
A FRAMEWORK FOR THE ANALYSIS OF
SOPHISTICATED CONTROL

Robert C. Whitehair

UMass CMPSCI Technical Report 95-******
February 1996

Department of Computer Science
University of Massachusetts
Amherst MA 01003-4610

EMAIL: whitehair@cs.umass.edu

This work was supported by DARPA contract N00014-92-J-1698, Office of Naval Research contract N00014-
92-J-1450, and NSF contract CDA 8922572. The content of the information does not necessarily reflect the
position or the policy of the Government and no official endorsement should be inferred.

A FRAMEWORK FOR THE ANALYSIS OF SOPHISTICATED CONTROL

A Dissertation Presented

by

ROBERT C. WHITEHAIR

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 1996

Department of Computer Science

c� Copyright by Robert C. Whitehair 1996

All Rights Reserved

To my parents, Charles and Margaret Whitehair.

iv

ACKNOWLEDGMENTS

My father was a scientist. When I was growing up, he used to make me read biographies
of famous scientists. He used to tell me, “You never know what they are going to ask at your
thesis defense.” He told me this when I was in sixth grade.

Through his assigned readings and many hands on learning experiences I won’t describe
here (they involve the word “eviscerate”), my father impressed on me the importance of science
as the study of the natural world. In essence, he taught me that science is a process of building
models that describe the natural world, testing the accuracy of the models, and then building
new models based on the results of the testing. This impression has had a profound influence
on me and the work described in this thesis. As a direct consequence of it, I have sought to
develop a framework that supports the study of the aspects of computer science and artificial
intelligence that can be said to exist in the natural world. (Sorry, if you want more details you
will have to read the thesis. If you are hesitant, I am happy to encourage you by stating that
the word “eviscerate” does not appear again in this dissertation.) Thanks, Dad. This is for you.

I want to thank Victor Lesser for his part in creating this framework. His most important
contribution may not be recognized by those who actually read this thesis. This contribution
is the wealth of ideas, many of them profound, that Vic has amassed during his career. This
thesis was motivated by a desire to better understand a small portion of these ideas and their
relationship to other profound ideas and to models of the natural world. I also want to thank
Victor for all his support and friendship during our years together.

Michele Roberts – Thanks! Without you, I have no doubt that Vic’s research groups would
have self-destructed long ago!

I want to thank everyoneon my committee for their input and suggestions. Norm Carver is
clearly owed the largest allotment of gratitude. His comments on previous papers, suggestions,
questions, and guidance were extremely valuable. In addition, Norm’s work on differential
diagnosis is one of the significant concepts that my framework is intended to study. Also,
Shlomo Zilberstein, Allen Hanson, and George Avrunin made important suggestions and
comments that have been incorporated into this dissertation and I would like to thank them
for their efforts.

I cannot imagine a more talented, creative, intelligent, and enjoyable environment in
which to study than what I experienced at Umass. For this I would like to thank all the
members of the Distributed AI Lab and the Umass community at large. This includes (in no
particular order) Dan Neiman, Keith Decker, Allen “Bart” Garvey, Zarko Cvetanovic, Dave
Westbrook, Teri Westbrook, Dave Hildum, Marty Humphrey, Ed Durfee, Joe Hernandez,
Frank Klassner, Dorothy Mammen, Malini Bhandaru and many others. I especially want
to thank Maram “Naghi” Nagendraprasad and Toumas Sandholm for their comments and
contributions. Toumas, we’ll get that chess game in yet! (Sorry, but if I mention Dave
Hart, then I have to mention Al Kaplan, Lori Molesky, Gary Wallace, Bob Cook, and Zack
Rubinstein, and I am never sure how to spell “Rubinstein” so I will have to thank all of you en
masse along with Steve Bradtke and Tony Hosking. Sorry I can’t fit you all in!)

v

Gary and Melanie Tallmon, thank you. I am not sure what you contributed to this thesis,
but you are great friends. (Gary told me he would like to see his name in a book someday.
This is the least I can do for him.)

I guess I better thank Jim Sleight while I am mentioning friends. I don’t know what I
would have done without his insightful email and wise council. Jim, this is for you: “xxoo.”
(Anthony, I would thank you, too, but you were off frolicking in Africa.)

Softball and basketball teams: “thanks!” If anything, you delayed the completion of this
thesis, but you made it fun!

I feel I must thank many members of the Umass faculty and other academic and industrial
researchers. I don’t dare try to name names - the list is far too long. I must, however, make one
exception – I would like to thank Ludwig “language precedes thought” Wittgenstein. (He is
one of my intellectual heros.)

I guess I need to thank John Forsyth for an untold number of things, including telling me
to go to Umass and giving me an instructor’s job at MSU. When I think about it, if it hadn’t
been for John luring me out of a lucrative, high-paying industrial job. Without his wisdom
and guidance, I never would have chosen this path. Thanks for saving me, John! I would buy
you lunch but – well, you probably remember what it is like to be a poor grad student.

I also want to thank Glen Keeney. His persistent cynicism and goading are what really
pulled me through this ordeal! (You’re it!) Glen, I WILL buy YOU lunch.

Thank you to everyone who contributed to the efforts to apply these ideas in the “real-
world.” Thanks Ian, Pete, Monty, Vladimir, Igor, and everyone!

Thank you, family, I love all of you. Thanks for all the support, Stan. I know you tried
not to ask, “Are you done yet?” I really appreciate it. Mom, you’re the greatest. Thanks for the
cookies and for not making me dissect anything. Thanks, Ethel, wherever you are! You are a
real inspiration!

Finally, thanks Kathy. For everything. (“More than anything!”)

vi

ABSTRACT

A FRAMEWORK FOR THE ANALYSIS OF SOPHISTICATED CONTROL

FEBRUARY 1996

ROBERT C. WHITEHAIR

B.S., MICHIGAN STATE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor R. Lesser

This dissertation addresses problems associated with the lack of design theories for AI

problem solving systems. The principle focus of the work is the introduction and demonstration

of a framework for the analysis of sophisticated search control architectures applied in complex

problem domains. The thesis associated with this work is that real-world problem domains

and problem solving architectures can be represented formally and that these representations

can be used to analytically predict and explain a problem solver’s performance. Further, the

implications of this work are that useful approximations and abstractions can be derived from

such formal representations and used to design sophisticated control mechanisms. The ultimate

objective of this work is to use these representations as the basis of design theories for building

problem solving architectures and dynamic control algorithms.

The framework is based on two formalisms, the Interpretation Decision Problem (IDP),

which models both the structure of a problem domain and the structure of a problem solving

architecture, and the UPC formalism, which provides a general quantitative model of search

spaces that can be used in the analysis of problem solving control. Using these models, the

problem structures of disparate domains and the problem solving architectures constructed to

exploit these structures can be viewed from a unified perspective where control and problem

vii

solving actions can be considered a single class of problem solving activity. Models built

from this unified perspective offer advantages for describing, predicting and explaining the

behavior of blackboard-based interpretation systems and for generalizing a specific problem

solving architecture to other domains. Use of the IDP and UPC formalisms also supports the

synthesis of new, more flexible problem solving architectures.

This dissertation demonstrates how the framework can be applied by analyzing a vehicle

monitoring interpretation problem domain and associated problem solving architectures,

including a heuristic, multi-level blackboard-based system. Definitions, examples, and ex-

perimental results are given for general structures from interpretation problem domains and

blackboard-based problem solving architectures. Design principles for general problem solving

strategies that exploit the structures are discussed.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS � v

ABSTRACT � vii

LIST OF TABLES � xv

LIST OF FIGURES � xvi

CHAPTERS

1. INTRODUCTION � 1

1.1 Defining Sophisticated Control, Interpretation Problems, and Complex Do-
mains � 8

1.2 Formally Specifying Domain Structures and Problem Solving Architectures 9
1.3 Defining Quantitative Analysis Tools and Methodologies � � � � � � � � � 12
1.4 Formally Specifying the Structure of Search Spaces and Control Algorithms 13
1.5 Unifying the Representation of Meta-Level and Base-Level Processing � � � 15
1.6 Introducing the Concept of Potential � � � � � � � � � � � � � � � � � � � 17
1.7 Establishing an Experimental Approach � � � � � � � � � � � � � � � � � � 18
1.8 Defining the Pruning, Preconditions, Goal Processing, and Approximate

Processing Sophisticated Mechanisms � � � � � � � � � � � � � � � � � � � 22
1.9 Demonstrating the Analysis of Heuristic Control � � � � � � � � � � � � � 24
1.10 Defining Design Methodologies � 25

2. RELATED RESEARCH � 27

2.1 Complex and Restricted Problem Domains � � � � � � � � � � � � � � � � 29
2.2 Sophisticated and Local Control � 31
2.3 Representing Complex Domains � 35
2.4 Related Research � 36
2.5 Generalizations � 37
2.6 Chapter Summary � 39

3. INTERPRETATION PROBLEMS AND THE IDP FORMALISM � � � � � � � � � � � � � � � � � � 41

3.1 Convergent Search Spaces � 42
3.2 Defining Problem Structures � 45
3.3 Structural Interaction � 50
3.4 Interpretation Problem Solving and Formal Problem Solving Paradigms � � 51
3.5 Chapter Summary � 52

ix

4. DEFINING IDP STRUCTURES � 54

4.1 Inherent Uncertainty � 54

4.1.1 Ambiguity � 55
4.1.2 Noise � 56
4.1.3 Missing Data � 60
4.1.4 Distortion � 62
4.1.5 Masking � 63

4.2 Operator Organization � 64
4.3 Redundancy � 64
4.4 Interacting Subproblems � 66

4.4.1 Defining Interacting Subproblems � � � � � � � � � � � � � � � � � 67
4.4.2 Representing Interacting Subproblems With the IDP Model � � � � 70

4.5 Non-Monotonicity and Bounding Functions � � � � � � � � � � � � � � � 72

4.5.1 Non-Monotonicity � 72
4.5.2 Bounding Functions � 74
4.5.3 Representing Bounding Functions With the IDP Model � � � � � � 75

4.6 Generating Problem Instances with the Feature List Convention � � � � � � 77
4.7 Representing Real-World, Complex Domains � � � � � � � � � � � � � � � 86

4.7.1 Interacting Phenomena � 86
4.7.2 Noise � 88
4.7.3 Correlated and Uncorrelated Noise � � � � � � � � � � � � � � � � 89
4.7.4 Missing Data � 90

4.8 An Example of Basic Analysis Using IDP Models � � � � � � � � � � � � � 90

4.8.1 Goal Processing � 92

4.9 Chapter Summary � 99

5. QUANTITATIVE ANALYSIS AND EXPERIMENTATION WITH BASIC IDP MODELS � � � � 100

5.1 Measuring the Complexity of a Domain - Calculating E�C� � � � � � � � � 103

5.1.1 Calculating State Frequencies � � � � � � � � � � � � � � � � � � � 103
5.1.2 Calculating Base Frequencies for Singularities � � � � � � � � � � � 106
5.1.3 Calculating Base Frequencies for Non-Singularities � � � � � � � � 107
5.1.4 Adjusting Base Frequencies for Pruning � � � � � � � � � � � � � � 107
5.1.5 Calculating Precedence Relations � � � � � � � � � � � � � � � � � 109

5.2 Calculating Expected Operator Cost � 112
5.3 Calculating Expected Correct Answers � � � � � � � � � � � � � � � � � � � 112
5.4 Calculating E�C� and Expected Frequencies � � � � � � � � � � � � � � � � 112
5.5 Chapter Summary � 113

x

6. IMPLEMENTING IDP BASED PROBLEM SOLVING SYSTEMS – THE UPC MODEL � � � 114

6.1 Overview of the UPC Formalism � 114
6.2 UPC States and the IDP Formalism � 116
6.3 UPC Representation � 116
6.4 A Basis for Analysis - An Optimal Objective Strategy � � � � � � � � � � � � 121

6.4.1 Defining Optimal Interpretations � � � � � � � � � � � � � � � � � 121
6.4.2 Defining an Optimal Interpretation Objective Strategy � � � � � � 122
6.4.3 Local Control Issues - A Brief Discussion � � � � � � � � � � � � � 125

6.5 Determining UPC Vector Values � 126

6.5.1 UPC Vector Values in a Simple Grammar � � � � � � � � � � � � � 126
6.5.2 UPC Vector Values with Noise and Missing Data � � � � � � � � � 129

6.6 Discussion � 135
6.7 Quantitative Effects of Structural Interaction � � � � � � � � � � � � � � � 136
6.8 Chapter Summary � 138

7. EXPERIMENTAL VERIFICATION OF THE BASIC FRAMEWORK � � � � � � � � � � � � � � � � 139

7.1 Experiment Set 1 � 139

7.1.1 Experiments 1, 2 and 3 � 141
7.1.2 Experiments 2 and 3 � 141
7.1.3 Experiments 4 and 5 � 141
7.1.4 Experiments 6 and 7 � 143

7.2 Experiment Set 2 � 143

7.2.1 Experiment 8 � 144
7.2.2 Experiment 9 � 144
7.2.3 Experiment 10 � 144
7.2.4 Experiment 11 � 144
7.2.5 Experiment 12 � 146
7.2.6 Experiment 13 � 146
7.2.7 Experiment 14 � 146
7.2.8 Experiment 15 � 146
7.2.9 Experiment 16 � 146
7.2.10 Experiment 17 � 147

7.3 Chapter Summary � 147

8. EXTENDING THE UPC FORMALISM � 148

8.1 Related Research � 148
8.2 Formalizing Projection Spaces � 149
8.3 Projection Space Example � 150
8.4 Chapter Summary � 154

xi

9. POTENTIAL - THE BASIS FOR SOPHISTICATED CONTROL � � � � � � � � � � � � � � � � � � 155

9.1 Calculating Potential � 160
9.2 An Example of Potential � 164
9.3 Incorporating Potential in Control Decisions � � � � � � � � � � � � � � � 167
9.4 Initial Experiments with Potential � 168

9.4.1 Experiments 1 and 18 � 169
9.4.2 Experiment 19 � 169
9.4.3 Experiment 20 � 171

9.5 Chapter Summary � 171

10. REPRESENTING SOPHISTICATED CONTROL TECHNIQUES � � � � � � � � � � � � � � � � � 173

10.1 Representing Preconditions � 175
10.2 Representing Goal Processing � 178
10.3 Representing Clustering and Abstract Level Processing � � � � � � � � � � � 183

10.3.1 Generating Abstract Clusters Through Aggregation � � � � � � � � 183
10.3.2 Generating Abstract States Through Search and Knowledge Approx-

imation � 187
10.3.3 Processing Abstract Clusters � 193
10.3.4 Mapping Abstract Results to the Base Space � � � � � � � � � � � � 194

10.4 Chapter Summary � 195

11. EXPERIMENTAL APPROACH WITH A HEURISTIC PROBLEM SOLVER � � � � � � � � � � � � 196

11.1 The Experimental Problem Domain � 196
11.2 The Experimental Problem Solving Architecture � � � � � � � � � � � � � � 198

11.2.1 Precondition Mechanisms � 205
11.2.2 Pruning Mechanisms � 205
11.2.3 Goal Processing � 206

11.3 Experimental Results � 207
11.4 Experiments with a Complex Grammar � � � � � � � � � � � � � � � � � � 207
11.5 Experiments with Preconditions � 208
11.6 Experiments with Pruning � 208
11.7 Experiments with Goal Processing � 211
11.8 Experiments with Verifying Preconditions � � � � � � � � � � � � � � � � � 211
11.9 Experiments with Alternate Evaluation Functions � � � � � � � � � � � � � 211
11.10Chapter Summary � 214

12. TOWARD GENERAL DESIGN PRINCIPLES AND THEORIES � � � � � � � � � � � � � � � � � � 216

12.1 Analysis and Design Techniques for Approximate Processing � � � � � � � � 216
12.2 Simple Approximate Processing Examples � � � � � � � � � � � � � � � � � 222
12.3 Extended Approximate Processing Examples � � � � � � � � � � � � � � � � 226
12.4 Basic Analysis Tools and Techniques � 234
12.5 Architectural Design Issues � 239

xii

12.6 Dynamic Control Design Issues - Estimating UPC Values � � � � � � � � � 244
12.7 Arity � 244
12.8 Utility Analysis � 247

12.8.1 Calculating Solution Credibility Frequency Maps � � � � � � � � � 250
12.8.2 Calculating Domain Credibility Maps � � � � � � � � � � � � � � � 251

12.9 Chapter Summary � 251

13. EXPERIMENTS WITH APPROXIMATE PROCESSING � 253

13.1 Modifications � 257
13.2 Experimental Details � 257
13.3 Chapter Summary � 258

14. CONCLUSION � 259

14.1 Defining Sophisticated Control, Interpretation Problems, and Complex Do-
mains � 260

14.2 Formally Specifying Domain Structures and Problem Solving Architectures 260
14.3 Defining Quantitative Analysis Tools and Methodologies � � � � � � � � � 263
14.4 Formally Specifying the Structure of Search Spaces and Control Algorithms 265
14.5 Verification Experiments � 266
14.6 Unifying the Representation of Meta-Level and Base-Level Processing � � � 267
14.7 Introducing the Concept of Potential � � � � � � � � � � � � � � � � � � � 268
14.8 Defining the Pruning, Preconditions, Goal Processing, and Approximate

Processing Sophisticated Mechanisms � � � � � � � � � � � � � � � � � � � 269
14.9 Demonstrating the Analysis of Heuristic Control � � � � � � � � � � � � � 272
14.10Defining Design Methodologies � 273
14.11Experiments with Approximate Processing � � � � � � � � � � � � � � � � � 274
14.12Future Directions � 275

APPENDICES � 277

A. GENERAL OBJECTIVE STRATEGIES AND THE UPC FORMALISM � � � � � � � � � � � � � � 278

A.1 Total Utility Optimality (TUO) � 279
A.2 Utility per Unit Cost Optimality (UUCO) � � � � � � � � � � � � � � � � 279
A.3 Minimum Cost (MC) � 280

B. MAPPING STRATEGIES � 281

C. IMPLEMENTING AN APPROXIMATE PROCESSING SYSTEM � � � � � � � � � � � � � � � � � � 283

C.1 Defining Projection Spaces � 284
C.2 Belief Representation and Uncertainty � � � � � � � � � � � � � � � � � � � 284
C.3 Modifying the Problem Solving Architecture � � � � � � � � � � � � � � � � 288

C.3.1 Data Representation � 288
C.3.2 Knowledge Organization � 289

xiii

D. EXAMPLE OF FREQUENCY MAP CALCULATION � 293

D.1 Frequency Map Calculation, Phase I � 294

D.1.1 Singularity CSS Calculation � 294
D.1.2 Singularity Frequency Map Calculation � � � � � � � � � � � � � � 294

D.2 Frequency Map Calculation, Phase II � � � � � � � � � � � � � � � � � � � 296

D.2.1 Non-Singularity CSS Calculation � � � � � � � � � � � � � � � � � 296
D.2.2 Non-Singularity Frequency Map Calculation � � � � � � � � � � � 297

D.3 Frequency Maps and Approximate Processing � � � � � � � � � � � � � � � 300
D.4 Approximate Processing and Base Space Frequency Maps � � � � � � � � � 303
D.5 Discussion � 307

REFERENCES � 309

xiv

LIST OF TABLES

1.1 Example of IDP/UPC Experiments Comparing Alternative Meta-Level Control
Architectures � 19

7.1 Results of Verification Experiments – Set 1 � � � � � � � � � � � � � � � � � � � 142

7.2 Results of Verification Experiments – Set 2 � � � � � � � � � � � � � � � � � � � 145

9.1 Results of Verification Experiments – Potential � � � � � � � � � � � � � � � � � 170

11.1 Summary of Track and Scenario Problem Solving Operators � � � � � � � � � � � 200

11.2 Summary of Track and Vehicle Location Problem Solving Operators � � � � � � 202

11.3 Summary of Group Synthesis Problem Solving Operators � � � � � � � � � � � � 203

11.4 Summary of Ghost Group Level Synthesis Problem Solving Operators � � � � � � 204

11.5 Results of Verification Experiments – Set 3 � � � � � � � � � � � � � � � � � � � 209

11.6 Comparison of Goal Processing Experiments � � � � � � � � � � � � � � � � � � 212

11.7 Summary of Precondition Verification Experiments � � � � � � � � � � � � � � � 213

11.8 Comparison of Experiments Using Alternative Evaluation Functions � � � � � � 214

13.1 Summary of Approximate Processing Experiments � � � � � � � � � � � � � � � 255

xv

LIST OF FIGURES

1.1 Overview of the IDP/UPC Framework for Analyzing Sophisticated Control � � 4

1.2 The Basic Control Cycle � 6

1.3 Integrated Data and Goal-Directed Control � � � � � � � � � � � � � � � � � � � 7

1.4 Example of an IDP Grammar with Associated Functions � � � � � � � � � � � � 10

1.5 The Basic Approach to Calculating E�C� 12

1.6 Derivation of UPC Values for a State � 14

1.7 Representation of a Search State in the UPC Formalism � � � � � � � � � � � � 14

1.8 Explicitly Representing Meta-Level Control Actions as Components of a Problem
Solver’s Internal State � 16

1.9 The Extended IDP/UPC Control Perspective � � � � � � � � � � � � � � � � � � 17

1.10 Summary of Analysis Perspectives Supported by the IDPUPC Framework. � � � 21

1.11 Interpretation Grammar � 23

1.12 Representing Goal Processing in an Interpretation Grammar � � � � � � � � � � 24

1.13 Illustration of the Selection Problem – A Given Problem Structure Implies Different
Levels of Performance for Different Control Architectures � � � � � � � � � � 25

2.1 Representation of the State of the Problem Solver � � � � � � � � � � � � � � � � 28

2.2 Classification of Problem Domains � 30

2.3 The Basic Control Cycle � 38

3.1 Representation of an Interpretation Decision Problem � � � � � � � � � � � � � � 42

3.2 Interpretation Search Operators Shown as a Set of Production Rules � � � � � � � 44

3.3 Convergent Search Space Defined by Interpretation Grammar � � � � � � � � � � 45

3.4 Derivation of Utility and Cost Structure From Interpretation Grammar � � � � � 46

xvi

3.5 Example of Interpretation Grammar with Fully Specified Distribution, Credibility,
and Cost Functions � 48

3.6 Example of the Distribution Function � 50

3.7 Implicit Enumeration – the Role of Control � � � � � � � � � � � � � � � � � � 52

4.1 An Example of Ambiguity � 55

4.2 An Example of a Noisy Grammar Rule � 56

4.3 Interpretation Grammar G� with Added Noise and Missing Data Rules � � � � � 57

4.4 An Example of Correlated Noise - The noise in rules 3.1 and 5.1, q and r, is
correlated to an interpretation of M. � 58

4.5 Implicit Rules for Interpreting Noise � 58

4.6 An Example of Uncorrelated Noise � 59

4.7 An Example of a Missing Data Grammar Rule � � � � � � � � � � � � � � � � � 61

4.8 An Example of Correlated Missing Data - The data missing in rule 6.1, w, is
correlated to an interpretation of N. � 61

4.9 An Example of Uncorrelated Missing Data � � � � � � � � � � � � � � � � � � � 61

4.10 An Example of a Distortion Grammar Rule � � � � � � � � � � � � � � � � � � � 63

4.11 An Example of a Masking Grammar Rule � 63

4.12 Example of Operator Organization Representation � � � � � � � � � � � � � � � 65

4.13 Example of Redundancy � 65

4.14 Redundant Interpretations for Input “uvwxyz” � � � � � � � � � � � � � � � � � 66

4.15 Example of a Fully Expanded Convergent Search Space � � � � � � � � � � � � � 68

4.16 Component Set Example � 68

4.17 Result Set Example � 69

4.18 Graphical Representation of Example Interpretation Grammar � � � � � � � � � 70

4.19 Meta-Operators Expressed as Rules of a Grammar � � � � � � � � � � � � � � � � 71

4.20 An Example of a Non-Monotone Interpretation Domain � � � � � � � � � � � � 73

4.21 Example of Bounding Function Incorporated in a Grammar � � � � � � � � � � 75

xvii

4.22 Example of a Natural Language Processing System � � � � � � � � � � � � � � � 76

4.23 Generating Problem Instances with the Feature List Convention � � � � � � � � 78

4.24 The Basic Structure of the Vehicle Tracking Problem Domain � � � � � � � � � � 79

4.25 Grammar Rules for Generating Patterns and Tracks � � � � � � � � � � � � � � � 80

4.26 The Grammar-Based Problem Generation Process � � � � � � � � � � � � � � � � 82

4.27 Grammar Rules for Generating Group and Signal Data � � � � � � � � � � � � � 84

4.28 Vehicle Tracking Scenario Examples � 85

4.29 Grammar Rules for Generating Group Data for Ghost Tracks � � � � � � � � � � 87

4.30 Grammar Rules for Generating Random Noise � � � � � � � � � � � � � � � � � 89

4.31 Example of Correlated Noise in a Vehicle Tracking Domain � � � � � � � � � � � 91

4.32 Extended Interpretation Grammar � 94

4.33 Example of Interpretations Based on Extended Grammar G�
n � � � � � � � � � � 95

4.34 Example of Interpretation Search � 95

4.35 Example of Interpretation Search Using Goal Processing � � � � � � � � � � � � 96

4.36 Representing Goal Processing in a Grammar � � � � � � � � � � � � � � � � � � 97

5.1 Overview of the IDP Model as the Foundation of an Experimental Testbed � � � 101

5.2 Example of Signal Data Leading to Multiple IDP State Instantiations � � � � � � 102

5.3 The Basic Approach to Calculating Search State Generation Frequency � � � � � 105

5.4 Example Characteristic Signal Sets for V1 � 105

5.5 Calculating the Frequency of Non-Singularities � � � � � � � � � � � � � � � � � 108

5.6 Interpretation Grammar G with Fully Specified Distribution, Credibility, and
Cost Functions � 110

5.7 Interpretation Grammar G � 111

5.8 Precedence Relations for Grammar G � 111

6.1 Representation of a Search State in the UPC Model � � � � � � � � � � � � � � � 115

6.2 Computing the Distance to Termination, C � � � � � � � � � � � � � � � � � � 123

xviii

6.3 Example of the Non-local Effects of an Operator Application � � � � � � � � � � 124

6.4 Search Operators Defined by Interpretation Grammar G� � � � � � � � � � � � � 126

6.5 UPC Vectors for States from Search Space Defined by G� � � � � � � � � � � � � 127

6.6 G� with Added Noise and Missing Data Rules � � � � � � � � � � � � � � � � � � 129

6.7 Graphical Representation of G� 130

6.8 UPC Vectors for Two States from Interpretation Grammar G� � � � � � � � � � 130

6.9 Interpretation Trees for Domain Events A and B � � � � � � � � � � � � � � � � 132

6.10 Example of the Structural Interaction � 137

7.1 Interpretation Grammar G� with Added Noise and Missing Data Rules � � � � � 140

7.2 Example of Bounding Function Incorporated in a Grammar � � � � � � � � � � 140

8.1 The Search Paradigm Implied by the Extended UPC Formalism � � � � � � � � 149

8.2 Overview of Extensions to the UPC Formalism � � � � � � � � � � � � � � � � � 151

8.3 G� Noise and Missing Data Rules � 152

8.4 Meta-Operators for Grammar G� 152

8.5 UPC Vectors for Abstract State D � 153

8.6 UPC Vectors for State h Given Meta-Operator Extensions � � � � � � � � � � � 154

9.1 Example of the Non-local Effects of an Operator Application � � � � � � � � � � 156

9.2 Relationships Between States with Potential � � � � � � � � � � � � � � � � � � � 158

9.3 Representation of a Problem Solver’s Distance to Termination � � � � � � � � � � 160

9.4 A Basic Representation of Potential and Distance to Termination � � � � � � � � 161

9.5 Implied Information Associated with a State � � � � � � � � � � � � � � � � � � 162

9.6 Grammar Transformation for Calculating Potential � � � � � � � � � � � � � � � 163

9.7 Interpretation Search Operators Shown as a Set of Production Rules � � � � � � � 164

9.8 Representation of the UPC Values for Base- and Abstract States � � � � � � � � � 165

9.9 Calculating Distance to Termination � 165

xix

9.10 Effects of Abstract Processing on Distance to Termination � � � � � � � � � � � � 166

9.11 Interpretation Grammar G� 171

10.1 IDPI Production Rules for Interpreting Patterns and Tracks � � � � � � � � � � � 174

10.2 The Basic Control Cycle With Preconditions � � � � � � � � � � � � � � � � � � 176

10.3 The Basic Control Cycle (Without Preconditions) � � � � � � � � � � � � � � � � 177

10.4 IDPI Production Rules for Interpreting Vehicle and Track Locations � � � � � � 178

10.5 Precondition Operators for Vehicle and Track Locations � � � � � � � � � � � � � 178

10.6 Mapping Operators for Vehicle and Track Locations – From Precondition Space
to the Base Space � 178

10.7 The Basic Control Cycle With Preconditions and Goal Processing � � � � � � � � 180

10.8 Meta-Level Operators for Focus-of-Control Goal Processing � � � � � � � � � � � 180

10.9 Mapping Operators for the Goal Projection Space � � � � � � � � � � � � � � � � 181

10.10Example of the Use of Goal Processing in Vehicle Tracking � � � � � � � � � � � 181

10.11Results of Mapping a Goal Back to the Base Space � � � � � � � � � � � � � � � 182

10.12Abstract States and Projection Space Solutions Constructed from Approximate
Data � 184

10.13Clustering Operators for Signal Data � 185

10.14Blackboard Meta-Levels Defined by Precision Metric � � � � � � � � � � � � � � 186

10.15Data Approximation and Loss of Certainty � � � � � � � � � � � � � � � � � � � 186

10.16Examples of Precision Metric � 188

10.17Cluster Generation Algorithm � 189

10.18Domain Constraint Propagation � 190

10.19IDP Representation of Approximating Search - Eliminating Corroborating Support 191

10.20Abstract Operators Based on Eliminating Corroborating Support � � � � � � � � 191

10.21IDP Representation of Level Hopping in the Vehicle Tracking Domain � � � � � 192

10.22Illustration of Level Hopping � 192

xx

10.23Abstract Operators Based on Level Hopping � � � � � � � � � � � � � � � � � � 192

10.24Abstract Operators for Processing Approximations � � � � � � � � � � � � � � � 193

10.25Approximate Processing IDP/UPC Example � � � � � � � � � � � � � � � � � � 194

11.1 Grammar Rules for a Vehicle Tracking Domain � � � � � � � � � � � � � � � � � 197

11.2 The Basic Control Cycle For the Experimental Problem Solver � � � � � � � � � 199

11.3 The Experimental Framework � 207

12.1 Interpretation Search Operators Shown as a Set of Production Rules � � � � � � � 217

12.2 Example of Single-Step, Top-Down Connectivity Matrix used in Constraint Flow
Analysis � 218

12.3 Example of Single-Step, Bottom-Up Connectivity Matrix used in Constraint Flow
Analysis � 219

12.4 Example of Single-Step Sibling Connectivity Matrix used in Constraint Flow Analysis219

12.5 Transitive Closure of Single-Step, Top-Down Connectivity Matrix � � � � � � � 220

12.6 Example of Constraint Connectivity Matrix used in Constraint Flow Analysis � � 221

12.7 Level Hopping and ECS Example Grammars � � � � � � � � � � � � � � � � � � 223

12.8 Comparative Analysis Example Using the ECS Grammar � � � � � � � � � � � � 224

12.9 Comparative Analysis Example Using the Level Hopping Grammar � � � � � � � 225

12.10Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations � 226

12.11Example Problem Scenario With Level Hopping in VTG-1 � � � � � � � � � � � 227

12.12Track Interpretation Example � 228

12.13Single-Step, Top-Down Connectivity Matrix for VTG-1 � � � � � � � � � � � � 229

12.14Single-step, Sibling Connectivity Matrix for VTG-1 � � � � � � � � � � � � � � � 229

12.15Transitive Closure of Single-Step, Top-Down Connectivity Matrix for VTG-1 � � 230

12.16Constraint Connectivity Matrix for Extended Grammar � � � � � � � � � � � � � 231

12.17Approximations Used to Extend VTG-1 � 232

12.18Track Level Abstraction Example � 233

xxi

12.19Track Processing Example � 234

12.20Grammar Rules for a Vehicle Tracking Domain � � � � � � � � � � � � � � � � � 235

12.21Interpretation Grammar G � 240

12.22Interpretation Grammar G with Fully Specified Distribution, Credibility, and
Cost Functions � 241

12.23IDPi, Base Space Operators for Grammar G � � � � � � � � � � � � � � � � � � 242

12.24Modified Base Space Operators for Grammar G � � � � � � � � � � � � � � � � � 242

12.25Grammar R and Redundant Interpretations for Input “uvwxyz” � � � � � � � � � 243

12.26Base Space Operators for Grammar R � 243

12.27Arity Example � 244

12.28Search Paths for Arity Example � 245

12.29Example Grammars for Exploiting Arity Information � � � � � � � � � � � � � � 246

12.30Solution Credibility Frequency Map � 247

12.31Example Frequency Maps � 249

13.1 Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations � 253

13.2 Approximations Used to Extend VTG-1 � 254

13.3 Approximate Processing Example � 256

13.4 VTG-1 Transformed By Mapping Operator � � � � � � � � � � � � � � � � � � � 256

A.1 The Basic Control Cycle � 278

C.1 Graphic Belief Representation Key � 286

C.2 Belief Examples � 287

C.3 Examples of Precision Metric � 290

D.1 Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations � 293

D.2 Characteristic Signal Sets for VTG-1 � 294

D.3 CSS Frequency Map for Singularities � 295

D.4 Frequency Map for Root Singularities in Grammar VTG-1 � � � � � � � � � � � 295

xxii

D.5 Domain Singularity Frequency Map for VTG-1 � � � � � � � � � � � � � � � � � 296

D.6 Characteristic Signal Sets for Non-Singularities in VTG-1 � � � � � � � � � � � � 296

D.7 Calculating the Frequency of Non-Singularities � � � � � � � � � � � � � � � � � 298

D.8 Modified Grammar, VTG-1’, for Calculating Non-Singularity Frequencies � � � 299

D.9 CSS Frequency Maps for the Transformed Grammar, VTG-1’ � � � � � � � � � � 299

D.10 Frequency Map for Non-Singularities in Grammar VTG-1 � � � � � � � � � � � 300

D.11 Domain Frequency Map for VTG-1 � 300

D.12 Approximations Used to Extend VTG-1 � 301

D.13 CSS Frequency Maps for Meta-Level Singularities � � � � � � � � � � � � � � � � 301

D.14 Frequency Map for Approximations as Related to Root Singularities in Grammar
VTG-1 � 302

D.15 Approximation Singularity Frequency Map for VTG-1 � � � � � � � � � � � � � 302

D.16 Transformed Approximations For Frequency Computation � � � � � � � � � � � 302

D.17 CSS Frequency Maps for the Meta-Level Non-Singularities in the Transformed
Grammar, VTG-1’ � 303

D.18 Frequency Map for Meta-Level Non-Singularities in Grammar VTG-1 � � � � � 303

D.19 Meta-Level Frequency Map for VTG-1 � 303

D.20 Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations � 304

D.21 Example Problem Instance � 304

D.22 VTG-1 Transformed By Mapping Operator � � � � � � � � � � � � � � � � � � � 305

D.23 Characteristic Signal Sets for Transformed VTG-1 � � � � � � � � � � � � � � � 305

D.24 CSS Frequency Map for Singularities in the Transformed Grammar � � � � � � � 306

D.25 Characteristic Signal Sets for Non-Singularities in Transformed VTG-1 � � � � � 306

D.26 Modified Version of Transformed Grammar for Calculating Non-Singularity Fre-
quencies � 306

D.27 CSS Frequency Maps for the Transformed Grammar, VTG-1’ � � � � � � � � � � 307

D.28 Frequency Map for Non-Singularities in the Transformed VTG-1 � � � � � � � 307

xxiii

D.29 Domain Frequency Map for VTG-1 � 307

xxiv

C H A P T E R 1

INTRODUCTION

Though blackboard systems have become one of the standard paradigms used by AI
practitioners for building sophisticated knowledge-based systems, there are still no formalisms
available for understanding their performance in quantifiable terms. Consequently, at this
point in time, the design of sophisticated blackboard-based problem solvers is largely a trial
and error process [Carver and Lesser, 1991]. For any given problem solving technique or
strategy, there is no formal representation or theory that answers the critical design issues
related to why it works, how it should be applied, what domains it can be applied to, and when
to apply it in those domains. Because of this, the design of blackboard systems, especially
their sophisticated control mechanisms, is more of an art than a science and this has lead to a
number of significant problems. (These control mechanisms will be referred to as meta-level
operators or simply meta-operators because they reason about issues such as which operator to
apply next, what operators can be deleted, how to configure operators, and so forth.) One of
the more serious is the lack of predictability. In many cases, until you actually build a system,
there is no way to tell how it will perform. Furthermore, the lack of formal specification and
representation makes it easy to overlook previous results that might be relevant to the problem
at hand. Inefficient approaches might be used when more effective strategies are available.
Similarly, if novel solutions are developed, it may not be clear how they are related to other
strategies and techniques and it might be difficult to categorize them in such a way that they
can be of use to others.

This does not have to be the case. This thesis demonstrates that answers to the critical
design issues can, at least in part, be related to specific problem domain and problem solver
characteristics that are represented in formal, quantifiable ways. The approach used involves
developing formal specifications of the characteristics and inherent properties, or structure, of
problem solvers and the domains in which they are applied and then using this representation
to build a quantitative analysis framework for predicting and explaining the performance of a
sophisticated problem solver operating in a complex domain, the signal interpretation problem
domain. (Intuitively, interpretation problems are tasks where a stream of input data is analyzed
and an explanation is postulated as to what domain events occurred to generate the signal data
– the problem solver is attempting to interpret the signal data and determine what caused it
[Corkill and Lesser, 1981, Erman et al., 1980].) The specific contributions made by this work
include the following.

1. It establishes definitions for a broad class of problems, sophisticated control problems, a
specific set of problems within this class, the Interpretation Decision Problem (IDP), and
a particular type of domain in which these problems occur, complex domains.

2. It defines and demonstrates a methodology for formally specifying the structure of a
problem domain.

2

3. It defines and demonstrates a methodology for formally specifying the structure of a
problem solving architecture.

4. It defines and experimentally verifies a set of quantitative analysis tools based on the
formal definitions of domain and problem solver structure.

5. It defines a formal representation of search spaces and the control of search-based problem
solvers.

6. It defines a unifying representation of problem solving that integrates meta-level control
processing and base-level problem solving in such a way that their costs and benefits can
be directly compared.

7. It introduces and defines an important control concept, potential, that is used in the
analysis of the long-term costs and benefits of an action.

8. It establishes a set of tools and a framework for experimental analysis and investigation
of problem domains and problem solving architectures.

9. It formally defines a set of important sophisticated control mechanisms including
preconditions, pruning operators, goal directed processing, and approximate processing.

10. It demonstrates that formal analytical techniques can be applied to heuristic problem
solvers that use sophisticated control mechanisms.

11. It defines and demonstrates several prototype design methodologies for constructing
sophisticated problem solvers.

12. It demonstrates that formal analytical techniques can be applied to heuristic, approximate
processing problem solvers.

13. It defines a general architecture for approximate processing.

To achieve these results, previous work on formalizing theoretical search [Berliner, 1979,
Kumar and Kanal, 1988, Pearl, 1984, Stockman, 1979] was extended to model meta-level
processing techniques used in blackboard systems. The formalism that is developed is composed
of the Interpretation Decision Problem (IDP) and the UPC formalisms (from Utility, Probability,
and Cost) and will be referred to as the IDP/UPC framework. The IDP/UPC framework
assumes that the properties and characteristics of problem domains are structured and that
problem solvers can exploit domain structures to more effectively control and focus their
search. By explicitly representing the characteristics and properties of a domain and the
interrelationships between potential problem solving actions, IDP/UPC based tools can be
used to predict and explain problem solver performance, design more effective problem solving
architectures and dynamic control strategies, and formalize seemingly distinct problem solving
strategies in a unified perspective.

The IDP and UPC formalisms are each designed to represent different aspects of a domain’s
or a problem solver’s structure. Like Kanal and Kumar’s work on formalizing monotonic
search algorithms such as branch and bound, A�, B�, and others used in operations research
applications [Berliner, 1979, Kumar and Kanal, 1988, Pearl, 1984, Stockman, 1979], the
IDP/UPC framework specifies the structure of a domain in terms of formal grammars. This

3

thesis extends previous work in that it eliminates many of the restrictions that were placed on the
grammars used, such as monotonicity constraints, and it enhances the grammars used to increase
their expressive power. In addition, this thesis extends the representation to include not just the
basic search algorithm, but also the problem domain in which a problem solver is deployed and
the meta-level processes that constitute a sophisticated control mechanism. These extensions
are discussed in more detail in Chapter 2. The IDP formalism uses a context-free grammar and
functions associated with production rules of the grammar to represent feature structures in a
problem domain and the structure of a specific problem solver. An IDP generational grammar,
IDPG, explicitly represents the causes of domain phenomena in interpretation domains such
as noise, missing data, and masking. An IDP interpretation grammar, IDPI , represents
relationships between problem solving actions, such as “cooperating” or “independent,” and
the assumptions (implicit and explicit) that meta-operators (i.e., operators that reason about
other operators or the general state of the problem solver) make about a domain. The
UPC formalism represents search space structures in terms of statistical properties derived
from a formal specification of a problem domain’s structure, such as that provided by an
IDP specification. Using the UPC representation, we can construct problem solving systems
capable of achieving the levels of performance predicted by quantitative analysis of IDP domain
specifications and the optimal interpretation control strategy. As a consequence, domains
with different structures can be compared using identical evaluation function based control
architectures or these architectures can be varied to compare performance of different problem
solvers within a given domain.

Figure 1.1 shows a general overview of the analysis framework. As shown in the figure,
the natural structure of an interpretation problem is mapped into a formal representation, or
domain theory, based on the IDP formalism. By representing a domain structure in terms of the
IDP formalism, certain statistical information about the structure of the corresponding search
space can be derived. In particular, significant relationships among subproblems and among
subproblems and final solutions can be determined and, to an extent, quantified. For example,
two subproblems might be related in that they both are part of a single solution 40% of the
time, or they are both always part of independent solutions, or they are part of competing
solutions that are mutually exclusive, etc. Given an IDP specification of an interpretation
domain, general characteristics associated with the complexity of problem instances from that
domain can be determined. This includes characteristics such as the expected cost of problem
solving for a random problem instance. To complement this, the UPC formalism explicitly
represents subproblem relationships in a quantified way that can be used, either directly or in
abstract form, by a problem solver’s control component to schedule the execution of problem
solving actions. (In a real system, the cost of accurately quantifying relationships may be
prohibitively expensive, in which case it is necessary to use approximations or abstractions.)
Thus, the UPC formalism can be used to determine which actions available to a problem solver
are “optimal” from a local problem solving perspective and to explain why a problem solver
chose a certain course of action in a given situation.

The combined IDP/UPC framework is an initial step needed to formalize complex search
processes, such as those associated with blackboard systems [Carver and Lesser, 1991, Corkill,
1983, Erman et al., 1980, Hayes-Roth and Lesser, 1977, Lesser et al., 1989b], that are used
in sophisticated interpretation tasks. This approach is critical to the analysis of sophisticated
problem solvers because it supports a unified representation of both meta-operators [Davis, 1980,
Genesereth, 1983, Genesereth and Smith, 1982, Hudlická and Lesser, 1984, Stefik, 1981,
Wilensky, 1981] and domain processing. This unified representation views meta-operators

4

Control Strategy

State Space
Representation

(UPC based)

Problem Solver

Domain
Problem
Structure

IDP
Formalism

Problem Structure specified
in terms of formal grammar

and functions associated with
rules of the grammar

UPC
Formalism

Overview of the IDP/UPC Analysis Framework

Figure 1.1. Overview of the IDP/UPC Framework for Analyzing Sophisticated Control

used in sophisticated control architectures as mechanisms that evaluate problem solving actions
by selectively applying a process that examines a search path’s relationship with other, possibly
interacting, search paths [Lesser et al., 1989b]. (Relationships are based on the distribution
of domain events and are statistical in nature. For example, a relationship might indicate that
two search paths lead to the same final result 50% of the time.) Furthermore, the process of
examining a search path’s relationships is viewed as a distinct search operation and not as part
of the control architecture. Interrelationships between search paths are represented as abstract
or approximate states that are explicitly created by search operators and not by a monolithic
control process. Thus, the formalism can be used to explicitly analyze the tradeoffs between the
effort a problem solver allocates to meta-level processing and the effort it allocates to base-level
processing. In addition, this same analysis, or approximations based on it, can be incorporated
in a problem solver’s control mechanism to make dynamic decisions about when and how
to use meta-level problem solving based on the emerging state of base-level problem solving.
The success of the formalism in supporting this analysis is in large part due to the manner
in which the representation of important relationships flows naturally from the formalism’s
representation of a domain.

5

The IDP/UPC framework is developed and demonstrated for a specific problem domain,
interpretation, a specific class of problem instances from this domain, vehicle tracking,
and a specific class of problem solving architecture, blackboard systems. As discussed by
Carver [Carver and Lesser, 1991], the blackboard architecture was originally developed to deal
with the difficult characteristics of a typical interpretation task: a very large search space; errorful
or incomplete input data; and imprecise and/or incomplete problem-solving knowledge. These
characteristics require a problem solving model that supports the incremental development
of solutions, that can apply diverse types of knowledge, and that can adapt its strategies
to the particular problem situation. The blackboard model has been popular for complex
problems because it supports incremental problem solving and because it provides a great
deal of flexibility in organizing the problem-solving process. For example, blackboards enable
search-based problem solving that dynamically switches the abstraction level at which it works
and reasoning techniques in which different kinds of search paths, including paths that are
competing, cooperating, or independent, are pursued concurrently.

A blackboard system is composed of three main components, the blackboard, a set of
knowledge sources (KSs), and a control mechanism. The blackboard is a global database shared by
all the KSs that contains the initial signal data and hypotheses, or partial solutions. A blackboard
is typically composed of a hierarchy of levels and hypotheses are grouped into equivalence
classes, each of which is associated with a particular blackboard level. The hypotheses are
classified within the hierarchy based on their characteristic variables. The KSs embody the
problem-solving knowledge of the system. KSs examine the state of the blackboard and create
new hypotheses or modify existing ones when they are invoked. In the IDP/UPC framework,
each production rule in IDPi corresponds to a KS.

The control of blackboard problem solving is typically incremental, opportunistic, and
sequential, or agenda-based. Incremental problem solvers construct interpretations on a
piece by piece basis. Opportunistic problem solvers choose their next action by dynamically
determining which potential action will allow the problem solver to make the most progress
toward termination given the current situation. Sequential, agenda-based problem solvers
must choose the next problem solving action to execute from a queue of potential actions.
The typical control process is illustrated in Fig. 1.2. The execution of an operator generates
hypotheses and new operator instantiations that can be applied to them. The new operators are
placed on a queue and a scheduling or rating mechanism chooses the next operator to execute.

Control is one of the important issues that must be addressed in the successful formulation
of Hearsay II type architectures and control continues to be an active area of research in the
field of blackboard systems [Carver and Lesser, 1991]. The issues related to the design of a
blackboard system’s control component are often associated with the tradeoff between domain
processing and meta-level processing. KSs that conduct domain processing extend search paths
in an attempt to find a solution to a specific problem instance. KSs and control mechanisms
that conduct meta-level processing attempt to somehow modify the problem solver’s queue to
improve the efficiency with which the domain processing is conducted. Meta-level control is
required because a typical problem domain is too large to search exhaustively and still produce
a timely result. Therefore, a portion of a problem solver’s resources must be devoted to
determining which KSs to invoke and which to eliminate from the agenda.

Since the introduction of the blackboard architecture, many research projects have focused
on the development of control mechanisms that focus or limit search in such a way that the
overall cost of problem solving is reduced and a consistent level of quality or correctness is either
maintained or altered in a well-defined manner [Decker et al., 1990, Garvey and Lesser, 1993].

6

flow of data

flow of control

choose operator
to execute

execute operator rate new
operators

add new operators to pool
of available operators

operators available
for execution

Figure 1.2. The Basic Control Cycle

Given the success of some “sophisticated” blackboard-based interpretation control mechanisms,
there is an obvious desire to understand the underlying principles and domain properties in order
to generalize the techniques to other domains. Such techniques include the focus of control
mechanisms introduced in the Hearsay-II speech understanding system [Erman et al., 1980,
Hayes-Roth and Lesser, 1977] and the Distributed Vehicle Monitoring Testbed (DVMT)
[Carver and Lesser, 1991, Corkill, 1983, Decker et al., 1989], sophisticated control techniques
such as goal processing [Corkill and Lesser, 1981, Corkill et al., 1982, Lesser et al., 1989a,
Lesser et al., 1989b], and abstracting and approximating computational domain theories
[Decker et al., 1990, Lesser and Pavlin, 1988].

