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Abstract. The Max-Sum algorithm is a constraint optimization algo-
rithm using message passing that can be configured to work in an ap-
proximate mode. It has been shown that in this mode it compares well
with other approximate distributed optimization approaches. We used
the approximate Max-Sum algorithm to coordinate adaptive radars for
real-time weather sensing. When applied in various settings of the system
with different types weather phenomena scenarios and radar configura-
tions focusing on the utilization of structures in a distributed clustered
organization, the Max-Sum algorithm performs efficiently in terms of re-
source utilization and communication for most of them in comparison
to a negotiation-based algorithm specifically designed for this domain
structure. We also modified the Max-Sum algorithm to utilitze the do-
main structure and have found that this utilization further improves the
algorithm performance. Finally, we show that the Max-Sum is robust to
initial policies.

1 Introduction

The Max-Sum algorithm is a message-passing based algorithm that maximizes
a utility function of a constraint graph and is proven to work well for solving
a certain class of constraint optimization problems [1]. It is also suitable for
a distributed setting as the algorithm computes an optimization function by
communicating the partial results with direct neighbors. It has been proven to
work well in an approximate mode where the solution is not guaranteed to be
optimal due to cycles in the constraint graph.

This paper exlores the distributed Max-Sum algorithm for radar scheduling in
the NetRad system [3], which is designed for detecting and monitoring hazardous
weather phenomena in real time. The NetRad system at the highest level is
organized as a collection of controllers, each responsible for scheduling a cluster
of radars based on the evolving weather scenario. Each radar’s scanning strategy
can be dynamically configured every 60 seconds. The radars are geographically
located to overlap so that multiple radars can concurrently scan phenomena to
obtain dual-Dopplar velocity vector measurements where desired.

There is a limit in the amount of weather volume that each radar can scan per
cycle of 60 seconds and the radars have to coordinate to choose a highest-utility



phenomena to scan each cycle so as to optimize the overall utility of the system.
Modeling the coordination and scheduling of radars as a constraint optimization
problem and applying the Max-Sum algorithm is suitable for this domain for
two main reasons.

First, the Max-Sum algorithm can be used to generate a real-time radar
scheduling policy. Since it quickly reaches a close-to-optimal solution exhibit-
ing an anytime algorithm property. In this domain, weather phenomena change
dynamically, and therefore the scanning strategy needs to be repeatedly recom-
puted.

Second, the radar scan scheduling problem can be naturally modeled as a
constraint optimization problem. In the system, each weather phenomenon is
regarded as a task with an associated utility. The quality of a radar scan de-
pends on the scope of space covered of the weather phenomena. A single radar is
often not able to scan all the phenomena in its range and thus benefits from col-
laborating with neighboring radars that can potentially scan the desired region.
Coordination of radars are necessary due to pinpointing tasks in addition to the
lack of resources e.g. time for scanning. Between two types of tasks, pinpointing
and non-pinpointing tasks, pinpointing tasks require more than one radar to
scan the phenomena, therefore tighter coordination among radars is necessary.

The main purpose of the work is to study the behavior of the Max-Sum
algorithm in the problem domain so as to understand the performance of the
Max-Sum algorithm in comparison to other algorithms including a previously
developed negotiation algorithm [7] designed for the application. A key issue that
we want to study is whether the optimization should be broken along the lines
of the grouping of radars into clusters, which leads to a two-stage optimization
process where we first optimize scheduling within a cluster and then modify that
optimization based on interactions with other clusters. This two-stage process
exploits the low communication overhead possible when optimization is done in
the first stage. We contrast this with an approach that sees the optimization as
a single integrated process that does not explicitly take advantage of the group-
ing. To understand this issue, we have tried evaluating the performance of two
different algorithms: one which directly exploits the decomposed organizational
structure and the other which does not. Additionally, we tried to improve the
Max-Sum algorithm by providing a better starting point for the optimization
process based on the results of a local optimization algorithm specific to each
radar cluster.

The paper is organized as the following. In the next section, we introduce
the NetRad system and formulate the constraint optimization problem we are
trying to solve. The third section briefly overviews the Max-Sum algorithm and
describes two approaches to formulate the optimization problem and also de-
scribes a modified Max-Sum algorithm which uses an initial policy. Then, we
present the experimental results. Finally, we summarize the major conclusion of
the paper and discuss future work.



