect of dropping messages, is cal-
culated at different bandwidths. Figure 12 shows the per-
formance degradation with messages loss. Note, the global
performance across the three message types is calculated as
the product4 of individual performances.

Figure 12 shows that the global performance is much higher
for the eCQRouting algorithm. This is because the low pri-

4For simplicity, the performance at each agent is assumed
to be independent of other agents, and hence multiplied to
give us global performance

Figure 11: Example 25 agent network

Figure 12: Performance degradation with loss of mes-

sages

ority messages are dropped before high priority messages.
OLSR, DSDV and CQRouting all performed the same when
dropping the same percentage of messages, since the mes-
sage loss is equivalent across all messages types for each
of the three algorithms. Interestingly, no improvement was
obtained using either one of the two priority techniques de-
scribed in Section 4.2 (represented as eCQRouting with pri-
ority for the simple priority based measure and eCQRouting
with performance measure for the message-loss based ap-
proach). This is primarily because both algorithms attempt
to do the same optimization on the network. The differences
arise in when the evaluation occurs and the degree of evalu-
ation. With the priority based representation, the status of
network and the goodness of the path are evaluated at the
time of exploration. Exploration happens more frequently
for source-destination pairs where the priority of messages
is much higher, hence allowing them to find sub-optimal
paths that provide better probabilities of message delivery.
However, if the state of the network changes between explo-
ration messages, the technique will have a delayed reaction
to the change. On the other hand, the per-message decision
is based on local knowledge of the next hop and expectation
of the rest of the network. However the benefit of having
global information is lost. In this experiment, it appears

827



(a) (b)

Figure 10: (a) Performance degradation as messages get dropped for messages from FD agents to FR agents, FR

agents to Optimizer agents, and Optimizers agents to Radar agents. (b) Corresponding priority of messages

that the global and local benefit balance each other, result-
ing in similar results when used individually and a small 2%
improvement when combined.

6. CONCLUSION AND FUTURE WORK
In this paper, we showed that using organization-level

knowledge in network-level routing significantly improves
application-level bandwidth relative to standard routing pro-
tocols. In a 100 agent simulation of the CNAS sensor net-
work, we obtained an increase in available application band-
width of 35% as compared to OLSR, one of the more widely
used routing algorithm for wireless ad hoc networks. Addi-
tionally we observed an increase in global utility by focus-
ing path exploration and, in turn, generating better paths
for those source-destination pairs where communication has
higher priority.

In this work, information flowed from the application-
level organization to the lower-level routing algorithms. We
assumed that the organizational structure was appropriate
given the network structure. If we relax this assumption, an
obvious extension of this work would be to allow the orga-
nizational structure to be modified based on the changing
characteristics of the network. The network-level routing
algorithm produces network capability and status informa-
tion that can be used as input for possible adaptation or
redesign of the organizational structure. Furthermore, as
the organization structure changes, the updated informa-
tion would be passed to the routing algorithm, increasing
application bandwidth further. For example, cluster heads
are picked dynamically in CNAS. However, we made the
assumption that the cluster head was already chosen in the
organizational knowledge provided to the routing algorithm.
In practice, the routing layer could provide the sensor agent
with a list of all other agents that it can currently com-
municate with that are within its cluster area. A decision
of which of these agents is the cluster head could be made
and then provided to the routing algorithm. Moreover, with
the increasing research in emergent organizational design, a
MAS application can start with no organizational structure,
use the routing information to develop an initial organiza-
tion design, which then provides exploration direction to the
routing algorithm for better paths and bandwidth.

7. REFERENCES
[1] J. Boyan and M. Littman. Packet Routing in

dynamically changing networks: A reinforcement

learning approach. Cowan, J.D.;Tesauro, G.;and
Alspector, J., eds., Advances in Neural Information
Processing Systems, 1994.

[2] T. Clausen and P. Jacquet. Optimized Link State
Routing Protocol. RFC 3626, Internet Engineering
Task Force (IETF), October 2003.

[3] D. Corkill, D. Holzhauer, and W. Koziarz. Turn Off
Your Radios! Environmental Monitoring Using
Power-Constrained Sensor Agents. First International
Workshop on Agent Technology for Sensor Networks
(ATSN-07), 2007.

[4] D. Corkill and V. Lesser. The use of meta-level control
for coordination in a distributed problem solving
network. Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 748–756,
August 1983.

[5] B. Horling and V. Lesser. A Survey of Multi-Agent
Organizational Paradigms. The Knowledge
Engineering Review, 19(4):281–316, 2005.

[6] S. Keshav. REAL: A Network Simulator. tech. report
88/472, University of California, Berkeley, 1998.

[7] M. Krainin, B. An, and V. Lesser. An Application of
Automated Negotiation to Distributed Task
Allocation. In 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT
2007), Fremont, California, November 2007.

[8] S. Kumar. Confidence based Dual Reinforcement
Q-Routing: An On-line Adaptive Network Routing
Algorithm. Master’s thesis, Department of Computer
Sciences, The University of Texas at Austin,
TX-78712, USA Tech. Report, A:198–267, 1998.

[9] J. McQuillan and D. Walden. The ARPANET Design
Decisions. Computer Networks, 1, August 1992.

[10] R. Onishi, S. Yamaguchi, H. Morino, H. Aida, and
T. Saito. A multi-agent system for dynamic network
routing. IEICE Transactions of Communications,
84-B(10):2721–2728, 2001.

[11] C. Perkins and P. Bhagwat. Highly dynamic
Destination-Sequenced Distance-Vector routing
(DSDV) for mobile computers. ACM SIGCOMM
Computer Communication Review, 24(4):234–244,
October 1994.

[12] C. Perkins and E. Royer. Ad-hoc On-Demand
Distance Vector Routing. Proc. 2nd IEEE Workshop.
Mobile Comp. Sys. and Apps, pages 90–100, 1999.

[13] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1989.

828