Figure 1.3 represents a specific example of the class of blackboard problem solvers and
the sophisticated control mechanisms studied in this thesis. The system shown in Fig. 1.3 is
a high-level schematic for the integrated data-directed and goal-directed control architecture
as implemented in the DVMT [Lesser and Corkill, 1983, Lesser et al., 1987]. The basic
blackboard architecture is modified to include a goal blackboard and a goal processor. The goal
blackboard, which mirrors the data blackboard in dimensionality, contains goals representing
intentions to create particular results on the data blackboard. Goals provide an abstraction
over the potential actions for achieving a particular type of result and allow the system to
reason about its intentions independently of the particular knowledge source (KS) actions at its
disposal. The two general classes of goals are data-directed and goal-directed. The blackboard
monitor uses domain knowledge to create data-directed goals in response to the addition or
modification of hypotheses on the data blackboard. Each data-directed goal specifies the
range of hypotheses that could result if the triggering hypotheses were extended at the same
blackboard level or abstracted to the next higher level.

The creation of a goal does not guarantee sufficient information on the data blackboard
to execute a KS to satisfy the goal, so the goal processor runs a precondition procedure for
the applicable KSs to determine if there is sufficient data on the blackboard to successfully
run the KS. When results indicate that a KS has sufficient information to satisfy the goal,

7

goal
processor

goal
KS table

goal

subgoal

 goal
blackboard

 data
blackboard

blackboard
monitor

event
goal

eventsgoals

data

control

subgoals
knowledge
sources

scheduler

 KSI
queues dispatcher

knowledge
source
instances

Figure 1.3. Integrated Data and Goal-Directed Control

8

the goal triggers a KS instantiation (KSI). The scheduler assigns the KSI a priority rating and
places it on the scheduling queue. If sufficient information is not available to run a KSI, the
goal processor creates goal-directed goals (subgoals) for driving up low-level data to be used
to satisfy the original goal. Subgoals are rated the same as the original high-level, highly-rated
goal. Thus, the ratings of low-level KSIs that could lead to satisfaction of the high-level goal
will be increased.

This thesis studies data-directed and goal-directed control mechanisms, a related control
mechanism referred to as approximate processing, precondition procedures, and bounding
functions that prune search paths based on the characteristics of partial results. It is demon-
strated that these mechanisms can be formally represented and that, when implemented as part
of a problem solving system, their performance can be predicted and explained quantitatively.
This demonstration is made in the context of a statistically optimal control strategy, used as
an experimental control, and a heuristic control strategy. The following sections give more
detailed introductions to each of the contributions made in this thesis and they provide a guide
to the remainder of the document.

1.1 Defining Sophisticated Control, Interpretation Problems, and Complex Domains

Chapter 2 describes the theoretical foundations for this thesis and extends them by formally
defining several important concepts. These extensions are a critical element of the IDP/UPC
framework because they provide a perspective of problem solving where meta-level processing,
such as meta-level abstractions and approximations, and domain processing can be viewed and
analyzed from a unified perspective. The basis for this perspective involves the distinction made
between local, independent control architectures (or simply local control) and non-local, dependent
control architectures (or sophisticated control). In the IDP/UPC framework, control is defined
as the “evaluate/expand” cycle shown in Fig. 1.2. At each step of problem solving, the problem
solver’s control component chooses the highest rated operator and executes it. The execution
of the operator will usually cause other operators to be eligible for execution. For example,
if a new state is created, the operators that can be applied to that state become eligible for
execution. The control component’s evaluation function rates the new operators and includes
them in its deliberations in the next cycle.

As described in Chapter 2, when evaluating a search operator, local control architectures
only consider the characteristics of the operator and the state(s) it modifies and not more
global information such as the characteristics of other, possibly interacting, search operators.
In contrast, sophisticated control architectures evaluate problem solving actions by selectively
applying a process that examines a search path’s relationship with other, possibly interacting,
search paths [Lesser et al., 1989b]. This process must be applied selectively in order to prevent
a combinatorial increase in cost that would result from examining the relationships between
every possible set of interacting search paths.

The analytical capabilities of the IDP/UPC framework are based on viewing the process
of examining a search path’s relationships as a distinct search operation and not as part of the
control architecture. Interrelationships between search paths are represented as abstract or
approximate states that are explicitly created by search operators and not by a monolithic
control process. Furthermore, the process of examining the relationships between search paths
is associated with an IDP domain theory representation consisting of an appropriate set of
grammar rules and functions. Such problem solving actions have previously been referred to as

9

control problem solving, meta-knowledge operations, meta-operations, approximate problem solving,
abstract problem solving, etc. In general, these problem solving actions will be referred to as
meta-operators. They will also be referred to as abstract or approximate operators because they are
primarily derived from abstractions of other operators. Thus, abstractions and approximations
used in problem solving to explicitly examine relationships between search paths are represented
as extensions of a basic IDP model and both primitive operators and meta-operators correspond
to production rules of the associated IDP grammar representation. Chapter 3 defines some of
the general IDP structures associated with the abstract problem solving actions that are studied.

Chapter 3 builds on the formal definitions of sophisticated control and complex domains
by formally defining the class of problems we refer to as interpretation decision problems (IDP).
The IDP formalism models the structure of interpretation domain theories (a domain theory is
the computational theory that is the basis for a problem solver’s functionality) in terms of four
feature structures: component (or syntax), utility (or credibility)�, probability (or distribution),
and cost.

The different feature structures that are defined by domain theories are combined into a
unified representation by expressing them in terms of formal grammars and functions associated
with production rules of the grammar. The formal grammar and functions associated with
a domain theory will be referred to as the domain grammar. This unified approach allows
search paths to be represented graphically as parse trees (or interpretation trees) of the grammar.
By analyzing the statistical properties of the interpretation trees of a domain grammar, it will
be possible to determine general characteristics of problem solving in the domain such as the
expected cost for a random problem instance, the expected credibility of a solution, etc.

The statistical analysis is based on an approach where interpretation problems are viewed
as discrete optimization problems, implying that the problem solver must consider, either
implicitly or explicitly, every possible interpretation for a set of signal data and identify the best
interpretation. This also implies that the problem solver must connect every path in the search
space to either a dead end state or a final state representing a possible interpretation. (Connected
paths are defined formally in Chapter 3.) It is important to note that the sophisticated control
techniques that are the focus of this thesis can implicitly enumerate search spaces efficiently and
that connecting a space does not necessarily require every potential final state to be generated.
Viewing interpretation problems as discrete optimization problems sets the analysis framework
apart from previous analysis techniques that are used to analyze problem solving in domains
where the objective is to find the shortest, or lowest-cost search path, the highest-rated solution,
or a solution path to a “winning position” [Pearl, 1984].

1.2 Formally Specifying Domain Structures and Problem Solving Architectures

Chapter 4 demonstrates how the IDP/UPC framework can formally represent problem
domains and problem solving architectures. The IDP/UPC framework assumes that the
phenomena, or individual problem instances, associated with a specific problem domain can be
defined to occur in principled, or structured ways. Phenomena such as noise and missing data
that make interpretation a difficult task do not “just occur.” On the contrary, there are laws

�In Chapter 3, credibility structures are formally linked to the semantics associated with full and partial
interpretations. Thus, a full or partial interpretation that has a high credibility can intuitively be thought of as
having a highly consistent semantic interpretation and a full or partial interpretation that has a low credibility can
intuitively be thought of as having an inconsistent or incomplete semantic interpretation.

10

Interpretation Grammar G'

0.1 S → A ψ(0.1) = 0.2 fS (fA) gS (gA)

0.2 S → B ψ(0.2) = 0.2 fS (fB) gS (gB)

0.3 S → M ψ(0.3) = 0.2 fS (fM) gS (gM)

0.4 S → N ψ(0.4) = 0.2 fS (fN) gS (gN)

0.5 S → O ψ(0.5) = 0.2 fS (fO) gS (gO)

1. A → CD ψ(1) = 1 fA (fC,fD, Γ1(C,D)) gA (gC,gD,C(Γ1(C,D)))

2. B → DEW ψ(2) = 1 fB (fD,fE,fW, Γ2(D,E,W)) gB (gD,gE,gW,C(Γ2(D,E,W)))

3.0 C → fg ψ(3.0) = 0.5 fC (ff, fg, Γ3.0(f,g)) gC (gf, gg,C(Γ3.0(f,g)))

3.1. C → fgq ψ(3.1) = 0.5 fC (ff,fg,fq, Γ3.1(f,g,q)) gC (gf,gg,gq,C(Γ3.1(f,g,q)))

4. E → jk ψ(4) = 1 fE (fj,fk, Γ4(j,k)) gE (gj,gk,C(Γ4(j,k)))

5.0 D → hi ψ(5.0) = 0.5 fD (fh,fi, Γ5.0(h,i)) gD (gh,gi,C(Γ5.0(h,i)))

5.1. D → rhi ψ(5.1) = 0.5 fD (fr,fh,fi, Γ5.1(r,h,i)) gD (gr,gh,gi,C(Γ5.1(r,h,i)))

6.0 W → xyz ψ(6.0) = 0.5 fW (fx,fy,fz, Γ6.0(x,y,z)) gW (gx,gy,gz,C(Γ6.0(x,y,z)))

6.1. W → xy ψ(6.1) = 0.5 fW (fx,fy, Γ6.1(x,y)) gW (gx,gy,C(Γ6.1(x,y)))

7. f → (s) ψ(7) = 1 ff (f(s), Γ7((s))) gf (g(s),C(Γ7((s))))

8. j → (s) ψ(8) = 1 fj (f(s), Γ8((s))) gj (g(s),C(Γ8((s))))

credibility (utility) costdistributiongrammar rule

(s) = signal data

...
C(Γn(i,j,...)) = cost of executing Γn(i,j,...)

Figure 1.4. Example of an IDP Grammar with Associated Functions

and principles that govern their occurrence and a problem solver can exploit these laws and
principles in order to improve its performance. For example, a problem solver might be able
to exploit its knowledge of certain recurring subproblems in a way that significantly reduces
the overall cost of problem solving or that increases the quality of the solutions it generates.
A domain’s problem structure is a description of the causes of phenomena in the domain and
knowing this structure is critical. For example, it is not enough to know that an interpretation
domain experiences “noise” phenomena in order for a problem solver operating in that domain
to successfully use a control architecture that was built to deal with noise in another, different
domain. It is necessary to know if the characteristics of noise in the two domains are the same
or similar enough that the control architecture can be extended to the new domain.

In IDP models, the different feature structures that are defined by domain theories are
combined into a unified representation by expressing them in terms of formal grammars

11

and functions associated with production rules of the grammar. Nonterminals of the grammar
represent intermediate problem solving states, terminal symbols represent raw sensor input, and
the production rules of the grammar represent potential problem solving actions. The grammar
rules of IDP models specify the component structure of a domain and each production, p, has
associated cost and utility functions, gp and fp, that define the cost and utility structures. In
addition, IDP models explicitly represent aspects of inherent uncertainty in a domain with the
distribution function, �, that defines the probability structure of the domain. (i.e., �, along
with other mechanisms, define inherent uncertainty in a domain.) For a given production, p,
the frequency of the occurrence of p’s right-hand-side (RHS) is specified by the distribution
function ��p�. Thus, p can have multiple RHSs, RHS� through RHSn, and the distribution
of the RHSs is defined by ��p�. Finally, each production rule, p, is associated with a semantic
function, �p that is a function of the subtree components represented by the elements on
the right-hand-side of p. �p measures the “consistency” of the semantics of its input data
and returns a value that is included in the credibility function. For example, in a speech
understanding domain, �p would rate the consistency of the meaning of a sentence and return
a value indicating whether or not the sentence made any sense.

The framework involves the use of two distinct grammars that reflect the concept of a
domain theory and an approximation of the domain theory used in problem solving. These
grammars consist of a generational grammar, IDPG, and an interpretation grammar, IDPI . IDPG
corresponds to the domain theory in the sense that it can be used to generate problem instances
that correspond to the actual events that occur in a domain. IDPI is a representation of
the problem solving actions available to a problem solver, including abstract and approximate
operators used by the control mechanism. Thus, there is a clear connection between the
structure of a problem domain and the associated problem solving architecture. Figure 1.4 is
an example of an IDP grammar for a simple interpretation problem where IDPg and IDPi are
equivalent. Included in the figure are the functions associated with the grammar rules that
define the structure of the domain. The “interpretations” associated with an A, B, M, N, or O
are considered final solutions in this example.

An important aspect of the IDP formalism is that it must be capable of modeling complex,
real-world phenomena. Specifically, phenomena involving interactions over time and space.
Intuitively, it may seem that the context-free IDP grammars might be inadequate representa-
tional tools. For example, consider a vehicle tracking domain in which a problem solver’s task is
to track multiple vehicles, some of which move in coordinated patterns. Such domains can be
considered context-sensitive since the properties of some phenomena are dependent on those of
another. As such, one would expect that the generative power of a context-free grammar would
be inadequate to properly model the domain. This is a critical issue since the analysis tools in the
IDP/UPC framework are dependent on the formal representation of the problem domain. If a
domain cannot be accurately modeled, then it will not be possible to analyze it. In Chapter 4.7,
we describe such a domain more fully and we discuss the techniques that can be used to construct
IDP grammars capable of modeling context-sensitive elements of a problem domain. These
techniques are primarily based on exploiting the feature list convention [Gazdar et al., 1982,
Knuth, 1968] presented in [Whitehair and Lesser, 1993].

Similarly, the analysis tools are also dependent on an accurate representation of the problem
solving architecture and the relationships among potential problem solving operators. Chapters
4 and 10 present representations of problem solvers that use sophisticated mechanisms such
as preconditions, pruning functions, a form of goal processing to focus problem solving activity
more efficiently, and approximate processing. The control mechanisms modeled are based on

12

IDPG IDPI

Domain Events (signal data)

grammar-based
generation of

domain events

grammar-based
computation of

frequency
expectations

Figure 1.5. The Basic Approach to Calculating E�C�

techniques developed for the Hearsay II [Erman et al., 1980], the DVMT [Corkill, 1983], and
a real-time version of the DVMT [Decker et al., 1990]. These chapters demonstrate how the
IDP/UPC framework can represent and model sophisticated control mechanisms.

1.3 Defining Quantitative Analysis Tools and Methodologies

Chapter 5 defines a set of important quantitative analysis tools that can be used to predict
and explain a problem solver’s performance in a given domain. The most important of these
is the complexity of a domain calculated in terms of the expected cost of problem solving for
a specific problem instance, E�C�. E�C� is measured in terms of computational cost and it
represents the cumulative cost of applying all operators required to generate an interpretation.
This is a general measure that has several advantages. It is intuitively easy to understand
compared to other measures such as expected ambiguity, which is used in the calculation of
E�C�. E�C� can be used to compare both the performance of a problem solver across different
domains or different problem solvers applied to the same domain with units of measure that are
consistent. Most importantly, E�C� represents what is probably the most significant aspect of
a problem solver’s performance. The definitions in Chapter 5 are verified in the experimental
results presented in Chapters 7, 9 and 13.

The basic approach is a three step calculation. The first step calculates the expected
frequency with which states are generated corresponding to each of the elements of the grammar.
(Note that the set of all state frequencies is referred to as the frequency map of the domain.)
This step relies primarily on the structure of the domain as specified in the grammar and the
distributions associated with the rules of the grammar. The second stage calculates the expected
probability with which paths from the states are pruned, which is called the pruning factor.
This step relies both on the structure of the grammar and the domain’s characteristics associated
with the feature list. The final stage multiplies the expected frequency of path extensions (state
frequency multiplied by pruning factor) by the expected cost of state expansion.

13

The general approach to calculatingE�C� is shown in Fig. 1.5. The generational grammar,
IDPg, is used to determine the statistical distributions for sets of signal data. These distributions,
in turn, define the sample sets and the sample set weightings. The sample sets and weightings
are used to calculate the statistical properties of groups of low-level domain events. These
properties are then combined to determine the expected properties of higher-level results.

1.4 Formally Specifying the Structure of Search Spaces and Control Algorithms

Chapter 6 presents the basic UPC formalism for specifying the structure of a search space.
The UPC formalism can be used as a basis for understanding the control decisions made by a
problem solver and for explaining and predicting the effects of a control algorithm on a problem
solver’s performance. The UPC formalism maps IDP structures into a state space representation
where, for each intermediate state in the search space, certain relationships between the state
and the final states that can be reached from the state are represented explicitly. This is shown
in Fig. 1.6 and in Fig. 1.7. For a given intermediate search state, s, that corresponds to a partial
solution, and for each of the final states that can be reached along paths from s, the relationships
that are represented include the expected cost of reaching each final state from s, the expected
utility of each of the final states, and the expected probability of successfully reaching each of
the final states. These expected values will be referred to as the UPC values for a state. UPC
values are determined dynamically based on a perspective of problem solving that is local to a
given state and on the statistical properties of a domain derived from a formal IDP specification.
The calculation of UPC values for a specific state does not take into consideration the existence
or absence of any other state. Both Fig. 1.6 and Fig. 1.7 illustrate how the representation of a
state is extended by associating vectors of UPC values with the operators available to extend
paths from the state.

The techniques that are used to analyze control architectures and, more generally, the
performance of problem solving systems are based on formal IDP descriptions of the systems
and on the resulting UPC values included in the extended representation of search states. As is
discussed in Chapter 6, the utility, probability, and cost vectors associated with search operators
can be derived from the corresponding IDP model. In essence, the IDP formalism explicitly
represents the phenomena, such as functions defining distributions of domain events, sensor
distortion, environmental noise, etc., that cause interpretation to be a complex task. These
phenomena result in IDP representations that are structured. IDP structures are subsequently
mapped to structures that appear in a search space and that can be exploited by the control
component of a search-based problem solver. The UPC formalism explicitly represents these
structures in a way that supports the analysis of a problem solving system’s performance. (The
use of the word “structure” will refer both to phenomena in IDP models and to corresponding
phenomena in search spaces.)

The UPC formalism supports the analysis of problem domains and associated problem
solvers by explicitly representing statistical properties of dynamic interactions among subprob-
lems, by providing a framework for explicitly representing the cost and benefits of meta-level
processing, and by modeling the dynamic structure of a specific problem instance based on
the statistical characteristics of the problem domain. Together, these features enable the UPC
formalism to explicitly model both the local and the more global aspects of a control decision in
a manner that can be used as a basis for understanding the behavior of a problem solver and for
explaining and predicting the effects of a control algorithm on a problem solver’s performance.
This is a necessary step in the development of general design theories for constructing

14

...

Sn

Potential Final
State, F2

Potential Final
State, Fm

Potential Final
State, F1

expected-utility(F
1
)

expected-probability(F
1
)

expected-cost(F
1
)

expected-utility(F
2
)

expected-probability(F
2
)

expected-cost(F
2
)

expected-utility(F
m

)

expected-probability(F
m

)

expected-cost(F
m

)

extended state representation - upc values included in
a state's representation are associated with operators

available to expand the state

arbitrary number of
problem solving steps

op
i

op
j

op
n

op
i
 : operator available to

expand a state

Figure 1.6. Derivation of UPC Values for a State

CV :1 <attribute>

CV :2

......

CV :x

1

OP :y

...

OP :2

OP : U ,P ,C1 1 1

U ,P ,C2 2 2

U ,P ,Cy y y

...

Extended State representation:
operators applicable to each state are
represented with the corresponding
Utility, Probability, and Cost vectors.

Each vector entry consists of a
measure of the expected value and a
measure of the variance.

Expected values and variances are
determined from IDP's cost and credibility
functions. (In interpretation problems,
credibility = utility.)

Sn

<attribute>

<attribute>

Figure 1.7. Representation of a Search State in the UPC Formalism

15

sophisticated problem solving systems such as blackboard systems [Carver and Lesser, 1991,
Corkill, 1983, Erman et al., 1980, Hayes-Roth and Lesser, 1977, Lesser et al., 1989b].

1.5 Unifying the Representation of Meta-Level and Base-Level Processing

Chapter 8 defines a unifying representation of problem solving based on the UPC
formalism that integrates meta-level and base-level processing in such a way that their costs
and benefits can be directly compared. The UPC formalism provides a perspective of problem
solving where the dynamic structure of a search space is explicitly represented and where
meta-level processing and domain processing can be viewed and analyzed from a unified
perspective. Interrelationships between search paths are represented as abstract or approximate
states in projection search spaces or projection spaces. The abstract states are derived from a base
search space defined by a formal model of a domain.

The base space contains no abstract or approximate states. In UPC models, meta-
level processing and base-level processing are integrated into a unified representation where
search paths connect states in the base search space with abstract states in projection spaces
and the constraints associated with the abstract states are mapped back to the base space by
explicitly altering the attributes of base-level search states to reflect the meta-level constraints.
Consequently, sophisticated control mechanisms are incorporated in a state space representation
where they can be viewed from the same perspective as traditional problem solving actions. This
integrated perspective, shown in Fig. 1.8, suggests a new model of search wheredomain problem
solving can be viewed as taking place incrementally and simultaneously and opportunistically
in a continuum of abstraction spaces.

In the IDP/UPC analysis framework, projection spaces and their associated operators
(including the projecting and refining operators) are viewed as UPC instantiations of the
corresponding IDP domain theory model. The projecting, refining, and problem solving
operators are represented as part of an IDP model of a domain theory. The component
structure suggested by meta-operators is integrated into an IDP model as a set of grammar
production rules and associated utility, cost, and distribution functions. Formulating problem
solving in this way unifies two forms of problem solving, domain problem solving and meta-level
control, that have sometimes been viewed as distinct classes. In addition, formulating meta-level
control in this way allows a problem solver to determine abstraction levels dynamically or to
alternate the level of abstraction at which problem solving occurs in order to opportunistically
exploit the results of intermediate problem solving. The IDP/UPC framework is particularly
effective for analyzing problem solving systems, such as the extended Hearsay-II [Erman
et al., 1980] blackboard model introduced by Lesser and Corkill, that integrate both top-
down and bottom-up processing in a hierarchy of abstraction spaces [Corkill et al., 1982,
Corkill, 1983]. To our knowledge, no other analysis framework provides a perspective where
different approaches to control can be analyzed as part of a unified domain theory.

In the IDP/UPC framework, by choosing the next problem solving action to perform,
the control component determines the projection space in which problem solving will occur,
and the operator which will carry out the action. For example, by choosing meta-operators,
the control component projects one search space (possibly the base space) to another, more
abstract space where certain subproblem interactions are explicitly represented. Alternatively,
the control component can choose an operator that extends one or more partial solutions
within a given projection space (i.e., carry out problem solving in a projection space), or it
can “map back” (or refine) an abstract projection space to a less abstract space, possibly the

16

Problem Solver's Internal State

base search space

meta-level control operation -
projects state(s) from base-space to

projection search space

projection search space

mapping function from
projection search space to

base search space

database of partial results

state in base search space

abstract state in projection search space

operator in base search space

operator in abstract projection space

meta-level operator for mapping states in base
search space to a projection search space

mapping operator for propagating results from
projection search space to the base search space

base search space
abstract projection search space

Figure 1.8. Explicitly Representing Meta-Level Control Actions as Components of a Problem
Solver’s Internal State

17

Base Search Space Base Search Space

Search Space
Projectioni

Search Space
Projectionj

Problem
Solving

Projection
Filter

Mapping to Base State: upc values of
base space states are updated to reflect
information from projection space(s)

Problem
Solving

Figure 1.9. The Extended IDP/UPC Control Perspective

base space. Mapping an abstract state to the base space propagates the implications of any
subproblem interactions back to the utility, probability, and cost values of the operators that can
be applied to states in the base space. This perspective is illustrated in Fig. 1.9. To represent
the relative worth of executing a meta-operator in a manner that can be used by a control
component’s evaluation function, a metric has been developed which is referred to as potential,
for quantifying these relationships.

1.6 Introducing the Concept of Potential

Chapter 9 introduces and defines an important control concept, potential that is used in
the analysis of the long-term costs and benefits of an action. The concept of potential is a
critical element of the IDP/UPC analysis framework and it is used to address the question
of how to evaluate the contribution made by meta-level control actions that use abstractions
and approximations in terms that are consistent with the evaluation of problem solving actions
that directly extend search paths in the base space. The concept of potential is applicable
to all operators, but it is especially relevant to meta-operators. This is because, in general,
meta-operators are not associated with effects that can be quantified in the same way as the
effects of base space operators. The effects of meta-operators are related more to long-term
reductions in problem solving cost or increases in solution quality. In contrast, the effects
of base space operators are more closely associated with immediate effects resulting in the
extension of base space search paths and they can be more easily quantified. Thus, potential
will be used to develop mechanisms that support the understanding of the interrelationships
that exist between the current set of states (i.e., the search paths that have been extended so far)
and the states that can be derived from them. This includes using potential as a measure of
the expected long-term effects an operator will have on problem solving in the base space. From

18

a statistical perspective, potential takes into account the changes in the UPC representation of
base space states that occur as a result of the added information provided by a meta-operator.
Thus, although a meta-operator may have no immediate effect on any base space search paths,
which might appear to make it an undesirable choice of action, it may have a very significant
long-term effect that reduces the expected cost of problem solving dramatically, making it a
very good choice of action.

For example, there may be several operators available to extend paths from a state, sn,
to other states in the base space. In addition, there may be an operator available that will
extend a path from sn to an abstract state in a projection space. All of the base space operators
may appear to be attractive in the sense that, from a local perspective, there appears to be a
high-probability that the paths generated by the base space operators will eventually lead to
final states with high credibilities. However, if the meta-operator is executed, it may generate
an abstract state that indicates only one specific final state, F , is reachable from sn. Thus,
all of the operators that do not extend paths from sn that might eventually reach F can be
pruned. Another operator, which is called a mapping operator or mapping function, can then
be executed to transfer this information back to the base space by modifying the UPC values
of states in the base space to reflect that only the operators that can extend paths that might
eventually reach F should be considered.

1.7 Establishing an Experimental Approach

Chapters 7 and 11 establishes a set of tools and a framework for experimental analysis
and investigation of problem domains and problem solving architectures. One of the primary
analytical uses of the IDP/UPC framework will be to compare and contrast the costs and
benefits of alternative meta-operators in different domains. This will be achieved by defining
domain independent objective strategies which are simple algorithmic statements such as “find
the best solution,” or “find the least cost solution,” that will be used by a problem solver to
make decisions regarding which action to take next. Inherent in the objective strategies used in
the IDP/UPC framework is a perspective from which problem solving is viewed as an attempt
by a problem solver to connect all the states in the base space by extending all potential search
paths until they reach dead-ends or final states. (Objective strategies are formally defined
in Chapter 6.4 and Appendix A.) In the IDP/UPC framework, knowledge-based actions
that might otherwise be thought of as part of a control architecture are stripped out (leaving
only the objective strategy) and represented in the same form as base-level problem solving
actions. This enables direct comparisons to be made of the costs and benefits of alternative
meta-operators in different domains. Thus, given a meta-operator, its expected performance
characteristics can be identified for different domains, it can be compared and contrasted with
other meta-operators, and classes of related meta-operators and domains can be identified.
Example experiments are described in Chapters 7 and 9. A summary of these experiments is
shown in Table 1.1. In the different experiments shown in the table, elements of the grammar
representing meta-level control and characteristics of the domain are altered and the resulting
problem solving performance is compared. In experiments 2 and 3, specific meta-control
operators that are referred to as bounding functions are added to the grammar resulting in
a decrease in the expected (and observed) cost of problem solving. In experiment 4, the
mechanisms used to generate domain events were altered to generate more noise and missing
data than originally expected. This resulted in an increase in the actual cost of problem solving.
As shown in the table, using the IDP/UPC framework, certain performance characteristics,

19

Table 1.1. Example of IDP/UPC Experiments Comparing Alternative Meta-Level Control
Architectures

Exp Generation Interpretation Sig % C
G Dist U E�C� G Dist U Avg. C

1 1 even 0.5 201 1 even 0.5 203 N 100
2 2 even 0.5 189 2 even 0.5 187 N 80
3 3 even 0.5 180 3 even 0.5 181 N 80
4 1 skew 0.5 368 1 even 0.5 369 N 100
� �

Abbreviations
Exp: Experiment
G: The problem solving grammar used;

1: G�

2: G� and bounding functions with cost 10,
3: G� and bounding functions with cost 1,

Dist: Distribution of Domain Events;
even: domain events evenly distributed
skew: distribution skewed to more credible events,

U : expected problem instance credibility;
0.5: problem instances have expected credibility 0.5
0.25: problem instances have expected credibility 0.25
0.75: problem instances have expected credibility 0.75

E�C�: Expected Cost of problem solving for given grammar
Avg. C: actual average cost for 1000 random problem instances
Sig: Whether or not the difference between expected cost and

the actual average cost was statistically significant
Y: yes, there is a statistically significant difference
N: no, there is not a statistically significant difference

% Correct: percentage of correct answers found

such as the cost and quality of problem solving, can be predicted and and the predicted
values and actual values can be compared. The basic control mechanism used to generate the
experimental results is described in Chapter 6.4.

It is important to understand the philosophical underpinnings of the experiments that
will be presented in this thesis. The IDP/UPC analysis framework is based on a philosophy
emphasizing the importance of a problem domain’s structure. At its simplest, this philosophy
holds that the “AI universe” is structured and bound by laws and principles in much the same
way that the “chemical universe” is structured and bound by laws expressed in the periodic table
of elements or that the “physics universe” is structured and bound by the theory of relativity or
by quantum theory.

20

As with the laws and principles that we associate with the physical sciences, e.g., the law
of gravity, the theory of relativity, etc., the laws and principles discovered by AI scientists are
meant to be applied to the models of reality that we construct to explain the natural world.
In addition to forming the basis for continuing scientific research, these “models of reality”
that scientists construct are subsequently used to develop design theories for building artifacts
that will operate in the natural world, artifacts such as speech understanding systems, image
understanding systems, etc. In both these endeavors, the key element is the model of reality
that is constructed to explain and predict events in the natural world.

Thus, the IDP/UPC philosophy asserts that the occurrence of phenomena in any AI
domain, not just the interpretation domains that are studied here, can be described formally
and that this formal description is structured and constitutes the “causes” of the phenomena.
Furthermore, the control architectureof a problem solver can exploit the structure of a domain’s
formal description in order to improve the performance of a problem solving system.

The primary contribution of the IDP/UPC analysis framework is that it provides a
formalism for expressing the structure of the natural world in a way that can be used both for
scientific analysis and for constructing design theories. In this thesis, both of these capabilities
are demonstrated. In particular, it is shown that control and problem solving actions can be
viewed from a unified perspective in terms of a problem domain’s structure and it is shown
that, for a given problem structure, theories can be constructed regulating the design of “meta”
or “control” operators. Eventually, the IDP/UPC analysis framework could be used to develop
a very broad perspective of problem solving that unifies diverse problem solving approaches
including AI search techniques and techniques normally associated with operations research
such as linear programming.

In the IDP/UPC framework, analysis of a problem solving system requires the explicit
consideration of four elements: a problem’s structure and a problem solver’s objective strategy,
control architecture, and performance level (or behavior). In this thesis, a problem’s structure
is thought of as a patterned organization of the properties governing the creation of problem
instances of a specific domain. The IDP formalism, introduced in Chapter 1, expresses
structures in the form of phrase structured grammars with context-free production rules� and
functions associated with rules of the grammar. Details of the IDP formalism are given in
subsequent chapters.

Furthermore, in the IDP/UPC analysis framework, every problem solver will be associated
with an objective strategy that defines the goals a problem solver is trying to achieve. For
example, simple objective strategies include, “find the least cost solution,” or “find a solution as
quickly as possible,” or “find the best solution.” The objective strategy of a problem solver can
be thought of as being analogous to the objective function of problem solving strategies such as
the simplex algorithm [Papadimitriou and Steiglitz, 1982].

In a typical analysis situation, the object of consideration will be the control architecture –
the algorithm(s) used by a problem solver to choose its next problem solving action. Control
architectures will be expressed in terms of the problem structure. A given control architecture
will be representedas rules (and associated functions) of the grammar used to define the problem
domain.

In the IDP/UPC analysis framework, a problem solver’s performance will primarily be
measured in terms of the expected resources required to solve a problem and the expected

�The grammar representation used in the IDP/UPC framework is an extended form of the traditional
context-free grammar representation. The extended form is used to explicitly represent information needed for
analysis.

21

Performance
Level

(Behavior)

Control
Architecture

Objective
Strategy

Problem
Structure

Performance
Level

(Behavior)

Control
Architecture

Objective
Strategy

Problem
Structure

Performance
Level

(Behavior)

Control
Architecture

Objective
Strategy

Problem
Structure

Performance
Level

(Behavior)

Control
Architecture

Objective
Strategy

Problem
Structure

Prediction: Given a problem's structure, an
objective strategy, and a control architecture, a
problem solving system's performance can be

predicted

Design: If a problem's structure is known,
and if the desired objective strategy and system

performance are also known, an appropriate
control architecture can be designed.

Experimentation: With a given control
architecture and objective strategy, system

performance can be observed and inferences
about the structure of a problem domain can be

made.

Experimentation: With a given control
architecture and problem structure, system

performance can be observed and inferences
about the objective strategy of an agent can be

made.

Figure 1.10. Summary of Analysis Perspectives Supported by the IDPUPC Framework.

22

“quality” of solution, where quality will normally be associated with a percentage of correct
answers found in a series of test cases.

Though the primary emphasis of the analysis framework rests on the importance of a
problem’s structure, the significance of the other three elements should not be overlooked. In
fact, the existence of these four elements implies a variety of analysis paradigms. These are
summarized in Fig. 1.10, which illustrates the relationships between a problem’s structure and a
problem solver’s objective strategy, control architecture, and performance level (or behavior). As
shown in the figure, there are four basic analysis paradigms, prediction, design, experimentation
(problem structure), and experimentation (agent objective strategy).

In the first paradigm, prediction, analysis focuses on predicting a problem solver’s perfor-
mance based on a given objective strategy, control architecture, and problem structure. In this
thesis, we will demonstrate the validity of the IDP/UPC framework by showing that a problem
solver’s performance can be accurately predicted based on a formal analysis of the objective
strategy, control architecture, and problem structure.

The ultimate objective of this work is to develop methodologies for constructing design
theories. This objective is addressed by the second analysis paradigm, which will be referred to
as the design paradigm. The design paradigm is not discussed in this thesis.

The two experimental analysis paradigms can be used to infer either a problem structure
or an objective strategy given the other analysis elements. These forms of analysis will also
be addressed in future work. For now, it is interesting to note that in the experimentation
paradigms, the control architecture actually becomes an experimental tool rather than the
object of analysis. In an experimental analysis paradigm, the control algorithm can be chosen
or modified in order to determine the structure of a problem domain or to determine the
objective strategy being used by a problem solving agent.

For example, a researcher may wish to investigate the structure of a particular image
interpretation domain. The researcher may carry out a series of experiments in which she
makes assumptions about the structure of the domain, embeds these structures into an IDP
representation, and then designs a control architecture to exploit the assumed structure. By
implementing both a simulation of a problem solver operating in the domain with the assumed
structure as well as a real problem solver operating in the actual domain, the researcher will
be able to conduct comparative studies to determine if the assumptions about the domain’s
structure of the image interpretation domain are reasonable.

1.8 Defining the Pruning, Preconditions, Goal Processing, and Approximate Processing
Sophisticated Mechanisms

Chapter 10 formally defines a set of important sophisticated control mechanisms including
preconditions, pruning operators, goal directed processing, and approximate processing. These
mechanisms are all represented as extensions to a basic interpretation grammar. An example of
the modifications that can be used to extend an interpretation grammar to represent meta-level
problem solving actions is shown in figures 1.11 and 1.12. Figure 1.11 represents a typical
interpretation grammar. The subscripts indicate that, for example, an An can be derived from
a Cn and a Dn, a Cn�� and a Dn, a Cn�� and a Dn, a Cn and a Dn��, etc. Given these
rules, there is a great deal of ambiguity in this grammar. This grammar is based loosely on
the vehicle tracking domain of the Distributed Vehicle Monitoring Testbed (DVMT) [Corkill,
1983]. Figure 1.12 shows the same grammar modified to include a class of meta-level operators
referred to as goal operators presented in [Lesser et al., 1989b]. This grammar is analyzed at
length in Chapter 4.8.

23

1. An → Cn±1Dn±1

4.a. Dn → hn±1in±1

3.a. Cn → fn±1gn±1

2. Bn → Dn±1En±1Wn±1

6.a. Wn → xn±1yn±1zn±1

5.a. En → kn±1jn±1
5.b. En → kn±1
5.c. En → jn±1

6.b. Wn → xn±1yn±1
6.c. Wn → xn±1zn±1

6.d. Wn → yn±1zn±1

3.b. Cn → fn±1
3.c. Cn → gn±1

4.b. Dn → hn±1
4.c. Dn → in±1

6.e. Wn → xn±1
6.f. Wn → yn±1
6.g. Wn → zn±1

An

Cn Dn Cn-1
Dn-1

Cn+1
Dn+1

...

hn in hn-1 in-1 hn+1
in+1 ...

Dn

hn in hn-1 in-1 hn+1

a. extended interpretation
grammar, G

n
'

b. example structures from grammar

(signal data)

c. additional intermediate structures
from grammar

Figure 1.11. Interpretation Grammar

24

fn+2

gD gE
gWgC

f0

...

gn+2

g0

...

hn+2

h0

...

in+2

i0

...

jn+2

j0
...

kn+2

k0

...

xn+2

x0

...

yn+2

y0

...

zn+2

z0

...

gB

.........Cn+1...

gA

B1
Bn...A1

An...

Wn+1
W0

En+1E0Dn+1
D0C0

Figure 1.12. Representing Goal Processing in an Interpretation Grammar

1.9 Demonstrating the Analysis of Heuristic Control

Chapter 7 showed how the IDP and UPC formalisms could be used to correctly predict
problem solver performance. The example problem solver architectures that were analyzed were
based on control functions that used precise statistics about the likelihood of states reaching
final states. We in part showed that this analysis could be extended to situations where precise
statistics were not available. This was accomplished by using different grammars to represent
the processes inherent in problem generation and the associated search processes used during
problem solution. Specifically, the interpretation grammar did not have a statistically accurate
view of the frequency of certain domain phenomena. In this thesis, it is shown that the analysis
techniques are also appropriate for analyzing heuristic control techniques which are not based
on using precise statistics. Specifically, Chapter 11 shows how these techniques can be applied
to the analysis of two blackboard control architectures; one using a heuristic rating function
based on level and credibility and heuristic termination criteria and another using heuristic
rating based on level and credibility and information derived from a goal.

The heuristic rating function used is LEV EL � RATING � POTENTIAL, where
LEV EL is the blackboard level of the partial result an operator is attempting to extend,
RATING is the partial result’s credibility, and POTENTIAL is the operator’s potential.
Blackboard levels for the example domains are defined in Chapter 11.

The goal processing heuristic rating function is identical, except that, when a goal is created,
all partial results, and the operators they triggered, subsumed by the goal have their ratings
re-evaluated. The re-evaluation process compares the rating of the operator with a new rating
determined by using the same heuristic rating function, but using information from the partial
result that triggered the goal’s creation, not the partial result that led to the original instantiation
of the operator. If the new rating is higher, it replaces the old rating. If the new rating is lower
than the old rating, no change is made.

25

Problem
Structure

...

Objective Strategy n

Control
Architecture 1

Control
Architecture 2

Control
Architecture m

...

Objective Strategy 2:
Minimize cost

Control
Architecture 1

Control
Architecture 2

Control
Architecture m

...

Objective Strategy 1:
Maximize generated

utility

Control
Architecture 1

Control
Architecture 2

Control
Architecture m

...

Performance Level 1

Performance Level 2

Performance Level x

Performance Level x+1

Performance Level x+2

Performance Level y

Performance Level y+1

Performance Level y+2

Performance Level z

Figure 1.13. Illustration of the Selection Problem – A Given Problem Structure Implies Different
Levels of Performance for Different Control Architectures

1.10 Defining Design Methodologies

Chapter 12.4 defines and demonstrates several design methodologies for constructing
sophisticated problem solvers. The IDP/UPC framework provides a basis for establishing
design theories for classes of AI search problems. The framework accomplishes this by
clearly representing how assumptions about the characteristics of domain events and the
structure of domain knowledge affect control architectures applied to the resulting search
space. Furthermore, the framework analytically and empirically addresses two critical design
issues, the synthesis problem and the selection problem. The synthesis problem, which involves
the generation of approximations and abstractions for a given interpretation domain theory,
corresponds to adding meta-operators (and associated functions) to the grammar component
of a domain’s IDP model. Chapter 4.8 presents examples of how the IDP formalism can be
used to address the synthesis problem for a specific form of dynamic, hierarchical problem
solving: goal processing.

The selection problem, which involves choosing approximations and abstractions for use in
problem solving, is represented in Fig. 1.13. As shown in this figure, given a problem structure
and an objective strategy such as “find the highest rated solution,” or “find any solution as
quickly as possible,” the core thesis of this work is that different control architectures, when
applied to the same problem structure, result in different levels of problem solving performance�.
The IDP/UPC framework will address the selection problem by helping to identify the causal

�Problem solving performance can also be thought of system behavior.

26

relationships between problem structures, control architectures, and performance levels. This
information can then be used to dynamically choose the appropriate control architecture based
on the observed problem structure.

C H A P T E R 2

RELATED RESEARCH

Heuristic search is an important Artificial Intelligence (AI) problem solving paradigm
that, over the years, has been used as the foundation for a great variety of AI systems. The
search paradigm is based on the concept of a space of states (or nodes) – data structures
characterizing relevant features of the problem domain. (These data structures will be referred
to as characteristic variables or CVs throughout this thesis.) Within this space, search is the
process of “moving” through these states via domain specific operators that map states to states
until a desired final state is found. Search invariably begins in a domain specific start state
and as operators are applied “paths” are traversed between states. Search is often thought of
as a process of expanding a state by applying one or more operators to it in order to generate
new states. Each state, si, represents a path from the start state to si and expanding si is
equivalent to extending the corresponding paths. A path that extends from the start state to a
final state is referred to as a solution and paths that extend from the start state to intermediate
states are sometimes referred to as partial solution paths or partial solutions. The general strategy
for controlling the application of problem solving operators is based on the use of evaluation
functions. As a state is expanded and new states created, an evaluation function gives each
operator associated with the new states a rating that represents its relative worth or merit. The
ratings are then used to determine an ordering for expanding paths.

Figure 2.1 is a representation of the internal state of a search-based, interpretation problem
solver. As shown, the internal state of a problem solver is defined primarily in terms of the
partial solution paths that it has expanded. The other components are the operators available
for execution and the potential final states implied by the available operators. When a search
path is created that represents a partial solution to a problem, at least one potential final
solution is also created that, if generated, will include the partial solution. The importance of
the implied potential final states is related to the analytical tools that will be defined and to
the relationship between the analytical framework and previous work in search-based problem
solving. Specifically, the concept of an implied final state is common to most search algorithms.
For example, A* search is defined in terms of the final states implied in its characteristic
equation f��n� � g��n� � h��n�. In this equation, f��n� is an evaluation function for state
n, g��n� estimates the minimum cost path from the start state to n, and h��n� represents an
underestimate of the distance from n to a goal state (or final state).

If a partial solution is created and no corresponding potential final solution can be created,
the path to the partial solution will be referred to as a “dead end” and all operators that can be
applied to the partial solution can be eliminated from consideration. A “dead end” state is one
for which one of the following conditions is true; if there are no operators that can be applied
to extend paths from the state; or if the problem solver determines that there are no paths from
the state that will reach a final state; or if the problem solver determines that there is no way
that the final states that can be reached from the state will have the highest utility (credibility).

28

PS

opi opj
opk

opl

opm opn

Database of Partial Results

...F
1 F

2
F

n

potential search action

expanded search path

intermediate problem solving result (or
partial result, hypothesis, or search state)

F
n Final State of some search path

opi potential problem solving action

Problem Solver's internal state

Start State

components of Problem Solver's internal state:

Figure 2.1. Representation of the State of the Problem Solver

29

When the internal state of a problem solver is such that all implied states have been
generated and explicitly represented and there are no more operations that can be applied, the
problem solver has reached termination. This is the same as saying that the base space has been
connected – all paths from intermediate states have either been generated or terminated because
the problem solver has determined that they cannot possible lead to the correct interpretation.
It is also important to note that a problem solver, in trying to connect its internal state and
reach termination, is also defining a search space. The analysis techniques will be associated
with the search paths of a problem solver’s internal state.

As a typical problem solver explores a search space by expanding states and extending partial
solutions, the size of the search space, when measured in terms of the number of open solution
paths plus the number of dead-end states plus the number of final states generated, grows at an
exponential rate. Shown graphically, search spaces take on a tree-like structure where the start
state is the root of the tree and the branches descending from each state represent the result of
applying one or more operators to that state. In a typical problem, the branching factor ranges
from only four or five to hundreds or thousands. Furthermore, a typical problem will require
at least dozens of operator applications, resulting in dozens of levels to the “search tree.” In
general, the total size of a search space is calculated (approximately) by bd where d is the depth
of the tree and b is the branching factor of each state. (This calculation is approximate because
the tree depth or branching factor could vary within a search tree.)

As a result of the enormous size of a typical AI search space, it is impractical or impossible
to build problem solvers that are based on exhaustive search techniques. Instead, AI problem
solvers employ strategies that selectively expand relatively small portions of the search space and
then use these partial results to make inferences about the consequences of expanding much
larger portions of the search space. These implicit enumeration strategies are often referred to
as control or meta-reasoning strategies. (In this work, they will be referred to as meta-level,
or abstract, operators.) The implementation of a control or meta-reasoning strategy will be
referred to as a control architecture [Corkill and Lesser, 1981, Hayes-Roth and Hayes-Roth, 1979,
Hayes-Roth, 1985].

The analysis framework is intended to be used to analyze sophisticated control architectures
(sophisticated control will be fully defined in Chapter 2.2) in complex domains (complex domains
are defined in the following section). Analysis will focus on architectures that use abstract, or
approximate, reasoning mechanisms, which explicitly represent subproblem interactions, to
implement efficient implicit enumeration strategies for interpretation problems.

The following sections will define and contrast complex domains and restricted domains.
They will also define and contrast the associated sophisticated control architectures and local
control architectures. Figure 2.2 summarizes these topics and illustrates their relationships
to each other relative to monotone and non-monotone domains, which are also defined and
discussed in the following sections.

2.1 Complex and Restricted Problem Domains

Early work on the search paradigm was restricted to constrained domains such as game
playing [Berliner, 1979, Samuel, 1963], and theorem proving [Newell et al., 1963]. The
heuristic knowledge used in the search process was relatively limited. This can be expressed
formally by saying that, for a restricted problem domain such as game playing or logic,
cost�operatori� � O���, i.e., the cost of applying an operator is a constant value. Thus, in
a restricted domain, the cost of evaluating and expanding a single state is O��� and the cost

30

monotone domains non-monotone domains

sophisticated control
architectures

local control
architectures

restricted
domains

complex
domains

operator cost = O(1) operator cost = O(xn)

control cost = O(1)

control cost = O(|s|!)

independent
search paths independent

search paths

interrelated
search paths interrelated

search paths

Figure 2.2. Classification of Problem Domains

associated with problem solving is a function of the number of times this constant cost must
be incurred. Since there is little or nothing that can be done to reduce the incremental cost of
expanding a single state, the most appropriate problem solving strategy is to reduce the number
of states that are expanded by pruning paths wherever possible.

For the most part, the pruning strategy formed the basis for algorithms such as AO�,
B�, SSS�, Alpha-Beta, and their generalizations [Berliner, 1979, Kumar and Kanal, 1988,
Pearl, 1984, Stockman, 1979]. The strategy incorporated in these algorithms is based on the
use of problem structures manifested in a problem solver’s evaluation functions – ratings and
knowledge of the search space’s structure are used to determine which paths are most likely to
lead to final states and which paths are dead ends. Paths that are more likely to lead to final states
are expanded first, and the results are used to prune alternative paths and dead ends. In research
projects involving restricted domains, the emphasis was on developing algorithms that enabled
the problem solver to prune paths based on intermediate problem solving results [Berliner, 1979,
Kumar and Kanal, 1988, Pearl, 1984, Stockman, 1979].