(a) 96 radars with 96 phe-
nomena

(b) 2 radars configurations

Fig. 1. Example weather scenario and radar settings (a), Example configuration of
Radars (b). All radar ranges and phenomena are assumed circular shaped. All phe-
nomena locations and sizes are randomly selected. In (b), Radar 1 (R1) can choose to
scan event 1 (Ev1), event 2 (Ev2) or to scan both depending on the utility. Scanning
all phenomena in range may not be possible given the time limit to scan.

2 NetRad System and Problem Formulation of Radar

Scanning Policy

2.1 The NetRad system

The NetRad System is a system of radars specially designed for the purpose of
quick detection of low-lying meteorological phenomena such as tornadoes. They
are short-range radars used in dense networks, thereby alleviating blind-spots
caused by the curvature of the Earth. NetRad radars additionally do not just
use the traditional sit-and-spin strategy; rather, they can be focused to scan in
a particular volume of space. By exploiting the collected information on weather
phenomena, scanning strategies can be dynamically created for specific weather
phenomena in the current environment.

The NetRad system consists of multiple MCCs (meteorological command
and control) each of which controls a set of radars. The MCC system is a closed-
loop control system in that it responds to the emerging weather events based
on detected features in the radar data and end-user concerns that may vary
over time. End-users such as forecasters, emergency managers, and researchers
can provide information as to what sort of data they are looking for and how
frequently. Consequently, the MCC ranks the importance of tasks so as to give
preference to the data users want.

The MCC gathers moment data from the radars and then runs detection
algorithms on this weather data. The result of this analysis leads to a set of
weather-scanning tasks of interest for the next radar scanning cycle. The MCC
then determines the best scanning strategy for the available radars that will
maximize the sum of the utility associated with the chosen tasks according to a
utility function based on the end-user priorities. This scan strategy is used by
the NetRad radars on the next cycle.



Tasks may also be either pinpointing or non-pinpointing, meaning either
there is, or is not, a significant gain by scanning the associated volume of space
with multiple radars at once. The utility gained from scanning a pinpointing
task increases with the number of radars scanning the task; the utility for a
non-pinpointing task is the maximum utility among the individual radars that
scan the same phenomenon. The global utility is simply the sum of utilities of
all tasks. For a more in-depth description of the MCC system, see [2], or see [3]
for more details on the utility function.

2.2 Problem Formulation of Generating Radar Scan Policy

The goal of the system is to maximize the overall utility by summing the util-
ity calculated for each scanned task. Each radar can choose where to scan by
choosing a subset of phenomena in its range. The possible scanning strategies of
a radar are discretized. For each task that a radar can scan, there is a preferred
scan: one which covers the task region most tightly. The preferred scan for each
task is in the scan set as well as mergers of each pair of preferred scans into new,
combined sweeps.

For each phenomenon ti, the utility function

ui : ti → r ∈ ℜ, where 0 ≤ r ≤ 1 (1)

is determined by the priority of the requesting user or the weather pattern.
Also, there is a function for the quality of scan for each phenomenon ti

qi : ti × (r1, . . . , rn) → r ∈ ℜ, where rj denotes the scanning policy of radar j.

(2)
The radars in the quality function argument are limited to the radars which have
the phenomena in range.

The system utility U is defined as

U =
∑

i

ui × qi. (3)

and thus the goal of the sytem at each scan cycle is to find the configuration of
radars r1, . . . , rn which maximizes the system utility U . This problem easily maps
into a constraint optimization problem where there is a variable corresponding
to each radar whose value specifies which of the possible sweeps the radar should
execute on the next scan cycle.

3 Max-Sum algorithm and Modeling on Radar Scanning

Problem

3.1 The Max-Sum algorithm

Max-Sum is a distributed message-passing optimization algorithm belonging to
the class known as Generalized Distributive Law (GDL) [4]. Max-Sum is a varia-
tion of Sum-Product algorithm but tries to maximize the global utility function.



