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Abstract gregating sensor measurements by reducing it to a k-median
or k-center problem [5]. The gateway placement problem is
In building practical sensor networks, it is often benefi- solved by also reducing it to a k-median problem [13] .

cial to use only a subset of sensors to take measurements be- In sensor networks, there are many problems that can be
cause of computational, communication, and power limita- reduced to the k-median problem, such as the subset selec-
tions. Thus, selecting a subset of nodes to perform measuretion problem [6, 9, 14] and the sensor measurement aggre-
ments whose results will closely mirror the results of hgvin  gation problem [2, 5], where a subset of siz¢hat opti-
all the nodes perform measurements is an important prob-mizes a certain cost function should be obtained. In [5],
lem. This node selection problem, depending on the characthe error of the measurements is bounded by the k-median
ter of the function that integrates measurements and the typ problem’s cost function when only sensors take measure-
of measurements, can be mapped into a more general probments, assuming the measurements are correlated with dis-
lem called the k-median problem. In the k-median problem tance. The error in the average value of measurements is
we select a centroid set - a subset of nodes - that minimizeounded by%Eigsc(z‘, S), where S is the selected subset
the function, that is the sum of the minimal costs betweenof size k, ¢(i, S) is the distance between sengaand set
each node and a node in the centroid set. The set of se-S therefore reducing the problem of minimizing the worst
lected nodes s called “centroids” or “leader nodes”, where case error to a k-median problem.
the cluster of a leader node is defined by the set of nodes However, the k-median algorithms developed so far have
closest to the leader node. We develop an approximate k-been focused on solving problems with large data sets that
median distributed algorithm called Cluster-Swap, which need to be clustered. These algorithms do not accommo-
does not require significant computational power, and does date domains where there is a much smaller set of data
not require every node to know its exact position in the n- points, limited computation power, and a lack of informa-
dimensional space but only its relative location in relatio  tion about the absolute locations of data points. For exam-
to a subset of nodes. In addition, Cluster-Swap limits com- ple, in these settings each node may only know the relative
munication costs and is flexible to network changes. Thelocation of nearby nodes. Furthermore, even for relatively
locally optimal solution reached by our algorithm is an ap- small sets, exhaustively computing the optimal answer for
proximation whose error is bounded by the maximum costthe k-medain problem is not practical and thus requires ap-
and number of nodes in the cluster. The error bound givesproximation. Additionally, in a sensor network, it is often
a tighter bound than other similar algorithms, given that not feasible to send necessary information to a central lo-
the random initial solution is within a described reasormbl cation to solve. We develop a fully distributed k-median
range. We empirically show that the solution given by our algorithm called Cluster-Swap that satisfies the condgain
distributed algorithm is close to both the approximate solu Of this particular environment. The algorithm does not re-
tion generated by the cited Local search heuristics and also quire extensive computing power, reduces communication

the globally optimal solution while using fewer resources. l0ad, and adjusts easily the solution when a node fails.
The Cluster-Swap algorithm presented here is based on

the Local search heuristics [1] that only uses swap opera-
tions, where a swap is defined as switching the role between
a centroid and a non-centroid node. Local search heuristics
. . . can be simply adapted to a distributed environment since
_Many interesting problems in sensor networks and tra- e g\yap operation is very simple and can be done in a local
ditional routing networks can be reduced to classic algo- anner. However, swapping two nodes in a distributed en-
rithmic proble_ms such as the Traveling Salesman I:)mblemvironment can have high communication cost if they are far
(TSP), k-median, or k-center problem [5, 13, 12]. For x- onart Therefore, we have created Cluster-Swap where the

ample, Meliouet al. solve a data collection problem by re- ¢\~ o Jarations are performed i P ;
S in a limited context involv-
ducing it to a TSP [12]. Dast al. solve the problem of ag- pop P