Previously, Pearl [Pearl, 1984] has shown that statistical properties of a problem solving
technique, such as expected cost, can be determined from an analysis of the structure of a
graphical representation of the search paths explored by the problem solver. In particular,
Pearl examines the effects of pruning operators and heuristics for ordering the application of
operators in various game playing domains and in other restricted domains. In contrast to the
analysis techniques, the analysis techniques described by Pearl in [Pearl, 1984] do not take into
consideration dynamic subproblem interactions or the long-term effects of an action.

Extended studies and analyses of the work on search techniques for restricted domains
have resulted in the identification of a taxonomy of search procedures by Kanal and Kumar

31

[Kumar and Kanal, 1988]. Each of the procedural categories specified by Kanal and Kumar
is defined in terms of the fundamental structure of the search spaces to which the procedures
included in the category can be successfully applied. Kanal and Kumar’s taxonomy links
heuristic search techniques with problem solving techniques that are more closely associated
with operations research (OR). This work has shown that basic AI search techniques can be
classified as belonging to a subcategory of either branch-and-bound procedures or dynamic
programming procedures [Kumar and Kanal, 1988].

More recently, AI problem solving has ventured into complex domains such as speech
recognition, natural language processing, vision processing, pattern recognition, etc., that
differ from the earlier, more restricted domains in two important ways. First, the search
processes used in more complex domains do not exhibit the simplifying characteristics that
would enable them to be categorized according to Kanal and Kumar’s guidelines. This is in
contrast to the characteristics of the restricted domains that imply the existence of certain types
of search space structures that can be exploited during problem solving. These structures do
not exist in the more complex domains and most of the search and pruning techniques that
were developed in earlier work, such as AO�, B�, SSS�, Alpha-Beta, and their generalizations,
are not applicable [Kumar and Kanal, 1988].

There are a variety of reasons for this. The most significant is that complex problem
formulations do not exhibit monotone properties and structures. In a complex problem domain,
certain characteristics of a search path are not guaranteed to increase (or decrease) monotonically,
in relation to alternative paths, as the path is extended. For example, in a complex interpretation
problem domain, as a path is extended, its credibility is not guaranteed to increase or decrease
in a way that is monotone in relation to alternative paths. At any given point, the credibility
of a path could go from “high-certainty” to “low-certainty,” or vice–versa, while the credibility
of alternative paths, which are extended with the same low-level data, could fluctuate in the
opposite way. Kanal and Kumar’s taxonomy only classifies problems that are, minimally,
monotone. As discussed by Kanal and Kumar [Kumar and Kanal, 1988], in order for AO�,
alpha-beta, B�, SSS� and their generalizations to be applicable to a given domain, the problem
formulation for that domain must exhibit monotonic properties.

The second important distinction between restricted and complex domains is that the cost
of applying an operator in a complex domain can be arbitrarily expensive, even exponential.
This implies that the most efficient course of problem solving is not necessarily associated
with path pruning. Instead, it might involve reducing the incremental cost of each search
operator application, or replacing expensive operator applications with one or more inexpensive
operators, etc. Consequently, the general strategies used to reduce problem solving costs in
restricted domains must be modified or replaced when working with more complex domains.

2.2 Sophisticated and Local Control

Intuitively, local control architectures focus on ordering search activities and pruning paths
based on the evaluation function ratings of intermediate problem solving results. Local control
architectures are most relevant to problem formulations with well understood search space
structures that limit the complexity of the knowledge and the amount of resources required to
prune paths. Specifically, local control architectures are most useful in domains where search
paths are independent of each other. In these domains, the merits of alternative paths can be
computed by functions that are based solely on the local characteristics of the individual paths
and the merits do not have to be recomputed when new states are added. (Path independence

32

is formally defined in Chapter 4.) The only interaction between paths occurs in the form of
comparing their respective evaluation ratings. Because the evaluation functions are based solely
on local information, their cost does not vary with the size of the search space. In fact, the
evaluation functions can be thought of as constant cost functions. i.e., �n� scost�fn�s� � O���,
where fn�s is an evaluation function for the path represented by state n in search space s that
defines the internal state of a problem solver at an intermediate state of problem solving. s
corresponds to a problem solver’s database of partial results shown in Fig. 2.1. As a consequence,
scheduling and pruning algorithms based on these functions can be applied with little or no
thought given to the costs involved. For example, given a search space with a very accurate and
discriminating evaluation function, it may be possible to prune many search paths based on
comparisons of evaluation ratings. In this domain, the control component of the search system
could be a relatively simple mechanism that evaluates every state and expands those that are
determined to be the “best” states and/or prunes states when it is determined that expanding
them would be fruitless.

In contrast, sophisticated control architectures are most useful in situations where search
paths are interrelated in such a way that extending one path somehow affects the results of
extending other paths. The formal definition of a relationship between partial solution paths
will be given in a later chapter, but for now it is sufficient to think of a relationship as a set
of constraints that allow operators to function more efficiently. Constraints can also increase
the likelihood that operators extend paths that will eventually lead to the correct solution and
improve the ability of a problem solver to estimate the overall utility of a potential operator.
For example, extending path A could reduce the cost of extending path B, or, perhaps, provide
information that enables a better measure of the utility generated by extending path B.

Another way of thinking about this is to view the problem domain as consisting of a
set of interdependent subproblems where solutions to subproblems are aggregated into an
overall solution to the problem. From this perspective paths (or states) in the search space are
considered to be competing when they lead to different solutions for the same subproblems,
independent when they are solving subproblems that do not interact, and cooperating when they
lead to solutions of subproblems where the solutions must be consistent with the solutions to a
more comprehensive subproblem that includes the interacting subproblems as components. In
the case of cooperating paths, potential solutions to a subproblem impose constraints on sibling
subproblems. These ideas are very important in the IDP/UPC framework and a more extensive
and formal description is discussed in Chapter 4 and in previous work of mine in [Lesser et al.,
1989b].

In choosing a path for extension in an interrelated search space, a sophisticated control
algorithm seeks to optimize the amount of constraint that is generated by the extension both
locally, for the path being extended, and more globally, for other paths related to the path
being extended. The objective here is not necessarily to prune paths but to efficiently order
problem solving activities so as to limit the overall cost of problem solving. Since paths are
related to each other, the creation or extension of a specific path will (possibly) constrain future
extensions of related paths. Thus, the goal of sophisticated control can be thought of as the
optimization of constraint generation to minimize the cost of search by limiting the number of
path extensions, as is done in conventional search, and by limiting the cost of individual path
extensions and the cost of controlling the search process.

It is important to emphasize that constraining the expansion of a state is significantly
different from pruning a path. For example, the constraint may be in the form of an ordering
constraint, such as “do not expand state A until state B has been expanded.” Such a constraint

33

may be beneficial in a situation where the results of expanding state B significantly reduce the
cost of expanding state A. In this situation, it may be the case that no paths are pruned –
the constraints generated by the expansion of state B simply reduce the resources needed by
the operator that expands state A. Constraint can be manifested in the form of a delay. The
problem solver may determine that it can delay certain problem solving activities in the hopes
that subsequent actions will make the delayed activities meaningless and eligible for pruning.
Though some of the search algorithms applied in restricted domains do delay certain problem
solving actions, this delay is made with hope that other problem solving actions will allow the
problem solver to prune the delayed action. The delay is not expected to reduce the cost of the
action. In more complex domains, where an operator can have significant cost, reducing the
cost of operator executions can be critical.

Optimizing control for constraint generation requires that analysis associated with the
evaluation of a partially expanded path be based on existing alternative paths. This analysis will
not be a constant cost function – the cost will vary based on the number and characteristics of
existing paths. Furthermore, analyzing the relationships between paths could be a very costly
computation and the incremental cost of analyzing additional path relationships as problem
solving progresses could also be very high. Since the cost of evaluating a path is based partly
on the number of other paths it might be related to, and since the total number of partially
expanded paths grows exponentially, the cost of evaluating a single path in a complex domain
could grow at a combinatorial rate. (i.e., cost�fn�s� � O�j s j��, where fn�s is an evaluation
function for the path represented by state n in search space s, and j s j represents the cardinality
of s, i.e, the number of states expanded� so far and represented in s where s defines the internal
state of a problem solver at an intermediate state of problem solving.)

�In evaluating a potential action, it may be necessary to understand its relationship to partial solution paths,
and also to paths that have terminated in dead ends and paths that have been extended to final states. Paths
leading to dead ends and final states may represent important relationships which indicate that the current path
can be pruned, or that it is very important, etc.

34

Thus, the critical difference between sophisticated and local control is embodied in their
respective costs. In a simple domain where solution paths are independent, the issue of control
can be addressed by some control architecture that evaluates every potential path and uses
the resulting information to efficiently expand and prune paths. It is usually assumed that
the control component of such a problem solving system has cost � O���, the cost does not
recur (i.e., paths are not re-evaluated in light of any new paths that are generated), and the
problem solver need not be concerned with considerations associated with this cost. It is
important to recognize that, even though evaluating a single path may have cost � O���, the
number of paths that must be evaluated will grow exponentially. However, since the paths
are independent, the addition of a new path does not affect the ratings of other, previously
evaluated paths. Consequently, the incremental cost of evaluating the new paths that result
from an expansion will still be O���. This form of search control, i.e., control architectures that
are determined a priori, that are not modified based on intermediate problem solving results,
that have cost O���, and that are not based on relationships between paths, will be referred to
as local, independent state evaluation control or simply local control.

In more complex domains, the issue of control will require the use of a more costly
evaluation mechanism and the problem solver must take this cost into consideration. This is
a result of the fact that the cost of evaluating a single path is a function that grows at a rate
that is potentially exponential in terms of the size of the search space. Given that paths in a
complex domain are not independent, the expansion of a single path implies that all previously
evaluated paths may need to be reevaluated, each at a potentially exponential cost. Because
of the expense that may be incurred by these evaluations, it may not be practical to use a
control mechanism that attempts to maximize the amount of constraint produced or seeks to
find the “best” state for expansion. For example, if the cost of determining the “best” state
for expansion has a cost that exceeds the cost of extending all the available paths, it is clearly
more desirable to simply extend all the paths. Thus, it is no longer feasible to simply allow
the control component to conduct exhaustive processing in order to determine which state to
expand. Such a decision could be more costly than simply using exhaustive processing to solve
the original search problem. This form of search control, i.e., control architectures that are
determined dynamically based on intermediate problem solving results, that have a worst-case
cost O�j s j��, and that are based on relationships between partially expanded search paths,
will be referred to as non-local, dependent state evaluation control or simply non-local control.
Non-local control will also be referred to as sophisticated control.

As a consequence of sophisticated control, the problem solving process takes on a recursive
quality where the control issue becomes a search problem in itself [Carver and Lesser, 1993].
The control component becomes a knowledge based mechanism that reasons and searches
for the best operator. The control mechanism must reason about which states to evaluate,
when to evaluate them, and which evaluation architectures to use. For this reason, control
problem solving will be represented in the proposed formalism as an incremental search
process that is based on the use of primitive operators and that is integrated with base-level
processing in a way that allows the problem solver to reason about control versus domain
processing. Previous research indicates that this is a reasonable perspective. For example,
the BB1 system was implemented using a similar approach in which sophisticated control
mechanisms were represented as problem solving operators that were explicitly considered by
the scheduler [Johnson and Hayes-Roth, 1987].

35

2.3 Representing Complex Domains

The analysis framework depends on an explicit representation of the abstract and approx-
imate search spaces that are used by a problem solvers meta-operators. Other researchers have
reported analyses of the structures of abstract and approximate search spaces. For example,
Knoblock discusses the maximum potential reduction in problem solving costs that can be
achieved with the use of abstract and approximate search spaces [Knoblock, 1991b]. However,
his analysis does not explain how these reductions might be achieved and his techniques do
not address the issues presented in Chapter 1. Knoblock’s analysis of the potential reduction
of problem solving cost is related to the theoretical consideration of the effects of dividing a
problem into a hierarchy of independent subproblems where determining solutions to all the
subproblems results in a solution to the original problem. Knoblock then compares the cost of
the solving the original problem, which is exponential in the size of the input, with the cost of
solving the hierarchy of subproblems, each of which might also be exponential in the size of the
input. Knoblock points out that, by subdividing a problem often enough, the actual cost of each
subproblem is an exponential function of a very small number and, in fact, can be considered
a linear or constant cost. Since the subproblems are all independent, the total cost of solving
the hierarchy of subproblems is the sum of solving each of the individual components. Thus,
assuming a reasonable hierarchical decomposition exists, the result is a cost that is linear in the
size of the input. Knoblock does not, however, suggest a formalism capable of representing
real-world problem domains or problem solving architectures in a manner that would support
such a decomposition. Nor does it identify sophisticated control as a specific class of problem
solving activity or relate the structure of a problem domain to the characteristics of a problem
solver’s performance. Consequently, though important for its theoretical developments and
demonstrations, Knoblock’s work does not create certain necessary elements that are required
for constructing design theories.

In addition, the use of formal grammars and the associated graph structures as a basis for
analyzing interpretation problems and for constructing problem solving systems is a common
approach. One of the more significant uses of formal grammars is presented by Fu in [Fu,
1982]. Fu uses a representation he formalizes as a stochastic grammar that is superficially
similar to the component structure of the IDP/UPC framework. However, Fu’s work differs
widely from this work in both representation and analysis. With respect to representation,
the IDP/UPC framework includes extensions to the grammar not used by Fu. As defined
in Chapter 3, an IDP grammar includes a set of functions associated with each rule of the
grammar. One of these rule sets, the set of distribution functions, is consistent with Fu’s
distribution functions, but the others, the credibility and cost functions, are unique to the IDP
formalism. In addition, the IDP formalism includes other extensions that differentiate it from
Fu’s work. An IDP includes the set of solution non-terminals (defined in Chapter 3) and the set
of singularities (defined in Chapter 5.1.1) that are used to calculate statistical domain properties.
The most significant distinction is that IDP grammars can represent both the characteristics of
a problem domain and the structure of a problem solving architecture. In particular, an IDP
grammar can be used to represent meta-level control actions available to a problem solver. In
contrast, Fu’s grammar are only used to represent the decomposition of design.

Furthermore, Fu’s emphasis is on parsing, not on analysis or developing design theories.
He does this by representing the semantics of a visual scene with a grammar. Thus, he encodes
relationships between primitives and nonterminals with additions to the grammar. For example,
he makes relationships such as “above,” “next to,” “inside of,” etc., elements of the grammar.

36

Then he uses traditional parsing techniques to derive the semantics of the scene. He does not
attempt to characterize the properties of a problem domain or a problem solving architecture
as is done here.

In the analysis framework, the processes used to solve a problem are represented as a context
free grammar. No claims are made about representing the semantics of a domain explicitly with
the grammar. In fact, semantic properties are represented with function, �, that are arbitrarily
complex functions. The approach used in the IDP/UPC framework is intended to formalize
the subproblem relationships in such a way that statistical analysis can be done to determine
general properties of the domain. These properties can be used be a problem solver’s control
component to effectively order activities.

Though the emphasis of Fu’s work is quite different from the focus of this thesis, it is relevant
to the future applications of this work. Fu’s work demonstrates that real-world tasks can be
accomplished using context-free grammars in form of parsing, or bottom-up processing. Other
work indicates that context-free grammars can be exploited in a top-down manner as well. For
example, impressive results have been achieved in automated design tasks by researchers such
as Campbell [Campbell et al., 1991] and Mullins and Rinderle [Mullins and Rinderle, 1991a,
Mullins and Rinderle, 1991b] who use grammatical approaches to engineering design. In both
cases, mechanical design tasks are solved by embedding knowledge about how to design certain
artifacts in a grammar and then treating the design task as a form of natural language generation.
The foundation for this approach was established by Knuth and the concept of an attribute
grammar [Knuth, 1968]. These demonstrations of the power of context-free grammars are
important to this work because they indicate that it is reasonable to expect that the IDP/UPC
framework can be applied to real-world analysis in domains other than interpretation and that
the framework’s reliance on context-free grammars will not be overly restrictive in future work.

2.4 Related Research

Many previous research projects have sought to exploit a problem domain’s structure
in order to construct more efficient control architectures. These include projects such as
ABSTRIPS, MOLGEN, and Hearsay-II. Although some of the work was not explicitly
presented as being related to the structure of a problem domain, these previous efforts are
relevant to the current project.

Work done by Fox, et. al [Fox, 1983], explicitly examines the structure of the problem
domain. For problems defined as constrained heuristic search (CHS), i.e., problems that combine
the process of constraint satisfaction with heuristic search, Fox identifies eight texture measures
that define a problem’s topology. These textures are used to dynamically characterize the
search space in order to more efficiently focus problem solving. In two examples, experiments
demonstrate a reduction of 25 – 80% in the number of search states generated during problem
solving. Fox does not discuss the cost of dynamically computing texture measures nor does he
present general algorithms for determining textures or their approximations. (Fox does present
problem specific approximations for some of the texture measures, but there is no discussion
of their generalization to other problem domains.)

In contrast to Fox’s work on constraint satisfaction problems, the IDP/UPC framework is
applicable to interpretation problems characterized by constructive search spaces. Constructive
search spaces are identical to the convergent search spaces defined in Chapter 3.1 and similar
to generate and test search spaces. Intuitively, constructive search spaces are characteristic
of interpretation problems such as natural language understanding, image understanding,

37

sensor fusion, vehicle tracking, etc. Furthermore, Fox’s work is based on problem domains
with objective functions that assign final states equivalent utilities. Thus, all final states have
identical worth and the problem solver’s strategy is (usually) intended to find any final state as
quickly as possible or with minimal cost.

The IDP/UPC framework is based on problem domains with objective functions that
assign variable utility values to final states. The task in such domains can be stated in terms
of finding the best, or most credible, answer, not just the first answer generated or the answer
reached taking the shortest solution path. In other words, the first answer that a problem solver
finds may not have the highest credibility of all the potential answers. Similarly, the least cost
answer may not be associated with the answer that has the highest credibility. One class of such
problems, Interpretation Decision Problems, is defined in Chapter 3.

The most important difference between Fox’s work and the IDP/UPC framework is
that the IDP/UPC framework attempts to model both short- and long-term structures. By
short-term structures, we mean those structures that occur during the course of a single problem
solving instance. Long-term structures are those that are characterized by statistical measures
associated with all problem instances that can occur over time. The design theories derived
from IDP/UPC representations will be applicable to the design of both general problem
solving architectures and dynamic control architectures. Specifically, with respect to general
architectures, the IDP/UPC framework can be used to address issues related to the synthesis and
selection problems defined in Chapter 1. The synthesis problem, which involves the generation
of approximations and abstractions for a given interpretation domain theory, corresponds to
adding meta-operators (and associated functions) to the grammar component of a domain’s
IDP model. The selection problem involves choosing approximations and abstractions for use
in problem solving. Thus, the framework can be used to design meta-level operators and the
corresponding abstraction spaces and mapping operators that are to be included in a problem
solving system. The framework can also be used to design the dynamic control algorithm (or
evaluation function) that determines which operators to execute and which abstractions to use.

The IDP/UPC framework exploits a structural representation based on a statistical analysis
of a problem domain. Fox’s texture measures are related only to the dynamic characteristics of
a specific problem solving instance. Though effective, it is not clear that they can be used to
design problem solving architectures.

To summarize, the IDP/UPC research project is similar to Fox’s work on CHS in that they
both seek to formally define problem domain structures that can be used to more efficiently
focus search-based problem solving. The works differ in that they are applicable to different
types of search, CHS versus constructive search, and in the objective function used by the
problem solver to rate final states. They also differ significantly in that Fox’s texture measures
are oriented more toward identifying and exploiting structures for increasing the effectiveness
of dynamic control, and the IDP/UPC framework is oriented toward both dynamic control
and the design of general problem solving architectures.

2.5 Generalizations

IDP/UPC based analysis tools are intended to be used to design, predict, and explain the
performance characteristics of problem specific architectures and dynamic control strategies
derived from the search-based control cycle shown in Fig. 2.3. The IDP/UPC framework is
especially well-suited for the design and analysis of problem solvers that use abstractions and

38

flow of data

flow of control

choose operator
to execute

execute operator rate new
operators

add new operators to pool
of available operators

operators available
for execution

Figure 2.3. The Basic Control Cycle

approximations. Though the analysis framework is applied to the analysis of interpretation
problems and constructive search spaces, its use is not restricted to these domains.

More generally, the framework can be applied to search-based problem solvers that use
an evaluation function that rates prospective problem solving operations based on a decision
theoretic computation. The computation must have input parameters that are functions of
structures from the problem domain. For example, problem solvers with evaluation functions
of the form shown in Equation 2.5.1.

Equation 2.5.1 R�opi�nj�� � fR�f��s�opi� � c�� f��s�opi� � c�� � � � � fm�soopi� � cm�,

where R�opi� is the rating for the potential problem solving operator opi applied to search
state nj , each fk is a function of a domain structure represented by skopi , and ci represents a
constant. The representation skopi should be interpreted, “the aspects of domain structure sk

relevant to opi.”
The evaluation function used in the experiments presented in Chapter 11 corresponds to

this form. Specifically, for the evaluation function LEV EL �RATING�POTENTIAL,
f��sn� � LEV EL�sn� � RATING�sn� and f��sn� � POTENTIAL�sn�. Then,
fR�sn� � f��sn� � f��sn�, which is consistent with the required form.

It is important to note that Equation 2.5.1 is a representative example of the evaluation
functions that are relevant to the analysis tools. The important aspect of this equation is
the emphasis it places on the problem structures, sjni and the absence of other factors. The
specific form is not necessarily meant to specify restrictions for the set of problem solvers to
which this work can be applied. For example, the analysis tools can be applied to evaluation
functions where the fj are not necessarily separable. Specifically, the analysis tools can also be
applied if the computation of some fj is dependent on the computation of another fk, e.g.,
R�opi�nj�� � fR�f��s�opi� f��s

�
opi
���.

39

These restrictions are fairly limited and imply that the IDP/UPC framework can be applied
to a broad range of search problems. The critical issue becomes the availability of definitions for
the structures sjni . In Chapter 3, the structures that defined for interpretation problem domains
include component (or syntax), utility, probability, and cost. These structures were chosen
because they are common to the vast majority of interpretation problems and it is intuitively
easy to understand their relevance. The structures used in an analysis are determined by the
nature of the problem domain and the objectives of the problem solver and it would be incorrect
to infer any restrictions from the specific characteristics or quantity of constraints used in the
analysis work presented here.

The structures that are defined in Chapters 3, 4 and elsewhere in this thesis are based on
the use of grammars and are applied to interpretation decision problems, or IDPs, as defined
in Chapter 3. IDPs will be characterized as discrete optimization problems where the set of
potential solutions could be generated with grammars. Thus, the structures that are defined are
naturally derived from the specification of the solution space. The set of discrete optimization
problems contains an extremely broad class of problems including many of the most important
classes of problems studied in other disciplines such as operations research. This suggests that
the applicability of this work is limited by the extent to which a problem’s solution space can be
represented as the language generated by a grammar. Also, the IDP/UPC framework extends
the formalization work of others, most notably Kanal and Kumar [Kumar and Kanal, 1988]
and, in so doing, helps integrate problems from artificial intelligence with operations research
problems in a unified framework.

As will be discussed in Chapter 6.4, given appropriate definitions of problem structures
such as utility, probability, and cost, it is possible to define simple control mechanisms that seek
to optimize ratios such as (generated utility)/cost. With the necessary structure definitions, it
should be possible to define many different decision theoretic control strategies.

The problem structures introduced in Chapter 4 are defined in terms of context-free,
phrase structured grammars and functions associated with production rules of the grammar.
As Chapter 4.7 discusses, this technique is well-suited for the study of interpretation problems.
Though the use of grammars is a key element of the IDP formalism and a generally applicable
methodology for specifying problem structures, is not necessarily required for extensions to the
analysis framework. At present, experiments with other methodologies for specifying problem
structures have not been conducted. However, it is certain that such methodologies exist and
can be very effective in interpretation and other domains.

2.6 Chapter Summary

This chapter defines the class of problems referred to in this thesis as sophisticated control
problems and the class of complex problem domains and relates both to previous problem and
domain definitions. The resulting taxonomy is shown in Fig. 2.2. Sophisticated control
and complex domains are formally defined in the context of search problems. Specifically,
sophisticated control problems are those where, in order to find the statistically optimal operator
to execute, the control mechanism must examine the relationships between all possible sets of
partial search paths. Complex domains are search problems in which the cost of applying a
single operator is potentially exponential with respect to the input to the operator and where
the functions for extending search paths are non-monotonic. These definitions establish a
formal specification for an important set of AI research problems, they allow these problems to
be characterized more precisely, and they enable the results from research on these AI problems

40

to be compared and contrasted to the results of other research efforts in AI and to work in
other fields, such as operations research, that have developed search-based formalisms. This
chapter also defines the related concepts of restricted problem domains, in which search operators
have a constant cost, and local control, which does not examine any interrelationships between
potential problem solving actions.

C H A P T E R 3

INTERPRETATION PROBLEMS AND THE IDP FORMALISM

The IDP formalism describes a class of problems, Interpretation Problems, in terms of a
search process where, given an input string X, a problem solver attempts to find the most
credible (or “best”) explanation for X. Thus, tasks where a stream of input data is analyzed and
an explanation is postulated as to what domain events occurred to generate the signal data are
thought of as interpretation problems – the problem solver is attempting to interpret the signal
data and determine what caused it. Interpretation is a form of constructive problem solving
based on abductive inferencing [III, 1990]. Interpretation is similar to a closely related form of
problem solving, classification, and to a more distant form of problem solving, parsing.

More formally, let an IDP be defined as follows:
Definition 3.1 Interpretation Decision Problem (IDP) - Given X , an arbitrarily complex

input signal, determine the best element, e, of the discrete set of all valid interpretations,
I , such that �i � I� f�e� � f�i�, for evaluation function f , where a valid interpretation
is one that explains all the elements, xj � X .

In Chapter 6.4 a variant of the Interpretation Decision Problem is introduced that can
result in forms of problem solving that generate solutions that do not necessarily have the
highest credibility rating. In this variant, the cost of problem solving can be significantly lower
than the corresponding cost of problem solving in an identical IDP problem instance.

It is important to emphasize that, in interpretation problems, the set I is constructed
dynamically. This is in contrast to classification problems where I is preenumerated and the
problem solving task involves only the identification of the best element of I . Figure 3.1 is a
representation of an Interpretation Decision Problem.

In most interpretation problems of interest, I is a potentially enormous, even infinite, set.
In many of these domains, I can be specified in a naturally structured way and it is this structure
that is exploited by control architectures to reduce the number of elements of I that must be
generated or to otherwise increase the efficiency with which I is specified. Of particular interest
are situations where I is finite and can be defined as the language generated by a grammar, G,
and where the evaluation function, f , used during problem solving is recursively defined for
strings i in I . This approach is similar to that used in the Composite Decision Process (CDP)
model of Kanal and Kumar [Kumar and Kanal, 1988].

In these situations, interpretations take the form of derivation trees of X and the con-
structive search operators used in interpretation problems are viewed as production rules of G.
G, therefore, defines how interpretations are decomposed. For example, the production rule
p � n�n�n� might correspond to the interpretation “p is composed of an n�, an n�, and an
n�.” Given an n�, an n�, or an n�, a problem solver may invoke the search operator op to try
and generate a p.

Semantics associated with each production rule determine the actual domain interpretation.
The semantic functions will typically make use of grammar element attributes that are not used

42

Problem
Instance ⇒

Best interpretation

for evaluation function, f,
∀i , f(e) ≥ f(i)

I

i

i

i

i

ii

i

i

i

i
i

i
i

i

i

i

e

I = set of interpretations

Figure 3.1. Representation of an Interpretation Decision Problem

by syntactic functions. These attributes will be represented using the feature list convention
described by Gazdar, et al.[Gazdar et al., 1982] and similar to the attribute grammars of
Knuth [Knuth, 1968]. This is an important point. In interpretation problems, each syntactic
rule of the grammar is associated with a corresponding semantic process. (These semantic
processes are discussed further in Chapter 3.2.) Thus, during interpretation, each application
of a search operator consists of a semantic as well as a syntactic operation. Furthermore, the
functionality of the semantic processes is unrestricted and could include virtually any form of
processing including production rules, neural networks, etc. For example, a semantic process
in a natural language interpretation task might combine a noun phrase and a verb phrase into
a sentence using a very complex process that simultaneously verifies consistency and combines
the meanings of the two component phrases. Alternatively, phonemes might be combined in
the same domain into words based on neural network algorithms.

3.1 Convergent Search Spaces

In the IDP formalism, the primitive operators available to solve a specific domain problem
are represented as production rules of the domain’s characteristic grammar. The mapping
of interpretation decomposition to a formal grammar results in a type of search space that
will be referred to as a convergent search space. The significance of convergent search spaces
is that the relationships between search paths can be determined and analyzed based on a
formal representation of a given domain. This analysis can be used to determine closed form
expressions for the expected costs of problem solving. This is in contrast to domains where the
relationships between search paths cannot be determined or formally analyzed.

Common to interpretation problems, convergent search spaces consist of search states that
correspond to the symbols of the formal grammar’s terminal and nonterminal alphabets. This
is an important distinction because it limits the scope of each search state in a convergent space
to an incomplete view of the search state relative to a more comprehensive, or global, view of

43

problem solving in which relationships between individual search states is represented. Thus,
each search state contains only local information associated with the specific partial solution
that the search state represents. A search state may not contain any information about other,
possibly interacting search states. This is in contrast to conventional search spaces, such as
the typical representation of a chess domain or an 8-puzzle domain, where each search state
contains complete information about a partial solution’s relationship with other paths.

To clarify this point, let a search state be defined as a set of characteristic variables. A
final state is then defined by a specific set of values for some characteristic variables, or by
a function of characteristic variables. In a convergent space, a specific search state may not
contain all the characteristic variables necessary to determine if a final state has been reached,
or to determine precisely how much progress has been made toward reaching a final state.
For example, in a speech understanding domain, a search state, s, may represent a partial
interpretation corresponding to an interpretation of the first 2 seconds of data. There may be
another 20 seconds for which s offers no explanation. However, the problem solver cannot
determine if any partial interpretations for the other 20 seconds of data exist by examining
s. In contrast, in a conventional search-based chess playing program, each search state is
“self-contained.” The problem solver can determine whether or not each of the search states
is a final state, and all of the subproblem interactions are encompassed within a search state.
In such domains, two paths are never merged or combined into a single, more comprehensive
partial solution.

For a given set of input data, there may be multiple instantiations of a specific terminal
or nonterminal symbol resulting from multiple, non-equivalent derivation paths. This will be
discussed further in subsequent chapters when the concept of noise and the associated ambiguity
are introduced. Operators correspond to the inverse application of a production rule of the
formal grammar. In addition, one of the key distinguishing characteristics of convergent
search spaces is that an operator is applied to multiple states, not just one, but there is no
explicit representation of the multiple states as a single state. Figure 3.2 is an example of an
interpretation grammar, G�, where each of the productions corresponds to a search operator�.
Figure 3.3 represents portions of a convergent search space that corresponds to grammar G� of
Fig. 3.2. In Fig. 3.3, states correspond to the elements of the grammar’s alphabet, arcs between
states correspond to operator applications, and the shaded areas represent those states that are
only represented implicitly in a convergent search space. When an operator is applied to a state,
for example, rule (or search operator) 3 is applied to state “f” to generate state “C,” there is an
implicit merging of states “f” and “g.” The result is as if op� were applied to a state representing
both “f” and “g.” Represented graphically, it appears that search paths from “f” and “g” meet
or converge at state “C.”

Implicit states in a convergent search space, those shown as shaded states in Fig.3.3, are
good intuitive examples of the information captured in abstract states. There is, however, a
distinction between an implicit state and an abstract state. Implicit states are collections of states
to which an operator appears to be applied. i.e., an implicit state is one that contains exactly

�In applying the IDP/UPC framework to more complex, real-world domains, we will use an augmented
version of a grammar that makes use of the feature list convention discussed by Gazdar, et al.,[Gazdar et al., 1982]
and Knuth [Knuth, 1968]. This will increase the expressiveness of the grammar and enable it to model real world
events more accurately, but it will not invalidate the analysis techniques that will be discussed later in this thesis.
For the sake of clarity and simplicity, the feature list convention will not be represented in the example grammars
used in this thesis unless it is explicitly stated. Our use of the feature list convention to generate problem instances
is discussed further in Chapter 4.6.

44

1. A → CD

3. C → fg
5. D → hi

7. f → (signal data)

9. g → (signal data)

11. h → (signal data)

13. i → (signal data)

2. B → DEW

4. E → jk
6. W → xyz

8. j → (signal data)

10. k → (signal data)

12. x → (signal data)

14. y → (signal data)

15. z → (signal data)

Interpretation
Grammar G'

0. S → A | B

Figure 3.2. Interpretation Search Operators Shown as a Set of Production Rules

the elements of the RHS of some rule of the grammar. For example, the state “f,g” or the state
“x,y,z.” Abstract states are not restricted to including only sets of base space states that appear
in the RHS of some grammar rule. For example, the state “f,h” is an abstract state since f and h
do not appear as the RHS of any rule of the grammar. Both implicit and abstract states contain
information that can be exploited during problem solving.

Consideration of implicit and abstract states is also useful for understanding the concept
of potential, which was introduced in Chapter 1 and which is formally defined in Chapter 9.
In general, the potential of an operator’s is a reference to the operator’s ability to alter the search
space in some way that reduces the cost of problem solving (or increases the effectiveness of
problem solving efforts) for some other set of operators. For example, consider if there was a
meta-operator that generated a state representing an abstraction of the information contained
in an implicit state. In certain situations, this could be very useful information. Such a
situation might be one where the problem solver was trying to extend a state h. Based on a
local perspective of the problem solving situation that only included information related to
state h, the problem solver would not be certain whether to choose an operator leading to
an interpretation of an A or one that would lead to an interpretation of a B. However, if the
problem solver could generate an abstract state that would represent whether or not an f was
present, and if the problem solver could map this information back to state h, it would know
exactly what to do and it could ignore alternative actions. (If an f is present, take a path leading
to the generation of an A, if an f is not present, take a path leading to the generation of a B.)
The degree to which this strategy reduces the cost of problem solving can be thought of as the
potential of the abstract state.

Convergent search spaces are associated with a set of properties referred to as opportunistic.
Opportunistic processing was introduced in work on the Hearsay-II project [Erman et al.,
1980]. Opportunistic processing enables a system to be guided by the most recently discovered
results and not by a requirement to satisfy specific subgoals. In opportunistic processing
systems, many redundant paths can lead to the same result and partial, intermediate results can
be merged into more comprehensive results. For example, two or more subgoals could be part
of the same higher-level goal and the completion of each of the tasks associated with the subgoals
could independently trigger actions that would lead, redundantly, to the invocation of tasks to
generate identical solutions for the higher-level goal. This can happen when a system does not
fully understand the implications of a potential action. The system may not be able to determine

45

...

zSignal Data

............

f

g
h

i j k x y

A

f,g,h,i

D,f,g

C,D

D,f

D

h,i

C,h,i

C,h

C

f,g

h,i,j,k

W

x,y,z

j,k,x,y,z

E

j,k

E,x,y,z

E,x

E,x,y

j,k,x

j,k,x,y

E,W

B

Shaded states are implied but not
generated during problem solving.

W,j,k

Partial representation of the convergent search space
defined by the Interpretation Grammar G'

op3

op7

op11 op13 op8 op10 op12
op14

op15

op5

op1
op2

op6

op4

op9

Figure 3.3. Convergent Search Space Defined by Interpretation Grammar

that two or more potential actions will generate the same result without actually invoking them.
The flexibility of opportunistic processing enables a system to work around areas of a problem
where the required data is of poor quality or where little constraint is generated to guide
subsequent processing. After other aspects of a potential solution have been determined, they
can be used to constrain search in the bypassed areas. In many ways, opportunistic processing
can be thought of as an extension of bidirectional search. Opportunistic search enables problem
solving to proceed bottom-up from low-level data, top-down from general expectations and
abstractions, or either top-down or bottom-up from intermediate results. The advantages of
opportunistic processing have been demonstrated in projects including [Erman et al., 1980,
Corkill, 1983, Durfee, 1987].

The interpretation search spaces presented in this thesis are all convergent search spaces.
The general structures that define these spaces are defined in Chapter 3.2. More domain
specific structures are defined in Chapter 4.

3.2 Defining Problem Structures

Viewing a problem solver’s search operators as a formal grammar is the basis for analyzing
the component, cost and utility � structures of the domain theory of an interpretation problem.
Component, cost, and utility, or credibility, structures are illustrated for interpretation grammar
G� in Fig. 3.4. In general, each rule of the grammar is considered to be an arbitrarily complex
problem solving operator with an associated credibility and cost function. For nonterminals

�In the interpretation problems discussed in this thesis, utility and credibility are synonymous.

46

(Signal Data)

...

B

E W

zyxkjihgf

C D

A

f
z
, g

z
f
y
, g

yf
x
, g

x
f
k
, g

k
f
j
, g

jf
i
, g

i
f
h
, g

h
f
g
, g

gf
f
, g

f

f
C

, g
C

f
D

, g
D

f
E

, g
E

f
W

, g
W

f
B

, g
Bf

A
, g

A

arcs indicate AND-like
functions - all indicated

inputs are required

Figure 3.4. Derivation of Utility and Cost Structure From Interpretation Grammar

with multiple right hand sides (RHSs), each RHS corresponds to a unique problem solving
operator. In following chapters, it will be shown that abstractions and approximations used
in meta-level control actions can also be viewed from this same perspective, i.e., as operators
specified by production rules of a domain’s characteristic grammar.

The component structure of a problem is modeled directly by the rules of the grammar.
Thus, the component subproblems of A are defined by the RHS of a rule of the grammar,
p 	 A �(component subproblems). The full structure is specified recursively. Represented
graphically, the component structure of an interpretation problem appears as a derivation tree,
as shown in Fig. 3.4.

The credibility structure is derived from the credibility functions corresponding to each
of the production rules in the grammar. In Fig. 3.4, these functions are shown attached to
the derivation tree states resulting from the inverse application of the production rule. For
production rule (or state) p, the credibility function is represented fp. Each credibility function
is shown as a recursive function of a state’s descendants. Thus, fp is a function of p’s descendants.
In interpretation tasks, credibility functions typically include a consideration of the credibilities
of the component elements and a consideration of semantics. For example, the credibility of
“A” is a function of the credibilities of “C” and “D” and the results of a semantic function,
�, that measures the degree to which “C” and “D” are semantically consistent. In a natural
language interpretation system, a semantic function might determine the degree to which the
combination of a noun phrase and a verb phrase is meaningful. If the result is nonsensical,
the semantic function, �, will return a relatively low value. If the result is meaningful and
consistent, � will return a relatively high value. Similarly, in an acoustic vehicle tracking system,
semantic functions might check for consistent harmonics, signal energies, etc. In this thesis,
we will represent credibility functions that take into consideration both the credibility and the
semantic consistency of a state’s descendants as, for nonterminal A with descendants C and
D, fA�fC� fD��p�C�D��, where the subscript of �, p, is the number of the corresponding
production rule from the grammar.

47

Similarly, the cost structure is defined in terms of the amount of a resource, such as time,
required to inversely apply a production rule. For state n, the cost function is represented gn.
It is important to note that gn defines the cost of generating the entire tree or subtree associated
with state n, not just the cost of applying operator n.

This definition does not take into consideration the characteristics of the state of the
problem solver at the time an operator is executed. For example, a component of an operator’s
cost may be a function of the amount of data currently stored in a database. Considerations
such as these will not be dealt with in this thesis. However, there are a variety of techniques for
dealing with them. One such technique would be to simulate an operator being applied in a
series of different contexts and to compile statistical information about the cost of applying the
operator and to use this information to determine the expected cost and variance of applying
an operator. (In fact, this is very similar to what is done in this thesis. However, no statistical
studies of operator cost were conducted. Instead, expected costs and variances were merely
specified for each operator.) An alternative technique would be to incorporate a representation
of significant aspects of the problem solver’s internal state within each search state. This
would enable our analysis techniques to differentiate search paths based on the order in which
operators are applied and would enable analysis of problem solving costs with respect to the
internal state of the problem solver.

In interpretation tasks, cost is typically a function of the cost of the component elements
and the cost of the semantic function. For example, the cost of “A” is a function of the cost of
“C” and “D” and the cost of the semantic function �p�C�D�. Cost functions are represented
as, for nonterminal A with descendants C and D, gA�gC� gD� cost��p�C�D���, where the
subscript of �, p, is the number of the corresponding production rule from the grammar and
cost��p�i� j� ����� is the cost of applying the semantic function �P . Where it does not cause
confusion, cost��p�i� j� ����� will be also represented as C��p�i� j� �����.

A typical credibility function might be “average,” which determines the credibility of a
state by normalizing the sum of the credibilities of the state’s descendants and the result of the
semantic function. Alternatives include taking the minimum value or reducing the average
descendant credibility by a function of the output of the semantic function. A typical cost
function might be “sum,” which sums the cost of generating a state’s descendants and the cost
of the semantic function plus a fixed cost that represents the system overhead associated with a
problem solving operator.

48

Interpretation Grammar G'

0.1 S → A ψ(0.1) = 0.2 f0.1 (fA) g0.1 (gA)

0.2 S → B ψ(0.2) = 0.2 f0.2 (fB) g0.2 (gB)

0.3 S → M ψ(0.3) = 0.2 f0.3 (fM) g0.3 (gM)

0.4 S → N ψ(0.4) = 0.2 f0.4 (fN) g0.4 (gN)

0.5 S → O ψ(0.5) = 0.2 f0.5 (fO) g0.5 (gO)

1. A → CD ψ(1) = 1 f1 (fC,fD, Γ1(C,D)) g1 (gC,gD,C(Γ1(C,D)))

2. B → DEW ψ(2) = 1 f2 (fD,fE,fW, Γ2(D,E,W)) g2 (gD,gE,gW,C(Γ2(D,E,W)))

3.0 C → fg ψ(3.0) = 0.5 f3.0 (ff, fg, Γ3.0(f,g)) g3.0 (gf, gg,C(Γ3.0(f,g)))

3.1. C → fgq ψ(3.1) = 0.5 f3.1 (ff,fg,fq, Γ3.1(f,g,q)) g3.1 (gf,gg,gq,C(Γ3.1(f,g,q)))

4. E → jk ψ(4) = 1 f4 (fj,fk, Γ4(j,k)) g4 (gj,gk,C(Γ4(j,k)))

5.0 D → hi ψ(5.0) = 0.5 f5.0 (fh,fi, Γ5.0(h,i)) g5.0 (gh,gi,C(Γ5.0(h,i)))

5.1. D → rhi ψ(5.1) = 0.5 f5.1 (fr,fh,fi, Γ5.1(r,h,i)) g5.1 (gr,gh,gi,C(Γ5.1(r,h,i)))

6.0 W → xyz ψ(6.0) = 0.5 f6.0 (fx,fy,fz, Γ6.0(x,y,z)) g6.0 (gx,gy,gz,C(Γ6.0(x,y,z)))

6.1. W → xy ψ(6.1) = 0.5 f6.1 (fx,fy, Γ6.1(x,y)) g6.1 (gx,gy,C(Γ6.1(x,y)))

7. f → (s) ψ(7) = 1 f7 (f(s), Γ7((s))) g7 (g(s),C(Γ7((s))))

8. j → (s) ψ(8) = 1 f8 (f(s), Γ8((s))) g8 (g(s),C(Γ8((s))))

9. g → (s) ψ(9) = 1 f9 (f(s), Γ9((s))) g9 (g(s),C(Γ9((s))))

10. k → (s) ψ(10) = 1 f10 (f(s), Γ10((s))) g10 (g(s),C(Γ10((s))))

11. h → (s) ψ(11) = 1 f11 (f(s), Γ11((s))) g11 (g(s),C(Γ11((s))))

12. x → (s) ψ(12) = 1 f12 (f(s), Γ12((s))) g12 (g(s),C(Γ12((s))))

13. i → (s) ψ(13) = 1 f13 (f(s), Γ13((s))) g13 (g(s),C(Γ13((s))))

14. y → (s) ψ(14) = 1 f14 (f(s), Γ14((s))) g14 (g(s),C(Γ14((s))))

15. z → (s) ψ(15) = 1 f15 (f(s), Γ15((s))) g15 (g(s),C(Γ15((s))))

16. M → Y ψ(16) = 1 f16 (fY) g16 (gY)

17.0 Y → qr ψ(17.0) = 0.5 f17.0 (fq,fr, Γ17.0(q,r)) g17.0 (gq,gr,C(Γ17.0(q,r)))

17.1 Y → qhri ψ(17.1) = 0.5 f17.1 (fq,fh,fr,fi, Γ17.1(q,h,r,i)) g17.1 (gq,gh,gr,gi,C(Γ17.1(q,h,r,i)))

18. N → Z ψ(18) = 1 f18 (fZ) g18 (gZ)

19. Z → xy ψ(19) = 1 f19 (fx,fy, Γ19(x,y)) g19 (gx,gy,C(Γ19(x,y)))

20. O → X ψ(20) = 1 f20 (fX) g20 (gX)

21.0. X → fgh ψ(21.0) = 0.5 f21.0 (ff,fg,fh, Γ21.0(f,g,h)) g21.0 (gf,gg,gh,C(Γ21.0(f,g,h)))

21.1. X → fg ψ(21.1) = 0.5 f21.1 (ff,fg, Γ21.1(f,g)) g21.1 (gf,gg,C(Γ21.1(f,g)))

credibility costdistributiongrammar rule

(s) = signal data C(Γn(i,j,...)) = cost of executing Γn(i,j,...)Γn(i,j,...) = semantic evaluation function for rule n

Figure 3.5. Example of Interpretation Grammar with Fully Specified Distribution, Credibility,
and Cost Functions

49

For a given IDP instance, I , the problem structure of the domain will now be defined in
terms of GI , the characteristic grammar for I ’s domain, and the functions fp and gp. Formally,

Definition 3.2.1 An IDP Grammar is a grammar, GI �� V�N� SNT� S� P �, where V is the
set of terminal symbols, N is the set of nonterminal symbols, SNT is the set of solution-nonterminal
symbols that correspond to final states, S is the start symbol for the grammar�, and P is the set of
context-free production rules.

In the analysis framework, an IDP problem will be represented with two distinct grammars,
the generation grammar, IDPg , and the interpretation grammar, IDPi. IDPg is used to model
the structure of a domain and the domain events that resulted in the creation of the observed
signal data. Thus, IDPg will be shown with the characteristics of GI that are applicable
to generation, the grammar rules associated with the problem domain and their distribution
functions. IDPi is used to model a problem solver’s architecture and will be shown with cost and
semantic functions. When a new IDP grammar is introduced, it will be shown with both IDPg
and IDPi in a combined representation including cost, credibility, and distribution functions.
As described in Chapter 7, IDPg and IDPi can differ significantly and their respective sets of
production rules and non-terminals can be quite different, even disjoint. Even so, we will often
refer to both of them as “an IDP grammar.”

The GI grammar specification is very similar to traditional grammar specifications with
the notable exception of the set of solution nonterminals. This specification is necessary for
analytical reasons that will be explained in Chapter 5.1.1. fp and gp are defined for elements
p � P . In addition, another function, �, will be used to define problem structures by
augmenting GI ’s expressive power. Specifically, for each rule p � P , there is a corresponding
��p�. ��p� will be used to represent the distribution of “right hand sides (RHSs)” associated
with p. Each of these alternative RHSs will be thought of as a distinct problem solving operator
that is associated with a distinct credibility and cost function. This is illustrated in Fig. 3.5. �
is introduced here to support the definition of problem structures. � will be used to support
the modeling of real-world phenomena such as uncertainty caused by noise, missing data,
distortion and masking (see Chapter 4). � will be represented by saying that, for production
p which decomposes to RHS�, there are one or more corresponding p� that decompose to
alternative RHSs, RHS� � � � RHSm. The definition of � is shown in Fig. 3.6. In Fig. 3.6,
production rule p has a number of possible RHSs. These different RHSs can be thought
of as the right hand sides of variations of p numbered p.1 through p.m and, for a given p,P

n ��p�n� � �. Figure 3.5 shows an example of a simple interpretation grammar with fully
specified distribution, credibility, and cost functions. For some of the rules, e.g., 0.1, 0.2, 20,
etc., there are no semantic functions. This is reflected in the credibility and cost functions that
only take into consideration the credibility and cost of descendant states.

In this thesis, the � values that are used in the examples and the experiments are all exact
values. In other words, all � values correspond to precise ratios and do not correspond to
expected values and variances. This results in a very precise predictive capability, as shown
in the experimental results in Chapters 7, 11, and 13. Future research projects will involve
supplementing the representation to include a form of uncertainty where the values of � are

�Note that in the state space derived from an IDP specification, no search states are created that correspond to
the start symbol, S.