In the Max-Sum algorithm, there is a set of variables x = {x1, x2, . . . , xm} on
which a set of functions F = {F1, F2, . . . , Fn} depend. Each function Fi = Fi(xi),
xi ⊂ x. The goal is to find x∗ which satisfies the following:

x∗ = arg max
x

n∑

i=1

Fi(xi) (4)

Therefore, the Max-Sum algorithm can be viewed as a constraint optimiza-
tion algorithm and we are looking for the settings of variables which maximize
the sum of a set of local utility functions. To achieve this, the Max-Sum algo-
rithm defines a factor graph by creating a node for each variable and for each
function. The graph is bipartite, and a function node is connected to a variable
node if the corresponding function is dependent upon that variable. The bulk of
the algorithm is in the messages passed between nodes, which are:

Variable i to Function j:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (5)

Here αij is a scalar set such that
∑

xi
qi→j(xi) = 0, and Mi contains the

indices of function nodes connected to variable node i.
Function j to Variable i:

rj→i(xi) = max
xj\i

[Fj(xj) +
∑

k∈Nj\i

qk→j(xk)] (6)

where Nj contains the indices of variable nodes connected to function node j in
the factor graph.

If the factor graph is cycle-free, then the messages are guaranteed to converge,
and the resulting solution will maximize

∑n

i=1
Fi(xi). When the graph contains

cycles, the messages may not converge, and even if they do the resulting solution
may be sub-optimal. Empirical results show that even in this case, the algorithm
frequently provides good solutions [1].

3.2 Modeling Max-Sum in the NetRad system

We explored two formalizations to implement Max-Sum in the NetRad system.
The first of two formalizations (which we call coarse-grained) is based on the
one proposed in [5] where a variable and a function node is created for each
MCC. The variable node represents the joint scanning strategy of all radars
controlled by the MCC and the domain size of this single variable is quite large.
The function node represents the utility for all tasks which can be performed
by the MCC. A function node is connected to a variable node if the function
could conceivably depend on the variable, that is, if the MCCs are the same or
neighbor each other. As some of the tasks are shared by multiple MCCs, each
function node considers the same tasks multiple times, so we divide the utility of
a task by the number of function nodes counting it. The function node considers



configurations of directly connected radars in the neighboring MCCs to minimize
the size of configurations considered in each function node.

The second formalization (which we will call fine-grained) disregards the
MCC organization and works at a finer granularity of individual radar rather
than at the MCC level. Each radar is regarded as its own variable whose domain
is the set of allowable scans it may perform. Each task is its own function node
whose value is the single-task utility discussed in Section 2. A function node
is connected to a variable node if the radar is capable of scanning the weather
phenomenon associated to the task.

The two formalizations have their own advantages. The factor graph for the
first formalization is independent of the number of tasks in the system and
even to some extent how the radars are assigned to MCCs. Additional tasks
only increase the size of the variable domains in the first formalization, not the
number of function nodes to which variable nodes are attached.

The first formalization has much bigger domains for the values each variable
and function node can take. Without well-designed heuristics, the computational
complexity is too high to be applied directly. With 10 values for each variable
nodes, the common size of the domain for function nodes is 1210 where 4 radars
belong to one MCC (configuration of 4 radars in an MCC and 8 neighboring
radars). This makes the straightforward application of the first formalization
undesirable in the on-line settings and a heuristic to cut down the complex-
ity should be used. Therefore, we mainly experimented with the fine-grained
formulation of the Max-Sum algorithm for this application domain.

3.3 The Max-Sum algorithm with Initial Policy

In the Max-Sum algorithm, a node’s outgoing messages are dependent upon the
incoming messages it received in the prior cycles. At the start of the algorithm,
no messages have been sent, so certain initial values must be used. The obvious
choice is to set all values for messages not received to zero. In this way, initial
variable node messages are uniform functions, indicating no preference for any
specific variable assignment. A function node j’s initial message to a variable
node i indicates only the maximum local utility Fj given xi.

If we were to stop here, each variable i would take on the value

x̃i = argmax
xi

∑

j∈Ni

max
xj\i

Fj(xj) (7)

In other words, each variable would set itself in order to maximize the local
utilities of neighboring functions assuming those functions get best-case settings
of other variables for the local utility. This initial state is not only determined
by a fairly local optimization, but it does so by assuming maximizations which
may be neither mutually compatible nor even close to optimal for other parts of
the factor graph.

As the algorithm proceeds, more global information begins to become incor-
porated in the messages; however, it is unclear whether encoding more global



information in the initial messages might lead to convergence to better solutions,
faster convergence, or even convergence when the algorithm would otherwise fail
to do so in loopy factor graphs.

We would like to be able to take some global variable assignment produced
by some optimization technique and introduce it somehow as a starting con-
figuration to replace that in Equation 7. To do so, we modified the algorithm
to always start with function nodes sending messages at the beginning of the
algorithm.