1. Introduction



ing only the subsets of nodes that are relatively close. Also for large data streams where it is impractical to store the
using a similar approach to bound the error as in [1], we whole stream before initiating processing. The k-median
bound the error with quantities calculated from the solutio algorithms on streams [3, 7] are relevant to our study in that
of the algorithm, and show that the algorithm gives a reason-they work in a sequential order on the input stream and do
able bound that is confirmed in the experimental section. In not use much space. However the algorithms only guaran-
addition, in the experimental section, we compare our algo-tee O(1) or higher approximation whose constant factors
rithm with the Local search heuristics and Neighbor-Swap are not as small as desired. Additionally, some well studied
algorithm, which only swaps with directly connected neigh- linear programming algorithms are also not suitable as they
bors. We provide experimental results showing that the so-require extensive computation, which is generally assumed
lution quality of Cluster-Swap is close to that of the Lo- to not be available [4].
cal search heuristics with a 5-approximate solution withou  There are also distributed versions of the k-median al-
requiring significantly more resources than the Neighbor- gorithm focused on data sets that are too large to store in
Swap algorithm. one place. The goal of these distributed algorithms is to
The paper is organized as follows. We first provide a for- achieve a result close to the case when the data is central-
mal description of the k-median problem and some known ized, and the algorithms focus on selecting a subset of data
algorithms for its solution. We then provide a detailed de- points in each location in order to efficiently aggregate the
scription of the Cluster-Swap algorithm, the proof of an er- distributed partial results. There also is a centralized al
ror bound, and implementation details. Finally, we show ex- gorithm only applied to the Euclidean plane that achieves a
perimental results comparing Cluster-Swap to Local searchl+e-approximate solution i (nkn®/¢) log n) time [11].
heuristics and Neighbor-Swap to show the validity and effi- This is a known best optimal guarantee but the fact that it

ciency of our approach. only holds on a 2-dimensional space, it requires exhaustive
L computation power, and it assumes that the exact location
1.1. Problem Description of each point is known, make this approach inappropriate

. . ) for our problem domain.
~ Ourgoalis to solve the k-median problem withoutknow-  one of the simple and good approximation algorithms is
ing the full structure of a network and without sending all pased on Local search heuristics [1], and is known to guar-
netWOI‘k |nf0rmat|0n to a Central |OcatIOI’l. We ConSIder the antee a 5_appr0ximate Solution. Since th|s approach is Sim_
general case where there is a graph G=(E,V) and the cospje, has a reasonable bound, and is easily applicable to a

functionC' : E — ¥t on each edge. Since each edge is gjstributed environment, our algorithm is built based da th
Euclidean, the triangle inequality holds. Within this seit work.

we search for a set of centroid nodeés~ V where the sum
of the cost function between each node and clasest” is 2. The Cluster-Swap algorithm
minimized: '

T= argminT(Z mingerc(v,t)) 1) N(t N(o)
vev For each point x in O For each point y in N(o),

We assume t_hat gach ag.ent has the knowledge .Of the N(t), calculate c(t)- calculate c(t)-c(o) and
edges shared with direct neighbor nodes and can directly c(t) and return this return this value to t if
communicate at least with them. Given this problem de- value to t where t c(t')-c(o) = 0 and
scription, we now present our algorithm and its performance is @ cluster that x forward to its neighbor
bound. will be assigned where t is the currently

when t is swapped assigned centroid

1.2. Related Work oAk

K-median clustering is a common technique used in the Figure 1. The range of swap(t, o) and cost change
machine learning community to analyze data. It is known Pased on the location of nodes. The node  # is swapped
that the problem is NP-hard, and thus many approximationgUt and the node o is inserted where N({) are the mem-

. o ers of the cluster ¢ before the swap and N(o) are the

algorithms have been developed. Trad!t|onally, reseaash h members of the cluster who are assigned to o after the
been focused_ on how to solve k-medians for a very Iar_geswap] and c(x) is cost of a node .
number of points. Recently, there has been a growing in-
terest in reducing problems to k-median problems. How-  As described in the previous section, we seek to solve
ever, the algorithms developed so far do not suit the growingthe k-median problem in a decentralized manner by swap
needs of those domains. operations as in the Local search heuristics, but limit the

There is recent research in selecting a subset of inputtarget to swap to only the non-centroidghe same cluster
points to compute the k-median [8]. Unfortunately, the The Cluster-Swap algorithm determines keentroids that
number of points needs to be very large to benefit from minimize the sum of the distances to the closest centroid
this approach, which mitigates its use for most sensor net-wherek, the number of centroids, is given as a parameter.
works. Other relevant work includes k-median clustering This initial set of centroids is given as a parameter to reduc



the difficulty of getting the consensus in the network on the ered globally.
centroids and can be determined randomly.