50

Given an interpretation rule, p, with m semantically equivalent
RHSs, the function ψ(p) specifies the distribution of the RHSs.

p.1. uAv → RHS1

p.2. uAv → RHS2

p.3. uAv → RHS3

p.m. uAv → RHSm

...
ψ(p) =

RHS1 with probability x1

RHS2 with probability x2

RHS3 with probability x3

RHSm with probability xm

...

Figure 3.6. Example of the Distribution Function �

not known with such precision but where they are represented with an expected value and a
variance.

In general, there are no restrictions on the production rules of GI . In practice, however,
it will be necessary to limit any recursive rules to a specific number of iterations in order to
perform numerical analyses. This will not limit the applicability of the analysis tools in any
way. This is because real-world interpretation systems must function with similar restrictions
in that each problem solving instance must be of finite length. For systems that are intended to
interpret streams of continuous data, the data is divided into “time slices” of finite length. In
these systems, our analysis techniques would be applied only to the individual time slices. The
techniques described in this thesis will have to be extended to address issues associated with
problem solving systems that process data from multiple time slices simultaneously.

It is important to note that multiple final states may correspond to each element of SNT.
For example, in a natural language domain, SNT may contain a single element, “sentence.” In
a typical problem solving instance, there will be multiple (often numerous) different sentences
generated. Similarly, in a vehicle tracking domain, a typical element of SNT might be
“vehicle track of type 1” and any given problem solving instance may generate multiple,
different interpretations of type 1 vehicle tracks. The alternative instantiations of an SNT are
differentiated by the characteristics of the specific instances, i.e., their characteristic variables.
For example, the alternative type 1 vehicle tracks may pass through different locations.

3.3 Structural Interaction

The preceding section defined the component, credibility, and cost structures of a domain
as independent entities. In fact, in many domains, these structures interact. For example, the
cost of a semantic function may depend on the dynamically computed probability associated
with a search path. If the problem solver determines that the probability of reaching a final
state is high, it may decide to execute a more costly semantic function in order to generate the
best possible answer. Alternatively, if the problem solver determines that there is little chance a
search path will reach a final solution, it may devote little effort to a semantic function. Such
interactions can lead to very complex problem solving behaviors and to corresponding analysis
techniques that are also very complex. In the examples in this thesis, analysis techniques that are
appropriate for various structural interactions are presented and discussed. However, we will

51

often use approximations of these techniques for computability reasons. Chapter 6.7 presents
formal definitions and examples of structural interactions.

3.4 Interpretation Problem Solving and Formal Problem Solving Paradigms

As discussed by Kanal and Kumar in [Kumar and Kanal, 1988], formal problem solving
paradigms that are based on search techniques can be divided into two general categories, either
top-down or bottom-up. The IDP/UPC framework is consistent with this and supports the
analysis of control architectures from either a top-down or a bottom-up perspective. This
is important because it is hoped that the IDP/UPC framework can be used to develop a
unified perspective of problem solving by extending Kanal and Kumar’s taxonomy to include
the sophisticated control architectures that can be described with the IDP/UPC framework.

Using bottom-up control architectures, rules of the grammar are inversely applied and
more comprehensive derivation trees are generated and represented as new states. Thus, larger
problems are solved starting with their smaller components. This approach is used in many
search procedures and is the basis for dynamic programming [Papadimitriou and Steiglitz, 1982,
Pearl, 1984, Kumar and Kanal, 1988]. The examples in Chapter 3.1 are representative of
bottom-up problem solving in interpretation problems.

Using top-down control architectures, some representationof the total set of interpretations
is repeatedly partitioned and pruned. After each partition, all members of the partition are
deleted for which it can be shown that, even after elimination, the most credible interpretation
is an element of one of the remaining partitions. This technique has been used extensively in
Operations Research, where it is referred to as Branch-and-Bound [Papadimitriou and Steiglitz,
1982, Pearl, 1984, Kumar and Kanal, 1988]. Top-down and bottom-up architectureshave been
effectively combined in a number of systems such as blackboard systems [Erman et al., 1980,
Corkill, 1983]. In these systems, the top-down strategies, such as goal processing techniques,
can be considered meta-control architectures because they use abstract or approximate states.

Using either or both of these approaches, problem solving continues until every possible
derivation tree is either generated or eliminated from consideration based on the structure of
the problem. Once all derivation trees have been determined, the problem solver identifies
which has the highest rating and returns that derivation tree as the interpretation.

This definition is important because it implies that the problem solver cannot simply
compute one derivation tree and stop. In order to find the “best” interpretation, every possible
search path must be explored in some way. Thus, for any given state, at termination, every
operator that can be applied to it has been accounted for in some way. Such a state will
be referred to as a connected state and a space consisting solely of connected states will be
referred to as a connected space. An open state will be a state that is not connected. The set
I of interpretations from Definition 3.1 corresponds to a connected space. Implicit in this
definition is the requirement that a connected space “account for” or “explain” all the input
data. This requirement is derived from the requirement that each individual solution that is
considered as an overall solution to a specific problem must explain all the detected input data.
The distinction of “detected data” is important because the analysis techniques only work for
the problem solving actions represented as search processes. They do not necessarily explain all
the data input to the non-search processes such as low-level data filtering operators.

Clearly, depending on a domain’s characteristic grammar and associated functions, inter-
pretation problem solving can be a formidable task. The total number of solutions generated
for an arbitrary set I can be enormous. In general, the role of sophisticated control is to

52

(leaf nodes represent
elements of S)

a. Without the use of sophisticated
control, search spaces must be

enumerated exhaustively.

b. Using sophisticated control, many
areas of a search space can be
eliminated from consideration

implicitly, thereby reducing the cost
of problem solving.

Figure 3.7. Implicit Enumeration – the Role of Control

limit the size of I by implicitly enumerating as much of the search space as possible. This
objective is illustrated in Fig. 3.7, from Berliner [Berliner, 1979]. Figure 3.7.a represents the
set I generated by grammar G without the use of sophisticated control techniques. In this
example, problem solving is essentially exhaustive – every possible derivation tree is generated
and compared. Figure 3.7.b shows the effects of sophisticated control. Here, large portions of
the search space are eliminated from consideration based on the problem solver’s understanding
of the problem’s structure.

Finally, it is important to emphasize that GI � fp� gp, and � are used to specify the set I
from which the best interpretation will be identified.

3.5 Chapter Summary

This chapter defines the specific class of problems, the interpretation decision problem
(IDP), studied in this thesis. An IDP is a constructive search problem where, given an input
string of signal data, the problem solver tries to find the best interpretation corresponding
to the events that could have caused the signal data. IDP problems are defined in terms of
discrete optimization problems. Specifically, the problem solver is trying to determine which
interpretation from a set of possible interpretations has the highest credibility. This defines the
problem in such a way that it is possible to quantitatively analyze it. This is because it provides a
clear criterion for termination – problem solving halts when every possible search path has been
connected to a final state or eliminated from consideration. At this point the problem solver
conducts a linear search of the set of interpretations that were found to determine which has
the highest credibility. Also, since it casts interpretation as a discrete optimization problem, it
clearly defines interpretation’s relationship to other classes of problems and it makes it possible
to understand the general applicability of algorithms and other results that are constructed
determined for interpretation domains.

In IDP models, the different feature structures that are defined by domain theories are
combined into a unified representation by expressing them in terms of formal grammars
and functions associated with production rules of the grammar. Nonterminals of the grammar
represent intermediate problem solving states, terminal symbols represent raw sensor input, and

53

the production rules of the grammar represent potential problem solving actions. The grammar
rules of IDP models specify the component structure of a domain and each production, p, has
associated cost and utility functions, gp and fp, that define the cost and utility structures. In
addition, IDP models explicitly represent aspects of inherent uncertainty in a domain with the
distribution function, �, that defines the probability structure of the domain. (i.e., �, along
with other mechanisms, define inherent uncertainty in a domain.) For a given production, p,
the frequency of the occurrence of p’s right-hand-side (RHS) is specified by the distribution
function ��p�. Thus, p can have multiple RHSs, RHS� through RHSn, and the distribution of
the RHSs is defined by��p�. Each production rule, p, is associated with a semantic function, �p
that is a function of the subtree components represented by the elements on the right-hand-side
of p. �p measures the “consistency” of the semantics of its input data and returns a value that is
included in the credibility function. For example, in a speech understanding domain, �p would
rate the consistency of the meaning of a sentence and return a value indicating whether or not
the sentence made any sense. An IDP grammar also includes an extension to its representation
called a feature list to represent the characteristics of real-world phenomena.

C H A P T E R 4

DEFINING IDP STRUCTURES

Chapter 3 introduced the IDP formalism for modeling domain theory problem structures.
The significance of these structures is that they are defined in terms of the operators available to
solve the problem. Conversely, problem solving operators are defined in terms of the structure
of a problem’s domain theory.

This chapter will demonstrate how the IDP formalism can define a number of important
domain theory problem structures. As noted above, these structures also define the operators
and control actions available to solve a problem. Chapters 6 and 8 define another formalism,
the UPC formalism, that will be used in conjunction with the IDP formalism as a general
model of control and problem solving activities. Using the UPC formalism, the cost and utility
of control and problem solving actions will be compared directly. The chapters describing the
UPC model will draw heavily on the structures defined in this chapter.

The power of the IDP formalism lies in its ability to model the structure of a problem
domain. The key to exploiting the IDP formalism is based on the degree to which the structure
of a problem formulation maps into and is represented by the IDP’s grammar, credibility
functions, cost functions, and RHS distribution functions.

For this thesis, analysis will focus on five primary aspects of problem structure: uncertainty,
operator organization, redundancy, interacting subproblems, and bounding functions. These
aspects of the structure of interpretation problems are introduced in this section. Two of these
structural aspects, uncertainty and redundancy, are inherent components of a domain. They
are derived naturally by representing a problem domain as an IDP model. The other aspects
can be thought of as transformations of the base IDP model. These transformations are used to
model control actions in terms of a unified perspective with problem solving actions. Typically,
these transformations are used to exploit structures present in the base IDP model.

Undoubtedly, many other structures are manifested in a given problem domain. However,
it is far beyond the scope of this work to attempt to classify, or even identify all possible aspects
of problem space structure.

4.1 Inherent Uncertainty

One of the more difficult aspects of an interpretation task is dealing effectively with inherent
uncertainty. In terms of the IDP formalism, inherent uncertainty can be thought of as ambiguity
in the interpretation grammar. Ambiguity increases the complexity of an interpretation problem
by making a large number of partial solutions and full, potential solutions seem plausible. This
implies that additional operator applications must be used to generate and differentiate the
ambiguous interpretations, as will be discussed in the next section. Thus, inherent uncertainty
structures are not used to model control actions, rather, they are structured phenomena that
control actions are intended to exploit to improve the efficiency of problem solving. Using the
IDP model, inherent uncertainty will be classified into the taxonomy presented in the following

55

A

x y z

B

x y z zy

DC

x

a. An ambiguous grammar. There are three parse trees for the string xyz.

S S S

Figure 4.1. An Example of Ambiguity

sections. The definitions of the classes of inherent uncertainty will be associated with the rules
of the grammar and with a formal definition of ambiguity.

For a rule of the grammar, p, variations of the rule will be used to help define certain forms
of uncertainty. This will be represented by associating multiple RHSs to p. The distribution of
the domain events that determine which of the RHSs is appropriate will be modeled by ��p�.
This is an important point that will be emphasized in Chapter 6. Finally, each of the RHSs
will be thought of as a unique primitive operator that the problem solver can use to build a
partial or full interpretation.

The formal definition of ambiguity that will be used to define the taxonomy of inherent
uncertainty structures is presented in the next section.

4.1.1 Ambiguity

Ambiguity is a property of a grammar that leads to multiple interpretations for a given
input. In an ambiguous IDP, the only way to differentiate a correct interpretation from an
incorrect interpretation is to compare their credibility values. More formally:

Definition 4.1.1 Ambiguity - An instance of an IDP is ambiguous iff two (or more) interpre-
tation trees exist for some input, X . (A more precise definition of ambiguity will be given in
Definition 6.3.14.)

An example of an ambiguous grammar is shown in Fig. 4.1 where three interpretation trees
exist for the terminal string xyz.

IDPs can also be semi-ambiguous.

Definition 4.1.2 Semi-Ambiguity - An instance of an IDP is semi-ambiguous iff the IDP is not
ambiguous and two (or more) interpretation subtrees exist for some portion, Y, of an input string, X.

In a semi-ambiguous IDP, it is not possible to differentiate alternative interpretation
subtrees, (y�� � � � yn), that are components of the best interpretation (“correct” subtrees) from
subtrees that are not components of the best interpretation (“incorrect” subtrees) simply by
comparing their credibility levels and choosing the subtree with the higher rating. This
is because IDP domains are non-monotone. (Non-monotonicity is formally defined in
Chapter 4.5.) The only way to determine which of the subtrees, (y�� � � � yn), is the correct
subtree is to continue the interpretation, extending each of the competing alternatives. One of
two things will happen, either the problem solver will be unable to extend a partial interpretation

56

A

u B v

A

Bu vn nn n

b. The production rule p: A -> uBv and the corresponding
`noisey' rule p': A -> n1un2Bn3vn4.

1 2 3 4

Figure 4.2. An Example of a Noisy Grammar Rule

or the problem solver will find a solution. If the problem solver fails to extend all partial
interpretations derived from a given subtree, then that subtree is incorrect. When the problem
solver identifies the best interpretation, all the subtrees associated with that interpretation are
considered correct partial interpretations.�

Intuitively, the cost of ambiguous IDPs is the sum of the costs of generating each of
the derivation trees corresponding to ambiguous interpretations and the subtrees, (y�� � � � yn),
corresponding to partial interpretations, plus the cost of differentiating the correct interpretation
(and, by implication, the correct derivation subtrees). In general, as the number of ambiguous
interpretations and partial interpretations increases in size, the cost of problem solving will
increase.

4.1.2 Noise

Intuitively, noise can be thought of as domain data that is generated in a spurious
fashion and that is not necessary or sufficient to infer the associated higher-level partial or
full interpretation. Noise does not necessarily correspond exclusively to unknown phenomena.
For example, in a vehicle tracking domain, noise may correspond to relatively normal domain
events, such as sounds associated with weather phenomena or animals. Formally,

Definition 4.1.3 Noise - A grammar, G, is subject to noise iff
� a rule p � P, where p: A � uBv � p

�

: A � n�un�Bn�vn�, for u,v � (V 	 N)�, A � (SNT 	
N), B � (V 	 N), ni � (V 	 N)�, and fp�fu� fB� fv��p�u�B� v�� � fp� �fn� ,fu� fn�� fB� fn��
fv� fn� � �p� �fn� � u� fn� � B� fn�� v� fn��� for maximum ratings of the fni . The distribution of p
and p� is modeled by �.

In other words, for some rule p in G, there are at least two possible RHSs. The frequency
with which noise appears in a domain is modeled by �. Figure 4.2 is a representation of the
definition of noise. Each of the states labeled ni could lead to arbitrary “noisy” subtrees�.
In many domains, each production rule may have numerous alternative noisy productions.
Again, the determination of which of these productions is used is made by the function �. It

�It is important to note that virtually all interpretation problems are at least semi-ambiguous. An unambiguous
interpretation problem might be more properly categorized as a parsing problem or a classification problem.

�Please note that in the figures in this thesis, and in the IDP/UPC Framework, there is no meaning associated
with the order in which terminal or nonterminal symbols are represented. Thus, the sequence of terminal symbols
“r h i” is identical to the sequence “h r i.”

57

...
x y z

......
j k

......
h i

... ...
f g

(Signal Data)

A B

C D E W

... ...
q r

M

Y

......
h i

...
r

... ...
f g

...
q

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

S

Figure 4.3. Interpretation Grammar G� with Added Noise and Missing Data Rules

is important to emphasize that, by definition, a noisy rule has a credibility that is lower than
the corresponding non-noisy rule. Given a set of RHSs that are candidates for being returned
by �, the non-noisy RHS is the one with the highest credibility. (In situations where a noisy
rule has higher credibility than a non-noisy rule, the noisy rule would be considered to be the
“correct” rule and the non-noisy rule to be a missing data rule. Missing data rules are defined
below.)

Noise is problematic for an interpretation problem because it can increase the amount of
ambiguity with which the problem solver must contend. This increases the cost of problem
solving. An increase in ambiguity implies that the problem solver must apply additional
operators, which increases cost, to build and differentiate alternative interpretations. Consider
a grammar in which no two rules have identical right hand sides (RHSs). (Note that this IDP
may or may not be ambiguous.) Now assume that noise is introduced in such a way that at
least one of the “noisy” rules has an RHS that is identical to the RHS of an existing, non-noisy
rule. An example of such a situation is shown by Figs. 4.3 and 4.4. In Fig. 4.3, the signal input
“f g q r h i” can only be associated with the derivation of a “C” and a “D” and, subsequently,
and “A.” Given the additions to the grammar shown in Fig. 4.4, the signal input “f g q r h i”
can lead to the interpretations of either an “M” or an “A.” This is because “f g h i” is used to
derive “noise” and “f r” is used to derive “Y.” “Y” and “noise” are used to derive an “M.” By
definition, the IDP represented by these figures is at least semi-ambiguous.

Given a problem instance in which the noisy rule is the correct interpretation for the signal
data, the problem solver will have to differentiate the interpretation in which the noisy rule is
used from interpretations corresponding to "non-noisy" interpretations of the data. This can be
very difficult because the only way to differentiate a correct interpretation tree from an incorrect
one is by comparing their credibility ratings and, as was discussed previously, this technique does
not work, in general, for partial trees. From the local perspective of competing alternative partial
interpretation trees, relative credibility ratings may correlate to the probability of a given subtree
being correct. However, this correlation may be significantly less than one. Noisy production
rules often have low credibility ratings and correct subtrees that contain noisy production rules
frequently have lower credibility ratings than incorrect alternative subtrees. Consequently, the
problem solver may not be able to differentiate competing alternative interpretations without
additional, perhaps expensive, processing. It may be the case that, in order to differentiate
competing alternatives in a semi-ambiguous grammar, the problem solver is forced to generate

58

17. Y → qr
16. M → Y

Y

q r

M

DC

A

ihrqf

Additions to
interpretation
grammar G'

3.1. C → fgq
5.1. D → rhi

a. b. interpretation trees for input “fgq rhi”

0.3. S → M

f gg i

noise

h

Figure 4.4. An Example of Correlated Noise - The noise in rules 3.1 and 5.1, q and r, is
correlated to an interpretation of M.

...

A

S

O noisenoise B

Figure 4.5. Implicit Rules for Interpreting Noise

nearly complete solutions incorporating each of the competing alternatives. The need to apply
additional operators to build and differentiate alternative subtrees could result in very expensive
problem solving.

In Fig. 4.3, noise has been added to grammar G� from Fig. 3.2. In this grammar, SNT
contains A, B, M, N, and O. Some of the noise is specified in the new rules 3.1 and 5.1 shown
in Fig. 4.4. Also, a new interpretation, M (rule 16), has been added to the grammar. (Note
that each of these rules corresponds to the addition of a new primitive operator.) As a result
of adding these production rules, in certain noisy situations, signal data can be interpreted as
either an “M” or an “A.” Figure 4.4, which shows alternative derivation trees for “M” and “A”
given the input “fgq rhi,” depicts such a situation.

From a local perspective, the partial interpretation corresponding to state Y may be rated
higher than either of the partial interpretations corresponding to states C or D. However, the
full interpretation represented by state M will have a lower rating than the full interpretation
represented by state A. Intuitively, this is a result of the fact that the A interpretation explains
all the observed phenomena and the M interpretation only explains the data related to q and
r. To account for data that is not explained by an interpretation, we assume the existence of
rules such as those in Fig. 4.5 that account for extraneous noise data. In a typical situation, an
interpretation that includes noise as shown in this figure has a much lower credibility than an
interpretation that explains all of the data as being something other than random noise.

59

i

17.1 Y → qhri Y

q r

M

D

irh

Additions to
interpretation
grammar G'

a. b. full and partial interpretation
trees for input “qhri”

h

D

ih

Figure 4.6. An Example of Uncorrelated Noise

This is an example of how noise can add ambiguity to a grammar. Without the noise,
when the problem solver recognizes a q or an r, it can immediately return an interpretation of
M, since no other interpretation contains a q or an r. However, with the addition of noise,
the problem solver must differentiate interpretations of M and A. This will be much more
expensive because the problem solver will have to apply all the operators implied by each
interpretation’s component structure in order to generate accurate ratings. This is necessary
because the problem solver will have to execute all the semantic functions to generate the
credibility ratings needed to differentiate the alternative interpretations.

Figure 4.6 illustrates a slightly different situation that is also based on the modifications to
G� shown in Fig. 4.3. In this example, noise is added to grammar G� in the form of rule 17.1,
and this noise leads to the generation of the input “qhri.” During interpretation, two partial
interpretations corresponding to D are generated. However, because there is no additional
data, interpretations involving the use of D fail to generate an A interpretation and the D
states become connected without being used in a full interpretation. This is an example of
how noise can make a grammar semi-ambiguous. Though the increase in cost may not be as
severe as an ambiguous case, semi-ambiguity still increases interpretation costs because it forces
the problem solver to determine which alternative partial interpretations cannot be extended
to full interpretations.

These examples, and the observation that noise may lead to rules with identical RHSs and
ambiguity, lead to definitions for two specific kinds of noise.

Definition 4.1.4 Correlated Noise - Noise that results in ambiguous interpretations. Correlated
noise can significantly increase the amount of work or other resources required to solve an IDP if it
requires the problem solver to generate multiple interpretations in order to differentiate the competing
partial interpretations. Correlated noise is especially problematic when the correlation is high and
the introduction of noise leads to numerous incorrect, but credible, interpretations. An example of
correlated noise is shown in Fig. 4.4.

Definition 4.1.5 Uncorrelated Noise - Noise that does not result in ambiguous interpretations.
Uncorrelated noise may lead to semi-ambiguous IDPs, but, in general, is easier to differentiate than
correlated noise. With uncorrelated noise, the problem solver is not required to generate complete
interpretation trees to differentiate the correct noisy partial interpretation from incorrect competing
alternatives. Instead, the competing alternatives will be eliminated when the problem solver fails

60

to extend them at some point of the interpretation process. The incorrect interpretations will not
correspond to any possible interpretation and the problem solver will not be able to inversely apply
any production rules to extend the interpretation. An example of uncorrelated noise is shown in
Fig. 4.6. Also, as will be discussed, additional problem structures defined by bounding functions
(see Chapter 4.5), which represent pruning functions, can be used to identify incorrect partial
interpretations without the derivation of a full interpretation.

The correlation of noise to potentially correct interpretations is much more complex
than the dichotomy suggested by the above definitions. In fact, the correlation of noisy
interpretations to correct interpretations can be thought of as a continuum in terms of cost.
At one extreme is noise that is uncorrelated to correct data. This noise can be disambiguated
with little cost. At the other extreme is noise that leads to numerous full interpretations and
significant cost. Between these extremes are cases where the noise is uncorrelated to actual
data, but where the structural constraints of the problem that enable incorrect, uncorrelated
partial interpretations to be pruned are costly to apply. For example, the problem solver
may expend a great deal of effort on a highly rated partial interpretation before encountering
grammar constraints that prevent its further extension. Thus, the concept of the correlation of
noise to potentially correct, alternative interpretations will be thought of as a continuum where
low-correlation implies that incorrect interpretations resulting from noise can be disambiguated
with little cost and high-correlation implies that incorrect interpretations resulting from noise
will be very expensive to disambiguate.

4.1.3 Missing Data

Intuitively, missing data is the result of sensing and other domain phenomena that prevent
certain data normally associated with a domain event from being detected. For example, in a
vehicle monitoring domain, the microphones used to pick up signals from vehicles might be
flawed so that some frequencies are missed in situations where the vehicle is moving slowly.
The characteristic signals are present, but are below some threshold and are not ‘heard’ by
the sensors. Missing data also results from inappropriately processed low-level data [Lesser et
al., 1993]. For example, a filtering algorithm may be used with a poor selection of tuning
parameters resulting in the loss of significant data. Formally,

Definition 4.1.6 Missing Data - A grammar, G, is subject to missing data iff
� p � P, where p: A � uBv � p

�

: A � uv, for u,v � (V 	 N)�, A � (SNT 	 N), B � (V 	
N),and fp�fu� fB� fv��p�u�B� v�� � fp� �fu� fv��p� �u� v��. In addition, the distribution of p
and p� is modeled by �.

As with noise, missing data implies the existence of multiple RHSs for some production
rule(s). The distribution of the domain events that determine which of the RHSs is appropriate
is modeled by �. Figure 4.7 illustrates the definition of missing data. In many domains, each
production may correspond to numerous alternative missing data productions. Again, by
definition, a missing data rule has a credibility that is lower than the corresponding “complete-
data” rule. Missing data can increase the ambiguity of an IDP and, in most cases, this will
increase the cost of differentiating correct interpretations from incorrect interpretations.

Figure 4.3 also shows G� with added rules representing missing data rules. Figure 4.8
shows an example of a situation where missing data leads to multiple interpretations of signal

61

c. The production rule p: A -> uBv and the corresponding
`missing data' rule p': A -> uv.

A

u B v

A

u vB

Figure 4.7. An Example of a Missing Data Grammar Rule

19. Z → xy
18. N → Z

Z

x y

N

WE

B

yx

Additions to
interpretation
grammar G'

6.1. W → xy

a. b. interpretation trees for input “hi jk xy”

D

0.4. S → N
noise

jj kk hh ii

Figure 4.8. An Example of Correlated Missing Data - The data missing in rule 6.1, w, is
correlated to an interpretation of N.

data. In this example, missing data is added to grammar G� in the form of rule 6.1. The
signal input to the problem solver is “hi jk xy” and, as a result of missing data rule 6.1, the
data can be interpreted as a B. However, the same data can also be interpreted as an N. The
determination of which is correct cannot be made without additional processing. The partial
interpretation corresponding to state Z may have a higher rating than the partial interpretations
corresponding to states D, E, or W. The differentiation must be made between states N and B.
Here, B will have a higher rating since it explains all the signal data and N only explains the
data corresponding to x and y. This is an example of missing data causing ambiguity.

Figure 4.9 depicts a situation where missing data again leads to multiple interpretations.
This situation is also based on the grammar shown in Fig. 4.3. In this example, missing data
is added to grammar G� in the form of rule 21.2. In this situation, an interpretation of O

20. O → X X

g

O

Additions to
interpretation
grammar G'

a. b. full and partial interpretation
trees for input “fg”

f

21.1. X → fgh
21.2. X → fg

C

gf

0.5. S → O

Figure 4.9. An Example of Uncorrelated Missing Data

62

will result from the input “fg.” In addition, partial interpretation C will be formed. Partial
interpretation C will not be extended since the data needed to generate an A is not present.
Therefore, C will be connected without resulting in the generation of a full interpretation.
This is an example of missing data causing semi-ambiguity.

Missing data can also be categorized into two broad classes.

Definition 4.1.7 Correlated Missing Data – Missing data that results in ambiguous interpreta-
tions. Similar to correlated noise, correlated missing data can significantly increase the amount of
work or other resources required to solve an IDP if it requires the problem solver to generate multiple
interpretations in order to differentiate the competing partial interpretations. Correlated missing
data is especially problematic when the correlation is high and the introduction of missing data
leads to numerous incorrect, but credible, interpretations. Figure 4.8 shows an example of correlated
missing data.

Definition 4.1.8 Uncorrelated Missing Data – Missing data that does not result in ambiguous
interpretations. Similar to uncorrelated noise, uncorrelated missing data may lead to semi-ambiguous
IDPs, but, in general, is easier to differentiate than correlated missing data. With uncorrelated
missing data, the problem solver is not required to generate complete interpretation trees to differentiate
the correct missing data partial interpretation from incorrect competing alternatives. Instead, the
competing alternatives will be eliminated when the problem solver fails to extend them at some
point of the interpretation process, either as a result of syntactic constraints of the grammar or
boundary function constraints (see Chapter 4.5) defined by the functions fp and �p . In other words,
the incorrect partial interpretations will not correspond to any possible full interpretation and the
problem solver will not be able to inversely apply any production rules to extend the interpretation.
Figure 4.9 shows an example of uncorrelated missing data.

As with noise, the degree to which missing data is correlated to other domain events is a
continuum from uncorrelated to correlated. Again, the continuum is expressed in terms of
the additional cost that must be incurred before enough constraints are applied to eliminate an
incorrect partial interpretation from further consideration. In other words, highly correlated
missing data will increase interpretation cost significantly and missing data with low correlation
will increase interpretation cost only slightly.

4.1.4 Distortion

Distortion is an effect caused by the combination of noise and missing data. Distortion is
represented as a distinct phenomenon for representation clarity and convenience. The causes
and effects of distortion are the same as the causes and effects of noise and missing data. In many
domains, distortion is a common phenomenon. For example, in acoustic sensing domains,
two low energy peaks that are close to each other in the frequency domain might combine into
a single high-energy peak at a frequency between the two original signals.

Definition 4.1.9 Distortion – A grammar, G, is subject to distortion iff
� p � P, where p: A � uBv � p

�

: A � n�un�Bn� j n�Bn�vn� j n�Bn	 j n
�n��, for u,v � (V
	 N)�, B � (V 	 N), A � (SNT 	 N), ni � (V 	 N)� and fp�fu� fB� fv��p�u�B� v�� � fp�

for any combination of parameters. In addition, the distribution of p and p� is modeled by �.

63

d. The production rule p: A -> uBv and the corresponding
`distortion' rule p': A -> n1un2vn3.

A

u B v

A

u vBn 1
n 2 n 3

Figure 4.10. An Example of a Distortion Grammar Rule

e. The production rule p: A -> uBv and the corresponding
`masking data' rule p': A -> u'B'v'.

A

u B v

A

u' v'B'

Figure 4.11. An Example of a Masking Grammar Rule

Figure 4.10 is a representation of the definition of distortion. Distortion implies the
existence of multiple RHSs for some production rule and, by definition, a distorted rule has a
credibility that is lower than the corresponding non-distorted rule. Distortion causes problems
that are identical to those caused by both noise and missing data. This includes increasing both
the ambiguity of a grammar and the associated cost of problem solving. In addition, correlated
distortion and uncorrelated distortion are phenomena that have definitions identical to correlated
and uncorrelated noise and missing data. As with noise and missing data, the correlation of
distortion to potentially correct, alternative interpretations defines a continuum in terms of the
increased cost required to eliminate incorrect interpretations.

4.1.5 Masking

Masking is a special case of distortion where noise and missing data phenomena combine to
generate an RHS that is very similar to the original RHS – for each element e on the RHS of the
production rule, p, there is a corresponding element e

�

on the RHS of p
�

that has a very similar
semantic interpretation. Masking is thought of as a distinct phenomena for intuitive reasons.
There are specific, real-world events that lead to masking phenomena in many interpretation
domains and these events are significantly different from the events that result in noise, missing
data, or distortion. For this reason, masking can be thought of as a unique phenomena rather
than a combination of noise and missing data. Formally,

Definition 4.1.10 Masking – A grammar, G, is subject to masking iff
� a rule p � P, where p: A � uBv � p

�

: A �u
�

B
�

v
�

, for u,v,u
�

,v
�

, � (V 	 N)�, A � (SNT 	
N), B,B

�

� (V 	 N), and fp�fu� fB� fv��p�u�B� v�� � fp� �fu� � fB� � fv� ��p� �u
�

� B
�

� v
�

��. In
addition, the distribution of p and p� is modeled by �.

Figure 4.11 is a representation of the definition of masking. By definition, a masking data
rule has a credibility that is lower than the corresponding non-masking rule. The semantic

64

interpretation of the masking rule is usually very similar to that of the masked rule. The
biggest problem introduced by masking is that it causes correct interpretations to be given
lower credibility ratings. This can have detrimental effects when the masked/masking rules
are correlated to noise associated with other production rules. In these situations, the noisy
rules may have higher credibility values and the problem solver may be forced to expend some
amount of work differentiating the alternatives.

4.2 Operator Organization

In Chapter 3, it was specified that the primitive operators available to an interpretation
problem solver are represented as rules of the characteristic grammar for the problem solver’s
domain. In the previous section, inherent uncertainty was defined in terms of additional
grammar rules incorporating noise, missing data, masking effects, or some combination of
these phenomena. As stated, these additional rules imply the existence of additional problem
solving operators.

However, it is possible to organize or group sets of grammar rules into single operators. This
is especially useful for efficiently combining large numbers of rules associated with inherent
uncertainty and it is done in order to reduce the control costs of invoking operators. By
invoking multiple operators as a single unit, it may be possible to reduce overhead costs. In
general, two or more grammar rules may be combined into a single macro-operator� if they
are all pairwise syntactically related. Two rules are syntactically related if they have identical
left-hand-sides (LHSs). Rules that do not have identical semantics or that are not syntactically
related can also be grouped into operators, but such groupings are not considered an operator
organization structure.

Operator organization structures can be thought of as the most primitive units of activity
that a system reasons about. Operators are usually organized into structures to promote
efficiency. Consequently, operator organization can be thought of as a minor transformation
to the grammar, often done to offset the effects of inherent uncertainty. Used in this manner,
operator organization is very important.

Figure 4.12 shows the notation that will be used to represent operator organizations.
Primitive rules will be included in a macro-operator by specifying them as RHS options of
a rule (the vertical lines represent “or” notation), or by specifying them as RHS options in
“subrules.” In Fig. 4.12, the rules labeled 1.b through 1.x are all subrules of 1.a and the RHSs
of all these rules are the primitive operators included in macro-operator “1.” Essentially, all the
primitive rules specified in a macro-operator are “applied” when the macro-operator is invoked.

4.3 Redundancy

Another aspect of interpretation problems that causes difficulty is a special form of
ambiguity that is referred to as redundancy. Formally,

Definition 4.3.1 Redundancy – An IDP is subject to redundancy iff, for some input, X , there exist
two or more interpretation trees that have identical semantic interpretations for X .

�When confusion with primitive operators does not result, “macro-operators” will be referred to simply as “operators.”

65

1. uAv → RHS1

2. uAv → RHS2

3. uAv → RHS3

m. uAv → RHSm
...

1.a. uAv → RHS1 | RHS2 | ... | RHSn
1.b. uAv → RHSn+1 | RHSn+2 | ... | RHSo

1.x. uAv → RHSq | RHSq+1 | ... | RHSm

...

Example of an operator organization structure specification.
All RHSs included in 1.a through 1.x are elements of the structure.

Figure 4.12. Example of Operator Organization Representation

x z

A

wu v y

B

S1

I J K L

x zwu v y

C D

M

E

L

x zwu v y

C D

M J

S1
S1

a. b. c.

Figure 4.13. Example of Redundancy

The presence of redundancy means that, for at least some interpretations, there are multiple
solution paths that lead to the exact same interpretation. For example, consider a system that
tracks flying objects using radar and sonic sensors. For any given object, the system can rely
on radar or acoustic data (or both) to develop an interpretation. Redundancy provides a
problem solver with flexibility in choosing problem-solving activities but also allows results to
be rederived using alternative paths, possibly without recognizing the redundancy until the last
step. Various studies have shown that the cost associated with redundancy can be substantial
[Lesser et al., 1989a]. Figure 4.13 shows an example of redundancy. (Note that this grammar
is not the same as the grammar that is being used to illustrate other phenomena. The grammar
used in the example of redundancy will not be used in any other examples.)

Redundancy is also shown in Fig. 4.14. This example depicts a stylized version of
redundant processing that can occur in certain interpretation tasks such as the Distributed
Vehicle Monitoring Testbed (DVMT) [Corkill, 1983]. The problem solving strategy embodied
in this example offers alternative paths for interpreting tracks of data, in this case the input
“uvwxyz.” In Fig. 4.14.b, a track interpretation is formed incrementally by extending a partial
interpretation one time unit. Alternatively, in Fig. 4.14.a, a partial interpretation consisting of
multiple track positions is extended by combining it with another partial interpretation that
also consists of multiple track positions. This type of redundancy is characteristic of convergent
search spaces where, without meta-level processing, it is not possible to determine that two
search paths lead to the same final interpretation until the paths meet.

66

A

A

A

A

S

u v w x y z

T TTTTT

A A

A
A

S

u v w x y z

T TTTTT

(a.) (b.)

1. S → A A

2. S → A T

3. A → A T

4. A → A A

5. A → T T

6. T → u | v | w | x | y | z

Figure 4.14. Redundant Interpretations for Input “uvwxyz”

4.4 Interacting Subproblems

One of the most important properties that determines a problem’s structure is the na-
ture of its interacting subproblems. In the IDP/UPC framework, interacting subprob-
lem structures will form the basis for designing, implementing, and analyzing meta-level
operations. In particular, relationships between states will be explicitly represented with
abstract or approximate states. Recent studies [Lesser et al., 1989a, Lesser et al., 1989b,
Decker et al., 1990] have demonstrated that knowledge of a problem’s structure can be derived by
reasoning about interacting subproblems and that this knowledge can be used to more effectively
control problem solving activities. For example, some interacting subproblem structures can
be used to dynamically implement hierarchical problem solving strategies, or to implement
efficient pruning techniques such as the inhibition of redundant processing [Durfee, 1987,
Lesser et al., 1989a, Decker et al., 1990].

In general, control architectures such as the hierarchical problem solving strategies used
in [Erman et al., 1980] and [Durfee and Lesser, 1986, Durfee, 1987, Lesser et al., 1989b]
can be modeled by transforming an IDP problem representation to include abstractions and
approximations used in control actions in the form of meta-operators. The meta-operators will
be represented as special rules of the IDP grammar, along with their associated functions, that
are derived from interacting subproblems in the base IDP model.

67

In domains with interacting subproblem structures, control architectures that are based on
“local control” (from Chapter 2.2) strategies are often ineffective when compared to control
architectures that are capable of exploiting the subproblem interactions. However, this is
somewhat misleading. Unlike uncertainty and redundancy, interacting subproblems do not
increase the complexity or difficulty of interpretation problems. Rather, their importance is
derived from their ability to reduce the cost of problem solving dramatically. Consequently, the
need to formally specify structures associated with interacting subproblems is motivated by the
desire to exploit these structures and not by the need to avoid or compensate for their presence.

To understand these observations, consider two very similar grammarsG�, with interacting
subproblems, and G�, with no interacting subproblems. Assume that the complexity of the
domains described by the grammars is equivalent from the perspective of a common local
control architecture. In other words, the local control architecture does not attempt to exploit
the interacting subproblem structures in G�. In this situation, the interacting subproblems in
G� do not increase the complexity of problem solving in the corresponding domain. However,
a control architecture can be constructed to exploit the interacting subproblems and a problem
solver using such a control architecture would likely outperform a problem solver using only
a local control architecture. This would depend on the costs associated with recognizing
interacting subproblems, the accuracy with which the effects of interrelationships are evaluated,
the strength with which these interrelationships constrain further problem solving, and the cost
of exploiting these relationships.

Though the majority of discussion related to interacting subproblems is contained in later
chapters and other publications [Lesser et al., 1989b], their definitions and representations are
included here for consistency.

4.4.1 Defining Interacting Subproblems

Formal definitions of interacting subproblems will be based on the following definitions of
component set and result set. The definitions given here will rely on interpretation grammar G�

from Fig. 3.2, on extensions to G� presented in Fig.4.4, and on Figures 4.15, 4.16, and 4.17.
In these figures, the states labeled A’ and D’ are indications of multiple instantiations of the
states A and D. They do not represent new or unique states.

Definition 4.4.1 Component Set (CS) - The component set of a state, sn, includes all the states
that lie on paths from the signal data to sn. Figure 4.15 shows the complete convergent search space
associated with an interpretation of A as well as paths to a state corresponding to an interpretation
of M. Figure 4.16 shows the component set of an intermediate state labeled C. An intermediate
search state such as C corresponds to a partial interpretation tree, or interpretation subtree, t. The
component set of a state includes its corresponding interpretation tree or subtree, t.

Definition 4.4.2 Result Set (RS) - The result set of a state, sn, in a search space includes all the
states that can be reached from sn. Figure 4.17 shows the result set of the intermediate state q.

Definition 4.4.3 Subproblem - In the IDP framework, a subproblem is any symbol from the
alphabet of of an IDP grammar’s that appears on the right-hand-side of a production rule.

Definition 4.4.4 Subproblem Relationships and Interactions - If a function, r, is defined in terms
of the Component Sets and/or Result Sets of two or more subproblems, we say that r defines a
relationship (or interaction) between the subproblems.

68

A'

signal data

f h

D

A

g i

full expansion of all
convergent search paths

from the start state to a state
where Node A is true

q
r

D'

M

Y

(dashed lines indicate additional states
that can be reached given the signal data)

C

Figure 4.15. Example of a Fully Expanded Convergent Search Space

signal data

f h

D

A

g iq
r

D'

M

Y

Component Set of state C

C

A'

Figure 4.16. Component Set Example

69

A'

f h

D

A

g iq
r

D'

M

Y

Result Set for node q

C

signal data

Figure 4.17. Result Set Example

In [Lesser et al., 1989a] a number of relationships were defined and their use in controlling
problem solving was discussed. These definitions are now updated.�

Definition 4.4.5 Subsumption: Partial result t� subsumes a second partial result, t�, if the
component set of t� is a subset of the component set of t�. Formally, t� subsumes t� if �y� y �
CS�t��� y � CS�t��.

Definition 4.4.6 Competition: Two partial results, t� and t�, are competing if the intersection of
their component sets is non-empty and the intersection of their result sets is empty. Partial results t�
and t� are competing iff CS�t��
 CS�t�� �� � and RS�t��
RS�t�� �� �.

Definition 4.4.7 Cooperation: Two partial results are cooperating if the intersection of their
component sets is empty and the intersection of their result sets is non-empty. In other words, they are
cooperating if it is possible that they might be incorporated into a single interpretation tree at some
point in the future. Partial results t� and t� are completely cooperating iff RS�t�� � RS�t��
(i.e., RS�t��
 RS�t�� � RS�t�� 	RS�t��. Partial results t� and t� are partially cooperating
iff RS�t��
RS�t�� �� � and �RS�t��
RS�t��� �� �RS�t�� 	RS�t���.

Definition 4.4.8 Overlapping: Two partial results are overlapping if the intersection of their
component sets is non-empty and the intersection of their result sets is non-empty. In addition,
their component sets must not be identical. In other words, they are overlapping if they share some
component subtrees and if it is possible that they might be incorporated into a single interpretation
tree at some point in the future. Partial results t� and t� are overlapping iff CS�t�� �� CS�t��,
CS�t��
 CS�t�� �� � and RS�t��
 RS�t�� �� �.

�The term “partial result” will refer to a partial interpretation tree.

70

(Signal Data)

...

B

E W

zyxkjihgf

C D

A

f
z
, g

z
f
y
, g

yf
x
, g

x
f
k
, g

k
f
j
, g

jf
i
, g

i
f
h
, g

h
f
g
, g

gf
f
, g

f

f
C

, g
C

f
D

, g
D

f
E

, g
E

f
W

, g
W

f
B

, g
Bf

A
, g

A

arcs indicate AND-like
functions - all indicated

inputs are required

Figure 4.18. Graphical Representation of Example Interpretation Grammar

Definition 4.4.9 Independence: Two partial results are independent if the intersection of their
component sets is empty and the intersection of their result sets is empty. This means that they are
not competing and that it is not possible for them to be incorporated into a single interpretation tree
other than an interpretation rooted at the signal data. Partial results t� and t� are independent iff
CS�t��
 CS�t�� � � RS�t��
RS�t�� � �.

4.4.2 Representing Interacting Subproblems With the IDP Model

In the IDP formalism, interacting subproblem structures will be explicitly represented by
abstract states. The relationships captured by these abstract states will be defined in terms of the
relationships from the previous section. These relationships will be specified by the addition of
grammar rules that will be referred to as meta-operators, meta-rules, or abstract operators. Thus,
meta-operators and meta-rules are problem solving actions that either create or modify abstract
states. In addition, abstract states will be associated with mapping functions that extend or
modify the base space in some way in order to use the results of meta-level processing. The
following example illustrates how the IDP formalism can represent interacting subproblems and
the associated meta-operators and mapping functions. The IDP representation of meta-level
processing is used to implement a variety of problem solving strategies, especially top-down
processing (branch and bound) strategies.

Figure 4.19 shows an example of meta-operators for the grammar G� from Fig. 4.18. This
figure is repeated because it naturally represents certain subproblem relationships. This example
is intended to illustrate the representation techniques that are used in the IDP framework and
it is not intended to demonstrate the utility of the techniques.

In this example, rules M5 and M6 are added indicating that the abstract, “meta-state” M
can be derived from an h or an i. Rules M3 and M4 indicate that the abstract states A� and B�

can be derived, respectively, from an f (with M) or an x (also with M) respectively. Rules M1
and M2 indicate, respectively, that an A can be derived from an A� and a B can be derived from

71

M5. M → h
M6. M → i

M4. B' → M x

M3. A' → fM
A'

h i

meta-operators for the grammar G'
and the corresponding structures

M

f x

A

B'

B
M1. A → A'

M2. B → B'

Figure 4.19. Meta-Operators Expressed as Rules of a Grammar

a B�. Note that these rules are additions to the interpretation grammar, IDPi, and they are not
used for generational purposes, only for representing the structure of the problem solver. They
are not used to model the events that created the observed signal data and these rules would be
ignored by a domain event simulator that is based on the use of an IDP grammar specification.

From the grammar in Fig. 4.18, it should be clear that h and i are completely cooperating.
Consequently, there is no point in pursuing distinct solution paths from h and i - there is no
interpretation that can be formed starting with i that will not be formed starting with h, and
vice-versa. The abstract state M represents this relationship. Intuitively, M can be thought of
as a combination of the paths from h and i.

It should also be clear from the grammar that f and x are independent and that f and x
are both cooperating with M . The abstract states A� and B� represent these relationships. A�

represents the intersection of the Result Sets of f and M and B� represents the intersection of
the Result Sets of x and M .

In order to exploit the relationships represented by the abstract states A�, B� and M , there
must be a corresponding mapping function that, when applied to one of the abstract states,
extends or modifies the base space. This role is filled by the mapping functions corresponding
to rules M1 and M2.

Rules M5 and M6 can be thought of as meta-operators that project the base space to an
abstraction space by generating an abstract state, M , given an h or an i. Rules M3 and M4 can
be thought of as top-down operators that bound M . For example, M3 checks for the presence
of an f, in which case it generates an A�. If there is no f, M3 fails and generates no new states.
Similarly, M4 checks for the presence of an x. If there is such data, M4 will generate a B�,
otherwise it will fail and not generate any new states.

The rules M1 and M2 map the projection space back to the base space. Given an A�, the
problem solver knows that the correct interpretation is an A, and it adjusts the UPC values
of low-level states appropriately. Unlike the other grammar rules, mapping operators do not
create new states in the base space�. The production rule notation is used to specify the states

�This convention is used for the discussion and analysis presented in this thesis.

72

that are updated, and the information used to update them. Specifically, the states that are
updated are those in the component set of the abstract state. These states are updated with
information about the final state that is on the left-hand-side of the grammar rule specifying
the mapping operator. For example, meta-operator M1 will update the UPC values for states
M , f, h, and i with information indicating that the probability of generating an A is 1. It is
important to note that, even though the problem solver knows the interpretation has to be
an A, it still has to execute all the semantic functions to develop the correct “meaning” of the
signal data. For example, in a vehicle tracking domain, the problem solver may know that
the vehicle it is tracking is of type 1, but it will still have to execute the semantic functions to
develop a full interpretation of the vehicle’s actions over a period of time. Similarly, given a
B�, the meta-operator M2 updates the UPC values for states M , h, i, and x with information
indicating that the probability of generating a B is 1.

The advantages of adding the meta-operators shown in Fig. 4.19 can be analyzed with the
tools that are defined later in this thesis. The data needed for proper analysis of the value of
these meta-operators has been omitted, but, intuitively, the meta-rules have obvious advantages
in terms of reducing the superficial complexity of the problem. Use of these meta-operators will
eliminate the application of many redundant processing steps, such as extending search paths
from the lower-level states that will eventually turn out to be redundant, and it is reasonable to
expect that this will reduce the overall cost of problem solving. Though this example was kept
intentionally simple to illustrate the representation used in the IDP formalism, subsequent
examples in will be based on very similar analysis.