Once the optimization algorithm of choice has been used to construct a vari-
able assignment x̂, function nodes send the following messages to the connected
variable nodes. Here j is the index of the function node and i that of the variable
node.

rj→i(xi) = Fj((x̂j \ i) ∪ xi) (8)

This is the value of Fj when i has state xi and all other variables use their states
from the solution x̂.

After receiving these messages, if a variable node were to take on a value, it
would be:

x̃i = argmax
xi

∑

j∈Ni

Fj((x̂j \ i) ∪ xi) (9)

Proposition 1 If the assignment x̂ is such that no individual variable can by

itself change its value to increase the global utility, then x̂ is a solution to the

assignment constraints imposed by Equation 9. If changing any individual vari-

able’s value will strictly decrease the global utility, then x̂ is the unique solution

for Equation 9.

Proof. From the perspective of an arbitrary variable node i, all other nodes are
fixed to the configuration specified by x̂. Maximizing

∑
j∈Ni

Fj((x̂j \ i) ∪ xi)
leads to maximize the global utility given the values of other variables. This is
because only the functions for nodes j ∈ Ni are affected by xi.

If x̂i were not a solution to this, then the algorithm which selected x̂i to
be part of x̂ could have instead selected x̃i to receive a higher utility. Since by
supposition, no individual variable can change its value to increase the global
utility, x̂i is a solution to Equation 9. If changing any variable’s value in x̂ will
decrease the global utility, then there can be only one solution to Equation 9.
Since x̂i is a solution, it must be the unique solution.

Thus, in the sense of the above property, we can insert a variable assignment
into a factor graph as a starting solution. The property requires that no single
variable can change its value to increase the utility. This is a desirable property
for an optimization algorithm to have, and a fairly lax one. Any algorithm which
does not satisfy this constraint can be followed by a hill-climbing procedure in
order to meet the requirement of Property 1.

In addition to what Property 1 can tell us, Equation 9 by itself looks quite
a bit better than Equation 7. While the assignment still only considers directly
neighboring function nodes, it does so using better assumptions. For nodes other



than itself, it assumes a configuration that is known to exist rather than a
separate maximization for each function node. The assumed variable assignments
are also known to be consistent with a good global utility, and xi will fit itself
into this assignment.

After the messages from function nodes to variable nodes, we allow the vari-
able nodes to send one set of messages before proceeding with the regular al-
gorithm. This is so the next set of messages from function nodes will have a
starting point other than assuming uniform functions in variable node messages.

In this paper, we focus on the performance of Max-Sum for a single snapshot
of weather and do not deal with dynamics of system; it is interesting to know
how in a dynamic setting the previous result could be used in the next cycle.

4 Experimental Results on the Performance of Max-Sum

on NetRad

We experimented with the Max-Sum algorithm described in Section 3 in various
settings. The purpose of our experiments were twofolds. We are particularly in-
terested in understaing how the algorithms perform in the cluster-organizational
setting where the whole network of radars is decomposed into several clusters
and each cluster is managed by an MCC. We also ran tests for the Max-Sum
algorithm with an initial policy and studied how the initial policy affects perfor-
mance.

4.1 Experimental Setting

To run our experiments, we used an abstract simulation environment of the Ne-
tRad radar system developed in the Farm simulator framework [6]. In this simu-
lator, weather tasks are abstracted as circular areas as shown in Figure 1(a), and
time is discretized into system heartbeats. Aspects such as the utility function,
the effective range of radars, and the separation between radars, however, are
the same as in the operational testbed. For more information on the simulation
environment, see [7].

We compared the results of several optimization techniques over a number
of trials; what varies is the number of radars, number of weather phenomena in
the environment and spatial extent of weather phenomena. To make the results
more easily interpretable, each trial is run for only one scan cycle. By only being
concerned with one scan cycle in isolation, the difference among approaches can
be seen more clearly; if a trial is involved multiple scan cycles the result of
previous scan cycles decisions will affect the set of tasks available in the next
scan cycle; thus making a direct comparison among approaches more difficult.