We designed our algorithm based on the following as- . . . . . . .
sumptions. First, we assume that each node knows the cost o 3 o 22 1 o B o 13 o 13 @
function for each of its directly connected neighbors. This

cost can be either the distance or another measure that Sati‘?:igure 2. Example where Cluster-Swap does not lead
fies the triangular inequality. Additionally, we assumettha ;,ihe same solution as Local search heuristics. The

the initial set of centroids is pre-determined. initial configuration is with two clusters of centroid C(Member
Given the assumptions, each node performs the same loa ¢, p, E), and G(Member F). The cost of the initial con-

cal algorithm on each cycle depending on whether it is a figuration is 68(C:c(A,C)+c(B,C)+c(C,D)+c(C,E), G:c(F.G)).
centroid or a non-centroid. At each cycle, the curfecgn- swap(G,A) improves the current solution, which is not per-
troid nodes try to improve the solution quality by communi- formed by the Cluster-Swap. The cost benefit of swap (G,A)
cating with non-centroid nodes within the same clustedunti for A is 25 as it becomes a new centroid and cost is 0. For

no centroid can improve its cost through swaps, thus therenode G, the benefit is -34 as the new cost is 34, and cost
is no change in centroid nodes. before swapping is 0. The sum of the benefit from the swap

The swap operation is taken in two stefest-swap(t,0) = 25+ 19+0+0—8 —34 > 0. Therefore Local search
andswap(t,0) test-swap(t,o)ests the cost benefit of the heuristics performs this swap and improves the cost.
swap andswap(t,0)actually performs the swap to take out
t and inserb in the centroid set. Both operations between 9 1, Determining the error bound of
centroidt and non-centroid are performed locally, involv- Cluster-Swap
ing both the members of the clusteriofnd the neighbors
of o as pictured in Figure 1. The group affected by each  For the proof of an error bound, we use an approach sim-
swap includes the cluster of which will be assigned to a ilar to the one described for the Local search heuristics [1]
new centroid because their centragids removed and the  applyingk swaps between the centroid §etand the opti-
neighbors ob which will be re-assigned tobecause of the  mal solutionO. We provide some terminology for proving
cost reduction. the bound. LetC(X) be the sum of the costs of all nodes

The set of members involved test-swapandswapare  on the graph given the centroid s€t Cr(z) is the cost of
largely overlapping for different swap targets and this fac ;. given the centroid séf andc(x, y) is the cost between
is used to save resourcesdymbiningmultiple test-swap. andy. The proof is achieved in the following steps:

Since there are fewer members per cluster in our domain,1. We create a mappint/ : 7 — O, from the solutiorl’
this combined message does not get very large. Addition-of the Cluster-Swap algorithm to optimal solutiGh Such
ally, multiple swaps can occur simultaneously only when mapping leads to an element O appearing exactly once.
the nodes affected by the swaps do overlap. If there are mul-To eacho € O, we mapt € T such thab € Nr(t) where
tiple overlapping swaps, the conflict will be resolved and Nr(t) is the set of members of the cluster of a centroid
only one swap will be selected. given the centroid sét'.

After a finite number of swaps, the algorithm reaches a  We cannot create a mappidg : T — O as in the paper
local optimum and terminates. Since we consider all nodesof Local search heuristics. The mappifig— O is from
affected by the swap in and out of the cluster, the algorithm the Local Search Heuristics solutiane S to optimal so-
always calculates the exact change in the cost improvinglution o € O that satisfies the constraint thate S does
the cost each swap. Thus, it is guaranteed to terminatenot capture any element il or capture only € O. This
The solution that this algorithm gives is different from Lo- mapping is built based on thevap(s,0) on S which in-
cal search heuristics as the swap operation only occurs beereases the solution. However, the solution of Clustergswa
tween the members of a cluster. Figure 2 provides an exam-algorithm does not guarantee this condition on the solution
ple showing how a sub-optimal solution will be found when and may improve the cost in our solution. This fact violates
only swaps within the cluster are done. the purpose of this mapping for proving the bound. For our

The Cluster-Swap algorithm has the benefit that the so-purpose, any o should be mapped from the centroid t where

Iutio_n_ can be easily updated in a_IocaI manner after the, ¢ Nr(t). However, this mapping does not hold the same
addition of new nodes or the deletion of nodes in the net- constraint of capturing.

work. This is because the addition and deletion impactcan2. C(T — t + o) > C(T) whereo = M~'(t) aso is

be determined locally by performing another iteration of a member ofN+(¢), and swapping with a member of the

test-swap. |If it is found that this will result in changes, cluster would not improve the solution.

the impact is then propagated by changing the centroids, re3. Now we assign all members iNy(t) U No (o) to o.

sulting in the centroids in the neighborhood detecting the Consider the possible upper bound of the cost increase of

change and performinigst-swap Therefore, the propaga- each swap oWy (t) U No(o).

tion of impact is selective, making the update easier than For Nr(t) — No(o0), since the closest centroid we can

other approaches where the impact always has to be considlocate for Nz (t) after the swap i, we provide the up-
per bound of cost increase by assigning the members in