4.5 Non-Monotonicity and Bounding Functions

Monotonicity is a property of problem structures that has been used to construct many
important search control architectures [Kumar and Kanal, 1988]. Though there is no guarantee
that a monotone problem can be solved efficiently, most existing efficient control architectures
such as AO�, alpha-beta, B�, SSS� and their generalizations are only applicable in monotone
domains. In addition, problem solving techniques such as dynamic programming, A� search,
Martelli and Montanari’s bottom-up search, and Dijkstra’s shortest path algorithm are also
restricted to monotonic domains.

For the most part, IDP structures of interest will be non-monotone. However, even in
non-monotone structures, it is still possible to define bounding functions that can be used
effectively in control architectures. The structures associated with these functions are defined
in this chapter.

4.5.1 Non-Monotonicity

An interpretation problem’s monotonicity is specified in terms of the function fp as-
sociated with production rule p 	 n � n� � � � nk . If, �p, when all of the k-ary credibil-
ity attributes associated with the production p 	 n � n� � � � nk are monotonically non-
decreasing in each variable it is implied that the corresponding semantic functions and
evaluation functions are also nondecreasing, then the interpretation problem is said to be
monotonic. i.e., if x� � y�
 � � �
xk � yk implies (�p�x� � � � xk� � �p�y� � � � yk� and
fp�fx� � � � fxk ��p�x� � � � xk�� � fp�fy� � � � fyk ��p�y� � � � yk��), where xi and yi represent the
ith element of the rule p, and function �p is the semantic credibility function associated with
p, then the interpretation problem is monotone.

73

f VP(“tickled me with the weather”)

f S(“Bill tickled me with the weather.”)

S

NP VP

V NP PP

N prep NP

art N

Bill

tickled

me with

a feather

S

NP VP

V NP PP

N prep NP

art N

Bill

tickled

me with

the weather

f S(“Bill tickled me with a feather.”)

f PP(“with a feather”) f PP(“with the weather”)

>

<

<

f VP(“tickled me with a feather”)

Figure 4.20. An Example of a Non-Monotone Interpretation Domain

For many interpretation domains, such as the DVMT[Corkill, 1983] and Hearsay-II[Er-
man et al., 1980], monotonicity does not hold. A simple example illustrates how this might
occur. Figure 4.20 shows two interpretations of signal data in a speech understanding domain.
In this example, the partial interpretation “with the weather” is rated much higher than
the partial interpretation “with a feather” as the result of processing the low-level acoustic
information. The rating function does not have a broader context in which to interpret the
signal data, so it relies more heavily on the purely acoustic properties. The strength of the
acoustic based rating is strong enough that “tickled me with the weather” is rated higher than the
partial interpretation “tickled me with a feather.” This is typical of a monotonic domain – the
same data was used to extend the original partial interpretations and the processing maintained
the rank order of the resulting credibilities. i.e., the low-level result with the highest rating
still has the highest rating after all low-level results are extended with the same data. In a
monotone domain, this would also mean that the full interpretation “Bill tickled me with
the weather.” would be the highest rated solution. This is because fNP �Bill� � fNP �Bill�,
which, by the preceding definition of a monotone IDP, would imply that fS�“Bill tickled me
with a feather.”� � fS�“Bill tickled me with the weather.”�. However, in this example, the
best full interpretation of the signal data is “Bill tickled me with a feather.” When forming
this interpretation, the problem solver has a broader context in which to evaluate the semantic
consistency of the input and the importance of the low-level acoustic properties is diminished.
Consequently, this is not a monotone domain.

The non-monotonicity of a domain can be thought of as a function of the semantics
of a domain. As individual components are added to a growing interpretation, they must be
consistent with all of the other components that have been added so far. In many interpretation
domains, such as speech recognition, components with high individual credibilities are often
inconsistent with some or all of the other components of a partial interpretation [Erman et al.,
1980]. For example, a particular word may be the best interpretation for a particular time-slice
of data, but that word may not be consistent with the “meaning” (i.e., the semantics) of a
partial interpretation the problem solver is trying to extend. As a consequence, the resulting

74

extension may have an arbitrarily low-rated credibility depending on how ridiculous it is.

4.5.2 Bounding Functions

In certain monotone domains, problem solving is simplified by the fact that optimal
subproblem solutions are guaranteed to be components of the optimal solution [Kumar and
Kanal, 1988]. In non-monotone interpretation problems, this guarantee obviously does not
hold. However, based on the problem structure defined by a domain’s characteristic grammar,
G, and evaluation function f , certain bounding functions can be defined. For example, given
a partial interpretation, i, a bounding function determines the likelihood of i being included
in a solution with a rating above some threshold. If it is unlikely that the partial interpretation
will lead to a solution rated above the threshold, all derivation paths including the partial
interpretation are pruned. For example, given threshold t, for any partial interpretation, i, if
upperbound�i� � t, then i can be pruned. upperbound�i� can be defined as the maximum
expected utility for any of the final states that can be reached along paths from i. Bounding
functions are also referred to as pruning functions or pruning operators. Static pruning functions
are those that use a predefined threshold that does not vary during problem solving. Dynamic
pruning functions use a threshold that is determined during problem solving. In the experiments
in Chapter 11, a dynamic pruning threshold corresponds to the rating of a full interpretation.

Intuitively, the threshold can be established in a number of ways. One way is to set it at a
level where any solution rated below the threshold would be considered very questionable and
the problem solver would not return any such ratings. Another way to set the threshold is to
examine the distribution characteristics of interpretations for a domain and set the threshold at
a level where there is a very high probability that at least one solution will have a rating above
the threshold. In an ideal situation, only a single solution will have a rating above the threshold.
For example, in the Hearsay II speech understanding system, experiments were conducted using
a “tight” grammar and a vocabulary restricted to 250 words. The termination criterion given
these parameters was to halt processing when the first solution above a threshold was generated.
However, in a situation where the system parameters included a “loose” grammar and a 1,000
word vocabulary, the results generated by this termination criterion were unacceptable. This
set of experiments demonstrated that tight grammars/small vocabularies lead to less ambiguity
than loose grammars/large vocabularies [Erman et al., 1980].

Like interacting subproblems, bounding functions and monotone properties are structures
that can be exploited by a control architecture to reduce the overall cost of problem solving.
And similar to interacting subproblems, the importance of identifying these structures is based
on this potential to increase the efficiency of problem solving.

In addition to structures specified by bounding functions, non-monotone domains often
exhibit semi-monotone structures. These are structures where the rating of a partial interpretation
is correlated to the probability that the partial interpretation is a component of the best
interpretation. Thus, partial interpretations with relatively low ratings have a low probability
of being a component of correct solution and partial interpretations with relatively high ratings
have a high probability of being a component of correct solutions. In semi-monotone domains,
it is possible to prune paths based on the credibility of intermediate results in such a way that
the probability of eliminating the correct interpretation is known. This strategy can be used
in situations where it is possible to gain dramatic performance improvements by accepting a
slight risk of eliminating the correct solution from consideration. This is discussed in more
depth in Chapters 7 and 11.

75

...
x y z

......
j k

...
i

... ...
f g

(Signal Data)

A B

C D E W

...

...
qb r

M

Y

......
h i

...
r

... ...
f g

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

q

...
q

meta-rules
corresponding to

bounding functions

...
h

qb

S

hb

Figure 4.21. Example of Bounding Function Incorporated in a Grammar

4.5.3 Representing Bounding Functions With the IDP Model

In the IDP formalism, bounding functions are represented by extending the interpretation
grammar, IDPi. Given a state, n, for which a bounding function can be defined, every
appearance of n on the RHS of a grammar rule in IDPi is replaced with the nonterminal
nb and the rule p 	 nb � n is added to the grammar. The knowledge incorporated in
the operator corresponding to p is the bounding function on n. Given an n, the operator
p executes the bounding function. If the output of the bounding function indicates that
extending interpretations using state n is pointless, the operator fails to generate nb and no
further derivations using n are built. If the output of the bounding function is within a
range indicating that further interpretations using n should be constructed, the operator will
generate nb and processing will continue. More specifically, in the IDP/UPC framework, a
state is pruned by the credibility function, fnb , which returns a value of 0 for that state. As
will be discussed in a later section which provide details of the IDP/UPC testbed, states with
credibility of 0 are not expanded.

In this representation, the context the bounding function operates in, the “bounding
context,” is not represented explicitly in the grammar. Instead, the bounding context is
specified in the definition of the evaluation function, fnb , associated with bounding rule p.
This is due to a lack of a satisfactory representation scheme that would enable the bounding
context to be represented explicitly in the grammar in a clear and unambiguous manner.

An example of incorporating bounding functions in a grammar is shown in Fig. 4.21.
In this example, a bounding function has been defined for state q, and the implications have
been incorporated in the extended version of grammar G� shown in Fig. 4.3. The inclusion
of a bounding function is represented by the addition of the rule qb � q. If, when applied,
the bounding function operator determines that there is no point in extending state q, it will
fail to generate state qb. This will prevent the generation of state Y and make the application
of the operator corresponding to the rule C � fgqb unnecessary. This bounding function
operator might be useful in a situation where state q is generated as the result of noise and has
a credibility rating so low that any interpretation incorporating it would have an extremely low
rating.

Bounding functions incur a cost to execute and, as a consequence, there is a corresponding
increase in the expected cost of problem solving when a grammar is extended to include

76

raw dataraw data raw data

words words words words

phrases phrases phrases

sentences

Figure 4.22. Example of a Natural Language Processing System

bounding functions. This increased cost is offset by situations where a bounding function
eliminates paths from further consideration and the corresponding costs are not incurred.

To better understand the role of bounding functions, consider the case of a natural
language understanding system where low-level data is processed into word elements, word
elements are processed into phrase elements, and phrase elements are processed into sentences.
A representation of this system is shown in Fig. 4.22. Furthermore, assume that analysis has
indicated that words with credibilities less than 0.33 (on a scale of 0 to 1.0) have probability =
0 of being included in a correct interpretation.

In this situation, it may be advantageous to add bounding functions to the grammar to
check to see if a word element has a credibility greater than 0.33 before trying to extend the
corresponding search state. If a state corresponding to a word has a credibility less than 0.33,
then any effort expended trying to extend this state is wasted effort and pruning the state
without expanding might reduce the overall cost of problem solving. Whether or not this is
advantageous is based on a number of factors, but the general rule is that if the overall cost of
executing the bounding functions is less than the cost associated with the pruned search paths,
then including bounding functions is advantageous.

For example, consider a case where the expected cost of expanding a state corresponding to
a word with credibility less than 0.33 is 10, where the probability of a word having a credibility
less than 0.33 is .75, and where the expected quantity of words generated in a problem instance
is 100. In this case, the expected cost associated with searching paths from “bad” states,
i.e., states corresponding to words that have probability = 0 of being included in a correct
interpretation, is ��� � �� � ��� � ��.

Now, assume that bounding functions are added that prune states with credibilities less
than 0.33. If the expected cost of each bounding function is 10, the overall cost associated
with the bounding functions will be cost multiplied by the expected number of words that the
bounding functions are applied to, or �� � ��� � ����. In other words, the cost of applying
the bounding functions would be 1000, and, from the previous equation, the cost without
the use of the bounding functions would be 750. Thus, the use of bounding functions would
increase the expected cost of problem solving by 250 units.

Now consider if the expected cost of each bounding function is 5. In this case, the cost
of applying the bounding functions is � ��� � ��. Thus the use of bounding functions
reduces the expected cost by 250 units.

77

To illustrate another issue that must be considered in the analysis of bounding functions,
consider the situation where the expected cost of applying each bounding function is 5, the
expected number of words generated in each problem solving instance is 100, the expected
cost of searching a bad path is 10, all as in the previous situation, but the probability of a word
having credibility less than 0.33 is 0.25. In this case, the expected cost of applying the bounding
functions will still be the expected cost of each bounding function application multiplied by
the expected number of words, � ��� � ��, but the expected cost savings from pruning
bad paths will be the probability that a word has a credibility less than 0.25 multiplied by the
number of words multiplied by the expected cost of a bad path, or ��� � ��� � �� � ��.
In this situation, the net effect of using bounding functions is to increase the expected cost of
problem solving by 250 units.

In the IDP/UPC framework, explicitly representing bounding functions as an integral part
of the set of problem solving actions facilitates analysis such as that presented in the preceding
paragraphs. In addition, the IDP/UPC framework can be used to analyze more sophisticated
bounding function implementations where the thresholds are determined dynamically. This
will be demonstrated further in Chapter 8.

4.6 Generating Problem Instances with the Feature List Convention

To demonstrate how an IDP grammar can be used to represent a complex, real-world
domain, we will first describe how an IDP grammar is used to generate problem instances. For
this purpose a complex grammar that is used in Chapter 11 is introduced here. It will be used
in this and the following sections to illustrate important aspects of the IDP/UPC framework.
The interpretation domain that will be studied in detail in Chapter 11 is a vehicle tracking
problem as defined in previous work on distributed vehicle monitoring in the RESUN research
project [III, 1990] and in the Distributed Vehicle Monitoring Testbed (DVMT) [Corkill,
1983]. The problem solver’s input consists of preprocessed sensor data gathered from a single
contiguous region. The problem solver then processes the data in an attempt to identify the
type of vehicle that generated the signals and the path it traversed through the region.

The preprocessed signal data used in the experiments is generated by a grammar based
mechanism. Figure 4.23 represents the basic approach used to generate problem instances. As
shown in the figure, each symbol of the grammar has a feature list. In addition, each production
rule is associated with a set of functions which take a feature list as an input.

In order to generate a problem instance, the simulator begins by creating a feature list
for the start symbol, S. The most important aspect of this task is the determination of a
credibility. Each grammar has an expected credibility and variance, and this information is
used to probabilistically choose a specific credibility for the problem instance. In addition,
other features can be determined at this time. For example, in a vehicle tracking domain, some
of the features may include vehicle heading, velocity, type, etc.

Next, the generator probabilistically chooses a production rule, p, associated with the start
symbol and applies p to the start symbol. i.e., the generator randomly chooses a production
rule with the start symbol on the left-hand-side and replaces S with the right-hand-side of the
rule. The choice of which rule to apply is made based on the weights of the � associated with
the different rules. As the generator replacesS, it assigns each of the replacing symbols a feature
list. Each of the feature lists is determined by applying p’s feature list functions to S’s original
feature list.

78

S

INPUT

(feature list)

f P
1 (feature list) f P

2 (feature list) f P
3 (feature list)...

N1 N2 N3

...

 example of feature list propagation for the rule p: S → N
1
 N

2
 N

3

Problem Instance

f
r
 (f P

1 (feature list)) f
s
 (f P

2 (feature list)) f
t
 (f P

3 (feature list))

Figure 4.23. Generating Problem Instances with the Feature List Convention

The new symbols, each with their own, unique feature list, are added to either a queue,
if the symbol is a nonterminal, or an output set, if the symbol is a terminal, and the whole
process is repeated. The first element of the queue is removed and processed, and the resulting
new symbols are added to the tail of the queue or to the output set. This continues until the
queue is empty and the output set contains terminals with fully specified feature lists.

The basic structure of the problem domain is shown in Fig. 4.24. As shown, the domain
consists of scenarios. Each scenario consists of a number of tracks. Each track can represent a
single vehicle traversing the region (an I-Track), a vehicle and a corresponding ghost track (a
G-Track), or a group of vehicles moving in a coordinated manner (a P-Track). Each of these
tracks is composed of vehicle locations. Vehicle locations are composed of group classes and
group classes consist of signal classes. The signal classes can be thought of as preprocessed signal
data [Corkill, 1983].

A grammar that will generate problem instances for this domain is shown in Figures 4.25,
4.27, 4.29, and 4.30. These figures show the production rules of the grammar and the
probability distribution values for � associated with each of the rules. The feature lists are
shown as bracketed subscripts. The key to interpreting the feature lists and functions of feature
lists is the following [Whitehair and Lesser, 1993]:

f: A feature list. In this example, “f” represents characteristics that are not otherwise represented
such as energy, frequency, etc. �

�In the examples presented in this thesis, “f ” is included to indicate that additional characteristics can be added

79

Scenarios

Track
I-Track, P-Track,

or G-Track

Vehicle Locations
One vehicle Location for each

time-location in the track

Group Classes
Multiple Group Classes

per Vehicle Location

Signal Classes
Multiple Signal Classes

per Group Class

Track
I-Track, P-Track,

or G-Track

Vehicle Locations
One vehicle Location for each

time-location in the track

Group Classes
Multiple Group Classes

per Vehicle Location

Signal Classes
Multiple Signal Classes

per Group Class

...
Each Scenario consists
of one or more Tracks

Figure 4.24. The Basic Structure of the Vehicle Tracking Problem Domain

t: Time.

x: The x-coordinate of a location.

y: The y-coordinate of a location.

vel: Velocity. This is used to generate the x and y coordinates of the next location in the track.

acc: Acceleration. This is used to adjust velocity over time. Velocity and acceleration are also
used to constrain the progression of a track. For example, each particular kind of vehicle
track has a maximum velocity and acceleration that cannot be exceeded.

offset: The offset from a “true” position. This is used to generate pattern tracks of multiple
vehicles and ghost tracks.

A problem instance is created starting with the generation of the start symbol, S, and
its feature list. The most important aspect of this task is the determination of a credibility.
Each grammar has an expected credibility and variance, and this information is used to
probabilistically choose a specific credibility for the problem instance. Initially, the feature list
consists solely of an “energy” level, which is represented as part of “f” in the grammar shown.

if desired. Our experimental system is implemented so that additional features can be added with little effort.
In some cases, we have modified “f ” to represent other vehicle tracking domain characteristics in order to test
the adequacy of the representational power of the IDP formalism. For the sake of clarity, we do not treat their
representation in more detail.

80

1. S�f � Tracks�f p=1
2. Tracks�f � Tracks�f Track�f p=0

� Track�f p=1
3. Track�f � I-Track1�f�t�x�y p=0.25

� I-Track2�f�t�x�y p=0.25
� P-Track1�f�t�x�y p=0.10
� P-Track2�f�t�x�y p=0.10
� G-Track1�f�t�x�y p=0.15
� G-Track2�f�t�x�y p=0.15

4. I-Track1�f�t�x�y � I-Track1�f�t���x�vel�acc�y�vel�acc T1�f�t�x�y p=1
5. I-Track2�f�t�x�y � I-Track2�f�t���x�vel�acc�y�vel�acc T2�f�t�x�y p=1
6. P-Track1�f�t�x�y � P-Track1�f�t���x�vel�acc�y�vel�acc P-T1�f�t�x�y p=1
7. P-Track2�f�t�x�y � P-Track2�f�t���x�vel�acc�y�vel�acc P-T2�f�t�x�y p=1
8. G-Track1�f�t�x�y � G-Track1�f�t���x�vel�acc�y�vel�acc G-T1�f�t�x�y p=1
9. G-Track2�f�t�x�y � G-Track2�f�t���x�vel�acc�y�vel�acc G-T2�f�t�x�y p=1
10. P-T1�f�t�x�y � T1�f�t�x�offset�y�offset T2�f�t�x�y p=1
11. P-T2�f�t�x�y � T2�f�t�x�offset�y�offset T2�f�t�x�y p=1
12. G-T1�f�t�x�y � GT1�f�t�x�offset�y�offset T1�f�t�x�y p=1
13. G-T2�f�t�x�y � GT2�f�t�x�offset�y�offset T2�f�t�x�y p=1
14. T1�f�t�x�y � V1�f�t�x�y N�f�t p=1
15. T2�f�t�x�y � V2�f�t�x�y N�f�t p=1
16. GT1�f�t�x�y � GV1�f�t�x�y N�f�t p=1
17. GT2�f�t�x�y � GV2�f�t�x�y N�f�t p=1
18. N�f�t � n�f�t N�f�t p=0.1

� n�f�t p=0.25
� � p=0.65

19. V1�f�t�x�y � G1�f�t�x�y G3�f�t�x�y G7�f�t�x�y p=0.4
� G1�f�t�x�y G3�f�t�x�y p=0.3
� G1�f�t�x�y G7�f�t�x�y p=0.25
� � p=0.05

20. V2�f�t�x�y � G3�f�t�x�y G8�f�t�x�y G12�f�t�x�y p=0.4
� G8�f�t�x�y G12�f�t�x�y p=0.3
� G3�f�t�x�y G12�f�t�x�y p=0.25
� � p=0.05

21. GV1�f�t�x�y � G-G1�f�t�x�y G-G3�f�t�x�y G-G7�f�t�x�y p=0.2
� G-G1�f�t�x�y G-G3�f�t�x�y p=0.3
� G-G1�f�t�x�y G-G7�f�t�x�y p=0.25
� � p=0.05

22. GV2�f�t�x�y � G-G3�f�t�x�y G-G8�f�t�x�y G-G12�f�t�x�y p=0.4
� G-G8�f�t�x�y G-G12�f�t�x�y p=0.3
� G-G3�f�t�x�y G-G12�f�t�x�y p=0.25
� � p=0.05

Figure 4.25. Grammar Rules for Generating Patterns and Tracks

81

Next, the generator probabilistically chooses a production rule, p, associated with the start
symbol and applies p to the start symbol. i.e., the generator randomly chooses a production
rule with the start symbol on the left-hand-side and replaces S with the right-hand-side of the
rule. The choice of which rule to apply is made based on the weights of the � associated with
the different rules. As the generator replacesS, it assigns each of the replacing symbols a feature
list. Each of the feature lists is determined by applying p’s feature list functions to S’s original
feature list.

Specifically, from the start symbol, grammar transformations using the rules shown lead
to the application of one of the rules 4 through 9. At this point, the next selection of a
right-hand-side (RHS) of the grammar to be used determines the type of track that will be
generated. A starting point and a velocity are randomly chosen for the track. These are used
to specify the initial x and y position and the initial vel. Rules 4 through 9 are then used to
complete the generation of the track. Each application of a rule also involves a random choice
of acceleration, acc, that is used in the specification of the problem instance.

The new symbols, each with their own, unique feature list, are added to either a queue,
if the symbol is a nonterminal, or an output set, if the symbol is a terminal, and the whole
process is repeated. The first element of the queue is removed and processed, and the resulting
new symbols are added to the tail of the queue or to the output set. This continues until the
queue is empty and the output set contains terminals with fully specified feature lists. More
formally, the generation process is defined in Fig. 4.26.

Note that an item’s position within the OUTPUT-SET in Fig. 4.26 is insignificant. All
ordering constraints must be specified in the feature list. For example, the “time” at which an
event occurs is represented as a characteristic of a symbol represented in its feature list.

As discussed previously, the basis of the IDP/UPC analysis framework is the assumption
that the problem instances of a domain occur in patterned, principled ways. We associate
events that might shape the characteristics of a problem instance with rules of a grammar that
represent, for example, the occurrence of an event that shifts a signal slightly or that introduces
noise or missing data. Thus, the feature list functions associated with the rules of a grammar
modify the feature lists appropriately to represent the events associated with the production
rules.

For example, one of the characteristics represented in the feature lists of a vehicle tracking
domain is “energy.” Some of the production rules of the grammar represent events that affect
the perceived energy of a signal. These events may increase or decrease this level. Similarly,
other characteristics might include “position,” “frequency,” etc., and they will all be included
in the feature list representation and similarly influenced by which production rules are chosen.

In the experimental test domains�, the credibility generation function for a nonterminal
element on the RHS of a production rule is:

Equation 4.6.1 credibility - deltap.

�The use of a particular credibility generation or interpretation function in an example should NOT be
considered a restriction on the general applicability of the analysis framework. In fact, the framework can be
applied in the analysis of a problem domain or problem solving architecture regardless of the semantic credibility
functions used. Selection of different credibility functions will only affect the variance of a domain or problem
solver’s characteristics. The credibility functions chosen for the examples in this thesis were made to simplify the
verification and presentation processes and should not be misinterpreted as limitations on the framework.

82

INITIALIZE Generation Queue (GQ) - Place the start symbol on GQ.

REPEAT (Until GQ is empty)

REMOVE Current Grammar Element (CGE) from GQ.

EXPAND CGE:

IF CGE is a terminal symbol

Add CGE to OutputSet

ELSE

RANDOMLY CHOOSE a Grammar Rule Corresponding to

one of CGE’s Right-Hand-Sides (RHS).

FOR each element of RHS

Set feature list equal to Lp�CGEfl�

where Lp is a function that creates a

new feature list and CGEfl is the

feature list associated with CGE.

ADD RHS elements to GQ.

END REPEAT

Figure 4.26. The Grammar-Based Problem Generation Process

83

Where “credibility” is the credibility from the feature list of the element on the LHS of
the production rule and deltap is an offset that is used to represent the decrease in credibility
associated with noise and missing data. For non-noise/missing data rules, deltap is 0. For
rules that represent the addition of noise or missing data, deltap is greater than 0. For the
experiments in this thesis, deltap is typically set to 0.2. This is somewhat unrealistic in the sense
that “real world” credibility functions would return specific values that might vary considerably
from rule to rule. However, this technique does achieve the desired effect of reducing the
credibility associated noise and missing data.

The credibility generation function for a terminal element on the RHS of a production
rule is:

Equation 4.6.2 random variable with density N (credibility, variance).

WhereN is the standard normal density, and “credibility” and “variance” are the credibility
and “variance” from the feature list of the element on the LHS of the production rule. “Credi-
bility” corresponds to the expected value of the normal density and “variance” corresponds to
the variance.

Intuitively, the credibility of the start symbol is passed down through the generation process
to the terminal symbols that constitute the actual signal that is input to the problem solver. As
the credibility is passed down from feature list to feature list, it is modified only to reflect effects
associated with noise and missing data. In general, we associate noise and missing data with
domain events that reduce the credibility of an interpretation, and the feature list generation
functions associated with noise and missing data rules reflect this by reducing the credibility
included in the new feature lists. Finally, the credibility assigned to terminal symbols is a
random number generated with an expected value and variance equal to the credibility and
variance passed to the feature list of the terminal symbol.

For clarification, the notation “p=0.45” following a production rule should be interpreted
to mean, “If the grammar rule associated with this Right-Hand-Side (RHS) is invoked to
generate a problem instance, the probability that this specific RHS will be used to expand the
rule is equal to 0.45.” Note that many of the rules have p=1.0. This indicates that there are
no alternative RHSs for this rule. The probabilities associated with a production rule sum to
1. Also, many rules include a RHS of �. This indicates that there is a possibility that the
production rule will not lead to the production of signal data. This is discussed below.

The rules in Fig. 4.25 are used to generate the high-level track phenomena. The recursive
rule number 2 will generate a number of track phenomena for each scenario. By adjusting the
probabilities for the two alternative RHSs, this rule can be tailored to generate any number of
tracks. If the probability of the first RHS is close to 1, this rule will generate many tracks. If it
is close to 0, this rule will generate only one track.

Simple scenario examples are shown in Fig. 4.28. In all these examples, the tracks shown
move from left to right. This is a convention used for presentation clarity only. The actual
grammar can generate tracks that originate anywhere on the sensed region’s perimeter and at
any point in time. Thus, if an experimental run is to simulate a time span of several days, the
vehicle tracks that are generated can begin at any point in time. A single track is shown in
Fig. 4.28.a. Figure 4.28.b is an example of multiple tracks in a single scenario. A pattern track
is shown in Fig. 4.28.c. This is contrasted with the ghost track in Fig. 4.28.d. Notice that
the ghost track differs from the pattern track in that the data is more “spotty.” There is more
missing data and more time instances for which data is altogether lacking.

84

23. G1�f�t�x�y � S1�f�t�x�y S2�f�t�x�y p=0.45
� S1�f�t�x�y S3�f�t�x�y p=0.1
� S1�f�t�x�y S4�f�t�x�y p=0.1
� S2�f�t�x�y S3�f�t�x�y p=0.1
� S2�f�t�x�y S3�f�t�x�y S4�f�t�x�y p=0.1
� S1�f�t�x�y p=0.05
� S2�f�t�x�y p=0.05
� � p=0.05

24. G3�f�t�x�y � S5�f�t�x�y S7�f�t�x�y p=0.45
� S5�f�t�x�y S6�f�t�x�y p=0.1
� S6�f�t�x�y S7�f�t�x�y p=0.1
� S4�f�t�x�y S5�f�t�x�y p=0.1
� S7�f�t�x�y S8�f�t�x�y p=0.1
� S5�f�t�x�y p=0.05
� S7�f�t�x�y p=0.05
� � p=0.05

25. G7�f�t�x�y � S11�f�t�x�y S15�f�t�x�y p=0.55
� S11�f�t�x�y S16�f�t�x�y p=0.43
� � p=0.02

26. G8�f�t�x�y � S13�f�t�x�y S18�f�t�x�y p=0.55
� S13�f�t�x�y S17�f�t�x�y p=0.1
� S14�f�t�x�y S18�f�t�x�y p=0.1
� S15�f�t�x�y S17�f�t�x�y p=0.1
� S13�f�t�x�y p=0.05
� S18�f�t�x�y p=0.05
� � p=0.05

27. G12�f�t�x�y � S6�f�t�x�y S14�f�t�x�y S17�f�t�x�y p=0.45
� S6�f�t�x�y S14�f�t�x�y p=0.25
� S7�f�t�x�y S14�f�t�x�y S18�f�t�x�y p=0.25
� � p=0.05

Figure 4.27. Grammar Rules for Generating Group and Signal Data

85

: the actual path of the vehicle that
 generated the data.

: a ghost image of the actual path. noise from a
ghost track

: signal data from sensor. Each
 point has a time, location,
 energy level, and frequency.

(d)

(c)

(b)

(a)

: the actual path of the first vehicle.

: the actual path of a second vehicle.

: the actual path of the first vehicle
 in the pattern.

: the actual path of the second
 vehicle in the pattern.

: the actual path of the vehicle that
 generated the data (a).

a. single vehicle track

b. multiple vehicle tracks

c. patterned vehicle tracks

d. single vehicle track with a ghost track

Figure 4.28. Vehicle Tracking Scenario Examples

86

Production rule 3 illustrates an interesting principle associated with grammar based analysis.
This rule has 6 RHSs, each corresponding to a different vehicle type. For example, the rule
“Track � I-Track1” indicates that the track is generated by a vehicle of type 1. Similarly,
the rule “Track � I-Track2” indicates that the track is generated by a vehicle of type 2. The
information indicating which type of vehicle caused a track could easily be incorporated into
the feature list. This would be done by replacing all 6 RHSs with the single rule, “Track �
I-Track.” However, this would eliminate a considerable amount of power from the analysis
tools built from the grammar. However, a general principle that we have recognized is that
the power of the analysis tools is a function of the extent to which the IDP grammar explicitly
represents domain structures.

It is still possible to analyze structures of domain properties associated with feature lists (for
example, credibility values derived from the energy level of a sensed signal), but the analysis
results are often less definitive. Specifically, the credibility structure of a domain can be thought
of as a set of mean values and variances from those values associated with the set of terminals and
nonterminals of an IDP grammar. In certain instances, relationships affecting the credibility
rating of a grammar element can be extracted and represented explicitly, as is done with the
concept of singularities in Chapter 5.1.1. In so doing, the analysis results associated with this
relationship can be extremely precise (e.g., the relationship is true 50% of the time, or the
constraint associated with this relationship eliminates certain related search paths x% of the
time, etc.), as opposed to the less precise mean and variance estimates. In addition, explicitly
representing domain structures can reduce the variance from an expected mean.

4.7 Representing Real-World, Complex Domains

There is no viable method available that can be used to prove that context-free grammars,
extended with the feature list convention, can be used to model all real-world domains. Instead,
we will demonstrate the effectiveness of this approach by specifying a number of real-world
phenomena that characterize the interpretation domain we are studying and showing that the
phenomena can be modeled accurately with the IDP formalism. The examples presented here
will allow the reader to imagine similar techniques being used to model phenomena in other
real-world domains.

4.7.1 Interacting Phenomena

A similar feature list convention is used to generate pattern and ghost tracks. This is shown
in rules 6 through 9 and rules 10 through 13. These rules lead to domain events consisting
of two tracks with closely related properties. As shown in Figures 4.28.c and d, ghost tracks
and pattern tracks move in coordination with each other. Ghost tracks do this because one
signal is a reflection of a true signal and pattern tracks do this because they are composed of
multiple vehicles moving according to a plan. For example, a pattern track might include a
tanker vehicle and a second vehicle following it while refueling, multiple vehicles moving in an
attack pattern, etc.

Rules 6 through 9 generate the data for each time-frame of the tracks. Rules 10 through
13 generate the patterned data. The vehicle patterns are generated using feature lists and
offsets. Each element in a track, which will be referred to as a vehicle location, has an x and
a y coordinate. As seen in rule 6, each element of a track has a basic x and y coordinate, but
one element has a position modified by a variable offset. The offset can be determined by an

87

28. G-G1�f�t�x�y � S1�f�t�x�y S2�f�t�x�y p=0.2
� S1�f�t�x�y S3�f�t�x�y p=0.05
� S1�f�t�x�y S4�f�t�x�y p=0.05
� S2�f�t�x�y S3�f�t�x�y p=0.05
� S2�f�t�x�y S3�f�t�x�y S4�f�t�x�y p=0.05
� S1�f�t�x�y p=0.2
� S2�f�t�x�y p=0.2
� � p=0.2

29. G-G3�f�t�x�y � S5�f�t�x�y S7�f�t�x�y p=0.2
� S5�f�t�x�y S6�f�t�x�y p=0.05
� S6�f�t�x�y S7�f�t�x�y p=0.05
� S4�f�t�x�y S5�f�t�x�y p=0.05
� S7�f�t�x�y S8�f�t�x�y p=0.05
� S5�f�t�x�y p=0.2
� S7�f�t�x�y p=0.15
� � p=0.25

30. G-G7�f�t�x�y � S11�f�t�x�y S15�f�t�x�y p=0.30
� S11�f�t�x�y S16�f�t�x�y p=0.30
� � p=0.40

32. G-G8�f�t�x�y � S13�f�t�x�y S18�f�t�x�y p=0.15
� S13�f�t�x�y S17�f�t�x�y p=0.05
� S14�f�t�x�y S18�f�t�x�y p=0.05
� S15�f�t�x�y S17�f�t�x�y p=0.05
� S13�f�t�x�y p=0.2
� S18�f�t�x�y p=0.25
� � p=0.25

32. G-G12�f�t�x�y � S6�f�t�x�y S14�f�t�x�y S17�f�t�x�y p=0.2
� S6�f�t�x�y S14�f�t�x�y p=0.2
� S7�f�t�x�y S14�f�t�x�y S18�f�t�x�y p=0.25
� � p=0.35

Figure 4.29. Grammar Rules for Generating Group Data for Ghost Tracks

88

arbitrarily complex function, resulting in a very expressive technique for generating coordinated
domain events.

This is just one example of how the feature list convention can be used to generate domain
phenomena that are coordinated or related in some way. This is worth noting because it suggests
that the analysis techniques we will present here can be extended to many other domains. Even
domains that seem to have some context-sensitive phenomena that appear to interact through
time and/or distance. This is a very important point because it suggests that, in some situations,
it is possible to use a context-free grammar to generate problem instances that can be considered
context-sensitive. The significance of this should not be understated. The power of the analysis
tools presented here is derived in large part from their context-free nature. It is not clear at
this time that the validity of the analysis tools will hold for context-sensitive grammars. Nor
is it clear that some of the analysis results can even be computed for domains represented by
context-sensitive grammars.

4.7.2 Noise

In any interpretation domain, noise plays a significant role in increasing the complexity of
problem solving. This is the result of noise increasing the number of plausible interpretations
(i.e., increasing the ambiguity) that have to be differentiated. A variety of techniques have been
developed for modeling different types of noise.

Production rules 18, shown in Fig. 4.25, and 35, shown in Fig. 4.30, are used to generate
random noise. This represents random phenomena associated with natural state of the domain
when no vehicles are passing through the region. There could be many causes of random noise
including temperature changes, equipment malfunctions, natural flora or fauna, and more.
The amount of random noise in a domain is determined by the probabilities associated with
rule 18. If the probability of the first RHS is high, the domain will include a great deal of noise.
If the probability is low, very little noise will be generated. The properties of the random noise
can be further modified by adjusting the probabilities associated with the RHSs of rule 35.

In addition to adjustments to the probability distributions, random noise characteristics
can be modified with the feature list convention. For example, note that the feature lists used
in rule 18 do not include any information about x and y locations. In the vehicle monitoring
system, the x and y locations of random noise are determined using a uniform distribution
function. This does not have to be the case. It would be easy to model a domain in which
random noise tended to appear more in certain locations. Other properties of random noise,
such as its energy level, can be manipulated in a similar way.

In addition to random noise, there is often noise that is more closely associated with the
domain events that the system is trying to interpret. For example, in a vehicle tracking domain,
it is reasonable to expect there to be phenomena corresponding to a vehicle interacting with the
domain in an unexpected way. For example, a train may hit a rock or some other object on the
track, something may fall off a ship, or a jet engine may emit some uncharacteristic noise. These
sorts of phenomena are different from random noise, since they will only occur in the presence
of a vehicle, but they are still a form of noise since they are not characteristic of a vehicle and
may lead to ambiguity or otherwise obscure the sensing of phenomena that is characteristic of
a vehicle. Rule 23 shows an example of how this sort of noise can be represented by adding
elements to the RHS of an existing rule. Specifically, in the rule,
G1�f�t�x�y � S2�f�t�x�y S3�f�t�x�y S4�f�t�x�y, the extra signal, S4, could be considered noise.

89

35. n�f�t � S1�f�t�x�y p=0.05
� S2�f�t�x�y p=0.05
� S3�f�t�x�y p=0.05
� S4�f�t�x�y p=0.05
� S5�f�t�x�y p=0.05
� S6�f�t�x�y p=0.05
� S7�f�t�x�y p=0.05
� S8�f�t�x�y p=0.05
� S9�f�t�x�y p=0.05
� S10�f�t�x�y p=0.05
� S11�f�t�x�y p=0.05
� S12�f�t�x�y p=0.05
� S13�f�t�x�y p=0.05
� S14�f�t�x�y p=0.05
� S15�f�t�x�y p=0.05
� S16�f�t�x�y p=0.05
� S17�f�t�x�y p=0.05
� S18�f�t�x�y p=0.05
� S19�f�t�x�y p=0.05
� S20�f�t�x�y p=0.05

Figure 4.30. Grammar Rules for Generating Random Noise

The representation of noise does not have to be restricted to the signal level phenomena.
More comprehensive noise elements can be represented at other levels of the grammar in a
similar way. For example, ghosting phenomena are really a complex aggregate of noise at the
track level. Noise phenomena can be easily added at the group level in a manner similar to that
used to add signal data noise.

Another kind of noise is represented not by additional phenomena, but by slightly altered
phenomena. This is sometimes referred to as sensor shifting. Intuitively, sensor shifting
phenomena can be caused by errors in sensors or variations in a physical domain such as air or
water temperature. All of the group level production rules include examples of sensor shifting.
For example, the second RHS of rule 23 shows a shift from S2 to S3. Similar shifting can occur
at all levels of the grammar.

4.7.3 Correlated and Uncorrelated Noise

In Chapter 4.1.2, we identified two kinds of noise, Correlated and Uncorrelated. Cor-
related noise leads to the generation of additional interpretations. This ambiguity causes
the problem solver to perform additional work to differentiate the possible interpretations.
Uncorrelated noise may lead to additional work, but it does not lead to the generation of
additional interpretations. Often, uncorrelated noise can be identified and eliminated from
further processing with low-cost.

The complexity of the example grammar is such that it is difficult to identify all correlated
and uncorrelated noise by inspection only. However, the rules associated with the nonterminal

90

n include examples of both. For example, production rule 35.n�f�t � S1�f�t�x�y is an example
of correlated noise because the signal S1 can be used to build an interpretation of an I-Track1
in situations where it would not otherwise be built. In contrast, the production rule 35.n�f�t
� S20�f�t�x�y is an example of uncorrelated noise because the signal data S20 is not used to
generate any vehicle tracks and can be ignored in subsequent processing.

A more meaningful example of correlated noise is shown in the problem instance illustrated
in Fig. 4.31. In this example, the production rule N�f�t� n�f�t N�f�t will create random noise
throughout the sensed region. Should some of this noise occur near a track, it will cause the
problem solver to create a possible interpretation that includes the noise as a possible element
of the track. This interpretation could be in conflict with the interpretation that corresponds
most closely with the event that created the noise. This is shown in the figure with the two
different “track lines.” In this instance, the random noise phenomenon is considered correlated
noise.

Also shown in the figure is random noise that is too far from the actual track data to be
combined into a competing interpretation. This random noise phenomenon is considered
uncorrelated noise.

4.7.4 Missing Data

Missing data, defined in Chapter 4.1.3 is easy to represent and understand using IDP
grammars. By simply dropping an element from an RHS, it is possible to model phenomena
that results in data not being sensed. Missing data can be caused by sensor errors, environmental
conditions, processing errors, and more. The second and third RHSs to rule 19 show examples
of how missing group level data can be modeled by omitting the appropriate nonterminal. The
sixth and seventh RHSs of rule 23 show how missing signal data can be modeled in a similar
way.

Another mechanism for representing missing data is in the form of � rules. These are
production rules that transform nonterminals to the empty set. These RHSs are used to model
domain phenomena such as entirely missing groups of related data. For example, in real-world
domains, missing vehicle locations in a track are not unheard of. This is modeled with the
production rule V1� �. Note that for ghost tracks, the probability of missing vehicle locations
is much higher than it is for real vehicle tracks.

The production rules associated with ghost tracks also demonstrate how missing data
phenomena can be related across production rules. Note that the RHSs for the ghost group
level nonterminals are identical with the RHSs for the regular group level nonterminals. The
only difference is in the distribution probabilities. For ghost data, the probability of missing
signal data, or completely missing group data, is much higher. This is one of the ways
in which ghost tracks can be identified. In this example, the related domain events, i.e.,
corresponding levels of missing data, are linked not by the feature list convention, but by a
common nonterminal.

4.8 An Example of Basic Analysis Using IDP Models

This section will demonstrate how IDP models can be used to analyze sophisticated control
mechanisms. In particular, we will focus on the use of abstractions and approximations	 in

�In the remainder of this thesis, both abstractions and approximations will be referred to simply as abstractions
except in cases where it is necessary to differentiate them.

91

: signal data from sensor. Each
 point has a time, location,
 energy level, and frequency.

noise from a
ghost track

noise from a
ghost track

ambigous tracks derived from the
correlated noise of the ghost track

: a ghost image of the actual path.

: the actual path of the vehicle that
 generated the data.

Figure 4.31. Example of Correlated Noise in a Vehicle Tracking Domain

92

sophisticated control architectures. The examples presented will help motivate the development
of the UPC formalism that will be introduced in Chapter 6.

The analytical power of an IDP domain model is based on the degree to which the
abstractions used in control can be viewed from the same perspective as problem solving
actions. Thus, the key to analyzing abstractions is to view them in terms of the domain
problem structures they define. In the IDP formalism, a domain’s problem solving actions
are represented in terms of the domain’s characteristic grammar and the associated functions.
These operators generate fully specified partial interpretations and ignore all considerations of
the efficiency of their actions. This is in contrast to meta-operators based on abstractions or
approximations that generate partial interpretations that are underconstrained in some way.
For example, a characteristic variable may be undefined or may be defined by a range of values.
Therefore, analyzing abstractions used in sophisticated control mechanisms within the context
of a given domain requires that the domain’s grammar and associated functions be modified
to represent the abstractions as problem solving actions. The modified grammar then defines
a new convergent search space and comparative analysis can focus on the relative efficiency of
problem solving in the original and the modified search spaces.

Once a domain’s grammar has been modified to represent available abstract problem
solving actions, the subsequent analysis must focus on two issues. The first will be referred to
as correctness. Analysis must demonstrate that the problem solving actions represented in the
modified grammar generate the same (or acceptably different) results as the problem solving
actions represented in the original grammar. The second issue is efficiency. Analysis must
demonstrate that problem solving in the search space defined by the modified grammar is more
efficient than problem solving in the search space defined by the original grammar. Note that
this methodology implies that abstract problem solving operators are used solely to improve a
problem solver’s efficiency.

Proof of efficiency can take a number of forms depending on whether top-down or
bottom-up (or both) methods are used. In both cases, analysis will focus on the expected costs
to connect the search spaces both before and after modifications corresponding to abstract
operators are made. If bottom-up methods are being employed, the analysis must start with the
low-level components and show that the cost of generating interpretations from these elements
has been decreased. If top-down methods are used, the analysis must start with the high-level
representation of the set of interpretations and demonstrate that the cost of pruning this set is
somehow decreased. As will be seen, both top-down and bottom-up problem solving can be
analyzed similarly when viewed from the perspective of states in a search space.

The analysis contained in this section will focus on abstractions used in sophisticated
control mechanisms that have been implemented in the Distributed Vehicle Monitoring Testbed
(DVMT) [Corkill, 1983] and that have been implemented to exploit problem structures of
non-monotonic domains. Such domains are characteristic of real-world domains such as signal
interpretation, robotic audition, image processing, and natural language processing.

4.8.1 Goal Processing

Goal processing is a form of hierarchical problem solving [Knoblock, 1991a] that has been
incorporated in the DVMT to enable a problem solver to reason about courses of action in
ways that are independent of the means for instantiating the actions. After new search states
are generated, partial constraints are applied to the states to generate meta-states, or goals.
Further problem solving actions are then applied to the goals and the original search states

93

are considered to be connected and are no longer used to initiate problem solving activity. In
numerous studies, goal processing has been shown to be an effective means for countering local
redundancy and uncertainty [Corkill and Lesser, 1981, Corkill et al., 1982, Corkill, 1983]. In
addition, goal processing has been shown to be effective in top-down processing algorithms
where goals are used to constrain the actions of data-directed operators [Corkill and Lesser, 1981,
Corkill et al., 1982, Corkill, 1983].

Intuitively, goals can be thought of as “set descriptors.” A goal is similar to a state of the
original search space, but it is underconstrained in the sense that some of the characteristic
variables that normally define states in the search space are unspecified or specified in terms of
a range of values. As a consequence, any state with characteristics that fall within the ranges
defined by the goal can be thought of as elements of a set represented by the goal. Hence,
goals are abstractions of search space states. In the initial DVMT implementation, goals define
a set that represents the elements of a state’s result set (defined in Chapter 4.4.1) that can be
generated with the application of a single operator. Extending a goal state can be thought of as
a branch-and-bound search operation applied to the goal.

Returning to grammar G� from Fig. 3.2, we see that the structure of the search space
defined by this grammar is very simple. In fact, problem solving in this domain would be
more appropriately thought of as classification problem solving since it would be trivial to
preenumerate the set S from which an interpretation would be chosen. Furthermore, there is
no ambiguity, so interpretations could be determined without using the evaluation functions
fp. Therefore, to make the following examples more meaningful, the extended grammar, G�

n,
shown in Fig. 4.32, will be used.

Figure 4.32.a represents the operator organizational structure for the example domain
problem. Each of the numbered macro-operators shown in Fig. 4.32.a is actually a set of
primitive rules – a “best rule,” which is listed first, and subsets of masking rules and missing
data rules. For example, rule 1 specifies the production An � CnDn and the eight associated
masking rules specified by the subscript n � �. (n might correspond to a slight variation in
position, time, frequency, etc.) Thus, An � Cn��Dn�� j Cn��Dn j Cn��Dn�� j � � �, are
all primitive operators that will be applied when macro-operator 1 is applied. In addition,
some of the macro-operators include primitive missing data rules. These are macro-operators
3 through 6. The primitive missing data rules are 3.b&c, 4.b&c, 5.b&c, and 6.b through g.
For now, the evaluation, cost, and distribution functions will be left undefined.

Figures 4.32.b and 4.32.c illustrate structures of the grammar in tree form. Figure 4.32.b
depicts structures associated with the masking rules and Fig. 4.32.c shows structures associated
with missing data rules. Note that this grammar is very ambiguous – any input can lead to
the derivation of many different interpretation trees. For example, an input of “f�g�h�i�” will
result in the generation of several dozen full interpretation trees (see Fig. 4.33.). Depending on
the semantics of the domain, each of these interpretations may be virtually identical or vastly
different.

Figures 4.34 and 4.35 illustrate the effects of goal processing. These figures are based
on the extended interpretation grammar G�

n from Fig. 4.32. Figure 4.34 depicts a typical
interpretation search for a small set of input data
. To connect the search space, op� is
successively applied to states x�, y�, y�, and z�. These operations result in the creation of states
W��W��W� and W�. As shown in the figure, W��W� and W� are actually created multiple

	In these figures, and in the following text, the operator superscript notation represents the ith application of
an operator.