4.2 Performance of Max-Sum in Two Modeling

We first experimented with the two modelings of Max-Sum described in Sec-
tion 3.2 on the 12-radars network. The problem with 12 radars is trivial in a sense
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Fig. 2. The performance (a) and time complexity (b) of two Max-Sum modelings on
12-radar network with 12 weather phenomena. Both modelings are able to solve the
problem with a similar quality. However the local optimization step in function nodes
in coarse-grained modeling takes too much time, showing that the fine-grained mod-
eling exploits the simplicity of the Max-Sum algorithm. (c) Value trend of Max-Sum
over multiple cycles in 48 radar network. Max-Sum shows convergence and anytime
algorithm characteristics by converging to a final value within 5 cycles for most cases
and the result of first cycle being also close to the final solution.

that different algorithms found the same solution with the same utility, but the
coarse-grained version takes too much time because of the computation in large
function nodes. The straightforward application to the cluster-organizational
structure in the coarse-grained model leads to difficult subproblems with large
domains in function nodes. This is a known problem with the Max-Sum algo-
rithm: the complexity of function nodes increases exponentially very easily with
the number and domain size of connected variable nodes and heuristics should be
used to reduce the complexity. It is better to avoid such exponential explosion.
Although the coarse-grained model is formulated along the decomposed models
with two steps of local and global optimization aligning the system structure, the
model does not exploit the full benefit of simple local computation of Max-Sum
whereas the fine-grained formulation does.

In addition, the performance of the fine-grained Max-Sum algorithm in the
48-radar setting shows its anytime property where it converges to a close to
optimal solution very quickly.

4.3 Performance of the Max-Sum algorithm on NetRad System in

Comparison to Other Algorithms

In this section, we evaluate the performance of several alternative optimization
algorithms, while varying the number of radars and the number of phenomena
to show the performance of the Max-Sum algorithm in the domain with the
cluster-organizational structure. We compare the performance of fine-grained
implementation of Max-Sum decentralized message-passing algorithm to a de-
centralized negotiation algorithm [7] and a centralized optimization algorithm
based on a genetic algorithm that is currently used for local optimization in the
negotiation algorithm in each MCC.

The negotiation algorithm, specifically developed for the NetRad problem
domain, is an iterative two step process perfromed concurrently at each MCC.
In the first step each MCC performs a local optimization based on its local tasks



and knowledge of how neighboring MCCs scan schedules are related to its local
tasks. In the second step, the MCC negotiates with their neighbors so as to make
adjustments to their scheduling based on the strategy of other MCCs. This two
step process for performing the distributed optimization tries to maximize the
parallelism at the MCC level and to minimize communication among MCCs.

In contrast, the Max-Sum algorithm does not consider such an organizational
structure and is completely decentralized. The Max-Sum algorithm does not ex-
plicitly take into account that certain links are within an MCC cluster and others
are between MCC clusters. The genetic algorithm uses a centralized approach;
no communication is required and it only utilizes one processor.

Performance for Different Network Sizes In order to evaluate the general
performance and the scalability of the algorithms, we compare the performance
on different sized networks. In the scenarios, there are the same number of phe-
nomena as the number of radars in the network; the size and location of the
phenomena are randomly chosen. The result is shown in Figure 3. The perfor-
mance quality of Negotiation and Max-Sum is close for all network sizes whereas
the performance of the centralized genetic algorithm is always inferior to these
algorithms. This result show that the Max-Sum algorithm is able to handle the
problem well without explicitly exploiting the clustering of radar controllers.

Each bar in Figure 3(b) shows the total time taken to run the algorithm in
a single processor and shows that the Max-Sum algorithm quickly converges to
a solution as good as the result of Negotiation algorithm. However, the result
does not consider any benefit of decentralized computation of both algorithms
and the estimated time for the decentralized setting is given as well.

The lower stacks in Figure 3(b) represents the estimated computation time
when the algorithms are run in the decentralized setting. The estimated time
is computed as the sum of the longest local computation time for each round.
In both negotiation algorithm and the Max-Sum algorithm, each MCC, when
the local computation is done, waits for other MCCs to finish the computa-
tion and then they exchange messages. Therefore, the time complexity in the
decentralized setting results from the sum of the longest time taken in the lo-
cal computation for each round. The Max-Sum algorithm benefits in terms of
decreased computational time and higher quality from the conceptually more
decentralized computational structure though it pays some cost in terms of ad-
ditional communication among MCCs and still have a comparable performance
to the negotiation algorithm.