Nr(t) — No(o) to o. The new cost for memberin Np(¢) ;nerzbers o ?hil {mergbertqf ittsectluste}r
. . — e membpers trietest-swamn
is bounded by:(, ) +c(t,0) = cr(x) +c(t, 0) as this cost ifT;eotiniti;LIilze{dthen e

does not exceedz, o) by triangular inequality. Therefore, sentddeclar_emessagte;totr;]eighborg o reo for ol to theed
for each member inVy(t) — No (o), the cost increase is ihe nxetf,éjf@{ wait for the members fo reply for time proportional fo theestz
bounded by:(¢, 0). end if

For members inV, (0) the cost of the node before while type == centroid{ until it becomes a non-centroid do
o ! wait < random(c X size)

the swap(t, o) is Cr(x). The cost after swap when they are while wait >= 0 do

assigned to 0 i8p (). For each member, the cost change is ﬁr%cjgz;Z%fg’fe‘lﬂ“seﬁzggegremer than Ghen
CTéI) — C’O (I) send new centroid message to swap target
4. For each swap, the cost increase is summarized as: send swap message {o its neighbors
t_ype «— non — centroid
SaeNr(t)-No(0)¢(10) + Esen (0)Colx) — Cr(x) wait — wait — 1
= C(t’ 0) * |NT (t) — No (O)| + EwENO(O)CO (I) N CT(m) ﬁnr?o\tlvvr\]/gﬁtiﬁZtf(s)‘;vag(t;é%(?i’ersn,esrzrtzrsst?swapnessage to its neighbors
>0 end while
N Algorithm 1: Function: Cluster-Swap(k, type, neighborinfo)
5. For k swaps, for the centroid
Svocoimni-1(o)(c(t;0) ¥ [N(£) = N(0)]) + Co — Cr > 0 , , ,
Cr < Co + Svocotmni-1(o) (e(t, 0) * N7 (t) = No(0)]) of centroid declaration has a formatleclare-centroid, cen-
- ' troid id, cost>.
However, we do not know the number of members of  Non-centroid nodes determine their membership in a
Nr(t); No(o); or c(t,0) since we do not know. There-  cluster by selecting the known closest one upon receipt of
fore, we calculate the maximum possible value that is these declaration messages, then notify their centroids by
maz|c(t, 0) x| N(t)—N(o)|]. Sinceo ais member ofN (t), a messagecnotify-membership, id and forward the dec-

we can bound this value t@ax (cpaz (t) X [N (t)]) for each

t wherec,,..(t) is the maximum cost between the centroid
and non-centroid nodes within the cluster of t. Therefore,
we can relate our solution using the maximum cost value

laration messages to their neighbors only when the source
of this message becomes their own centroid. By forwarding
the messages only from their own centroids, most nodes re-

multiplied by the number of members assuming each clusterc€Ve these declaration messages from only their centroids
does not contain more than a certain number of centroids in T @ny closer centroid is found by another declaration
the optimal solution. Lef,(¢) be the number of centroids Message, the receiver updates its membership and notifies
in the optimal solution O, contained by the cluster of cen- the previous and new centroid nodes of its new membership

troid ¢. We can bound our solution usingaz e (Ko (t)) by sending<notify-membership-change,idand <notify-
and represent the equation as follows: membership, id .

For example, in Figure 2 node E registers itself as a
Cr < Co +mazrer(Ko(t)) x mazter(Cmaz(t) * [Nz (1)]) member upon receivingdeclare-centroid, G, 26, then

Our solution is bounded in relation to the maximum It Sends to node Genotify-membership, E. If later node
number of centroids of optimal solution in each cluster. E réceives another declaration messagkeclare-centroid,
Any cluster centroid can be used in these swaps at most  © 8> then node E changes the membership because there
times. The total sum fok swaps is bounded by(|N ()| x is a cost reduction fror@6 < 8. It notifies the membership
maz,enyc(t, z)), which is at least maximum value of the update by sendingnotify-membership-change;>&o cen-
cost of the entire graph making the bound useless. We carfroid G and<notify-membership, & to centroid C. There-
reason thataz (Ko (t)) will remain lower thark, although fore, each node eventually becomes a member of the cluster
we do not have a theoretical bound emz,cr (Ko (t)). of ttrr‘]e cIosebst ceptrmd. be reduced by waiting f
This is because we are swapping with a node in the clus-_ - € humber of messages may be reduced by waiting for
ter, and thus there is a high chance that the swap with this2! interval to get pen'grqld declaranon. messages f(om_ne|gh
centroid would result in a benefit unless the input nodes arebors’ although this will increase the time for initializaii
extremely skewed and the algorithm starts from a poor ran