94

1. An → Cn±1Dn±1

4.a. Dn → hn±1in±1

3.a. Cn → fn±1gn±1

2. Bn → Dn±1En±1Wn±1

6.a. Wn → xn±1yn±1zn±1

5.a. En → kn±1jn±1
5.b. En → kn±1
5.c. En → jn±1

6.b. Wn → xn±1yn±1
6.c. Wn → xn±1zn±1

6.d. Wn → yn±1zn±1

3.b. Cn → fn±1
3.c. Cn → gn±1

4.b. Dn → hn±1
4.c. Dn → in±1

6.e. Wn → xn±1
6.f. Wn → yn±1
6.g. Wn → zn±1

An

Cn Dn Cn-1
Dn-1

Cn+1
Dn+1

...

hn in hn-1 in-1 hn+1
in+1 ...

Dn

hn in hn-1 in-1 hn+1

a. extended interpretation
grammar, G

n
'

b. example structures from grammar

(signal data)

c. additional intermediate structures
from grammar

Figure 4.32. Extended Interpretation Grammar

95

An

Cn
Dn

hn in
fn gn

An

Cn+1
Dn

hn in
fn gn

An

Cn
Dn+1

hn in
fn gn

An

Cn
Dn

hnfn gn

An+2

Cn+1
Dn+1

hn in
fn gn

An-1

Cn
Dn

hn in
fn gn

Some of the interpretation trees resulting from the input “f2g2h2i2.”

Figure 4.33. Example of Interpretations Based on Extended Grammar G�
n

(Solid lines represent search paths resulting from operator
application and dashed lines represent implied merge

operations with supporting data used by the operators.)

x
1

y
1

y
2

z
1

W
1 W

2

x
1

y
1

y
2

z
1

W
1

x
1

y
1

y
2

z
1

W
2

x
1

y
1

y
2

z
1

W
0 W

1

a. operator 6
applied to x1

W
0 W

3
W

1

b. operator 6
applied to y2

W
2

W
0

c. operator 6
applied to y1

W
2

d. operator 6
applied to z1

op6
1 op6

2 op6
3

op6
4

Figure 4.34. Example of Interpretation Search

96

x
1

y
1

y
2

z
1

g
W

x
1

y
1

y
2

z
1

g
W

W
0

W
1

x
1

y
1

y
2

z
1 x

1
y

1
y

2
z
1x

1
y

1
y

2
z
1

a. b. c. d.

search paths generated by applying a goal processing operator to
nodes “x1”, “y1”, “y2”, and “z1”, respectively

e. search paths generated by applying gopw
(op6) to goal “gW”

(Dashed lines represent implied merge operations
with supporting data used by the operator.)

gop1
1 gop1

4

gop1
3

gop1
2

g
W

g
W

g
W

W
2

W
3

gop
w

Figure 4.35. Example of Interpretation Search Using Goal Processing

times. The dashed lines indicate the information used by the operator in each of the search
steps. For example, when op� is applied to x�, the operator uses the states y�, y�, and z� in its
processing.

Figure 4.35 is an example of how goal processing functions in the same situation. Instead
of op�, a goal processing operator, gop�, is applied to x�, y�, y�, and z�, in each case creating
a new goal state, gW , and connecting the original search states. gW can be thought of as an
abstract state that represents the problem solver’s intention to extend states x�, y�, y�, and z�.
Because of the characteristics of x�, y�, y�, and z�, this intention is similar for each and can
be represented as a single goal state. Another goal processing operator, gopW , is then applied
to gW . In this situation, gopW can be a slightly modified op�, as shown in Fig. 4.35.e, that
combines op��, op

�
�, op��, and op�� in a single operator. The application of gopW to gW results

in the generation of W��W��W� and W�. Again, the dashed lines represent the information
used by gopW .

This form of goal processing has several advantages. It may require significantly less work
than the interpretation search process discussed above and shown in Fig. 4.34. For example, the
individual search operations op��, op��, op��, and op�� might have a much higher fixed overhead
cost than gopW . Also, the individual search operations must redundantly search the database
for inputs and many of the results that are produced are also redundant. It may be possible to
avoid some of these costs by using a single goal operator.

Furthermore, this form of goal processing allows a problem solver to reason about the goals
themselves. Corkill and Lesser discuss the advantages of this capability in [Corkill and Lesser,
1981, Corkill et al., 1982, Corkill, 1983], and this work is further extended in [Lesser et al.,
1989a, Lesser et al., 1989b, Decker et al., 1990]

Clearly, there are cases where this form of goal processing is not advantageous. For example,
in situations where the individual search operations are not redundant or where the overhead

97

fn+2

gD gE
gWgC

f0

...

gn+2

g0

...

hn+2

h0

...

in+2

i0

...
jn+2

j0

...

kn+2

k0

...

xn+2

x0

...

yn+2

y0

...

zn+2

z0

...

gB

.........Cn+1...

gA

B1
Bn...A1

An...

Wn+1
W0

En+1E0Dn+1
D0C0

Figure 4.36. Representing Goal Processing in a Grammar

of processing a goal is greater than the savings. Similarly, if the cost of an operation increases
exponentially with the size of the input set, it may be better to implement a solution composed
of numerous distinct search tasks where the cardinality of the input sets is limited.

The use of goal processing can be represented in the IDP framework by altering G�
n

as shown in Fig. 4.36. In the transformed grammar, production rules are added using the
meta-states gA� gB� etc. Each of these goal states is defined in terms of the result sets of
the goals’ children states. For example, gW is the union of the elements of the partial result
sets of x� � � � xn��� y� � � � yn��� and y� � � � yn�� that can be generated with a single operator
application. A similar definition is used to specify the other goals.

The operators that are applied to the goal states will be defined as the macro-operators from
G�
n defined in Fig. 4.36. Thus, gopW is applied to goal gW to generate states W� � � �Wn��,

gopE is applied to gE generate states E� � � � En��, etc. At the next level of interpretations,
gopA is applied to goal gA to generate states A� � � � An�� and gopB is applied to goal gB to
generate states B� � � � Bn��.

Given these definitions, it should be apparent that the use of goal processing does not
effect the interpretations that are generated. Since the same operators, with identical inputs,
are used to extend the goal states as were used in the original search, the results will be the
same. However, the costs will differ. Notice that in the original example, op� was applied
four times and in the second example with goal processing, gopW was only applied once,
but the goal processing operator was applied four times. Consequently, if the goal processing
operator, gopW , is significantly less expensive than op�, then goal processing will offer distinct
advantages.

Goal processing will be advantageous when the expected cost of connecting the goals plus
the cost of generating the goals is less than the cost of connecting the search states without the
use of goal processing. The cost of connecting the search states without goal processing is:

98

Equation 4.8.1 cost�op��� � cost�op��� � cost�op��� � cost�op���.

(For the sake of simplicity, the cost of merging identical states will be ignored.)
Analysis of these costs will use models similar to the cost models from the DVMT [Corkill,

1983]. In the DVMT, the cost of an operator application can be approximated by a constant
factor plus a function of the number of inputs and the number of outputs. Specifically:

Equation 4.8.2 �i� cost�opi� n�m� � coni � a � n� � b �m,

where coni is the constant cost of operator i, n is the number of inputs to opi , m is the number
of outputs generated by opi, and a and b are cost coefficients.

Assuming that constant costs are 1, Equation 4.8.1 yields

�� � �� � �� � �� � � � �� � �� � � � �� � �� � �� � �� � ��� (4.1)

For goal processing, the costs will be:

Equation 4.8.3 cost�gop��� � cost�gop��� � cost�gop��� � cost�gop��� � cost�op���.

Assuming the goal processing operator conforms to Equation 4.8.2 and the constant cost
of gop� is 1, Equation 4.8.3 yields

�� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � �� � �� � ��� (4.2)

Consequently, in this simple example, goal processing results in a savings of 50%.
Though these figures are approximations, they are representative of the costs of DVMT

search operators. The input component, n, of Equation 4.8.2 reflects the cost of retrieving data
from the blackboard and the combinatorial nature of the reasoning processes used by DVMT
operators [Decker et al., 1990, Corkill, 1983]. The output component, m, reflects the cost of
writing data to the blackboard.

In this simple example, goal processing has clear performance advantages. However, it is
still unclear as to when, in general, goal processing is effective and when it is detrimental to
performance. For example, in the DVMT, an analysis indicated that goal processing is not
always an effective tool [Lesser et al., 1989a, Lesser et al., 1989b]. Subsequent work exploited
this observation and resulted in significant performance improvements [Decker et al., 1989].
This work was specific to one aspect of goal processing in the DVMT domain, and left open
questions regarding the general properties of domains where goal processing is useful. More
specifically, this analysis did not consider the potential benefits of the subgoaling mechanisms
described in[Corkill, 1983].

In the example presented in this section, the principle difference in cost can be attributed
to the fact that without goal processing, op� had to be applied four times to connect the
low-level states. This is necessary because it is impossible to determine a priori whether or
not the application of op� will result in the generation of a unique interpretation – i.e., an
interpretation that will not be generated by any other application of op�. In this example, the
second application of op� generates a unique W�. This is the result of inherent uncertainty in
the form of missing data rules. If there were no missing data rules, the structure of the grammar
would be such that op� would not have to be applied to every state.

A question that arises from this example is whether or not goal processing can be improved
by simply applying op� to all the low level data simultaneously. This could be accomplished by

99

creating a new meta-operator that would include all the possible applications of op�. However,
this would limit the problem solver’s flexibility by forcing it to always apply op� to all the
low-level data. This is a viable option for domains that do not offer possibilities for connecting
goal states without applying operators to extend them (i.e., domains where it is not possible to
prune goal states). In other words, in domains where there is no opportunity for pruning the
available operators that would extend a goal, it might be possible to find a control architecture
more efficient than goal processing. In the DVMT, operators that extend goals are pruned under
certain conditions. Furthermore, such pruning is done often enough that it is advantageous to
use goal processing as described in [Corkill, 1983].

4.9 Chapter Summary

This chapter demonstrates how the IDP formalism modifies a domain grammar to represent
phenomena such as noise and missing data are discussed. An example of the value of these
definitions is demonstrated in Definition 4.1.4, which formally specifies the concept of correlated
noise. The IDP formalism is also used to specify the concept of interacting subproblems.
In addition, this chapter shows how sophisticated control mechanisms, such as bounding
functions, can be represented in the IDP framework. An extended definition of monotonicity
is presented in Section 4.5.

A demonstration of how the IDP formalism represents complex, real-world domains,
in this case a vehicle tracking domain, is given in Chapter 4.7. This section of the paper
demonstrates how the feature list convention developed in this thesis can be used to model the
characteristics of real-world phenomena. The use of the feature list convention is shown in
Chapter 4.6. Finally, Chapter 4.8 demonstrates how the IDP formalism can be used in the
analysis of a sophisticated control mechanism, bottom-up goal processing.

C H A P T E R 5

QUANTITATIVE ANALYSIS AND EXPERIMENTATION WITH

BASIC IDP MODELS

Within the IDP/UPC analysis framework, the IDP formalism is used to generate simulated
domain events in an experimental testbed and to define a problem solver’s control architecture.
Furthermore, it forms a basis for the general analysis framework and the specific analysis
paradigms discussed in Chapter 1.7. IDP grammar used to generate domain events is referred
to as the domain generation grammar, IDPG . The IDP grammar that defines a problem solver
will be referred to as the interpretation grammar, IDPI .

The IDP formalism will thus support a variety of experimental activities. Specifically,
given a domain, the performance of different control architectures can be tested by modifying
the interpretation grammar. Alternatively, given a control architecture, its applicability to
and effectiveness in new domains can be measured by altering the domain grammar. Thus,
given a control architecture that is very successful in one specific domain, it is possible to
identify other domains, or classes of domains, where it will perform equally well. In both these
capacities, large numbers of experiments can be run and analyzed quantitatively. In addition,
unknown problem structures can be analyzed experimentally using a control architecture as an
experimental tool.

Figure 5.1 represents an abstract view of an experimental testbed based on the IDP
formalism that has been developed. In this system, a Domain Simulator uses the domain
grammar to generate signal data corresponding to domain events. A Problem Solver with
a control component based on a potentially different, perceived IDP structural definition
(the interpretation grammar) interprets the signal data. The control component used in
the experimental framework can be either the statistically optimal control strategy defined in
Chapter 6.4, or an arbitrary heuristic control strategy whose operations are defined by IDPi. A
detailed description of some of the more important aspects of the functioning of the domain
simulator is given in Chapter 4.6.

In addition to its use as an experimental tool, the IDP formalism can also be used as
an analytical tool for prediction and explanation. Specifically, the IDP formalism is used to
calculate E�C�, the expected cost of a single problem solving instance for a given domain. The
calculation of E�C� is defined here and its accuracy is verified experimentally in Chapter 7.

Given the experimental paradigm described above, it will be necessary to calculate E�C�
for two different scenarios. In one, the domain grammar and the interpretation grammar are
identical. In the other, the domain grammar and the interpretation grammar are different.
The calculation of E�C� is very similar for both cases. Using the IDP specifications of the
domain and interpretation grammars, the expected frequency, Fn, of each element (i.e., terminal,
nonterminal, SNT) in the interpretation grammar is calculated. Fn represents the number of
expected search state instantiations corresponding to grammar element n per problem solving
instance. By multiplying Fn by the expected cost of each of the operators that can be applied to

101

Natural Problem Structure

...

B

E W

zyxkjihgf

C D

A
Output defines signal data

corresponding to a domain event.

Problem Solver's model of
Natural Problem Structure

...

B

E W

zyxkjihgf

C D

A

Problem Solver uses model of
domain to generate an interpretation.

performance
measures

Domain Simulator generates event
simulations.

IDP
G

 Structural Specification

IDP
I
 Structural Specification

IDP
G

 : model of domain used to
 generate simulated problem
 instances

IDP
I
 : model of domain used to

 interpret data

Figure 5.1. Overview of the IDP Model as the Foundation of an Experimental Testbed

n, the expected cost associated with grammar element n is computed. Summing these values
for every element of the grammar yields E�C�.

It is important to realize that each element of the grammar may have multiple search state
instantiations. For example, in a given problem instance, element “A” of the grammar may
correspond to many distinct search states. The derivation paths of the distinct states may
be differentiated either by different search paths or different inputs, i.e., identical paths with
different components. (Two search paths that represent the application of the same sequence of
operators will produce different results if any of their inputs are different. In a search space, this
is represented by states with slightly different characteristic variables. See Chapter 6 for more
details.) If a specific element of the grammar has an expected frequency of five, it means that,
on average, five instantiations of that element of the grammar will be made, each instantiation
being a unique state in the corresponding search space. These instantiations (or states) will be
distinguished by the individual characteristics of the search paths that lead to the creation of the
state. Although redundant paths will lead to the same state instantiation representing the same
interpretation or partial interpretation, other search paths, though they correspond to the same
element of the IDP grammar, represent different interpretations or partial interpretations.

Chapter 6 will explain how IDP structures are represented as characteristics of a search

102

f h

A1

g iq r

C1 D1

f h

A2

g i

q

r

C2 D1

f h

A3

g iq

C1 D2

random
noise

random
noise

f h

A4

g i

q r
C2 D2

random
noise

r

f

h

M1

g

iq r

Y1

random
noise

f h

M2

g i

q r

Y2

random
noise

S1 S2 S3

S4 S5 S6

(a) (b) (c)

(d) (e) (f)

interpretation trees derived from signal data “fqg rhi”:

Figure 5.2. Example of Signal Data Leading to Multiple IDP State Instantiations

state’s specification, but it should be intuitive that, for most domains, distinct interpretation
trees built from an IDP grammar correspond to distinct search space states. This is because,
for the most part, the properties of an interpretation tree are derived from the properties of
its subtrees such as “credibility,” “location,” “time,” etc. Chapter 4.6 describes how these
properties are generated.

For example, Fig. 5.2 shows a situation where signal data leads to the generation of states
representing multiple instantiations of the same IDP element. In Fig. 5.2 the signal data leads to
the generation of the six interpretations shown. There are multiple instantiations of the partial
result C that are shown in Figs. 5.2.a and 5.2.b as C� and in Figs. 5.2.b and Figs. 5.2.d as C�.
The differences between C� and C� are seen clearly in the figure as differences in the subtrees
that were used to generate the specific instantiations of C. (In an actual implementation, this
would be implemented as differences in the characteristic variable “supporting data” associated
with each of the instantiations of C.) Similarly, there are two distinct instantiations of the partial
results Y and D. The different partial result instantiations are used to generate four distinct
instantiations of the SNT A and two distinct instantiations of the SNT M. Finally, there are a
total of six different interpretations of the data. This is shown as six different instantiations of
S.

For element n of the grammar, where n is a nonterminal or SNT, the calculation of Fn is
defined in terms of the elements on the RHS of n’s production rules, i.e., the children of n, and
any bounding functions incorporated in the grammar. If n is a terminal symbol, its frequency

103

is based on the function � and is derived in a top-down manner from the start symbol and from
the function �. Thus, given a domain grammar, IDPG , Fn can be determined for n � V ,
the terminal symbols of the grammar, and use these values to calculate Fn for the nonterminals
and SNTs of IDPI . Given the values Fn, E�C� can be calculated.

It is important to point out that, using the IDP formalism in this way enables us to
analytically determine the expected cost of problem solving in situations where IDPG and
IDPI are the same and where they are different. This form of analysis is valid even for grammars
with very different nonterminal, SNT, and production rule sets. The only components that two
grammars need to have in common is the set of terminal symbols. This is verified experimentally
in Chapter 7. This is a significant result because it will enable us to conduct sensitivity analysis
experiments with control architectures by adding, subtracting, or altering rules corresponding
to meta-operators and then determining the expected cost of problem solving in the resulting
grammar. This will provide the prediction and explanation capability necessary to develop
design theories for interpretation domains.

The remainder of this thesis will demonstrate these results. In particular, the UPC
formalism is developed which allows the characterization of control in such a way that the
problem structure defined by an IDP generation grammar can be exploited by a problem solver
using an evaluation function based control mechanism. After this, experimental results are
shown indicating that the value of E�C� determined analytically from the IDP structure of
a grammar is statistically consistent with the actual results of a problem solving system. The
following section will formally define the calculations of E�C� and expected frequency.

5.1 Measuring the Complexity of a Domain - Calculating E�C�

In the IDP/UPC framework, the complexity of a domain can be calculated in terms of
the expected cost of problem solving for a specific problem instance, E�C�. E�C� is measured
in terms of computational cost. It represents the cumulative cost of applying all operators
required to generate an interpretation. This is a general measure that has several advantages.
It is intuitively easy to understand compared to other measures such as expected ambiguity,
which is used in the calculation of E�C�. E�C� can be used to compare both the performance
of a problem solver across different domains or different problem solvers applied to the same
domain with units of measure that are consistent. Most importantly, E�C� represents what is
probably the most significant aspect of a problem solver’s performance.

The basic approach is a three step calculation. The first step calculates the expected
frequency with which states are generated corresponding to each of the elements of the grammar.
(Note that the set of all state frequencies is referred to as the frequency map of the domain.)
This step relies primarily on the structure of the domain as specified in the grammar and the
distributions associated with the rules of the grammar. This step does not rely on the properties
associated with the domain’s feature list. The second stage calculates the expected probability
with which paths from the states are pruned, which is called the pruning factor. This step
relies both on the structure of the grammar and the domain’s characteristics associated with
the feature list. The final stage multiplies the expected frequency of path extensions (state
frequency multiplied by pruning factor) by the expected cost of state expansion.

5.1.1 Calculating State Frequencies

The calculation of state frequencies is based on the concepts of the singularity, the
characteristic signal set (CSS), the solution nonterminal (SNT), and the sample set. A singularity

104

can be thought of as a fundamental unit of analysis that repeatedly appears in a domain grammar.
By first calculating the properties of a domain’s singularities, it is possible to accurately and
efficiently calculate the related properties of all the elements of the domain. For example, in
the vehicle tracking grammars shown in this thesis, a singularity is a data point that occurs at a
specific time-location. A vehicle track is not a singularity, since it spans multiple time-locations
but a vehicle-location is a singularity. In the vehicle tracking grammar, other singularities
include groups, signals, and noise. A more general discussion of singularities and their use in
analysis is given in Appendix D.5. For a given singularity, a CSS represents the distribution
of terminal symbols that can be derived from a singularity. For a vehicle-location or group
singularities, the CSS would be the distribution of signal data that can be generated from it.
Singularities are critical elements of the analysis analysis techniques because they are treated
as independent building blocks that can be efficiently combined to determine overall domain
characteristics. By determining properties of singularities, caching the values and then reusing
the properties to calculate other domain properties, it is possible to calculate very accurate
measure of certain domain characteristics. More specifically, if the expected values of the CVs
of a singularity are known, it is possible to determine the expected values of the CVs of states that
are composed of singularities. For example, in the vehicle tracking domain, if the characteristics
of vehicle location singularities are known, it is possible to calculate the characteristics of tracks
built using the vehicle locations. A detailed example of the use of singularities is presented in
Appendix D.

An SNT is an element of the set of solution-nonterminal symbols that correspond to final
states. For example, in a natural language domain, an SNT may contain a single element,
“sentence.” In the vehicle tracking domain, the SNT includes I-Track1, I-Track2, P-Track1,
P-Track, G-Track1 and G-Track2.

The concept of a sample set is formally defined as follows.

Definition 5.1.1 Sample Set, Ssample: A set of specific problem instances generated using IDPG .
This set can be generated in one of two ways; exhaustively or randomly. When the Sample Set
is generated exhaustively, a problem instance is created for every possible combination of rules in
the grammar�. For example, if nonterminal element A of a grammar has three possible RHSs for
one of its production rules, a problem instance will be generated for each RHS. If the Sample Set
is generated randomly, the distribution function, �, for IDPG is used to create the samples in a
probabilistic way. For example, if nonterminal element A of a grammar has three possible RHSs for
one of its production rules, a random number is generated and this is used to determine which of the
three rules to use to generate a specific problem instance.

In addition, the following definition related to sample sets is also necessary for the
calculation of state frequencies.

Definition 5.1.2 Sample Set Weightings,wi: A set of weighting factors associated with the elements
of the Sample Set. In the case where Ssample is generated randomly and contains n elements, the

�Note that this does not generate every possible string in the language defined by the grammar. Because
interpretation grammars use the feature list convention, there can be many (possibly an infinite number) specific
problem instances for each combination of grammar rules. Each specific problem instance is distinguished by the
values instantiated for variables in its feature list. For example, though there may be a single terminal symbol that
represents a specific signal data, that signal data has a location feature that could be anywhere in a sensed region.
Consequently, there are many specific problem instances that are associated with the single terminal symbol.

105

IDPG IDPI

Domain Events (signal data)

grammar-based
generation of

domain events

grammar-based
computation of

frequency
expectations

Figure 5.3. The Basic Approach to Calculating Search State Generation Frequency

Characteristic Signal Set Distribution Factor
fS�� S�� S�� S�� S��� S��g 0.0446
fS�� S�� S�� S�� S��� S��g 0.0017
fS�� S�� S�� S�� S��� S��g 0.0017
fS�� S�� S�� S�� S��� S��g 0.0009

Figure 5.4. Example Characteristic Signal Sets for V1

weightings are �
n

for each element of Ssample. In the case where Ssample is generated exhaustively,
the weighting of an element is equal to the product of the � values of the grammar rules used to
generate the element.

The general approach to calculating state frequencies is shown in Fig. 5.3. The generational
grammar, IDPg, is used to determine the statistical distributions for CSSs. These, in turn,
define the sample set and the sample set weightings. This is necessary because it is not sufficient
to determine the distributions of individual low-level domain events. Instead, it is necessary to
determine the distribution of groups of low-level events that can be used to generate higher-level
interpretations.

Figure 5.4 shows some of the CSSs for the singularity V1 (from the vehicle tracking gram-
mar in Fig. 11.1 from Chapter 11) and the associated distribution factors. The distributions
are calculated in a top-down fashion from a grammar’s � functions and they are used in the
calculation of sample set weightings as described above. For example, the distribution factor
of the first CSS in Fig. 5.4 is calculated from the distribution of the RHSs that were used to
generate it. These RHSs were V � � G�G�G� with probability = 0.4; G� � S�S�, with
probability 0.45; G� � SS�, with probability 0.45; and G� � S��S�, with probability
0.55. The distribution factor for this CSS is then ��� � ��� � ��� � �� � ������.

106

The calculation of frequencies for states corresponding to nonterminals of the grammar is
a recursive, or bottom-up, procedure that is based on the distribution of CSSs. Though similar,
the frequency calculation differs slightly depending on the class of state. The differences in
the calculation methods reflects general properties of several broad classes of states. For the
vehicle tracking domain, the calculation differentiates between states that represent a single
time-location (i.e., a singularity) and states that represent multiple time-locations. In addition,
the calculation methodology also differentiates certain classes of meta-states. Specifically, the
computations for determining the frequency of meta-states that represent clustering operations
are different from those corresponding to other classes of states. The following sections formally
define the calculations of state frequencies.

5.1.2 Calculating Base Frequencies for Singularities

The methods defined for calculating the frequency of singularities will be considered the
standard solution approach and other methodologies will be treated as variants of this approach.
This is because non-singularities should be considered “standard” grammar elements and the
variations, i.e., non-singularities, clusters, etc., use frequency calculations that are derived
from, and that attempt to exploit, gross properties of a grammar. This will become clear in the
following sections.

Definition 5.1.3 Base Frequency for element n of the grammar, where n is a singularity, FB
n�i:

The expected frequency of n for a given time slice of sample i, where i is an element of Ssample, is
determined from the expected frequencies of n’s children, where a “child” of a grammar element n is
a terminal or nonterminal element of the grammar that appears on the RHS of one of n’s production
rules. The base frequency calculation is satisfactory for determining E�C� in situations where there
are no pruning operations. For a given production rule, p, for which n is the left-hand-side element,
FB
n�i is calculated in a two step process. First, the expected frequency of n from each of the RHSs of p

is calculated as the product of the expected frequencies of the elements of the RHSs, or
Q
j Fej , where

each ej is an element of the RHS. Second, the expected frequencies from each of the RHSs of p are
combined by a function that is specific for n. Most combination functions are “addition.” Thus, the
base frequency of n from p is the sum of the base frequencies from each of the RHSs of p. In the case
where n is a terminal symbol, its frequency corresponds to the number of occurrences in sample i.
In the case where n is an abstract state in a projection space, the combination function often used is
“maximum,” which takes the maximum base frequency from the RHSs. The combination function
used for these abstract states reflects the fact that in certain instances, new abstract states are not
created for each combination of input data. Rather, all data is “clustered” into a single state.

Consider the problem instance shown in Fig. 5.2 as a simple example. For the nonterminal
element C, there is one production rule with two RHSs; C � fqg j fg. In this example, the
frequencies of f, g, and q are all 1 and the base frequency of C associated with each RHS is
�� � � � �� and �� � �� respectively. The base frequency of C derived from the rule is the sum
of these frequencies, or �� � ��. As shown in the figure, there are two instantiations of C
corresponding to these rules. Similarly, for nonterminal element A, there is a single rule with
one RHS; A � CD. This results in a base frequency for A of �� � ��, since the frequency of D
is two. As shown in the figure, there are four instantiations of A.

107

5.1.3 Calculating Base Frequencies for Non-Singularities

Consider the situation shown in Fig. 5.5. In this example, the grammar element t has a
RHS consisting of Vt and Vt��, i.e., t � Vt Vt��. Given five sequential instances of V, it is
possible to combine them in four distinct ways, as shown. If t is treated as a singularity, the
base frequency, from Def. 5.1.3 would be computed based on FB

V�i * FB
V�i. Clearly this is not

correct. The actual frequency of t should be the frequency of V V combinations, given by FB
V�i

* FB
V�i, multiplied by the number of combinations of different Vt Vt�� combinations. Thus,

as shown in the example, there are four combinations of V V; V� V�, V� V�, V� V�, and V�

V�. Thus, the actual frequency of t is 4 * FB
V�i * FB

V�i.
There are a variety of techniques available for modifying the singularity frequency calcu-

lation to work properly for non-singularity. The technique employed in this work is based on
transforming non-singularities to singularities by mapping the rules of IDPi to a new grammar.
(The “grammar mapping” technique was introduced in [Whitehair and Lesser, 1993] as a means
for calculating a variety of measures, including potential.) The frequencies of the elements of
the new grammar are then used to determine the frequency of elements of IDPi.

Formally;

Definition 5.1.4 Base Frequency for element n of the grammar, where n is a non-singularity, FB
n�i:

The expected frequency of n for a given time slice of sample i, where i is an element of Ssample, is
determined by mapping rules containing n as the LHS to a new grammar, G’, and then summing
the base frequencies of the elements of G’ corresponding to n. The relevant rules in G’ are generated
as follows. For each sequential time interval (tx, ty) that can be formed using rules with n as the
LHS, create a new rule in G’ of the form n�x�y � RHS. Then FB

n�i �
P

x�y F
B
n�x�y�i, where

n�x�y is treated as a singularity.

For example, again consider Fig. 5.5. Calculating FB
t�i would result in t being mapped to

four new singularities in G’, t.1.2, t.2.3, t.3.4, and t.4.5. The frequency of each of these states
would be FB

V�i * FB
V�i and the frequency of t would be 4 * FB

V�i * FB
V�i. If the base space grammar

included the rule t � Vt Vt�� Vt��. t would be mapped to the singularities t.1.3, t.2.4, and
t.3.5 in G’. The frequency of each of these would be FB

V�i * FB
V�i * FB

V�i.

5.1.4 Adjusting Base Frequencies for Pruning

When pruning operations are available, the base frequency calculation must be modified
appropriately. The following definitions are used to accomplish this by factoring in the
probability that a state will be pruned based on its credibility. If other pruning operations
are available, such as an operation that would prune a state based on its probability of being
included in a final solution, they would be factored into the calculation of frequency in a similar
way.

Definition 5.1.5 Expected credibility of element n of the grammar, �Cred�n� �
P

i �fp�i ���p�i�,
where �fp�i is the expected credibility of the evaluation function fp�i and ��p�i� is the distribution of
the rules p�i. In the experiments described in this thesis, �fp�i is calculated by assuming a distribution
for the credibility functions �p�i that is normal with mean equal to the average of the means of
the inputs. This enables us to recursively calculate the expected credibility of each element of the
grammar based on the expected credibilities of an element’s children.

108

Vt1

Vt2
Vt3

Vt4

Vt5

a. initial vehicle level data from 5 time periods

b. all possible partial tracks sequences spanning two
consecutive time periods generated by the rule t -> VV

Vt1

Vt2
Vt3

Vt4

Vt5

Vt1

Vt2
Vt3

Vt4

Vt5

Vt1

Vt2
Vt3

Vt4

Vt5

Vt1

Vt2
Vt3

Vt4

Vt5

combination 1

combination 2

combination 3

combination 4

Figure 5.5. Calculating the Frequency of Non-Singularities

109

Definition 5.1.6 Expected standard deviation from �Cred�n� for element n of the grammar,
�Cred�n� � ftn��fp�i�, where ftn is a function of the variances of the credibility rules, fp�i and
is based on the standard equation V ar�X � Y � � V arX � V arY � � � Cov�X�Y �� In the
experiments described in this thesis, it is assumed that variances for the credibility functions �p that
is equal to sum of the variances of the inputs. (The standard deviation is then the square root of
the variance.) It is assumed that the credibilities and variances of siblings are independent, and this
simplifies to V ar�X � Y � � V arX � V arY . As with expected credibility, �Cred�n� can be
calculated recursively for each element of the grammar.

Definition 5.1.7 Pruning Modifier for elementn of the grammar, Pfn � ���P �Credibility�n��
T ��, whereCredibility�n� is the credibility of the search state corresponding to n that is determined
dynamically at run time, and T is the pruning threshold�. Given that normally distributed
credibilities have been assumed, this value can be calculated from 	�T��Cred�n�

�Cred�n�
�, where 	 is

available in standard probability textbooks and is equal to �p
��
� e�x

���.

Definition 5.1.8 Expected frequency for element n of the grammar, Fn �
P

iwi � �F
B
n � �� �

Pfn��, where i is an element of Ssample, wi the weighting of i in Ssample, and FB
n�i the base

frequency of n. The expected frequency of n is determined by determining the base frequency of n for
element of the Sample Set, modifying this value to reflect pruning actions, multiplying by the sample
weight to normalize the value, then summing all values.

5.1.5 Calculating Precedence Relations

The calculation ofE�C�, as well as other calculations, depends on the concept of precedence
relations. Precedence relations implicitly define the relative order in which operators are applied
and they can be used to determine the state of problem solving at a given time, t.

For example, consider the grammar shown in Fig. 5.6. This grammar is also shown in
Fig. 5.7, which illustrates precedence relations more clearly. In grammar G, state A will always
be generated after states C and D, in situations where A can be generated. This is represented
this with the precedence relation, C � A and D � A. Furthermore, states C and D will
always be generated after states f, g, h and i.

The table in Fig. 5.8 shows some of the precedence relations for grammar G. The symbols
across the left side and the top of the table correspond to symbols of the grammar. The table
cell indicates the relationship between the grammar symbols. For example, from the second
row of the table, C � A, D � A, etc. The table is constructed by first specifying the direct
relations between grammar elements that appear on the LHS of a rule and the elements that
appear on the RHS, then taking the transitive closure of these relations.

Notice the relation z ���� W . The subscript indicates that this is not a hard precedence
relation. Rather, a W can be generated without a z, but the z will be generated before the W
33% of the time. The generation of a W will precede the generation of a z in situations where
operator op��� is applied before operator op��. In this particular system, it is assumed that the
operators are all given equal ratings, so this will occur randomly 1 time out of 3.

�In later chapters we introduce bounding functions with thresholds that are determined dynamically. In these
situations, pruning modifiers are computed based on T equal to the expected credibility of a “correct” result for a
given problem instance.

110

Interpretation Grammar G'

0.1 S → A ψ(0.1) = 0.2 f0.1 (fA) g0.1 (gA)

0.2 S → B ψ(0.2) = 0.2 f0.2 (fB) g0.2 (gB)

0.3 S → M ψ(0.3) = 0.2 f0.3 (fM) g0.3 (gM)

0.4 S → N ψ(0.4) = 0.2 f0.4 (fN) g0.4 (gN)

0.5 S → O ψ(0.5) = 0.2 f0.5 (fO) g0.5 (gO)

1. A → CD ψ(1) = 1 f1 (fC,fD, Γ1(C,D)) g1 (gC,gD,C(Γ1(C,D)))

2. B → DEW ψ(2) = 1 f2 (fD,fE,fW, Γ2(D,E,W)) g2 (gD,gE,gW,C(Γ2(D,E,W)))

3.0 C → fg ψ(3.0) = 0.5 f3.0 (ff, fg, Γ3.0(f,g)) g3.0 (gf, gg,C(Γ3.0(f,g)))

3.1. C → fgq ψ(3.1) = 0.5 f3.1 (ff,fg,fq, Γ3.1(f,g,q)) g3.1 (gf,gg,gq,C(Γ3.1(f,g,q)))

4. E → jk ψ(4) = 1 f4 (fj,fk, Γ4(j,k)) g4 (gj,gk,C(Γ4(j,k)))

5.0 D → hi ψ(5.0) = 0.5 f5.0 (fh,fi, Γ5.0(h,i)) g5.0 (gh,gi,C(Γ5.0(h,i)))

5.1. D → rhi ψ(5.1) = 0.5 f5.1 (fr,fh,fi, Γ5.1(r,h,i)) g5.1 (gr,gh,gi,C(Γ5.1(r,h,i)))

6.0 W → xyz ψ(6.0) = 0.5 f6.0 (fx,fy,fz, Γ6.0(x,y,z)) g6.0 (gx,gy,gz,C(Γ6.0(x,y,z)))

6.1. W → xy ψ(6.1) = 0.5 f6.1 (fx,fy, Γ6.1(x,y)) g6.1 (gx,gy,C(Γ6.1(x,y)))

7. f → (s) ψ(7) = 1 f7 (f(s), Γ7((s))) g7 (g(s),C(Γ7((s))))

8. j → (s) ψ(8) = 1 f8 (f(s), Γ8((s))) g8 (g(s),C(Γ8((s))))

9. g → (s) ψ(9) = 1 f9 (f(s), Γ9((s))) g9 (g(s),C(Γ9((s))))

10. k → (s) ψ(10) = 1 f10 (f(s), Γ10((s))) g10 (g(s),C(Γ10((s))))

11. h → (s) ψ(11) = 1 f11 (f(s), Γ11((s))) g11 (g(s),C(Γ11((s))))

12. x → (s) ψ(12) = 1 f12 (f(s), Γ12((s))) g12 (g(s),C(Γ12((s))))

13. i → (s) ψ(13) = 1 f13 (f(s), Γ13((s))) g13 (g(s),C(Γ13((s))))

14. y → (s) ψ(14) = 1 f14 (f(s), Γ14((s))) g14 (g(s),C(Γ14((s))))

15. z → (s) ψ(15) = 1 f15 (f(s), Γ15((s))) g15 (g(s),C(Γ15((s))))

16. M → Y ψ(16) = 1 f16 (fY) g16 (gY)

17.0 Y → qr ψ(17.0) = 0.5 f17.0 (fq,fr, Γ17.0(q,r)) g17.0 (gq,gr,C(Γ17.0(q,r)))

17.1 Y → qhri ψ(17.1) = 0.5 f17.1 (fq,fh,fr,fi, Γ17.1(q,h,r,i)) g17.1 (gq,gh,gr,gi,C(Γ17.1(q,h,r,i)))

18. N → Z ψ(18) = 1 f18 (fZ) g18 (gZ)

19. Z → xy ψ(19) = 1 f19 (fx,fy, Γ19(x,y)) g19 (gx,gy,C(Γ19(x,y)))

20. O → X ψ(20) = 1 f20 (fX) g20 (gX)

21.0. X → fgh ψ(21.0) = 0.5 f21.0 (ff,fg,fh, Γ21.0(f,g,h)) g21.0 (gf,gg,gh,C(Γ21.0(f,g,h)))

21.1. X → fg ψ(21.1) = 0.5 f21.1 (ff,fg, Γ21.1(f,g)) g21.1 (gf,gg,C(Γ21.1(f,g)))

credibility costdistributiongrammar rule

(s) = signal data C(Γn(i,j,...)) = cost of executing Γn(i,j,...)Γn(i,j,...) = semantic evaluation function for rule n

Figure 5.6. Interpretation Grammar G with Fully Specified Distribution, Credibility, and Cost
Functions

111

...
x y z

......
j k

......
h i

... ...
f g

(Signal Data)

A B

C D E W

... ...
q r

M

Y

......
h i

...
r

... ...
f g

...
q

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

S

Figure 5.7. Interpretation Grammar G

S A B C D E W f g j k h i x y z
S
A < < < < < <
B < < < < < < < < < <����
C < <
D < <
E < <
W < < <����
f
g
j
k
h
i
x
y
z

Figure 5.8. Precedence Relations for Grammar G

112

Precedence relations are used to calculate the probability that one state is generated before
another. This is used in the calculation of pruning factors. In addition, precedence relations
can be used to determine the expected state of problem solving for a given time, t. Problem solving
state can be determined using the expected cost of applying each operator and an expected
ordering of the operators determined implicitly from the precedence relations.

For example, assume that each of the operators in G has a cost of 1. Then the expected
state of problem solving can be determined statistically using the precedence relations. For
example, the probability of the problem solver generating an S before time 5 is 0. This is
because the shortest path to S is by generating an M from a Y which is generated from a q
and an r. Since the cost of generating the q, r, Y, and M is each 1, and the cost of generating
the S is also 1, it is not possible to generate the S before time 5. By statistically analyzing the
distribution of domain events, it is possible to characterize the state of problem solving at any
given time, t.

5.2 Calculating Expected Operator Cost

In the experiments described in later chapters, the cost of an operator is modeled as a fixed
number. This is not a restriction on the analysis framework. These numbers are used in the
experiments presented here so that it is possible to verify the results using hand calculations.
In general, the cost of an operator will include a variable portion, specified as a mean and
a variance, and a fixed portion. For example, Cost(opi) = ��(number of inputs)���� The
variable and fixed cost values are components of an IDPi grammar specification.

5.3 Calculating Expected Correct Answers

The explicit representation of pruning functions supports the calculation of the expected
number of correct answers that are pruned in situations when they should not be. This is
simply the sum of the probabilities that paths will be pruned when they are components of
“correct” interpretations.

In the interpretation domains that are studied in this thesis, there are two different
perspectives on what a correct answer is. The definition used in the IDP/UPC framework
is that the correct answer is the interpretation with the highest credibility. An alternative
perspective is that the correct answer is the interpretation that corresponds to the events that
generated the signal data. The differences may appear subtle but are actually quite significant.
This is because the interpretation with the highest rating is not guaranteed to correspond to
the events that generated the signal data.

5.4 Calculating E�C� and Expected Frequencies

Given the expected frequency, it is possible to calculate E�C� by multiplying the expected
cost associated with each search state by the frequency of the state and summing for all states.

Definition 5.4.1 Expected cost associated with search state n, Ecost�n� �
P

p �gp, where p is a
production rule, n is an element of some RHS of p, and �gp is the expected cost of applying the search
operator corresponding to p. To determine the expected cost associated with a state, the expected costs
of all the operators that can be applied to the state are summed. An operator can be applied to a
state if the grammar element associated with the state appears in any of the RHSs of the grammar

113

production rule associated with the operator. Since a state is connected only when all paths that lead
from it are either extended to final states, extended to dead end states, or pruned, this sum represents
the cost of connecting a state.

Definition 5.4.2 Expected cost of problem solving, E�C� �
P

n Fn � Ecost�n�. The expected
cost of problem solving is determined by summing, for each element of the grammar, the expected
frequencies of the grammar elements multiplied by the expected cost associated with connecting the
corresponding search state.

The procedure used to calculate E�C� can be summarized as:

1. Generate the Sample Set, either randomly or exhaustively.

2. Generate the sample weightings.

3. Using a bottom-up recursion, calculate, in order, the following for each element of the
grammar:

� base frequency of the element

� expected credibility of the element

� variance from expected credibility of the element

� pruning modifier of the element

� expected frequency of the element

4. Calculate the expected costs associated with connecting search states corresponding to
grammar elements.

5. Calculate E�C�.

5.5 Chapter Summary

This chapter defines quantitative analysis tools based on statistical properties of IDP
problem and problem solver specifications. These tools can be used to calculate characteristics
such as the expected cost of a problem solving instance, the expected frequency with which
partial and full interpretations will be generated, the expected utilities of partial and full
interpretations, the relative ordering of problem solving actions, and the expected number
of correct answers that are eliminated by pruning operators. These measures are significant
from an analytical perspective because they measure important properties of a problem solver’s
performance and they are significant from a conceptual perspective because they demonstrate
that relevant quantitative analysis can be conducted using the IDP formalism.

C H A P T E R 6

IMPLEMENTING IDP BASED PROBLEM SOLVING SYSTEMS –

THE UPC MODEL

Chapter 3 presented the IDP formalism and Chapters 4 and 4.8 demonstrated how it
can represent characteristics of a domain’s problem structure. We will now begin to develop
the analytical tools that will be used to explain and predict the effectiveness of specific control
architectures that use abstractions. The essence of these analyses is that control architectures
that use abstractions exploit problem structures and these structures, along with the abstractions
used by the control component, can be represented naturally in the IDP formalism. In this
section, another formalism, the UPC model, is introduced to extend the analytical power of
IDP models. In the analysis IDP/UPC framework, the UPC and IDP formalisms are closely
linked – the IDP formalism models the structure of a domain theory and the UPC formalism
maps IDP structures to a search space model where the structures are explicitly represented in
a manner that can be used in a control architecture’s evaluation function. This mapping is
based on the local perspective of problem solving of a specific state in the search space and on
statistical properties of the domain derived from the formal IDP description. It does not take
into account the existence or absence of any other states. Using the UPC representation, we
can construct problem solving systems capable of achieving the levels of performance predicted
by quantitative analysis of IDP domain specifications and the optimal interpretation control
strategy. As a consequence, domains with different structures can be compared using identical
evaluation function based control architectures or these architectures can be varied to compare
performance of different problem solvers within a given domain.

Though the IDP and UPC models are closely linked in the analysis framework presented
in this thesis, they can both be used as stand alone analysis tools. Consequently, the UPC
formalism will first be presented as a general analysis tool, and subsequent chapters will discuss
the integration of the IDP and UPC models into a powerful framework for the analysis of
sophisticated control. The initial presentation of the UPC as an independent analysis tool will
include examples from IDP models and interpretation problems. This is intended to provide
a frame of reference and simplify later discussion. It is not intended to imply that the use of
the UPC model is restricted to interpretation tasks or even that its use be in conjunction with
the IDP model.

6.1 Overview of the UPC Formalism

The UPC model is an extension to the traditional search paradigm that explicitly represents
important characteristics of search spaces that are often used implicitly in control architectures.
UPC models explicitly represent where in a search space a given state lies relative to potential
final states, the uncertainty associated with the ability to reach each final state, the expected cost

115

CV :1 <attribute>

CV :2

......

CV :x

1

OP :y

...
OP :2

OP : U ,P ,C1 1 1

U ,P ,C2 2 2

U ,P ,Cy y y
...

Extended State representation:
operators applicable to each state are
represented with the corresponding
Utility, Probability, and Cost vectors.

Each vector entry consists of a
measure of the expected value and a
measure of the variance.

Expected values and variances are
determined from IDP's cost and credibility
functions. (In interpretation problems,
credibility = utility.)

Sn

<attribute>

<attribute>

Figure 6.1. Representation of a Search State in the UPC Model

of reaching the final state, and the final state’s expected value, or utility�. The UPC information
forms the basis for evaluation functions. In interpretation problems, this information can be
derived from the specification of a domain theory’s structure from Chapters 3 and 4, in
particular, the functions defining a domain theory’s credibility and cost structures.

In a UPC model, a search space is defined by characteristic variables, or CVs, that specify
the properties of individual states, operators that map (generate) one state to (from) another,
and functions of CVs that define final states. The specification of operators is identical to the
traditional notion of operators. The specification of the start state, intermediate states, and
final states is similar except for an extension to their representations. The extension expands the
set of CVs that characterize a state to include a set of vectors, fU�P�Cg, that are characteristics
of the operators that can be used to extend a state. Figure 6.1 is a representation of a search
state based on the UPC model.

Intuitively, U , P , and C can be thought of as the characteristics that determine the
desirability of expanding a given state. They represent the cost and utility structure of a space
in a way that can be exploited by the control component to determine which state is the best
to expand and which operator to use. The U , P , and C vectors associated with each operator
can be thought of as the inputs to the evaluation function that orders problem solving activity.
In addition, U , P , and C will be used to formalize control architectures that exploit problem
structures such as uncertainty, redundancy, interacting subproblems, and semi-monotonicity and
bounding functions (as defined in Chapter 4.8) within the search paradigm.

U , P , and C provide a map or coordinate system defining each state’s location in the
search space structure defined by the cost and credibility functions associated with the IDP’s
characteristic grammar, G. U specifies the direction of a search path (in terms of final states,
or interpretations, they lead to) and P defines the probability that the path can be traversed
successfully. Thus, every potential solution path� containing state sn is represented by an entry
in sn’s U vector that has a corresponding nonzero entry in sn’s P vector. For each path defined
by sn’s U and P vectors, C defines where on the path sn lies. If the C entry is small, then sn
is close to the final state. If the C entry is large, then sn is far from the final state.

�In the IDP formalism, utility can be thought of as a state’s credibility.
�A solution path is a derivation path that leads to an interpretation.

116

6.2 UPC States and the IDP Formalism

Using the UPC formalism, search states are created dynamically as problem solving
operators are applied to existing states. The UPC vectors are determined dynamically, when
a state is created, and included in the state’s CV specification as previously described. In
addition, each state corresponds to an element from the IDP grammar. This correspondence is
not necessarily one-to-one. For each element of the IDP grammar, there may be many different
corresponding UPC states. Each of the states is differentiated by its distinct set of CVs which
might include information such as “supporting data,” “time of occurrence,” “location,” etc.

It is important to stress that the UPC representation accounts for multiple occurrences
of a specific interpretation. In an actual run, multiple instances of an interpretation can be
constructed resulting in distinct paths that must be accounted for when computing expected
cost. Multiple instances of an interpretation result from ambiguities in a domain grammar that
allow a single set of data to be interpreted in a variety of different ways. This is discussed at
length in previous chapters.

6.3 UPC Representation

The UPC model specifies that the following vectors are defined for every state in the search
space. As shown in Fig. 6.1, the vector definitions for a given operator are a component of the
corresponding state’s CV set. Consequently, the UPC vectors are incorporated in definitions
of the search space’s structure.