In addtion, in order to assess the communication burden of Max-Sum, we
measured the number of messages exchanged across MCCs and compare it with
that of negotiation algorithm as in Figure 3(d). When only messages exchanged
across MCCs are counted, Max-Sum needs more than twice the communication
than the negotiation algorithm. In Section 4.4, we will discuss a variant of the
Max-Sum algorithm(MS2L) that has comparable communication efficiency as
the negotiation algorithm without sacrificing its computational efficiency.



48 96 144 192
0

50

100

150

200

250

Number of Radars

U
til

ity

 

 

Gen
MS
Neg
MS2L
Max

(a) Performance Quality

48 96 144 192
0

100

200

300

Number of Radars

T
im

e(
s)

 

 

Gen
MS
Neg
MS2L

(b) Time complexity

48 96 144 192
0

20

40

60

80

Number of Radars

T
im

e(
s)

 

 

Gen
MS
Neg
MS2L

(c) Time complexity Decentralized

0 48 96 144 192
0

100

200

300

Number of RadarsN
um

be
r 

of
 M

es
sa

ge
s 

pe
r 

M
C

C
 

 

 

N
MS
MS−MCC
MS2L
MS2L−MCC

(d) Number of Messages

48 96 144 192
0

100

200

300

400

Number of Radars

T
ot

al
 C

om
m

un
ic

at
io

n 
A

m
ou

nt

 

 

MS
Neg
MS2L

(e) Total Amount of Communica-
tion

Fig. 3. Gen:Genetic MS:Max-Sum Neg:Negotiaton MS2L:Max-Sum-2-Level MS-
MCC:Max-Sum across MCCs only, and MS2L-MCC:Max-Sum-2-Level across MCCs
only. The performance (a) and time complexity (b) and estimated computation time
in a decentralized setting(c) of algorithms on different sizes of the network given the
same number of tasks (weather phenomena) as the number of radars. The lower stacks
in (b) represent the estimated computation time in a decentralized setting which are
also separately shown in (c). It shows that the fine-grained version of the Max-Sum al-
gorithm is able to solve the problem with a similar quality to the negotiation algorithm
more quickly. (d) The number of messages of negotiation and Max-Sum per MCCs.
Max-Sum across MCCs only represents the number of messages sent across MCCs in
Max-Sum. (e) Total amount of communication in terms of the average size of messages
× the number of messages. Message size is measured in terms of number of utility
values in the messages.



Performance varying with the ratio of the number of phenomena to

the number of radars In the next experiment, we increase the number of
phenomena in a 48-radar network, thereby requiring more coordination between
radars and studied how the algorithms perform. While the quality of solution
of Max-Sum is slightly better, the time complexity of the Max-Sum algorithm
sharply increases because the number of function nodes in Max-Sum increases
as more weather phenoemena are added.
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Fig. 4. The performance quality (a), time complexity (b) and number of messages (c)
of algorithms on different number of phenomena. The basis is 48 weather phenomena
and this is increased to 120 phenomena.

When the number of phenomena increases, the maximum number of vari-
able nodes per each function nodes increases. This leads to a computational
complexity hike in Max-Sum as shown in Figure 4(b). Also, the number of mes-
sages across MCCs increases as there are more tasks shared by multiple MCCs
in the environment. In contrast, number of messages in the negotiation algo-
rithm decreases due to the failed negotiations resulting in early termination. It
is observed throughout the experiments that the negotiation algorithm termi-
nates early with a suboptimal solution after one or two negotiations when the
problem gets difficult as shown in this experiment.

4.4 Performance of Max-Sum in a Two-Level Hiearchy

In the previous results, the fine-grained version of the Max-Sum algorithm shows
good performance in the domain without exploiting the cluster-organizational
structure. We then modified the algorithm to exploit this system structure and
experimented on the Max-Sum algorithm with a two-level hiearchy. That is, we
ran the Max-Sum algorithm on the MCC-level factor graphs consisting of only
the nodes in each MCC for three rounds and then optimized on the global-level
factor graph as normal.

The result in Figure 3 shows that Max-Sum in two-level actually beats the
performance of the regular Max-Sum algorithm in every aspect we experimented
on. The performance quality remains similar to Max-Sum and the time com-
plexity decreases. The computation on the factor graph with local nodes only
is much simpler than on the global-level factor graph and also the result of this
computation leads to a quicker convergence on the global level.