. . if v berss in tried th
dom initial point. The experimental result also shows that e e < retum
mazx(Ko(t)) is much smaller thak in most cases. else ) _ o
starget < arandomly selected non-centroid membemiembersot intried

. . end if
2.2. Algorithm Details state —< testswap >

E . . . i swapcost = —cost(src, starget) {cost change due to swap for the centijo(d

The overview of the algorithm for a centroid is given in | for all i € neighbordo
Algorlthm 1. deend amessage testswap, src, starget, neighborcentroids, id >
ena ror

[Initiation] The first step in the algorithmis to constructthe Algorithm 2:  Function : test-swap( tried, members) :
initial clusters created by pre-determined or randomly-cho function by centroid to start test-swap

sen k centroid nodes that declare themselves as centroids by

broadcasting the message to their neighbors. The messagé@est-Swap] test-swaps a message that is sent by centroids



newcentroid < centroid with lowest cost amorgarget, neighborcentroids
if myswapsrc == srcandswapid! = id

{same centroid sends again with new swap. It means the pest@stiswap returned

negative result then
myswapid — id {update the swap il
swapbene fit = cost — cost(newcentroid)

if centroid == src||swapbenefit > 0 {if this node is a member of sfc
then

send a messagetest-swap-response, id, swapbenefit
end if

for all ¢ € neighbor do
send a messagetestswap, src, starget, neighborcentroidsyid
end for
eseif id < myswapid then
send a message suppress, starget, src,id > {suppress the swap
elseif myswapid < id then
send a messagesuppress, starget, myswapsrc , swapidsuppress the ol

swap}
send a messagetest-swap-response, id, swapbenefit
end if
Algorithm 3:  Function: process-test-swap( msg :<Src,

starget, neighborcentroids, i, myswapid, myswapsrc a func-
tion to process test-swap where myswapid, myswapsrc

is info from a test-swap the nodes previously responded

to

if Response received from all of its neighbdiren
if testresult > 0 then
for all ¢ € neighbor do
send a message swap, src, starget, id >
end for
else
reset the timer to start test-swap
end if
else
testresult < testresult + swapbenefit
end if

Algorithm 4:  Function: process-test-swap-response
(msg :<test-swap-response, id, swapbenefit

to calculate the cost of a potential swap. The formaéesf-

swapis <test-swap, swap id, source, target, [centroids in

the neighborhood}.

centroid who startedwap-testmessage will get the replies
from all of its neighbors, and calculate the benefit by sum-
ming the results.

For example, as in Figure 2 suppose a node D who is a
member of node C's cluster receivesest-swap, 3456, C,
B, [G]>. Because the test message is from its own centroid,
the node D must participate in the test, records the message,
and forwards the message to its neighbors. It records the
message to resolve the conflict between multiple swap mes-
sages which is explained later. When all replies for the test
are returned to node D(here only from E), it calculates its
own benefithene fit = ¢(C, D)—min(c(D, B),¢(D, Q)),
combines the result from all of its neighbors, and returns
<test-swap-response, 3456, C, D qpjies and its owrPENEFit>
to the message’s forwarder (the direct neighbor who sent it)
Here, the benefitof EigC, E)—c(F,G) = 8—26 = —18.
The benefit of D is -22 thus D sends a reptyest-swap-
response, 3456, C, B, -40to the node C. A slightly dif-
ferent action is taken when a node E who is not a member
of node G receives &est-swagG,F) message from G. Be-
causebenefit <= 0, it simply returns the response with 0
value and does not forward this message to a neighbor.

[Neighborhood Centroid Information] After a swap, the
swap source is no longer a centroid. Thus, dute@sg-swap
the non-centroids calculate the cost based on the potential
centroid set, and the centroid provides neighbor centroid i
formation for cost calculation consistency. Additionalfy
there is a change on the information durilegt-swap the
test-swaps terminated without any further effect.

[Collision] Also, there is a possibility of a conflict between
multiple test-swapmessages from different centroids, these
conflicts must be resolved to avoid an incorrect test result.
As stated before, the centroids tgst-swapith some ran-

If a centroid is contained in a cluster with at least one dom interval in order to avoid these conflicts as much as
non-centroid node, the centroid chooses one of its member$0ssible, although having the interval does not eliminate

within the cluster and startest-swapwith a random inter-

the chance of conflicts. The collision inevitably happens

val [0, range] by sending messages to the all of their neigh-because the centroids do not coordinate the time to start the
bors. This interval is in order to avoid conflicts between SWap. Instead, whenever a collision occurs, the swap with

multiple swaps happening at the same time, whangeis
proportional to the number of nodes in the network.