Usn = set of utility expectation vectors. For each operator opi that can be applied to state sn,
Usn�opi� defines a vector where each element is a value defining the expected utility� of
the jth final state that can be reached from sn via a path beginning with operator opi.
This vector will also be represented as un�i. In terms of the IDP formalism, elements
of the vectors in Usn correspond to high-level interpretations, T , that correspond to
SNTs from the grammar that include the subtree sn and the utility expectation can be
thought of as T ’s expected credibility or a function of T ’s expected credibility. Usn is
exhaustive in the sense that all final states, as defined by the SNTs of the grammar, that
can be reached via a path including the states that are created by applying opi to sn are
represented by an element in some un�i�j� � Usn . In general, the use of SNTs in this role
is artificial. The UPC values can be thought of as coordinates of a state’s position in a
search space relative to potential final states. The results that are derived here can also be
derived without the concept of SNTs by using only the start symbol in the calculations.
However, SNTs have been developed and are used in calculations because they provide
a more intuitive basis for understanding the values that are computed. The use of SNTs
clarifies the representation somewhat for explanation purposes, and it greatly simplifies
many system implementation issues (primarily debugging issues).

As defined in Chapter 3.2, the utility structure of a domain is defined recursively in
terms of the production rules of a grammar. The interpretation problems discussed
in this thesis use the convention that a state’s utility is a function of the utilities of its

�It is important to note that the corresponding variance of the expected utility is a meaningful consideration
within this formalism. However, for the sake of clarity, its significance will be discussed in a separate context. The
variance associated with the other vectors, P and C will be similarly treated.

117

immediate descendants and the semantic function �. For this thesis, a state’s credibility
is computed to be the average of these values. Thus, the expected utility of a given state
B, and its variance, is derived from the expected utilities and variances generated by B’s
RHS production rules, pi, and by the expected value and variance of the function �p.
As described in Chapter 3.2, the utility (credibility) of a state generated by grammar rule
i is computed by the function fi.

More formally,

Definition 6.3.1 Expected utility of a state =
Pn

i�� ��i� � �i, where n � number of RHS
productions for the state, ��i� � the frequency associated with production i, and �i �
expected value of the utility function, fi, associated with production i.

These values are used to compute the expected utilities of the elements inUsn . For a given
state, sn, and operator, opi, the expected utilities of the final states that can be reached
along paths from sn beginning with opi are computed as discussed in Chapter 3.2 by
using the actual utility (or credibility) of sn and the expected utilities of other relevant
states.

Psn = set of conditional probability vectors. pn�i�j� represents the likelihood that a path
beginning with opi can be constructed from sn to the final state corresponding to the
expected utility un�i�j�. Using the IDP model, elements of vectors in Psn can be
determined from the distribution function � for the IDP’s characteristic grammar, G,
and from the expected distribution of domain events.

It is important to note the difference between Usn and Psn . The entries in the vectors
Psn in no way indicate the ‘worth’ or ‘utility’ of a particular state or path. They only
indicate the probability of reaching a specific final state via a path that includes sn and
begins with opi. Thus, a path with a high-probability is not necessarily correct and a
path with a low-probability is not necessarily incorrect.

Similarly, the entries in the vectors Usn do not specify the likelihood that a particular
final state can be reached other than to indicate that the probability is nonzero, in
which case the final state’s utility is represented in a vector in Usn . Rather, the entries
only represent the expected worth (or credibility) of a particular final state. Thus, a
path with high-credibility does not necessarily have a high-probability and a path with
low-probability does not necessarily have a low-probability.

The definitions of un�i and pn�i lead to the following (Note: in these definitions, upper
case letters indicate elements of a grammar’s set of SNTs, which correspond to the final
states in that associated search space.):

Definition 6.3.2 The expected utility of a path from state n to final state j that begins with
opi = un�i�j��pn�i�j�. i.e., The expected utility of a final state multiplied by the conditional
probability of successfully reaching the final state given state n.

Definition 6.3.3 pn�i�j� � P �j j n�Rprune�n� j�. The likelihood that a path exists from
state n to final state j that begins with opi is equal to the conditional probability that final
state j can be generated given an n multiplied by a pruning factor, Rprune�n� j�, which

118

represents the probability that the path is not pruned by a bounding function before final state
j is generated.

The pruning factor, Rprune�n� j�, is only used in domains that include bounding
operators that are based on dynamic pruning thresholds. In such domains, Rprune�n� j�
must be computed dynamically. In domains that do not include bounding operators, the
pruning factor is 1. The computation of Rprune�n� j� is based on a domain statistic, �,
that represents the probability that a path to a state is pruned by a bounding function in
a situation where the path can be created. � is defined for elements of the grammar that
correspond to bounding functions, to nonterminals that do not correspond to bounding
functions, and to terminals. All definitions of � are based on the a priori computations
for the expected values of the credibilities of the elements of a grammar. For nonterminal
element s that does not correspond to a bounding function, the definition of � is:

Definition 6.3.4 ��s� � �i��i� � �j��nj�. Where each i corresponds to a production
rule with s as a left-hand-side and each nj is an element of the right-hand-side of the
production rule.

For nonterminal element s that corresponds to a bounding function, the definition of �
is:

Definition 6.3.5 ��s� � �� � P �credibility�n� � t� � ��n�. Where n is the right-
hand-side of the production rule, t is the pruning threshold for the bounding function, and
credibility�n� is the expected credibility of grammar element n.

For terminal element s, ��s� � �.

The computation of Rprune�n� j� is based on the credibility of n and the values of �
that are computed for the grammar. Formally,

Definition 6.3.6 Rprune�n� j� � ��j� n�. Where ��j� n� in the computation of ��j�
with respect to n.

The computation of ��j� n� is straightforward, but it must be done dynamically using
the actual credibility of n instead of the a priori expected credibility. This is defined as:

Definition 6.3.7 ��s� � �i���i���j��xj�j��
�i��i�

. Where each i corresponds to a production
rule with s as a left-hand-side that includes n in a derivation tree, each xj is an element
of the right-hand-side of the production rule. The sum, �i��i� is used to normalize the
computation relative to n. When computing ��xj� j�, if n is not included in any of the
interpretation trees for xj , the value ��xj� is used.

In general, conditional probabilities can be computed by:

119

Definition 6.3.8 P �A j b� � P �A�b�
P �b� . Conditional probability of state A given state b,

where b is a descendant of A (i.e., b is on the RHS of some set of grammar rule applications
that begin with A on the LHS). This is the conventional definition of conditional probability
that is available in any appropriate textbook.

For IDP models, the following equations can be used to determine conditional proba-
bilities:

Definition 6.3.9 P �A� � P �S � A��, domain specific distribution functions. Probabil-
ity of the domain event corresponding to interpretation A occurring. This probability will be
specified with domain specific distribution functions. In general, these distributions will be
represented with production rules of the grammar associated with the start symbol. The RHSs
of these rules will be from the grammar’s set of SNTs. Uncertainty regarding this distribution
leads to problem solving uncertainty.

Definition 6.3.10 fRHS�A�g � the set of elements that appear on right-hand-sides of
production rules with A on the left-hand-side.

Definition 6.3.11 P �b � fRHS�A�g��� �
P
�iP �b � RHSi�A�� �

P
�r��P �r

� �
fRHS�A�g� � P �b � fRHS�r��g����, where fRHS�A�g is the set of all RHSs of A,
RHSi�A� is the RHS of the ith production rule of A, P �b � RHSi�A�� � ��RHSi�A��
if b � RHSi�A�, 0 otherwise, and each element r� is a nonterminal that appears in a RHS
of A that does not also include b. The probability of partial interpretation b being included in
any RHS of A, as defined by the distribution function ��A�. The “� �” notation indicates
that the definition of RHS is recursive. i.e., fRHS�A�g�� represents the transitive closure
of all states that can be generated from A. Thus, b can be in an RHS of A, or in the RHS of
some element of an RHS of A, etc.

Definition 6.3.12 P �b� � P �S � b� �
P
�AP �A� � P �b � fRHS�A�g��. Proba-

bility of partial interpretation b being included in an interpretation.

Definition 6.3.13 P �A � b� � P �A� � P �b � fRHS�A�g��. Probability that the
partial interpretation, b, is generated from full or partial interpretation A, where b is a
descendant of A.

Definition 6.3.14 Ambiguity – Given a domain event, A, its interpretation is ambiguous
with the interpretation of a second domain event, B, when B subsumes A (the subsume
relationship is specified in Definition 4.4.5 in Chapter 4). i.e., A is ambiguous with B when
B � A. (The low-level signal data generated by B can be mistaken for an A.) Note that this
definition of ambiguity is not reflexive. Thus, A being ambiguous with B does not imply that
B is ambiguous with A. This definition of ambiguity is consistent with Definition 4.1.1 and
will be used where appropriate.

�The notation used in these equations, i.e., S � A is distinct from the production rule notation used to
designate grammar rules and should not be confused as production rule notation.

120

Definition 6.3.15 P �A
 b� � P �A � b� �
P
�B P �B � b�. Intersection of domain

events A and b, where b is a descendant ofA, and where the interpretation ofA is ambiguous
with the interpretation of each B. The intersection of A and b will occur when both A
and b are generated during the course of a specific problem solving instance. This will occur
when A leads to the generation of b and when the occurrence of a distinct event, B, leads
to the generation of b and when A is ambiguous with B. In the case where B leads to the
generation of b, b and A still intersect because an A will be generated during processing since
A is ambiguous with B.

Csn = set of cost vectors. cn�i�j�� is a pair of values, represented cn�i�j� �� and cn�i�j� ��. The
first is the expected cost of generating the path, when the path can be generated, from
sn, beginning with opi, to the final state corresponding to un�i�j�. The second is the
expected cost of extending the path when the final state cannot be reached. These two
values can be used to specify the expected cost of attempting to complete a path. Formally,

Definition 6.3.16 For state sn, the expected cost of the path corresponding to un�i�j� is
pn�i�j� � cn�i�j� �� � �� � pn�i�j�� � cn�i�j� ��.

Definition 6.3.17 The expected cost of a “correct” path = cn�i�j� �� � E�cost�F �� �
E�cost�sn��, where F = un�i�j� – the final state the path is attempting to reach and
E�cost�sn�� represents the expected cost of generating state sn. (Using the notation from
Chapter 6.4, cost functions would be represented g�un�i�j�� � g�sn�.) Thus, the estimated
cost of reaching the final state (completing the interpretation tree, T) is a function of the cost
of deriving the entire interpretation tree minus the cost already incurred to derive the subtree
corresponding to sn.

Definition 6.3.18 The expected cost of a specific “incorrect” path =C�F�R�sn� �
P
�mP ��n

m� j R� � �E�cost�sm�� � �
P
�tE�cost�st�� � P �sm � st���, where E�cost�sm�� is

the expected cost of generating state sm, the set m comprises the components of F that are
not also components of sn, and the set t comprises the components of each sm. The term
E�cost�sm�� � �

P
�tE�cost�st�� � P �sm � st�� is the incremental cost of each of the

components of F . Thus, this definition takes into consideration the probability of each
component of F being generated and the incremental cost of each component. Intuitively,
C�F�R represents the expected cost the problem solver will incur before determining that a
path cannot be generated to F . It is necessary to differentiate each R, since the cost of a failed
path to F will vary with the different R. For example, in some situations, the cost of a failed
path to F may be very small. This may occur when interpretations of “B” are correct. In
contrast, the cost of a failed path to F may be very large when the correct interpretation is
“C.” This will become clear in Chapter 6.5.

Definition 6.3.19 The expected cost of connecting all “incorrect” paths from a state =
cn�i�j� �� �

P
�R

P �R�n�
�P �n��P �F�n���C�F�R�n�, whereF represents the final state corresponding

�The subscript n is used to represent sn in order to simplify the notation.

121

to un�i�j�, C�A�R�n� is the expected cost of a failed attempt to generate a path to F given
that R is the correct interpretation, R is an element of the set SNT, and where F is not
ambiguous with R.

In the case where the path does not exist, the expected cost will be dependent on the
structure of the domain. In domains with a great deal of ambiguity, this value could
be almost as large as (or perhaps much larger than) the expected cost of a correct path.
Examples of computing expected costs for paths are presented in Chapter 6.5.

6.4 A Basis for Analysis - An Optimal Objective Strategy

As discussed in Chapter 1.7, the analysis paradigms supported by the IDP/UPC framework
all involve the use of four elements: a problem’s structure and a problem solver’s objective
strategy, control architecture, and performance level (or behavior). Chapters 3 and 4 presented
the IDP formalism which uses a unified representation to describe a problem’s structure and the
abstractions and approximations used by a problem solver’s control architecture. Furthermore,
as was discussed in Chapter 1.7 and as will be discussed in the Chapter 7, the performance of
a problem solver will be measured in terms of the expected cost of problem solving and the
expected probability that the problem solver will find the correct answer, where the correct
answer is defined to be the highest rated interpretation. This section defines the fourth element,
the objective strategy, that is needed in the analysis paradigms. Chapter 7 shows how this control
architecture can be used with an expanded state representation that explicitly represents certain
quantitative properties of a search space that are derived from an IDP specification. We will then
experimentally verify the quantitative results determined analytically with the IDP formalism
in Chapter 5.

6.4.1 Defining Optimal Interpretations

There are a variety of broad objective strategies that could be used as a basis for the analysis
paradigms. For example, one class of objective strategies is related to finding any solution as
quickly as possible, another class of strategies is related to finding the least cost solution. These,
and other general objective strategies are discussed more formally in Appendix A.

The strategy that will be defined and used in subsequent analysis will be referred to as
the optimal objective strategy. This name is not intended to imply that this is the best possible
objective strategy. Rather, it is intended to indicate that the goal of this strategy is to find the
best possible solution using the least amount of computing resources. This definition is based
on the definition of an interpretation problem given in Section 3.

As a basis for defining the optimal objective strategy, let an Optimal Interpretation be
defined as follows:

Definition 6.4.1 Optimal Interpretation, O – Given a problem instance, x, from an IDP domain
definition, I , that defines a set, C , of connected search spaces corresponding to correct interpretations
of x, the optimal interpretation, O, is such that �c � C�O � C� cost�O� � cost�c�, where
cost�c� is the cost of applying the set of operators used to generate c.

Intuitively, an interpretation can be thought of as a set of operator applications that connects
the search space and determines the highest rated explanation for the observed phenomena.

122

Each of the different elements c of the set C from definition 6.4.1 represents a different set of
operators or a different sequence of operator applications. The optimal interpretation is then
the set of operator applications that connects the search space with minimum cost, and that
always returns a correct answer.

In some situations, it will be necessary to analyze problem solving strategies that are not
guaranteed to return the correct answer. To characterize these design parameters of problem
solving systems, the notation for allowed or expected error is defined as,
.

Definition 6.4.2 Allowed Error,
 – For a given IDP, P , the probability that any specific problem
solving instance does not return the correct answer.

Thus, for an IDP with
 � ���, the problem solver will return the correct answer with
probability = 0.95. The other 5% of the time, the problem solver will return an answer that
is not the “best” in terms of highest utility (or credibility).
 will be used extensively during
analysis in situations where a control architecture eliminates certain search paths knowing that
they might lead to the correct solution. This might be done in situations where the problem
solver recognizes that the likelihood of the path leading to the correct solution is very low and
where the differences between elements of a set of highly-rated interpretations is insignificant.
In this situation, the problem solver is choosing to trade a limited number of incorrect solutions
in order to reduce the expected cost of problem solving.

The definition of Optimal Interpretation will now be restated to include consideration of
allowable error:

Definition 6.4.3 Optimal Interpretation, O – Given an instance of an IDP, P , that defines a set,
I , of connected search spaces corresponding to interpretations of P with probability of correctness
� ��
, the optimal interpretation, O, is such that �i � I�O � I� cost�O� � cost�i�.

An optimal interpretation is now defined to be the set of operator applications that return
the correct answer with probability � � �
 and that connect the search space with minimal
cost. Note that even in situations where the problem solver is allowed a certain amount of
error, it is still required to connect the search space. Therefore, any problem solving actions
that lead to a non-zero probability of returning an incorrect final solution must have explicit
operations that eliminate from consideration some portion of the search space. Thus, correct
solutions are in the areas of the search space that have been pruned. (Such a search space, i.e.,
a search space where the portion of the search space containing the correct solution has been
pruned, can be thought of as overconstrained.)

In virtually all practical problem solving systems,
 plays an important role. In many
real-world domains, the cost of exhaustive problem solving is prohibitively expensive. As a
consequence, a very common strategy is to simply eliminate certain portions of the search space
from consideration at the risk of eliminating the only search paths to a correct interpretation
at the same time. Many of the control architectures that will be analyzed with the IDP/UPC
formalism include allowable errors greater than 0.

6.4.2 Defining an Optimal Interpretation Objective Strategy

We will now use the definition of an optimal interpretation to define an objective strategy
that will be used in subsequent analyses. It is important to note that the objective strategy
defined here should not be considered the only possible objective strategy. Many other strategies
can be defined and incorporated into the IDP/UPC analysis framework.

123

Termination

PS

internal state

distance to termination
(cost of termination)

∑
open
states

∀(potential final state, expected-cost(potential final state))

open states

Computation of distance to termination:

Figure 6.2. Computing the Distance to Termination, C

At any given stage in problem solving, the expected cost to reach termination is equivalent
to the expected cost of connecting all open states. This is illustrated in Fig. 6.2 and will be
represented as C throughout this thesis. Each step of problem solving reduces C . A given
search operator application, opi, can reduceC in one of two ways. It can succeed in generating
new states, which is analogous to traversing search paths in ways that reduce the distance to any
final states that can be reached along the paths. Alternatively, the operator can fail, causing all
potential paths that required the failed operation to be eliminated from further consideration.

In the first instance, C is reduced to the degree that progress is made in traversing the
paths. (The expected cost of path j will be represented as Cj and the degree to which operator
opi reducesCj will be represented cj�opi�. The degree to which an operator reducesC will be
represented c�opi�.) In the second instance, C is reduced by an amount equal to the expected
cost of fully expanding any potential paths that are eliminated.

In convergent search domains, a given operator typically constitutes a segment of multiple
paths. In addition, a given operator application might result in the successful extension of
some paths, which will be represented as the set E, and the failure of others, which will be
represented as the set T . Consequently, the degree to which C is reduced by the application of
operator opi is given by:

Definition 6.4.4 Amount operator opi reduces the expected cost to connect all open states, C , is
c�opi� �

P
�j	E cj�opi� �

P
�k	T Ck, where E is the set of paths extended by the application of

opi and T is the set of paths terminated by the application of opi.

Intuitively, each cj�opi� represents the degree to which a path toCj is successfully extended,
and each Ck represents the cost reduction associated with the failure of an attempt to extend
path k. i.e., in the case of an unsuccessful path extension, the expected cost of problem solving
is reduced by the entire distance remaining in path k.

124

n
1

n
2

n
3

F
op

i op
j

op
k

cost(op
i
) = 5 cost(op

k
) = 5cost(opj) = 5

Path 1, total cost = 15

n
1
' n

2
' n

3
'

op
i

op
j

op
k

cost(op
i
) = 1

cost(op
k

) = 1

cost(opj) = 1

n
a

cost(op
y

) = 1

op
y

S

Path 2, total cost = 4

λ

λ

c(op
i
) = 10

c(op
y

) = 1

c(opj) = 10 c(op
k

) = 10

c(opj) = 1c(op
i
) = 1

cost(op
i
) = cost of operator i c(op

i
) = amount by which operator i

reduces C, the distance to termination

Figure 6.3. Example of the Non-local Effects of an Operator Application

Thus, by definition, the optimal objective strategy can be implemented by applying, at each
step of problem solving, the operator, opi, that, for all i, maximizes the average amount of
search space connected per unit cost. Written formally, the choice of operator is made in order
to maximize:

Equation 6.4.1
P

i c�opi��
P

i cost�opi�.

Note that this represents the overall average amount of “search space connected” per unit
of problem solving cost. Determining which operator to execute at each step of problem solving
in order to achieve this maximum may be very difficult, even impossible. This is especially true
in situations where the problem solver has only local information about a state. Even so, let us
assume, for now, that the optimal objective strategy can be approximated by a control strategy
that, at each step of problem solving, chooses the operator that maximizes:

Equation 6.4.2 c�opi��cost�opi�.

Equation 6.4.2 is based on a perspective of problem solving that relies solely on local
information. By local, we mean that this equation only considers the direct effects an operator
has on C . It does not take into consideration the effects that an operator may have on
other operators that are applied during subsequent processing, e.g., subproblem interactions
involving cooperating or competing search paths.

For example, consider the situation shown in Fig. 6.3. In this figure, there are two
alternative problem solving paths, one beginning with the state n� and the other beginning
with the state na. In the first, the initial step of problem solving reduces C by 10 units, and it
costs 5 units to apply, consequently, c�opi��cost�opi� = 2. The other steps along this path also
reduce C by 10 units and have cost 5, resulting in similar ratios. (Assume that these costs are
based on search paths not shown in the figure.)

125

In the second path, the initial search step has cost 1, but only reducesC by 1, resulting in a
ratio of 1. This step will not be taken until all the operators in the first path have been applied.
However, examining the second search path from a more comprehensive perspective results in
the observation that the second path subsumes the first and, in fact, is less costly overall.

From a local perspective, it would appear that the first path is a better choice than the second
path because, for every operator application in the first path, the ratio from Equation 6.4.1 is
greater than the corresponding ratio for the first search step of path 2. However, subsequent
steps of the second search path somehow modify the search space so that the space can actually
be connected more efficiently than it could in the first path.

This example is somewhat abstract and may not correspond closely to a specific domain, but
it serves to illustrate a simple, but very important, principle. This principle is that, from a more
comprehensive (or global) perspective, local optima will exist and maximizing Equation 6.4.2
locally will not result in globally optimal interpretations. However, the principles embodied in
Equation 6.4.1 can be incorporated with a more comprehensive perspective to define globally
optimal objective strategies. Chapter 9 defines the concept of potential and discusses how it
can be used to overcome problems associated with local optima.

The definition of an optimal interpretation objective strategy will now form the basis for
analyzing different control architectures. The analysis technique that will be used will involve
formulating the abstractions and approximations used in alternative control architectures as
IDP structures and then comparing the results of problem solving based on the grammars.

6.4.3 Local Control Issues - A Brief Discussion

The analytical framework that will be presented in the remainder of this thesis is based on
computational methods that are derived relative to a specific control strategy. To be precise,
the analytical framework that will be described is based on the control strategy described in
this section and extensions to it that incorporate the use of potential. It is important to note
that, although it is necessary to specify a local control strategy in order to derive the analytical
framework, the framework is not dependent on any single control strategy.

It is also interesting to note that in certain situations the choice of local control strategy does
not matter. The framework will provide accurate analysis for any local control strategy. This
will be true in situations where a problem solving system does not incorporate any problem
solving actions that prune certain paths based on a dynamic perspective of problem solving.
Because our definition of problem solving requires that a problem solver connect the entire
search space in order to reach termination, problem solving systems that do not include any
pruning operators essentially conduct an exhaustive search. In such a case, the choice of local
problem solving strategy is irrelevant.

In situations where the problem solver has access to pruning actions that are based on
predetermined criteria, the analysis tools can again be derived independent of the local control
strategy. This is because the choice of problem solving activity will have no impact on the
pruning operators. The order in which actions are executed will not affect the pruning criteria,
and all actions susceptible to being pruned will eventually be subjected to the pruning criteria.

However, in situations where pruning criteria are determined dynamically, the order in
which operators are applied is very significant. For example, in an extreme case, if all problem
solving actions were applied before any pruning criteria were established, there would be no
point to the pruning actions. From an intuitive perspective, it is advantageous to establish
pruning criteria early in order to maximize the number of actions that are pruned before they
are executed.

126

1. A → CD

3. C → fg
5. D → hi

7. f → (signal data)

9. g → (signal data)

11. h → (signal data)

13. i → (signal data)

2. B → DEW

4. E → jk
6. W → xyz

8. j → (signal data)

10. k → (signal data)

12. x → (signal data)

14. y → (signal data)

15. z → (signal data)

Interpretation
Grammar G'

0. S → A | B

Figure 6.4. Search Operators Defined by Interpretation Grammar G�

6.5 Determining UPC Vector Values

In this section, examples of UPC vector determination will be presented. These examples
will be based on the original interpretation grammar, G�, reproduced in Fig. 6.4, and the
modified interpretation grammar with added rules for noise and missing reproduced in Fig. 6.7.
In this representation, the SNTs of the grammar are A, B, M, N, and O. Note that in this
grammar there are no pruning operators, so the computations presented here ignore the
computation of the pruning factor, Rprune.

6.5.1 UPC Vector Values in a Simple Grammar

Figure 6.5 shows the UPC values for two low-level states, h and f, from the interpretation
grammar shown in Fig. 12.1. The grammar is reproduced in Fig. 6.4 for convenience. In
the figure, the subscripts indicate which SNTs the UPC values are associated with. For
computing the UPC values for h, we will assume that h is the only state created so far. We
make a similar assumption when computing UPC values for f. There is only a single operator
available to extend each state and, as a result, there are only single U�P and C vectors for each
state, as shown in Fig. 6.5. For state h, the available operator is op�, which is represented as “D
� hi” in Fig. 12.1. For state f, the available operator is op�, which is represented as “C � fg.”

To simplify the computations used in the next two sections, we will limit the discussion of
calculating expected utilities. Thus, for all examples in the next two sections, UPC values will
always reflect an expected utility of 1.

Intuitively, the assumptions used in the next two sections can be thought of as follows.
The low-level state h can be used to derive two interpretations, an A or a B. In this example,
the utility of either interpretation will be represented as “1.” This is manifested in uh�� as two
entries, both equal to 1.

By definition, the entries in ph�� correspond to the conditional probabilities of generating
paths from state h to each of the final states represented in uh��. Given no prior information
about the distribution of domain events corresponding to interpretations of A and B, it will be
assumed that the distribution is split evenly between them. Consequently, P �A� � P �B� �
��. Now the entries in the vector ph�� can be determined.

127

uh�� � ��A� �B� ph�� � ���A� ��B� ch�� � ���� ��A� ���� ��B�
uf�� � ��A� pf�� � ��A� cf�� � ���� ��A�

Figure 6.5. UPC Vectors for States from Search Space Defined by G�

ph����� is the probability that a path can be constructed from h, beginning with op�, to
final state A. From Definition 6.3.8,

ph����� � P �A j h� �
P �A
 h�

P �h�
� (6.1)

In G�, P �A
 h� � P �A� h�, since A is not ambiguous with any other interpretations.
So, from Definitions 6.3.15, 6.3.13, and 6.3.11,

P �A
 h� � P �A� h� � P �A� � P �h � fRHS�A�g�� � �� � � � ��� (6.2)

Note that in this case, h is on the RHS of D with

P �h � fRHS�D�g� � �� (6.3)

and D is in the RHS of A with

P �D � fRHS�A�g� � �� (6.4)

Thus,
P �h � fRHS�A�g�� � � � � � �� (6.5)

From Definition 6.3.12,

P �h� � P �h � fRHS�A�g�� � P �h � fRHS�B�g�� � �� � � � �� � � � �� (6.6)

h is included in an RHS of A or B (recursively) with probability 1, and P �A� � P �B� � ��.
Thus,

P �A j h� �
��

�
� ��� (6.7)

This is shown in Fig. 6.5 as ph�����.
The computation of ph�����, the probability that a path can be constructed from h,

beginning with op�, to final state B, is similar and yields the same result.
Given the utility and probability vectors shown in Fig. 6.5, it is unclear whether the partial

interpretation h is part of an A or a B. To differentiate which of the two events occurred, the
problem solver must continue to interpret the data by extending partial interpretation h. If the
correct interpretation generated from h is an A, then the data corresponding to B’s component
set (component sets are defined in Chapter 4.4.1) will not be generated unless the data are also
in A’s component set. Conversely, if the correct interpretation is B, then partial interpretations
corresponding to A’s component set will not be formed unless they are also in B’s component
set.

128

To compute the expected cost vectors, we will let the cost of each production rule be 1.
The generation of an A requires that 7 production rule operators be executed, each at a cost
of 1. However, the existence of an h implies that the cost of generating an h does not have
to be incurred again. Consequently, the expected cost to generate an A, when A is the correct
interpretation, is

ch����� �� � �� � � �� (6.8)

Similarly, the expected cost to generate a B, when B is the correct interpretation, is

ch����� �� � ��� � � ��� (6.9)

In situations where the correct interpretation is a B, the cost of attempting to generate a
path to A, starting with op�, is, by Definition 6.3.19,

ch���j� �� �
X
�R

P �R� h�

�P �h�� P �A
 h��
� C�A�R (6.10)

where A is not ambiguous with R.
Therefore,

ch����� �� �
P �B � h�

P �h�� P �A
 h�
� C�A�B � (6.11)

��

��
� ��� � �� (6.12)

C�A�B�h�, the expected cost of a failed attempt to generate a path from h to A when B is the correct
interpretation, is the cost of generating a D, since P �D j h� � �, plus the cost of attempting
to generate an f or g. When B is the correct interpretation, attempting to construct a path to
A will fail after a cost of 3 is incurred. This cost will be associated with generating a D (cost
of 2) with the application of op�, which will be successful, and the cost of trying to generate a
C, which will be unsuccessful. The attempt to generate a C will fail when the problem solver
attempts to generate an f or a g. For now, we will assume that the cost of such a failure is
1. After failing to generate an f or g, we will also assume that the problem solver suspends its
attempt to generate a C, and, as a result, its attempt to generate an interpretation of A.

Thus, the expected cost of attempting to generate a path to final state A, given an h, is,
from Definition 6.3.16,

ph����� � � � ��� ph������ � � � ��� (6.13)

The computation of ch����� �� is similar and the expected cost of attempting to generate a
path to final state B, given an h, is

ph����� � �� � ��� ph������ � � � ��� (6.14)

In contrast to h, the low-level state f can only be used to generate an A. Consequently, f ’s
utility vector has only a single entry corresponding to an A. Since there is no other possible
interpretation of an f, the probability of reaching the final state associated with an interpretation
of A is ���. This value can also be computed from Definitions 6.3.8 through 6.3.12. Finally,

129

1. A → CD

3.0 C → fg

5.0 D → hi

7. f → (signal data)

9. g → (signal data)

11. h → (signal data)

13. i → (signal data)

2. B → DEW

4. E → jk

6.0 W → xyz

8. j → (signal data)

10. k → (signal data)

12. x → (signal data)

14. y → (signal data)

15. z → (signal data)

Interpretation Grammar G' with noise and missing data rules

17.0 Y → qr

16. M → Y

3.1. C → fgq

5.1. D → rhi

19. Z → xy

18. N → Z

6.1. W → xy

20. O → X
21.1. X → fgh

21.2. X → fg

17.1 Y → qhri

Figure 6.6. G� with Added Noise and Missing Data Rules

the cost vector has a single entry corresponding to the interpretation of A and this is computed
as previously described,

cost�A�� cost�f� � �� (6.15)

Since a path always exists from state f to an A, the cost of failing to reach A is 0. Consequently,
cf����� �� � � and cf����� �� � �.

Given an h and an f with these UPC values, it should be noticed that f is not included in
any ambiguous interpretations. As can be seen from f’s UPC values, this simplifies problem
solving greatly. In this domain, given an f, a problem solver can postulate an interpretation
of A without conducting any additional problem solving. However, given an h, the problem
solver must still differentiate the possible interpretations A and B.

6.5.2 UPC Vector Values with Noise and Missing Data

Now consider the UPC values for h and f given the domain theory represented by the
grammar shown in Fig. 6.6. (This grammar is shown graphically in Fig. 6.7.) This grammar
is identical to G� but rules have been added corresponding to noise and missing data. As a
result of these rules, the UPC values for h and f are as shown in Fig. 6.8. As with the previous
example, these values were computed based on the assumption that they were the only states
created so far.

Again, final states will be assigned utility 1. op� can lead to two final states, A and B. This
is indicated in uh����� and uh�����, respectively. Likewise, op�� can lead to an M and op�� can
lead to an O. This is represented in uh������ and uh������.

To generate the conditional probability vectors, it was again assumed that the domain
events that correspond to the interpretations A, B, M, N, and O are evenly distributed, i.e.,
P �A� � P �B� � P �M� � P �N� � P �O� � ���. Furthermore, for this example, the �
distribution for the possible RHSs of the nonterminals Y, X, C, D, and W will be ��. For
example, ��Y�qr� � �� and ��Y�qhri� � ��.

130

...
x y z

......
j k

......
h i

... ...
f g

(Signal Data)

A B

C D E W

... ...
q r

M

Y

......
h i

...
r

... ...
f g

...
q

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

S

Figure 6.7. Graphical Representation of G�

uh�� � ��A� �B� ph�� � �����A� ����B� ch�� � ���� ��A� ���� ��B�
uh��� � ��M � ph��� � ����M � ch��� � ��� ��M �
uh��� � ��O� ph��� � ���O� ch��� � ���� ��O�
uf�� � ��A� pf�� � ���A� cf�� � ���� ��A�
uf��� � ��O� pf�� � ����O� cf�� � ������ ��O�

Figure 6.8. UPC Vectors for Two States from Interpretation Grammar G�

Given this information and from the previous definitions, the probability that a path from
h beginning with op� can reach final state A is

ph����� �
P �A
 h�

P �h�
� (6.16)

In this grammar, P �A
 h� � P �A � h�, since A is not ambiguous with any other
interpretations.

P �A� h� � P �A� � P �h � fRHS�A�g�� � ��� � � � ��� (6.17)

P �h� � P �h � fRHS�A�g�� � P �h � fRHS�B�g�� � P �h � fRHS�M�g�� �

P �h � fRHS�O�g�� (6.18)

� ���� � �� � ���� � �� � ���� � ��� � ���� � ��� � ��� (6.19)

Thus,

ph����� �
���

���
� ����� (6.20)

The computation of ph�����, the probability that final state B can be reached, is similar and
also yields ����.

The probability that a path from h beginning with op�� can reach final state M is

ph������ �
P �M
 h�

P �h�
� (6.21)

131

From Definition 6.3.13,

P �M
 h� � P �M � h� � P �A� fqrhg� � (6.22)

P �M � h��P �A� �P �q � fRHS�A�g�� �P �r � fRHS�A�g�� �P �h � fRHS�A�g���
(6.23)

since M is ambiguous with A when the domain event A results in the generation of a q and an
r in addition to an h.

P �M � h� � P �M� � P �h � fRHS�M�g�� � ��� � �� � ��� (6.24)

and
P �A� fqrhg� � (6.25)

P �A� � P �r � fRHS�A�g�� � P �q � fRHS�A�g�� � P �h � fRHS�A�g�� � (6.26)

��� � �� � �� � ��� � ���� (6.27)
Thus, using P �h� calculated above,

ph������ �
��� � ���

���
� ���� (6.28)

The computation of ph������, which is the probability that a path from h beginning with
op�� can reach final state O, must take into account the fact that the interpretation of an O is
always ambiguous with the interpretation of an A, i.e., A � O. (This is true because f and g
are always components of fRHS�A�g� and f and g are the terminal symbols that lead to the
interpretation of an O.) Thus,

P �O j h� �
P �O
 h�

P �h�
�
P �O� h� � P �A� h�

P �h�
� (6.29)

P �O� h� � P �A� h� � (6.30)

P �O� � P �h � fRHS�O�g�� � P �A� � P �h � fRHS�A�g�� � (6.31)

��� � �� � ��� � � � ��� (6.32)

Thus,

ph������ �
���

���
� ��� (6.33)

The expected costs shown for h take into account the distribution function, �. When h is
included in the derivation of an A or a B, the expected cost varies depending on the distribution
of the RHSs for the partial interpretations C, D, and W. The RHSs of D are “hi” and “rhi,”
the RHSs of C are “fgq” and “fg,” and the RHSs of W are “xyz” and “xy.” For this example, let

��D� �

�
0.5 for D � hi
0.5 for D � rhi

(6.34)

��C� �

�
0.5 for C � fg
0.5 for C � fgq

(6.35)

��W � �

�
0.5 for W � xyz
0.5 for W � xy

(6.36)

The interpretation trees for A and B that are derived from these rules are shown in Fig. 6.9.
There are four distinct interpretation trees for both A and B that include h in their component

132

...
x y z

......
j k

......
h i

B

D E W

... ...
x y

......
j k

......
h i

B

D E W

...
x y z

......
j k

B

D E W

......
h i

...
r

... ...
x y

......
j k

B

D E W

......
h i

...
r

A

C D

......
h i

...
r

... ...
f g

...
q

......
h i

A

C D

... ...
f g

...
q

......
h i

... ...
f g

A

C D

... ...
f g

A

C D

......
h i

...
r

a. interpretations of A with
average cost = 8

cost = 7 cost = 8 cost = 11 cost = 10

cost = 11cost = 12cost = 9cost = 8

b. interpretations of B with
average cost = 11

Figure 6.9. Interpretation Trees for Domain Events A and B

sets. In general, such derivations could be semantically different and, as a result, could
constitute different final states. In this example, all interpretations of A or B are considered to
be represented by the same final state. Thus, there is a single entry in h’s UPC vectors for a
final state corresponding to an A and, likewise, one for a B.

Given the distributions described above, the conditional probability of each of these
interpretation trees being correct given an A or a B, respectively, is ��� (i.e., �� � �� � ���),
and the expected derivation cost for an A from state h is

ch����� �� � ���� � �� � ���� � �� � ���� � �� � ���� � �� � � � �� (6.37)

Similarly, the expected derivation cost for a B from state h is

ch����� �� � ���� � ��� � ���� � ��� � ���� � ��� � ���� � ���� � � ��� (6.38)

The expected costs when these final states cannot be reached are specified by Defini-
tion 6.3.19

ch����� �� �
X
�R

P �R� h�

�P �h�� P �A
 h��
� C�A�R (6.39)

where A is not ambiguous with R.

133

In the case where a path to A cannot be generated and B is correct, op� will successfully
generate a D, but will fail to generate an f or g. The cost of generating the D is 2, with
probability 0.5, or 3, also with probability 0.5. This is specified by

��D� �

�
0.5 for D � hi
0.5 for D � rhi

(6.40)

In the case where the RHS is “hi,” the cost of generating a D will be 2; the cost of generating
an i plus the cost of generating a D, or � � � � �. In the case where the RHS is “rhi,” the cost
of generating a D will be 3; the cost of generating an r, plus the cost of generating an i, plus
the cost of generating a D, or � � � � � � �. The cost of failing to generate g or f is 1. Thus,
the cost of failing to generate a path to A given B is

�� � � � �� � � � � � ��� (6.41)

In the case where M is true, op� will again succeed, as before, and the path will fail when
an attempt is made to generate an f or g. However, when M is correct the cost of generating a
D is 3. This is due to the fact that h only appears on the RHS of M with an r, a q, and an i.
Therefore, the cost of failing to generate a path to A when M is the correct interpretation is

� � � � ���� (6.42)

In the case where O is is true, op� will fail, at a cost of 1, and the cost of failing to generate
a path to A when O is the correct interpretation is 1.

Therefore, from Definition 6.3.19,

ch����� �� �
P �B � h�

�P �h�� P �A
 h��
� ���� �

P �M � h�

�P �h�� P �A
 h��
� ���

�
P �O � h�

�P �h�� P �A
 h��
� ����� � (6.43)

���

����� ����
� ���� �

���

����� ����
� ��� �

���

����� ����
� ����� � (6.44)

��� � ��� � ���� � �� � ���� � ���� � �� (6.45)

The expected cost of attempting to generate a path to final state A, given an h, is, from
Definition 6.3.16,

ph����� � � � ��� ph������ � � � ���� � � � ���� � � � ����� (6.46)

Computing the expected cost of attempting to generate a path to final state B, given an h,
requires computing ch����� ��. The expected costs that will be incurred for failed paths are the
same as for A, so

ch����� �� �
P �A� h�

�P �h�� P �B
 h��
� ���� �

P �M � h�

�P �h�� P �B
 h��
� ��� �

134

P �O� h�

�P �h�� P �B
 h��
� ����� � (6.47)

���

����� ����
� ���� �

���

����� ����
� ��� �

���

����� ����
� ����� � (6.48)

��� � ��� � ���� � �� � ���� � ���� � �� (6.49)

Therefore, the expected cost of attempting to generate a path to final state B, given an h,
is,

ph����� � �� � ��� ph������ � � � ���� � �� � ���� � � � ���� (6.50)

Computing the expected cost of attempting to generate a path from h to M, beginning
with op��;

ch������ �� � �� (6.51)

There is only one derivation for M, given an h, and it has cost 5.

To compute ch������ ��, requires C�M�B� C�M�A� and C�M�O. The value of each of these
is 1. The cost of failing to generate an M is 1 – the problem solver tries to generate a Y and
fails. In addition, the cost of failing to construct a path to M must take into consideration the
fact that M is ambiguous with A when A leads to the generation of an r and a q. Therefore,

ch������ �� �
P �A� h�� P �A� fqrhg�

�P �h�� P �M
 h��
� ��� �

P �B � h�

�P �h�� P �M
 h��
� ��� �

P �O � h�

�P �h�� P �M
 h��
� ��� � (6.52)

��� � ���

��� � ���
�

���

��� � ���
�

���

��� � ���
� �� (6.53)

Therefore, the expected cost of attempting to generate a path to final state M, given an h,
is,

ph������ � � ��� ph������� � � � ��� � � ��� � � � �� (6.54)

The expected cost of attempting to generate a path from h to O, beginning with op�� is
computed from;

ch������ �� � ��� (6.55)

There is only one derivation for O, given an h, and it has cost 4.

135

The cost of failing to construct a path to O given an h must take into consideration the
fact that O is ambiguous with A. Furthermore, the cost of failing to generate an O given B or
M is 1. (The problem solver fails to generate an X with cost 1.) Therefore,

ch������ �� �
P �B � h�

�P �h� � P �O
 h��
� ��� �

P �M � h�

�P �h�� P �O
 h��
� ��� � (6.56)

���

���� ���
�

���

��� � ���
� �� (6.57)

Therefore, the expected cost of attempting to generate a path to final state O, given an h,
is,

ph������ � � � �� � ph������� � � � �� � � � �� � � � ��� (6.58)

The UPC values for state f computed in a similar way, taking into account that f is
ambiguous with A, and are shown in Fig. 6.8. Based on these values, the expected cost of
attempting to generate a path to final state A, given an f, is

pf����� � � � ��� pf������ � � � �� � � � �� � � � � (6.59)

The expected cost of attempting to generate a path to final state O, given an f, is

pf������ � ��� � ��� pf������� � � � ��� � ��� � � � ���� (6.60)

6.6 Discussion

The examples in the preceding two sections demonstrate how UPC values are calculated
for states in an interpretation problem that does not include pruning operators. In addition,
they show how costs increase as a result of problem structures associated with noise and missing
data. (The effects from masking and distortion are identical.)

For example, compare the costs of connecting state h in the first case with similar costs in
the second case. As defined in Chapter 3, an interpretation problem solver terminates only
after all the search states have been connected. This means that all potential paths have been
either explored or pruned. In the first example, h is connected only after the potential paths to
A and B have been explored, and the cost of connecting h is 11. This is computed by summing
the expected costs of each of the potential paths from h to final states. Specifically, two final
states can be reached from h, A and B. The expected cost of the path to final state A is 4.5 (from
equation 6.5.1) and the expected cost of the path to final state B is 6.5 (from equation 6.5.1).

In the second case, after the introduction of noise and missing data, the cost of connecting
h is 14.15 (from equations 6.5.2 and 6.5.2). Similarly, the cost of connecting state f increases
from 6 to 8.75.

In this simple example, the effects of noise and missing data were relatively modest. In fact,
they were intentionally kept modest to improve readability. In real-world domains, the effects
of uncertainty on the cost of connecting states are much more significant. In some domains,
the increase in costs can be polynomial or exponential. An example of such a domain will be
given in a subsequent section.

These two examples demonstrate a very important observation that will be addressed in
the remainder of this thesis. This observation is related to the way in which problem solving
costs increase. Cost increases can be divided into three categories,

136

False Positives – One of the causes for increased problem is the result of ambiguity. Specifically,
in the second example, summarized in Fig. 6.8, the sum of the probabilities of reaching
one of four final states, A, B, M, or O, from h is greater than one! This means that for
some inputs, more than one final state can be reached. By definition, in interpretation
problems, all final states that can be generated must be generated and their utilities
compared in order to determine which is the correct interpretation. Therefore, when
there are multiple competing final interpretations, the work associated with generating
the incorrect, or “false,” interpretations is wasted.

False Negatives – Another cause for increased problem solving costs is the result of semi-
ambiguity, i.e., partial paths that require a non-zero amount of work to eliminate. We
refer to these phenomena as “false negatives” because they are incorrect search paths that
do not lead to complete interpretations of the data. In the examples presented here, the
effects of these false negatives can be seen in the cost vectors in Fig. 6.8. In the vectors
shown, the costs of attempting to generate a path to a particular final state when the
path cannot be generated have increased, especially for state f, over the costs shown in
Fig. 6.5.

Redundancy – One of the more significant causes of increased problem solving costs is that
associated with ambiguity that results in multiple search paths leading to the same final
state. Though not demonstrated explicitly here, these phenomena are similar to the
False Positive category, but they are also applicable to correct solutions. In a redundant
domain, there may be multiple search paths to a correct interpretation. The effect on
the expected cost of problem solving is similar to the effects of False Positives.

6.7 Quantitative Effects of Structural Interaction

The preceding sections formalize the computation of UPC values, based on the component,
credibility, and cost structures of an IDPi grammar. In general, there will be a set of values
associated with each of the basic IDP structures, a set of probability values associated with
the component structure, a set of credibility (or utility) values associated with the credibility
structure, and a set of cost values associated with the cost structure. In certain domains, a given
set of UPC values may be associated with more than a single IDP structure. This phenomenon
is referred to as structural interaction. Thus, structural interaction occurs when the UPC values
for an IDP domain are computed based on the interaction of two or more basic structures. For
example, when the probability values are computed based on the interaction of the component
and credibility structures.

To understand structural interactions, consider the IDP domain structure shown in
Fig. 6.10. This hypergraph is very similar to the one shown in Fig. 3.4, with the notable
exception of the ‘prime’ states. In this example, the prime states correspond to dynamic
pruning operators. (Dynamic pruning operators are discussed at great length in Chapters 4
and 11.) A dynamic pruning operator of the form s� � s has a corresponding interpretation
operator which functions as follows: “given an s, generate an s� if the credibility rating of s is
above a certain threshold, t.” This interpretation constitutes a structural interaction because the
probability of generating an s� is a function not only of the component structure of a domain,
but the credibility structure as well. Specifically, the probability of generating an s� given an s is
a combination of the conditional probability function, P(s� j s), which is determined from the

137

(Signal Data)

B

E' W'

z'y'x'k'j'i'h'g'f'

C' D'

A

f
z'

, g
z'

f
y'

, g
y'f

x'
, g

x'
f
k'

, g
k'f

j'
, g

j'
f
i'
, g

i'
f
h'

, g
h'

f
g'

, g
g'f

f'
, g

f'

f
C'

, g
C'

f
D'

, g
D'

f
E'

, g
E' f

W'
, g

W'

f
B

, g
Bf

A
, g

A

...

f
f
f
, g

f

...

g
f
g
, g

g

...

zyxkjih
f
z
, g

z
f
y
, g

yf
x
, g

x
f
k
, g

k
f
j
, g

jf
i
, g

i
f
h
, g

h

E WC D
f
C

, g
C

f
D

, g
D

f
E

, g
E

f
W

, g
W

B'A'
f
B'

, g
B'

f
A'

, g
A'

dynamic
pruning

operators

Figure 6.10. Example of the Structural Interaction

component structure, and the distribution of the credibility functions of the grammar. Thus,
the component and credibility structures interact.

For example, consider a domain where the pruning threshold is 0 (i.e., no pruning takes
place), and the IDP grammar rules are those shown in Fig. 6.10. In this domain, the probability
of generating an x’ given an x is 1. This is determined from the conditional probability P(x’j
x) which is computed from the component structure of the grammar. Now consider the same
situation with a pruning threshold of t. In this new situation, the probability of generating an
x’ given an x is 1 (the conditional probability of generating an x’ given an x) multiplied by the
probability that the credibility of x is greater than, or equal to, t, or 1 - P(credibility(x) < t).

It is important to note that in domains with structural interactions, the computation of
UPC values must be done dynamically. This is because the UPC values for a state are a
function of the characteristics of a state, such as credibility, that are unknown until the state is
actually created. Therefore, the UPC values cannot be computed a priori. However, it should
be noted that certain computations can be done a priori, as will be discussed in Chapter 5.

138

These computations can be stored and retrieved at run-time to reduce the cost of computing
UPC values dynamically.