As messages are exchanged only within MCCs for three rounds, the num-
ber and size of messages also decreases. The result in Figure 3(d) shows that
the number of messages of Max-Sum in two level is smaller than negotiation
algorithm. This result indicates that in this domain Max-Sum does not neces-
sarily need to exploit the cluster-organizational setting, but the use of the setting
benefits the algorithm.

4.5 Performance using Initial Policy

As a final set of experiments, here we present the result on an extension of
the Max-Sum algorithm described in Section 3.3. As in Section 3.3 we tried
to augment the algorithm with an initial policy for guiding the optimization
process. For testing the algorithm with an initial policy, we tested two kinds of
initial policy, one random and the other generated by a centralized optimization
- a genetic algorithm. As explained, this initial policy is given to function nodes,
which send messages that lead the variable nodes to have preference for a scan
policy maximizing the utility given the initial policy of other variable nodes.

To show the effect of the initial policy on the Max-Sum algorithm, we started
the algorithm with initial random policies for two specific weather scenarios. As
in Figure 5(a), the final solution quality does not vary even with different initial
policies. This shows that the Max-Sum algorithm is resilient to initial policies
even with cycles in the factor graph.
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Fig. 5. (a) The performance quality of Max-Sum with randomly generated initial policy
given two fixed phenomena (one symbol for each phenomenon). (b) The performance
of Max-Sum with initial policy using a result from the genetic algorithm (c) Time
complexity of Max-Sum with initial policy using a result from the genetic algorithm.
total denotes the time for both caculating the initial policy with genetic algorithm and
calculating Max-Sum.

Additionally, we initialized the Max-Sum algorithm with a better initial pol-
icy since randomly generated initial policy can be very ineffective. We took the
solutions from the genetic algorithm for each MCC whose value is suboptimal in
comparison to other algorithms but generally better than random policies and
give them as initial configurations. As shown in Figure 5, the performance does
not improve except for a reduction in time. However, including the time taken
to compute the policy negates the gain in time. This result is interesting in that



Max-Sum is very resilient to the initial policy and even when it is given a skewed
value during the computation, the algorithm still converges to a similar solution.

5 Conclusion

The Max-Sum algorithm is an approximate constraint optimization algorithm
using message passing. We applied the algorithm in the NetRad system for coor-
dinating weather-sensing radars. In this system, fine-grained modeling of Max-
Sum worked well even without utilizing the cluster-organizational structure while
not requiring much more communication than negotiation algorithm. Also, the
coarse-grained modeling of Max-Sum has shown the limitation of utilizing the
decomposed structure as the local computational burden is too high. We also
applied Max-Sum in the two-level hierarchy which works with the local nodes
within the MCC at the beginning and later expand the scope to the whole net-
work. This version of the Max-Sum algorithm proved the benefit of using the
organizational structure, spending less computation time and less number of
messages than all other algorithms. Finally, we applied initial policies designed
to improve the algorithm. However, the Max-Sum algorithm showed that it is
very resilient to a transient preference towards a given configuration.

The Max-Sum algorithm has a well-known limitation of computational ex-
plosion for function nodes and our experiment with the fine-grained version also
suffers from such explosion when the the number of phenomena and radar radius
are increased. This work on the Max-Sum algorithm suggests some directions
for future research. One is to study ways for decomposing the function nodes
connected to many variable nodes. In a series of experiments on various set-
tings not shown in this paper due to space limitations, the algorithm suffer from
computation explosion as the number of phenomena and radar radius increases.
Although many heuristics were proposed to guide the search in the function
node itself, it would be beneficial to minimize the size of the function nodes by
decomposing the search space into smaller ones. For instance, the function nodes
in the domain can be decomposed into a set of smaller function nodes for each
radar for non-pinpointing tasks as the final utility of such tasks comes entirely
from a single radar.

Another possible direction is a decomposition of factor graph where the con-
nection is loose. Temporarily restricting the connections to a subset of variable
nodes based on the factor graph will greatly reduce the complexity of the function
nodes. This will also reduce the communication burden given on the Max-Sum
algorithm as well as the computational complexity.

Finally, as shown in the experiment on initial policies, Max-Sum is very
resilient to a transient preference for a specific configuration. This might also
mean that in a dynamic environment when tasks are changing, Max-Sum could
adapt to the change well as it can find the same final solution from any starting
point. Also, in a sense that the problem is loosely connected across the whole
network, a local change in the problem would not affect the solution globally
and only partial solution should be recomputed.
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