Eachtest-swapmessage is forwarded while the potential

swap affects the cost of the non-centroid node. Tt
swap(t,0)is forwarded toN(¢) U N(o)+ direct neighbors
of N(t) U N(o). Upon receiving theest-swapmessage,

higher id (that is randomly generated for edebt-swapis
chosen, and the other one is suppressed.

For example, from the previous example dkat-swap
the message from C will be forwarded to E as E is a mem-
ber of the cluster. If the node E receives anotiest-swap
message witlwap-id2487 from a different centroid G then

each non-centroid node calculates the benefit of swap, andt Suppresses thest-swapwith id 2487 since2487 < 3456
determines whether to reply immediately or forward. The Py directly sending the forwarder ¢ést-swapa suppress

recipients of this message M(¢) calculate the cost and for-

message if the scheme is to suppress the smaller id. Since

ward the message to their neighbors regardless of the costthe source never swaps unless it gets all the replies from all

The message will eventually reach the nodes outaide

of neighbors thisuppressnessage will be delivered to its

and they will return the messages with cost 0. On the othersource before the swap happens.

hand, the recipients of this messageNiio) calculate the

[Combining test-swap] As in Figure 1 test-swagnvolves

cost change and forward this message to its neighbors onlyin® members in the cluster and the nodes around the swap
if there is a cost decrease. If the swap only increases thd@'get. Therefore, large numbers of nodesest-swapop-

cost, then it returns the message with 0 cost to the forwarder€rations within the same cluster overlap and this fact isl use

If the forwarder gets replies from all of the neighbors, then t© combine multipletest-swapoperations to save commu-

it sends back the replies to its forwarder and eventually the Nication resources. Multiplest-swap can be done by in-



cluding multiple swap targets in one message and gettingcommunication messages, and time for convergence. In the
the calculated benefits from participating nodes intdst- Farm environment, “pulse” is used as the time unit and each
swap Each recipient of the combined message calculatesaction takes one pulse. Such actions include sending mes-
the cost of each targets and returns the result on all targetsages, receiving messages, and processing messages. Com-
in the message. Since multiple targets have different reigh munication with any node in the network is sent within one
bors, the messages are propagated to slightly more nodes. pulse without any message loss.

[Swap] If the centroid calculates the cost and there is a re- . .

duction, it determines to swap, and sendsnapmessage  3-1. Performance by Solution Quality

to its neighbors and swap target. This message is forwarded Tables 2 shows the maximum and average ratio of so-
to all affected nodes, as in Figure 1. When a new centroid lution cost from Cluster-Swap and Local search heuristics.
is elected by receiving aew-centroidmessage, it updates The results show that the solution by Cluster-Swap is close
its type and copies the neighborhood centroid information, to the solution of Local search heuristics even though the
then forwards theswapmessage to its neighbors as well. search space of Cluster-Swap is more limited than Local
The recipients of this message will notify the appropriate search heuristics. In comparison to Neighbor-Swap, the
nodes of their membership change, if any. Cluster-Swap algorithm performs closer to Local search

[Termination] The algorithm terminates when no centroid Neuristics than Neighbor-Swap algorithm. On some worst
can update its solution by swapping with other nodes in the €SS, the solution of Neighbor-Swap is 3 times larger than
same cluster. Once a node has tried every possible membdsocal _search heuristics, but the worst case ratio of Cluster
of the cluster to swap, it stogest-swap. The global ter-  SWap is 1.49.

mination point for the algorithm is when all the centroids Tgpe 3. Maximum Ratio of the solution of the

agree to terminate because they stop generastgwap. Neighbor-Swap, Cluster-Swap and Local search heuris-

There is no global termination mechanism implemented in tics compared to the optimal solution on 3 dimensions

our algorithm, however this decision problem is a common for 100 data points

problem in the distributed environment for reaching a con- Number of Centroids Neighbor-Swap Cluster-Sway Local Searc
sensus, and there is ample literature on how to reach a con- g g-ﬂj 1-83(1) 1-888
sensus amonkg nodes in the network. Thus, the details are 12 2.587 1.829 1.412
not provided in this work. 16 4.203 1.636 1.636
Table 3 shows worst case ratio of the solution cost of the
3. Empirical Evaluation algorithms to the optimal solution on 3 dimensional data.

. _ _ The result shows that the Neighbor-Swap can lead to a poor
We present an empirical evaluation on synthetic data ran-jocal optimum and that the Cluster-Swap and Local search

domly created on an n-dimensional space with a size of 100heuristics are both close to optimal even in the worst case.
for each dimension. We focus on relatively small examples

when compared to usual clustering domains since we modeB.2. Efficiency by Number of Swaps

each node as a sensor or processor unit. . L
We present efficiency results by considering the cost for

Table 1. Comparison between three algorithms used swapandtest-swapoperations. The number of operations
in the experimental section indicates how many times these routines are called, and the
[Neighbor-Swaf] _ Cluster-Swap | Local Search Heurisfics number of participants how much each operation costs in

| Target of sway direct neighborl members of clustef any non-centroids | terms of both time and messages The number of partici—

We compare the Cluster-Swap algorithm with the Local pants determines the runtime and the number of messages
search heuristics and the Neighbor-Swap algorithm, and forof each call since it indicates how much the information has
a limited number of cases an exhaustive search algorithmto be propagated. Sin@vapandtest-swapare dominant
with the optimal solution. The difference among these al- routines, the runtime and number of messages are propor-
gorithms is also provided in Table 1. We vary the num- tional to the the number of operations and number of partic-
ber of points, centroids, and data dimensions. We assumepants.
the graph is not fully connected and the cost functionis the  Table 4 shows the number tést-swapoperations(The
distance between any two points(euclidean distance of anynumber ofswapoperations are dominated lgst-swapby
dimension). This assumption can be easily loosened by setimore than 10 times). The Local search heuristics requires
ting the cost function differently such as to the sum of the the most operations as each centroid ntast-swapwith
path to reflect the actual travel distance in the graph, or anyevery node in the network, which leads to an explosion. For
other measure that also retains the triangular inequlity. an uncombinedest-swap Neighbor-Swap remains much
cost function is chosen for convenience. lower than Cluster-Swap. However, when tiest-swaps

The Cluster-Swap algorithm is also implemented in the combined for the members in the cluster, the two algorithms
distributed simulation environment Farm [10]. By imple- require a similar number of operations.
menting the Cluster-Swap algorithm in a distributed envi-  Because withtest-swapmessages combined the num-
ronment, we investigate additional measures: the number ofber of operations are similar both in Neighbor-Swap and




Table 2. Maximum and Average Ratio between the solution cost of Clust er-Swap(CS) and Local search heuris-
tics(LSH) and Maximum Ration between the solution cost of Ne ighbor-Swap(NS) and Local search heuristics(LSH)

Maximum/Average Ratio between CS and LSH Maximum/Average Ratio between NS and LSH
2 dimensions 3 dimensions 2 dimensions 3 dimensions
# centroids 100 200 300 100 200 300 100 200 300 100 200 300

4 1.13771.029 1.072/1.017 1.010/1.001.073/1.010 1.378/1.061 1.151/1.0PB.745/1.197 3.007/1.326 2.378/1.261.336/1.124 1.545/1.155 1.602/1.155
8 1.125/1.043 1.236/1.045 1.068/1.008.107/1.026 1.058/1.008 1.078/1.029.372/1.154 2.408/1.496 1.759/1.412.276/1.157 1.702/1.352 2.130/1.381
12 1.293/1.064 1.052/1.022 1.076/1.01%.183/1.063 1.081/1.032 1.123/1.027.616/1.233 1.973/1.310 1.725/1.406.904/1.402 1.461/1.298 1.648/1.453
16 1.163/1.069 1.094/1.045 1.072/1.089.486/1.134 1.067/1.033 1.052/1.022.411/1.267 2.194/1.367 1.874/1.302.000/1.376 2.253/1.570 1.957/1.394

Table 4. Efficiency of Algorithms: number of test-swapoperations until the algorithms reach the local optima on 3

dimension, number of test-swapperations if combined in one message, and number of partici pants on each combined
test-swap
number oftest-swapf not combined number oftest-swapf combined number of participants if combindd
Neighbor-Swap Cluster-Swap Local Search Heuristics Neighbor-Swap Cluster-Swap |[Neighbor-Swap Cluster-Swap

# centroidg 100 200 300] 100 200 300| 100 200 300 | 100 200 300f 100 200 300{100 200 304 100 200 300
4 83.6 132.7 102.0363.7 647.2 1062.3064.2 2507.8 3892.4434.2 61.4 45.1 31.2 31.6 34.032.0 61.7 95.455.1 132.3 236.8
8 171.7 241.2 255.438.9 1031.4 1708/2087.8 4725.7 7131.576.4 106.9 119.960.8 80.9 91.316.1 34.5 60.y28.2 73.1 128.%
12 194.2 281.8 256.17.6 1058.8 1786/2842.0 7409.5 10002{%B7.2 126.5 116.094.2 104.9 125.011.7 24.2 38.618.2 46.3 86.1
16 248.9 332.7 318.p406.5 1485.1 1988/81369.9 9939.0 15424|919.0 151.1 148.7147.9 178.4 168.49.8 19.2 27.212.8 33.0 63.5

Cluster-Swap, the number of participants determines theonly 5-approximate and other streaming or distributed al-
total cost. On each combineadst-swapof Cluster-Swap,  gorithms are not better than 5-approximate.

less than or similar to twice the number of participants of
Neighbor-Swap participates. Considering that Neighbor-
Swap quickly reaches a sub-optimum and terminates, the ef-Table 6. Average number of received messages and
ficiency of Cluster-Swap is reasonable. Although the mes- pulse taken to converge by Cluster-Swap with 50 nodes
sage size in Cluster-Swap is bigger, it only contains aryarra in the network _

of size of a cluster(arourd-75 in our experiments on aver- Number of centroidy 4~ 8 12 16

L # messages 5022.2 2689.6 2064.4 15676
age). Additionally, the messages travel only one hop to only # pulse 2849.8 1194 1250.8 1136l4

nodes’ direct neighbors. We thus expect the message costs |n Table 6, we measure the number of messages needed
in both algorithms to be similar. Therefore, Cluster-Swap to complete the task of Cluster-Swap with uncombiteest-

has a comparable efficiency in the runtime and communica-swapin the network with 50 nodes. Since we assume no
tion load with Neighbor-Swap. message loss, the number of sent message is identical. On
average each node communicélie- 200 messages. When

the centroid set is smaller the cluster gets bigger, requir-
ing more messages. Most messagesestswamndswap
messages between a node and its direct neighbors so their
cost is minimal. Considering the numbertest-swapop-

3.4. Communication and Convergence

3.3. Solution Quality in terms of Error
Bound

Table 5.  Average of maximum cluster value for the
cost bound for 3 dimensional data on 100 data points

and average of maximum K where K is the number of eration each node is involved in, other control messages do
centroids from the optimal solution within a cluster not change the communication cost much.
NUmber of centiolds 4 3 = 5 Table 6 also shows the result of pulse required for con-
Maximum cost | 49650 19213 12335 8454 vergence. Since eadhst-swapand swapoperation takes

Optimal cost | (5850.2) (2836.9) (1915.3) (1262.4)
2.2 2.7 3.1 3.4

Mo K twice the maximum length of path in a cluster, consider-

ing the number of these two operations, the algorithm does
not lose too much efficiency because of the suppresstd
swars.

Figure 3 shows the change of cost during several runs
of Cluster-Swap algorithm with 50 nodes. It shows that the
time to reach the cost closest to the local optima is pretty
small in comparison to the total time until convergence and
it is not necessary to wait until the algorithm actually con-
verges. After a short time, the solution stops significantly
improving. Additionally, when there are fewer members in
the cluster, convergence detection is faster and it tert@éna
quickly as in the case with 16 centroids.

The Cluster-Swap algorithm’s performance bound de-
pends on thanaxcof a cluster where we definmaxcas
mazx(|N(t)| x mazyenmc(t,z)). maxc The solution
bound is calculated anaxcmultiplied bymaz, (Ko (t)) =
K ez Where Ko(t) is the number of centroids from the
optimal solution O in cluster of the centroid t. As shown in
Table 5,K,,.. is on average is around 3 in our experimen-
tal result and the bound for Cluster-Swap is therefore less
than triple the optimal cost(making it 3-approximate). Al-
though maximun¥(¢) can be very large for the extreme
cases when Cluster-Swap’s solution is very different from
the optimal solution due to the poor initial centroid sete, t 4. Conclusion
error bound is expected to be held in a more common cases.

This error bound is good, considering that the centralized In this paper, we provide a mechanism to solve the k-
k-median algorithm such as in Local search heuristics is median algorithm in a distributed environment where the
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Figure 3. The change of cost during Cluster-Swap al-
gorithm performed on 50 nodes with 4,8,12 and 16 cen-

troids

exact locations of nodes are not known. The Cluster-Swap
algorithm, which only uses a swap operation between a cen-
troid and a non-centroid node within the same cluster, can
be more efficient in comparison to Neighbor-Swap and Lo-
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