6.8 Chapter Summary

The UPC formalism is defined in this chapter. It provides a representation of a search
space that can explain and predict the behavior of a search control mechanism. In the UPC
representation, the traditional concept of a search space state is extended to include vectors
indicating a state’s location in a search space relative to final states in terms of the cost and
probability of reaching the final state and the final state’s expected utility. The UPC formalism
can be thought of as computational structure based on statistical characteristics of IDP models
that can be used to simulate an optimal problem solving strategy based on IDP statistics
and a specification of problem solving operators. Using the UPC representation, we can
construct problem solving systems capable of achieving the levels of performance predicted
by quantitative analysis of IDP domain specifications and the optimal interpretation control
strategy. The optimal interpretation control strategy is defined in Chapter 6.4. This is a
necessary component of an analytical framework because it provides a basis for experimental
control, comparison and evaluation. For example, in the experiments in Chapter 7, the
base-line used in the experimental comparisons is the performance of a problem solver that uses
the optimal interpretation control strategy to evaluation operators. As a consequence, domains
with different structures can be compared using identical evaluation function based control
architectures or these architectures can be varied to compare performance of different problem
solvers within a given domain.

C H A P T E R 7

EXPERIMENTAL VERIFICATION OF THE BASIC FRAMEWORK

To verify the analysis framework presented in the preceding chapters, an IDP/UPC problem
solving testbed was constructed. The basic structure of the testbed is shown in Fig. 5.1.
A domain problem structure is specified in the form of a phrase-structured grammar with
associated distribution, utility (credibility), and cost functions corresponding to each rule of
the grammar. In addition, the problem solver’s model of the problem domain is also specified
as a phrase-structured grammar with associated functions.

The Domain Simulator uses the specification of the problem domain to generate problem
instances. The problem solver uses its model of the problem domain’s structure to interpret
each problem instance. The problem solving actions available are specified as production rules
of the grammar. In addition, each production rule of the grammar has a credibility function
associated with it that is used to generate ratings of intermediate and final problem solving
states.

The objective strategy that constitutes the basic control component of the problem solver
is a simple best-first algorithm that attempts to generate an optimal interpretation based on
equation 6.4.2. In our problem solving system, credibility is calculated dynamically, as defined
in Chapter 6.3, and this calculation is used to determine UPC values. The conditional
probabilities and expected cost components of the UPC vectors are computed a priori.
The domain characteristics that change from run to run are represented with the feature
list convention [Gazdar et al., 1982, Knuth, 1968].

Using this testbed, we have conducted two sets of verification/validation experiments using
the grammars shown in Figures 7.1 and 7.2. The first set of experiments were designed
to verify the basic probability and cost estimation functions from preceding chapters and
used simplifying assumptions about the utility structure of the domain. The second group of
experiments focused on the effects of using incorrect models. In these experiments, the problem
solver’s model of the actual problem domain’s structure is distorted in a variety of ways. The
intent was to investigate the manner in which a problem solver’s performance is affected by a
deviation from an ideal domain theory. The two sets of experiments are summarized in the
next two sections.

7.1 Experiment Set 1

The results of the first set of verification experiments are shown in Table 7.1. The
column labeled “Grammar” indicates the domain and problem solver specification used in the
experiment. E�Cost� indicates the expected cost of problem solving in the domain based on
an analysis of the grammar. “Avg. Cost” shows the actual average cost of problem solving,
for 100 samples (each of 50 problem solving instances), in the domain. The “Sig” column
indicates whether any difference in the Expected Cost and the Average Cost is statistically

140

...
x y z

......
j k

......
h i

... ...
f g

(Signal Data)

A B

C D E W

... ...
q r

M

Y

......
h i

...
r

... ...
f g

...
q

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

S

Figure 7.1. Interpretation Grammar G� with Added Noise and Missing Data Rules

...
x y z

......
j k

...
i

... ...
f g

(Signal Data)

A B

C D E W

...

...
qb r

M

Y

......
h i

...
r

... ...
f g

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

q

...
q

meta-rules
corresponding to

bounding functions

...
h

qb

S

hb

Figure 7.2. Example of Bounding Function Incorporated in a Grammar

significant� based on a t test with a 95% confidence level. In each experiment, the hypotheses
that are tested are H� 	 �cost � E�C� and H� 	 �cost �� E�C� where �cost is the normalized
population mean (each element of the population consisting of 50 problem solving instances),
and E�C� is the analytically predicted normalized population mean�. For experiments labeled
significant, the null hypothesis, H�, is rejected. The last column shows the number of correct
answers that were found.

In these experiments, the grammar employed a credibility structure that simplified the hand
computations used to verify the experimental results. In the simplified structure, productions
corresponding to noise and missing data in the environment had the same credibility as
“correct” interpretations. There was no credibility reduction associated with missing data or
noise. As will be seen, this caused the results of credibility based pruning experiments to
be somewhat disappointing, since the correlation between low-credibility partial results and
correct interpretations was the same for both “correct” partial results and “incorrect” partial

�Note that the calculation of significance does not include any consideration of the percentage of correct
answers found.

�In order to use the t statistic, it is necessary to use variables with normal distributions. The expected cost of a
single problem solving instance in the grammars we test is not distributed normally. However, by the Central Limit
Theorem, we can approximate a normal distribution by defining each element of the population to be 50 problem
solving instances. Thus, each experiment consisted of 100 samples and each sample included 50 problem solving
instances.

141

results. Experiments in the next section will investigate the effects of pruning in domains where
the correlation between low-credibility partial results and “correct” interpretations is lower for
“incorrect” partial interpretations. In these domains, a problem solver can benefit significantly
by pruning low rated data, i.e., the expected cost of problem solving will decrease significantly
but the expected percentage of correct answers does not decrease dramatically.

7.1.1 Experiments 1, 2 and 3

In Experiment 1, every problem solving task, including pruning tasks, was assigned a
constant cost of 10. This value was chosen to simplify the verification process. In general, the
experimental testbed allows tasks to have arbitrarily complex cost functions. Experiment 2 was
similar to Experiment 1 except that bounding functions were added. The bounding functions
also had a cost of 10 and eliminated from consideration paths with expected credibilities less
than 0.5.

In Experiment 2, the use of a bounding function reduced the cost of problem solving,
but it also decreased the number of correct answers found by the system. This is because the
bounding functions eliminated certain paths, which reduced the cost, but some correct paths
as well as some incorrect paths were included in the set of eliminated paths.

In each of the first three experiments, the parameters of the environment grammar,
specifically the distribution functions, were the same as those in the problem solver’s grammar.

7.1.2 Experiments 2 and 3

In Experiments 2 and 3, the bounding functions used were simple “threshold cutoffs.”
If a state had a rating below the threshold, T , the state would not be generated. In these
experiments, the credibility structure of the problem solver’s grammar was identical to that of
the environment grammar used to generate problem instances.

In Experiment 3, the cost of the bounding functions was reduced to 1. This reduced the
cost of problem solving more, but it had no effect on the number of correct answers that were
found. This is because the same paths were pruned in Experiment 3 as in Experiment 2, the
cost reduction was associated with the reduction of the cost of executing a bounding function.

As shown by the percentage of correct answers found in these experiments, the form of
bounding function used in these experiments is probably not appropriate. As was discussed
above, this is because the bounding functions are pruning both “correct” and “incorrect”
interpretations indiscriminately.

7.1.3 Experiments 4 and 5

In Experiments 4 and 5, the problem solver’s grammar was unchanged, but the distribution
parameters in the environment grammar were altered. In Experiments 1, 2, and 3, the
distribution values were always split evenly between all possible alternatives. In Experiments
4 and 5, the distributions were changed to make certain alternatives more likely. In these
experiments, for each grammar rule, the more credible right-hand-side (rhs) was assigned a
distribution value of 0.9 and the other possible RHSs split the remaining 0.1 evenly.

142

Table 7.1. Results of Verification Experiments – Set 1

Exp Generation Interpretation Sig % C
G Dist U E�C� G Dist U Avg. C

1 1 even 0.5 201 1 even 0.5 203 N 100
2 2 even 0.5 189 2 even 0.5 187 N 80
3 3 even 0.5 180 3 even 0.5 181 N 80
4 1 skew 0.5 368 1 even 0.5 369 N 100
5 3 skew 0.5 198 3 even 0.5 198 N 96
6 3 even 0.25 157 3 even 0.5 156 N 50
7 3 even 0.75 194 3 even 0.5 193 N 92

Abbreviations
Exp: Experiment
Generation: Description of IDP Domain Grammar used to generate problem instances.
Interpretation: Description of IDP Interpretation Grammar specifying the problem solver.
G: The IDP grammar used;

1: G�

2: G� and bounding functions with cost 10,
3: G� and bounding functions with cost 1,

Dist: Distribution of Domain Events;
even: domain events evenly distributed
skew: distribution skewed to more credible events,

U ; expected problem instance credibility;
0.5: problem instances have expected credibility 0.5
0.25: problem instances have expected credibility 0.25
0.75: problem instances have expected credibility 0.75

E�C�: Expected Cost of problem solving for given grammar
Avg. C: actual average cost for 100 samples of 50 random problem instances each
Sig: Whether or not the difference between expected cost and

the actual average cost was statistically significant
Y: yes, there is a statistically significant difference
N: no, there is not a statistically significant difference

% C: percentage of correct answers found

143

7.1.4 Experiments 6 and 7

In Experiments 6 and 7, the distribution functions used by the environment grammar and
problem solver’s grammar were identical, but the credibility generation functions differed. In
the previous experiments, the credibility generation functions were based on a random function
that produced an “average normalized credibility” of ��. The bounding function used would
prune a state “q” or “h” with a rating less than ���.

In Experiments 6 and 7, the same bounding functions were used, but the credibility
generation functions were changed in the environment grammar. In Experiment 6, the
credibility function was altered to generate “average normalized credibilities” of ���. In
Experiment 7, they generated “average normalized credibilities” of ���.

In Experiment 6, this lead to lower average problem solving costs, compared with
experiment 3, as many paths were pruned, and fewer correct answers, as many of the pruned
paths were actually correct paths. This was consistent with expectations. By lowering the
expected credibility of partial results and by retaining the same bounding threshold, many
more paths are pruned. Again, since the problem solver cannot differentiate between “correct”
and “incorrect” partial interpretations based on their credibilities, the pruned paths included
large numbers of both “correct” and “incorrect” paths. This resulted in the shown reduction
in correct answers found.

In Experiment 7, the opposite was true. Problem solving costs increased, compared with
experiment 3, as fewer paths were pruned, but fewer correct paths were pruned and the
percentage of correct answers increased.

7.2 Experiment Set 2

In this set of experiments, the simple credibility function used in the first set of experiments
was replaced with more intuitively correct credibility functions. Using these credibility
functions, productions from the grammar associated with noise and missing data generate
lower credibilities than those generated by “correct” productions. This change had a significant
effect on the experimental results, as shown in Table 7.2.

All of these experiments were based on an expected credibility of 0.5 and a bounding
function with an a priori threshold of 0.33. Thus, certain partial results with credibilities lower
than 0.33 are pruned.

In contrast to the first set of experiments, in this set of experiments, the correlation between
a partial interpretation with a low credibility and a correct solution is much lower for “incorrect”
partial results than for “correct” partial results. This is reflected in the results in the general
improvement in overall problem solving performance, i.e., the expected cost of problem solving
decreases and the percentage of correct answers increases.

In Experiment Set 2, Experiments 8, 9, and 10 are the baselines that other experimental
results are compared with. Specifically, Experiments 9 - 17 can be compared with Experiment
8 to observe the effects of altering the distribution functions used by the problem solver so
that they are different from those used to generate problem instances and of altering credibility
functions in a similar fashion. Experiments 9 and 10 show only the effects of altering the
distribution functions. Experiments 11 and 12 are restricted to demonstrating the effects of
altering the credibility functions used by a problem solver.

To best judge the effect of modifications to the distribution functions or the credibility func-
tions, Experiments 13, 14, and 17 should be similarly compared with the baseline established in

144

Experiment 9. These experiments all use the same grammar, but different credibility functions.
The credibility functions used in Experiment 9 are correct and Experiments 13 and 14 show
the effects of using incorrect credibility functions that either overestimate or underestimate
the credibility of results generated with noise and missing data rules. In Experiment 17, the
credibility functions used are simply “bad.” They rate some partial results too high, and
some too low. Experiments 15 and 16 should be compared with the baseline established in
Experiment 10.

7.2.1 Experiment 8

Experiment 8 serves as the baseline for the second set of experiments. In this experiment,
the problem solver’s model of the domain structure is exactly the same as that used to generate
problem instances. The bounding functions used still prune some correct paths, but not as
many as in the first set of experiments.

7.2.2 Experiment 9

In this experiment, the distribution of noise and missing data in the domain was increased,
but the model used by the problem solver was not changed. The increase in noise caused a
small increase in the cost of problem solving when compared with Experiment 8. Also, more
correct paths were mistakenly pruned. This was due to the fact that increasing the distribution
of noise and missing data decreased the number of higher rated correct problem instances.
Consequently, more correct paths had lower ratings and were mistakenly pruned.

7.2.3 Experiment 10

The distribution of noise and missing data in the domain was decreased, and again the
model used by the problem solver was not changed. There was a slight increase in the cost
of problem solving related to fewer paths being pruned, but there was also a decrease in cost
associated with fewer and less expensive incorrect paths, especially those associated with noise.
These two effects canceled each other out and the difference between the cost of problem
solving in this experiment and the cost from Experiment 8 was small. There was an increase
in the percentage of correct answers found. This resulted from fewer paths being pruned. i.e.,
given that there was less noise and missing data, fewer “bad paths” were explored. This lead
to a reduction in the cost of problem solving and an increase in the number of correct answers
found.

7.2.4 Experiment 11

The problem solver’s model of the distribution of domain events was the same as that used
to generate problem instances, but the problem solver’s model of credibility rated partial results
generated from missing data lower than it should have. The effects of this were beneficial. In
a sense, the problem solver rated “bad” data lower than it should have. The effect was that the
problem solver pruned the bad data more often and reduced the overall cost of problem solving
compared to Experiment 8. Unfortunately, the problem solver also rated some “good” data
lower than it should have, and it pruned this as well, resulting in fewer correct answers found.

145

Table 7.2. Results of Verification Experiments – Set 2

Exp Generation Interpretation Sig % C
G Dist U E�C� G Dist U Avg. C

8 3 even 0.5 191 3 even 0.5 190 N 96
9 3 skew1 0.5 195 3 even 0.5 195 N 91
10 3 skew2 0.5 189 3 even 0.5 190 N 98
11 3 even 0.5 179 3 even low 179 N 94
12 3 even 0.5 203 3 even high 202 N 98
13 3 skew1 0.5 191 3 even low 191 N 88
14 3 skew1 0.5 209 3 even high 210 N 98
15 3 skew2 0.5 185 3 even low 185 N 95
16 3 skew2 0.5 198 3 even high 199 N 98
17 3 skew1 0.5 203 3 even bad 202 N 92

Abbreviations
Exp: Experiment
G: The problem solving grammar used;

1: G�

2: G� and bounding functions with cost 10,
3: G� and bounding functions with cost 1,

Dist: Distribution of Domain Events;
even: domain events evenly distributed
skew1: distribution skewed to more noise and missing data
skew2: distribution skewed to less noise and missing data

U ; expected problem instance credibility;
0.5: problem instances have expected credibility 0.5
low: problem solver rates “bad data” lower
high: problem solver rates “bad data” higher
bad: problem solver rates some “bad data” higher, and some
“good data” lower

E�C�: Expected Cost of problem solving for given grammar
Avg. C: actual average cost for 100 samples of 50 random problem instances each
Sig: Whether or not the difference between expected cost and

the actual average cost was statistically significant
Y: yes, there is a statistically significant difference
N: no, there is not a statistically significant difference

% Correct: percentage of correct answers found

146

7.2.5 Experiment 12

Again, the problem solver’s model of the distribution of domain events was the same as that
used to generate problem instances, but the problem solver’s model of credibility rated partial
results generated from missing data higher than it should have. This resulted in the problem
solver pruning fewer partial results, both “correct” and “incorrect.” Consequently, the cost of
problem solving is higher than in Experiment 8.

7.2.6 Experiment 13

In this experiment, the problem solver’s model of the distribution of domain events and
credibility are both incorrect. The domain actually generates more missing data and noise
than the problem solver expects, and the problem solver rates intermediate results based on
the missing data too low. The cost of problem solving increases slightly because there is more
noise to process, but because some intermediate results are rated lower, more pruning occurs.
The net effect on cost is insignificant when compared with Experiment 8. However, when
compared with Experiment 9, which is a more appropriate baseline, the cost of problem solving
here is lower. This is because both 9 and 13 generate more noise and missing data than 8, but
in 13, the noise and missing data is pruned more often. The pruning, however, is often of
“correct” partial results, and the number of correct answers decreases when compared to both
Experiments 8 and 9.

7.2.7 Experiment 14

In this experiment, the domain actually generates more missing data and noise than the
problem solver expects, and the problem solver rates intermediate results based on the missing
data too high. The result is an increase in cost compared with both Experiments 8 and 9.
There is a greater amount of expensive noise to process, and the problem solver prunes fewer
intermediate results. However, fewer correct paths are pruned resulting in a higher success rate.

7.2.8 Experiment 15

The domain generates less noise and missing data than expected, and the problem solver
rates partial results based on missing data lower than it should. This results in a decrease in
the cost of problem solving when compared with either Experiment 8 or the more appropriate
baseline, Experiment 10. More correct results are pruned resulting in a lower number of correct
answers being found. The difference is greater when compared with 10 than with 8.

7.2.9 Experiment 16

The domain generates less noise and missing data than expected, and the problem solver
rates partial results based on missing data higher than it should. This results in a slight decrease
in the cost of problem solving resulting from less noise to process, but fewer paths are pruned
and the net effect is an increase in the cost of problem solving. The increase is significant when
compared with either experiment 8 or 10. However, since fewer paths are pruned, the number
of correct answers increases.

147

7.2.10 Experiment 17

In this last experiment, the domain generates more noise and missing data than expected,
and it rates partial results based on noise higher than it should. In addition, the problem solver
rates correct partial interpretations lower than it should. As a consequence, the cost of problem
solving increases due to the increase in the amount of noise that must be processed and fewer
correct answers are found, as more correct paths are pruned.

7.3 Chapter Summary

Of the preceding experiments, 17 is probably the most realistic. The results from
experiments 8 through 16 are generally consistent with the results from experiments 1 through
7. However, experiments 12 through 16 are more representative of real world domains where
a problem solver’s model of a domain’s structure is slightly off both in terms of modeling the
distribution of noise and missing data and in terms of modeling the distribution of credibility.

These domains are all unrealistic in the sense that all rules of a particular type were treated
the same. For instance, if one missing data rule was set to generate credibility that was too high,
then they all were set to generate credibility that was too high. In real domains, it is probably
the case that some rules overestimate the correct credibility ratings and some underestimate.
The same can be said for a problem solver’s model of distribution of missing data and noise.

Experiment 17 is more realistic in the sense that we expect the inaccuracies in a problem
solver’s model of a domain to both increase the cost of problem solving and to decrease the
number of correct answers produced.

These experiments are somewhat limited by the grammar used. The grammar used in
experiments 1 through 17 was chosen to preserve consistency with previous chapters of the
thesis. It should be remembered, however, that this is a simple grammar that does not represent
the full effects of noise and missing data, not to mention distortion effects.

More generally, these experiments statistically verify that the closed form equations used
to determine expected costs analytically are correct. The experiments also show that when
the domain model is manipulated in various ways, the IDP/UPC analysis results conform to
intuitive expectations.

C H A P T E R 8

EXTENDING THE UPC FORMALISM

This section presents an extension to the UPC formalism that will model the abstract and
approximate reasoning strategies in interpretation problems. These modeling techniques will
be particularly useful for formulating meta-operators used in IDPs (defined in Chapter 4.4)
as part of a search problem. This will include meta-operators used implicitly by the control
component. The emphasis of this section will be on defining the extensions. Subsequent
chapters will discuss the implications these extensions have for problem solving strategies.

It is important to stress that the IDP formalism and the UPC formalism are independent
methods for formalizing the character of a problem domain. In the IDP/UPC framework,
the two formalisms are linked because the IDP formalism is used to generate UPC values. In
general, this does not have to be the case. The IDP formalism can be used to analyze problem
domains independent of the use of the UPC formalism and vice-versa. For other domains, it
may not be as easy to represent base-level and meta-level operators in a unified representation
as has been done with interpretation domains in this thesis.

In extended UPC models, the problem solver has the option to project the base search
space to a new, abstract search space where it can efficiently solve a simplified version of the
problem. However, it is possible that the solution found in the projected space may not be
of an acceptable form, so it is mapped back to the base search space. In general, this method
will improve the overall efficiency of problem solving if, as a result of mapping the solution (or
partial result) from a projected space back to the base space, problem solving in the base space
is constrained in some way. For example, a partial result from a projected space can provide a
more global perspective that can be used by problem solving activities in the base search space.

The extension to the UPC formalism is represented in Fig. 8.1. In the implied paradigm,
the problem solver has the option to project the base space and conduct processing in the
abstract space, mapping results back to the base search space.

Chapter 8.1 presents background material regarding the development and use of projection
spaces. Chapter 8.2 presents a formal definition of projection space extensions to UPC models.

8.1 Related Research

The effort to formally incorporate notions of projected or abstracted search spaces into the
traditional model is based on Approximate Processing concepts described in [Erman et al., 1980,
Lesser and Pavlin, 1988, Lesser et al., 1988b, Decker et al., 1990] and on goal processing
concepts described in [Lesser et al., 1989b]. Approximate processing is based on exploiting
the structure of a search space to form abstractions of the space with well understood effects.
A problem solver capable of exploiting approximate processing has access to “simplified”
operators that it can use to search the abstracted version of a given search space. The results
of searching the abstract space can be mapped back to the original space and used to enhance
problem solving in that space. Experiments with approximate processing [Lesser et al., 1988b,

149

Base Search Space Base Search Space

Search Space
Projectioni

Search Space
Projectionj

Problem
Solving

Projection
Filter

Mapping to Base State: upc values of
base space states are updated to reflect
information from projection space(s)

Problem
Solving

Figure 8.1. The Search Paradigm Implied by the Extended UPC Formalism

Decker et al., 1990] showed that significant efficiencies can be gained with careful exploitation
of approximate processing mechanisms.

This paradigm can be viewed as a form of hierarchical problem solving, such as that
discussed by Newell [Newell et al., 1962], Minsky [Minsky, 1963], and Knoblock [Knoblock,
1991b].

8.2 Formalizing Projection Spaces

The extended UPC formalism is intended to explicitly represent characteristics of search
spaces that are used implicitly in control architectures. Specifically, the new formalism explicitly
represents problem structures defined by subproblem relationships in a way that enables a
problem solver to exploit them. (For IDPs, the structures that will be exploited by abstract
processing are defined in Chapter 4.4.) The new characterization of a search problem is based
on the four-tuple � S��� ��� �, where;

S = the start state; S is defined by the input data to the problem solver and the initial values
of any relevant CVs.

� = the base search space with associated CVs and operators. � corresponds to the traditional
notion of a search space. It is defined by CVs that specify the characteristics of individual
states (including the UPC vectors), operators that map one state to another, and functions
of CVs that define final states. In terms of an IDP, � is defined by the interpretation
grammar.

� = a set of projections, or abstractions, of the base search space, each with their associated CVs
and operators. Final states are those from the base space that can be reached via mapping

150

operators. A given search space projection�i is defined by two sets of operators,OP���	i�
and OP�	i�	i�. OP���	i� is the set of operators that map states from � to states in �i.
OP�	i�	i� is the set of operators that map states in �i to other states in �i. As with �,
each state in a projected search space is characterized by a set of CVs including a set of
UPC vectors.

An appropriate metaphor for a projection of a search space is that it is transformed by
“projecting” it through a filter defined by the set of operators OP���	i�. The result is
a blurring of the original space into a simpler, less clearly defined search space. With a
well designed filter, states with similar properties will be merged into abstract states and
relationships among states will cause sought after states to become more apparent and
states with undesirable properties to be eliminated entirely.

Ideally, the results of projection will be a space that is several orders of magnitude less
costly to search and that can be mapped back to the original space in a way that reduces
problem solving costs. The strategy then is to find a solution (or partial solution) in the
projected search space and to somehow use this solution as a guide to problem solving in
�. If the cost of finding a solution in a projected search space is less than the cost saved,
then the strategy is beneficial.

� = a set of mapping functions from projection spaces back to the base search space. The
objective of problem solving in an abstract projection space is the generation of constraints
that can somehow be used to restrict problem solving in the base search space. Functions
in � can be thought of as the mechanisms that map constraints from an abstract space,
�i, back to the base search space, �. This can be done by creating new states in �, or by
modifying existing states. A taxonomy of mapping strategies is defined in Appendix B.

Given these definitions of � S��� ��� �, the UPC formalism can now be represented
as shown in Fig. 8.2. Figure 8.2.a summarizes the representation of a state. A state in the
search space is defined by a set of CV s, where each CVi is a characteristic variable with a
corresponding attribute value. In addition, each state has a set of UPC vectors corresponding
to each operator available to extend the state. It is important to note that, even though UPC
vectors only include information corresponding to paths to final states in the base space with
non-zero utility, the UPC vectors of a state will include information corresponding to all paths,
even paths that traverse one or more projection spaces, extending from the state. The UPC
representation will unify the base search space and all relevant projection spaces.

Figure 8.2.b is a representation of how the state of the problem solver, SPS , is defined in the
UPC formalism. In essence, SPS solver is defined by the status of problem solving in the base
search space, �, and all the projection spaces, �i.

8.3 Projection Space Example

Figure 8.3 shows a version of grammar G� with noise and missing data and Fig. 8.4 shows
meta-operator additions to G�. In the problem instance defined by these grammar rules, S is
the set of raw input data from sensors and � is defined by the rules of G� shown in Fig. 8.3.
There is a single projection space, ��, and it is defined by OP���	�� � fop��� op��� op��� op��g
and OP�	��	�� � fop��� op��g. The operators corresponding to rules 32, 33, 34, and 35 of G�

project the base space to an abstract space and rules 30 and 31 map states in the projection space
to other states in the projection space. The set� � fop�	� op�
g. The operators corresponding

151

UPC Summary

CV :1 <attribute>

CV :2

......

CV :x

1

OP :y

...

OP :2

OP : U ,P ,C1 1 1

U ,P ,C2 2 2

U ,P ,Cy y y

...

Extended State representation:
operators applicable to each state are
represented with the corresponding
Utility, Probability, and Cost vectors.

Each vector entry consists of a
measure of the expected value and a
measure of the variance.

SPS

Problem Solver's
internal state

Expected values and variances are
determined from IDP's cost and credibility
functions. (In interpretation problems,
credibility = utility.)

...

Projection
Search Spaces

Base Search
Space, Ω

Sn

<attribute>

<attribute>

base
operators

projection
operators, ω

meta-operators, ω

mapping
operators, Φ

0

a.

b.

Figure 8.2. Overview of Extensions to the UPC Formalism

152

1. A → CD

3.0 C → fg

5.0 D → hi

7. f → (signal data)

9. g → (signal data)

11. h → (signal data)

13. i → (signal data)

2. B → DEW

4. E → jk

6.0 W → xyz

8. j → (signal data)

10. k → (signal data)

12. x → (signal data)

14. y → (signal data)

15. z → (signal data)

Interpretation Grammar G' with noise and missing data rules

17.0 Y → qr

16. M → Y

3.1. C → fgq

5.1. D → rhi

19. Z → xy

18. N → Z

6.1. W → xy

20. O → X
21.1. X → fgh

21.2. X → fg

17.1 Y → qhri

Figure 8.3. G� Noise and Missing Data Rules

D

...
x

...
k

...
h

...

g

(Signal Data)

A' B'

hCg
Ek Wx

30. A' → CgDh

31. B' → DhEkWx

32. Cg → g
33. Dh → h
34. Ek → k
35. Wx → x

A B28. A→ A'

29. B→ B'

Figure 8.4. Meta-Operators for Grammar G�

to rules 28 and 29 map the results of problem solving in the projection space back to the base
space.

The UPC values for abstract states are calculated in the same manner as the calculation of
UPC values for base space states. Figure 8.4 shows meta-operator additions to the grammar G�

that will be used in an example to illustrate this. UPC values for abstract state Dh are shown
in Fig. 8.5.

The conditional probability of A given Dh is, from Definition 6.3.13,

P �A j Dh� �
P �A
Dh�

P �Dh�
� (8.1)

P �A� Dh� � P �O � Dh�

���
� (8.2)

153

uDh��� � ��A� pDh��� � ���A� cDh��� � ���� ��A�
uDh��� � ��B� pDh��� � �����B� cDh��� � ����� ��B�

Figure 8.5. UPC Vectors for Abstract State D

���

���
� ��� (8.3)

A is ambiguous with O, so

P �A
Dh� � P �A� Dh � P �O � Dh��� (8.4)

P �A� Dh� � P �A� � � � ���� (8.5)

P �O � Dh� � P �O� � �� � ���� (8.6)

Furthermore, P �Dh� � P �h� � ���� This is from the observation that the only element on
the RHS of Dh is h, so

P �Dh j h� � �� P �Dh� � P �h�� (8.7)

The expected cost of a path to A� from Dh is 3. This assumes that each of the operators
shown in Fig. 8.4 has cost 1. The expected cost of a path from A� to A is the expected cost of
a generating an A minus the expected costs of g and h, or 6. Thus,

cDh������ �� � �� (8.8)

The expected cost of a failed attempt to generate an A is always 1. When the problem
solver attempts to extend Dh , it first tries to generate a path to A� including a g. The cost of
failing to generate a g is 1, and, when g fails, the problem solver immediately ceases its attempt
to generate a path from Dh to A.

The expected cost of attempting to generate a path fromDh to A is, from Definition 6.3.16,

pDh��� � � � ��� pDh���� � � � �� � � � �� � � (8.9)

The UPC values for a path from Dh to B are calculated in a similar manner and are shown
in Fig. 8.5. Given these values, the expected cost of attempting to generate a path from Dh to
B is

pDh��� � �� � ��� pDh���� � � � ���� � �� � ���� � � � ����� (8.10)

It is important to note that the addition of meta-operators also changes the UPC vectors
for state h. (There are no meta-operators defined that are applicable to state f, so its UPC values
do not change.) These changes, shown in Fig. 8.6, reflect the paths from h through the abstract
states A

�

and B
�

to final states A and B. However, these additions to h’s UPC vectors do not
increase the cost of connecting h. This is because the cost of connecting a base space state is
defined in terms of the costs of generating base space paths. Therefore, the addition of potential
paths in projection spaces are not included in the calculation for the cost of connecting a state.

It is also important to note that the addition of potential paths in projection spaces can
reduce the cost of connecting a state. This is a very important point and it will be discussed in
more detail in the next section.

154

uh�� � ��A� �B� ph�� � �����A� ����B� ch�� � ���� ��A� ���� ��B�
uh��� � ��M� ph��� � ����M � ch��� � ��� ��M �
uh��� � ��O� ph��� � ���O� ch��� � ���� ��O�
uh��� � ��A� �B� ph��� � ���A� ����B� ch��� � ����� ��A���� ��B�

Figure 8.6. UPC Vectors for State h Given Meta-Operator Extensions

8.4 Chapter Summary

The IDP/UPC framework extends the traditional notion of a search space to incorporate
abstract and approximate states, and the operators that create, modify, and exploit them, in
a unified representation including traditional forms of search-based problem solving. This
chapter introduces and defines the concepts of projection spaces and projecting and mapping
operators. Projection spaces are abstractions of a base search space in which an approximate,
(hopefully) less costly version of a problem can be solved. Projection spaces are defined by
special meta-level, projecting operators, and the results of problem solving in these spaces are
propagated back to the base space by mapping operators. By defining projection spaces and
the associated projecting operators, approximate/abstract operators, and mapping operators in
terms of the as extensions of the base space, an integrated perspective of both domain and meta-
level processing. This supports the analysis of problem solvers that use sophisticated control
mechanisms to function incrementally and simultaneously in a continuum of abstraction spaces.

C H A P T E R 9

POTENTIAL - THE BASIS FOR SOPHISTICATED CONTROL

As described in Chapter 6.4, an implicit (or in some cases explicit) objective of every
interpretation problem solver is optimal processing. However, based on the definition of
interpretation problem solving from Chapter 3, it might seem as if there is little an interpretation
problem solver can do to enhance its efficiency. The reason for this is that interpretation problem
solvers must, by definition, explore every possible solution path (i.e., connect the base space) in
order to determine a solution. Recall that in Chapter 3 interpretation problems were defined
as discrete optimization problems where a problem solver has to identify the “best” element
of a set of interpretations, S. It is not sufficient for the problem solver to determine a single
interpretation; the problem solver must consider all possible solutions and determine which is
the “best.” Given this requirement, the costs of problem solving appear to be dependent solely
on characteristics of the domain such as its size, the cost of operator applications, etc., and are
beyond the influence of the problem solver.

Fortunately, for many domains, control architectures can be formulated that do not require
exhaustive enumeration of every search path in the base space and that enable an interpretation
problem solver to connect every state in � very efficiently. These architectures use implicit
enumeration actions that prune paths based on the structure of the search space without fully
extending the paths. The IDP/UPC framework supports the analysis of a class of implicit
enumeration strategies for interpretation problems that we defined as sophisticated control
architectures. In Chapter 4, we demonstrated this analysis for a simple pruning algorithm.

In Chapter 6.4, Equations 6.4.4 and 6.4.1 defined the basis for making optimal control
decisions from a local perspective. These equations specify that, from a local perspective,
optimal processing is achieved when the operator chosen for execution maximizes the ratio
c�opi��cost�opi�where c�opi� is the degree to which opi reduces the expected cost of connecting
all open states, and cost�opi� is the cost of executing opi.

As discussed in Chapter 6.4.2, in many cases, the locally optimal control decision will not
result in globally optimal problem solving. This occurs in situations where an operator on a
search path does more than simply expand a state and extend a search path – where the operator
actually increases the information available to a problem solver regarding the interrelationships
between partial solutions. i.e., the operator increases the understanding of a partial solution’s
global significance. In these situations, the operator does not have to actually extend a search
path in order to move the problem solver closer to termination, rather, the operator may
alter the search space in some way that reduces the cost of problem solving (or increases the
effectiveness of problem solving efforts) for some other set of operators. We will refer to this
property of an operator as its potential.

The example used to demonstrate the problems associated with locally optimal control
decisions is reproduced in Fig. 9.1. In this example, opy alters the search space in some way to
make it less costly to execute a series of operators that generate final state F. In addition, the
dotted lines extending from F in Fig. 9.1 indicate operators that map the results of generating

156

n
1

n
2

n
3

F
op

i op
j

op
k

cost(op
i
) = 5 cost(op

k
) = 5cost(opj) = 5

Path 1, total cost = 15

n
1
' n

2
' n

3
'

op
i

op
j

op
k

cost(op
i
) = 1

cost(op
k

) = 1

cost(opj) = 1

n
a

cost(op
y

) = 1

op
y

S

Path 2, total cost = 4

λ

λ

c(op
i
) = 10

c(op
y

) = 1

c(opj) = 10 c(op
k

) = 10

c(opj) = 1c(op
i
) = 1

cost(op
i
) = cost of operator i c(op

i
) = amount by which operator i

reduces C, the distance to termination

m
1

cost(m
1

) = 1

states affected by mapping operatorm
i
 = mapping operators

Figure 9.1. Example of the Non-local Effects of an Operator Application

F back to other search states and reduce the subsequent cost of problem solving. For example,
the mapping operations may eliminate redundant activities. This could be implemented by
mapping operators that are applied to state F that eliminate from consideration operators that
generate paths solely to final states that are identical to F. Given these mapping operators, it
now becomes feasible to overcome problems associated with locally optimal control decisions
by taking into consideration the long-term implications of an operator. In this specific instance,
opy is superior to opi because the long-term effects of its execution will be to generate final
state F at a lower-cost and this will lead to the execution of a mapping operator that will prune
redundant paths, including the path that begins with opi. In such a situation, a problem
solver must have some way of quantifying the effects of applying opy that reflects the long-term
benefits, i.e., the potential, of the operator.

The concept of potential is a critical element of the IDP/UPC analysis framework. It takes
into account the changes in the UPC representation of base space states that occur as a result of
the added information provided by an operator or a sequence of operator applications. Thus,
potential is a mechanism that allows us to understand the interrelationships that exist between
the current set of states (i.e., the search paths that have been created so far) and the states that
can be derived from them. This includes an understanding of the long-term effects of an action.
Potential relates to operations at all levels of processing, i.e., base space and projection space, but
it is of particular importance to meta-operators that use abstractions or approximations. This is
because potential can be used to address the question of how to evaluate the contribution made
by meta-operators in terms that are consistent with the evaluation of problem solving actions
that directly connect states in the base space. In general, meta-operators are not associated with

157

effects that can be quantified in the same way as the effects of base space operators. The effects
of meta-operators are related more to long-term reductions in problem solving cost or increases
in solution quality. Although a meta-operator may have no immediate effect on any base space
search paths, which might appear to make it an undesirable choice of action, it may have a
very significant long-term effect that reduces the expected cost of problem solving dramatically,
making it a very good choice of action. In contrast, base space operators can be thought of as
explicit enumeration mechanisms and they are associated with immediate effects resulting in
the extension of base space search paths that can be easily quantified.

Formally,
Definition 9.0.1 Potential of operator opi applied to state sn, Pot�opi� sn� = FTN�S� �P �S� j
sn�, Potential�S��, costg�S�� sn�, costm�S���, whereFTN is a function that is described below,
each element S� is a state that can be reached from sn that increases the information available to a
problem solver regarding the interrelationships between partial solutions (i.e., a state with potential),
P �S � j sn� is the probability of generating S� given sn, Potential�S�� is a measure of the degree
to which S� reduces the cost of problem solving, costg�S�� sn� is the expected cost of generating S�

given sn, and costm�S�� is the cost of realizing Potential�S��, i.e., the cost of mapping S� back
to the base space.

It is important to point out that this definition of potential is based solely on the
characteristics of sn and the statistical properties of the domain calculated from the IDP
definition. It does not take into account the existence, or absence, of any other states. In order
to account for other states, you have to create abstract states in a projection space that represent
the relationship between the states. Thus, all non-local implications must be calculated using
meta-level actions to find relationships between base level states. Once this is accomplished,
this equation will take any state relationships into account.

FTN�S�, the general computation of Pot�opi� sn�, is �P �S� j sn� � �Potential�S�� �
costg�S�� sn��costm�S����. This is for situations where the cardinality ofS� is 1. For situations
where an operator, opi, represents the first step on paths to multiple S�i, the computation is
more complicated. In these situations, the function FTN determines Pot�opi� sn� based on
the relationships between the states S�i. These relationships are defined in terms of the paths
from sn to the states S�i (i.e., the costs costg�S�� sn�) and the set of states that are affected when
the potential of the states S�i is mapped back to the base space. Figure 9.2 depicts the possible
relationships between states S�i in terms of search space paths and base space states.

Intuitively, it is easy to think of the benefits of potential as being cumulative. If this were
true, the distance to termination should be reduced by the sum of the potential, Potential�S�i�,
of all states S�i. However, Fig. 9.2 shows a situation where this is not correct. Specifically, when
the sets of states affected by the mapping functions that propagate the potential of the states,
S�i, back to the base space interact, some of the benefits of the potential might overlap or be
redundant. In this case, summing the potential of the states, S�i, would give an overestimate of
the expected benefits.

Similarly, it is easy to develop an intuitive perspective of the costs of generating the states,
S�i, as a sum. However, Fig. 9.2 shows situations where this is not correct. When the paths
to the states, S�i, interact or overlap, summing results in an overestimate of the costs and an
underestimate of the benefits of the potential associated with the states, S�i.

The general formulas for calculating the expected costs of reaching states with potential,
Si, and the effects of mapping the potential back to the base space, are:

158

paths from sn to Si'

Independent

Partially Interacting

Completely Interacting

sn

S1'

S2'

sn

S1'

S2'

base space states affected by mapping Si'

sn

S1' S2'

Independent

Partially Interacting

Completely Interacting

S1' S2'

S1' S2'

S1' S2'

sets of states from the base-space

Figure 9.2. Relationships Between States with Potential

Definition 9.0.2 Expected cost of generating states, Si = costg�S��� sn�+costg�S
�
�� sn� + � � � +

costg�S
�
m� sn� - cost��S��� S

�
�� � � � S

�
m� sn�, wherem is the number of states, Si, and cost��S�i� S

�
j� � � � � sn�

is the intersection of the paths from sn to the states S�i� S
�
j� � � �. In other words, the expected costs

are summed, then all possible interactions are computed and subtracted from this cost. In situations
where the states, Si are independent, the intersection terms are all 0 and this simplifies to the sum of
the costs. In situations where the paths to the states are completely interacting, this simplifies to the
maximum cost path.

Definition 9.0.3 Expected benefits of mapping potential from states Si back to base space =
Potential�S��� + Potential�S��� + � � � + Potential�S�m� - potential��S��� S

�
�� � � � S

�
m�, where

m is the number of states, Si, and potential��S�i� S
�
j � � � �� is the intersection of the expected potential

derived from mapping the states S�i� S
�
j� � � � back to the base space. In other words, the expected

benefits of the potential of the states, S�i are summed, then all possible interactions are computed
and subtracted from this cost. In situations where the states, Si are independent, this is the sum of
the potentials. In situations where the sets of base space states are completely interacting, this is the
maximum of the Potential�S�i�.

In general, the costs costm�S �i� of mapping the potential of states back to the base space
must be treated in a manner similar to that discussed above.

159

In the experiments in the following chapters, the paths to states with potential are all
independent, so their costs are summed, and the sets of states affected by mapping functions
are all completely interacting, so the maximum potential is used.

The following definition will be used in discussions of potential.

Definition 9.0.4 Distance to Termination, C - The expected amount of processing an interpretation
problem solver must perform before an answer is determined. More formally, C is the sum of the
expected costs of connecting all open states in �.

For operator opi, Pot�opi� sn� represents the degree to which it reduces C by altering the
nature of a search space SPS exclusive of extending any search paths. We will give an example
of calculating Pot�opi� sn� in Chapter 9.3. costm�S�� represents the cost of mapping operators
that would be used to realize the potential of an abstract state in a projection space. This cost
is also associated with actions in the base space, such as bounding operators, that are also used
to realize Pot�opi� sn�.

Given the definitions of Pot�opi� sn� and C , all potential operators can be judged based
on their expected impact on the distance to termination. Each potential operator will extend
one or more paths� by an expected amount and the “value” of an operator can be determined
by the degree to which this amount reduces the distance to termination. Figure 9.3 illustrates
the computation of distance to termination.

A problem solver’s distance to termination can be determined by summing, for each
intermediate state not fully expanded, the expected cost of extending paths to all potential final
states that can be reached from the intermediate state. In addition, the computation of distance
to termination must factor in some notion of the potential of available courses of action.

The potential associated with a path is based on the subsequent availability of a mapping
operator capable of recognizing and exploiting the emerging structure of the problem instance.
For example, by modifying the UPC values of the base space. (An example will be presented in
the next section and a taxonomy of mapping operators is defined in Appendix B.) Intuitively,
the process of recognizing an emerging problem structure is analogous to viewing the search
space from a high vantage point where it is possible to discern general features of the problem
space that can be used to guide and improve the efficiency of problem solving efforts. In
effect, this extends the representation of a search space to a three dimensional space where the
topology of a search space is defined by potential.

The relationship between potential and the distance to termination is illustrated in Fig. 9.4.
In this figure,C represents the expected cost of problem solving, i.e., the distance to termination.
C � represents the cost of problem solving in a new search space, one created by the application
of operator opi. If opi does not alter the properties of the search space SPS in any appreciable
way, then C � C � � cost�opi�. In other words, the only difference between the two search
spaces SPS and S�PS (which is the result of applying opi to SPS is that paths associated with
opi have been extended. If opi does alter the properties of the search space SPS in a way such
that C � C � � cost�opi�, then the difference is what we refer to as potential.

As an example, consider a domain with bounding functions that are not based on a
predetermined threshold, but that are based on the results of problem solving. If, for example,
the domain uses the credibility of any full interpretations it derives to prune paths during

�In more complex grammars, for example, those that include noise (which is defined in Chapter 4.1.2), it is
possible for a single operator execution to extend multiple paths from a state.

160

Termination

PS

internal state

distance to termination
(cost of termination)

∑
open
states

∀(potential final state, expected-cost(potential final state))

open states

Computation of distance to termination:

Figure 9.3. Representation of a Problem Solver’s Distance to Termination

subsequent search, the creation of a full interpretation alters the nature of the search space in
a significant way. In essence, the creation of a full interpretation that is used to prune other
potential search operations transforms the existing search space, SPS , into a new search space,
S�PS that is (hopefully!) less costly to search.

9.1 Calculating Potential

As discussed in the previous section, the potential of a state, Potential�S��, is based on
the degree to which the existence of S� reduces the expected cost of problem solving. This can
be formalized as:

Definition 9.1.1 Potential of a state, S � Potential�S�� � Csn�t � CS��t��sn�t� where Csn�t

represents the expected cost of problem solving given the existence of state sn at time t, CS��t��sn�t

represents the expected cost of problem solving given the existence of state sn at time t and state S� at
time t� and where t � t�.

This definition distinguishes between Csn�t and E�C�. This distinction is necessary
because the existence of sn may imply a great deal about the nature of a search space. For
example, consider the situation shown in Fig. 9.5. The figure illustrates two different sets of
interpretation trees, one which includes the terminals xi and one which includes the terminals
yi. The interpretations that include an xi do not include a yi, and vice-versa. Assume that a
given problem instance is equally likely to involve an interpretation from either set and that
the expected cost of generating interpretations for problem instances from the X set is much
less than the Y set. Assuming that there is no overlap between the two sets of interpretations,
E�C�will be an average of the expected costs of interpretations of each of the sets. This average

161

TerminationSPS

C : cumulative total of
 entries in the base-
 space cost vectors

P : cumulative Potential of all
 actions applicable to SPS

cost
P

 = cost
g

+ cost
m :

cost of generating and
realizing Potential

S'PS
T : actual distance
 to termination

cost
m

C' : cumulative total of
 entries in the base-
 space cost vectors of
 the altered search space

Figure 9.4. A Basic Representation of Potential and Distance to Termination

will be much larger than E�C� for interpretations from the X set and it will be much smaller
than E�C� interpretations from the Y set.

Now consider what happens when a specific state, xj is generated. The problem solver
would be able to determine that the expected distance to termination should be based on the
average cost of interpretations for the set of X interpretations, not on E�C�. Likewise, if a
specific state yk is generated, the problem solver would be able to determine that the expected
distance to termination should be based on the average cost of interpretations for the set of Y
interpretations. Consequently, it should be clear that the exact computation of Potential�S��
must consider the implications the existence of the local state, sn, has on the expected distance
to termination. The exact computation must similarly consider the implications S� has on the
expected distance to termination.

Furthermore, the time, t at which a state, sn is created and the time, t�, at which a state,
S� is expected to be created must also factor into the computation of Potential�S��. If t
is relatively large, indicating that the distance to termination is short, the expected benefits
associated with the existence of S� may be minor. For example, all the paths that may have
been pruned given the existence of S� may have already been generated.

On the other hand, if t is relatively small, then the benefits associated with the existence
of S� may be more significant. This is an especially relevant point in domains where a state’s
potential is a function of its credibility. The early existence of sn may indicate that it has an

162

S

x

Y

<xi>

<yi>

signal data

representation of sets of
interpretation trees derived

from signal data

The relative size of an
interpretation tree is

proportional to its cost.

Figure 9.5. Implied Information Associated with a State

exceptionally high credibility and, if there is a strong correlation between the credibility of sn
and the credibility of S�, S� may have an exceptionally high potential.

It may also be necessary to consider the characteristics of a state directly. For example,
rather than making inferences about the nature of a search space based on implied information
about the relative value of a credibility, it may be necessary to use a direct consideration. This
may also extend to other properties of a state, depending on a domain.

We have extended the algorithms presented in Chapter 5 so that they can be used to
calculate Csn�t and CS��t��sn�t. The extensions involve using sn and S� to map the grammar,
IDPG, used to calculate E�C�, to a new grammar IDPG� that is used to calculate Csn�t or
CS��t��sn�t. Similarly, the values of t and t� (and other relevant characteristics of a state, such as
credibility) are used to map IDPG� to another new grammar, IDPG�� . These mappings do not
involve the creation of entirely new grammars. Rather, they primarily involve adjusting the
distribution functions in the existing grammar.

The first mapping and expected distance to termination calculation is accomplished as
follows:

� For state sn, determine the likelihood of reaching all the potential final states (SNTs) on
paths from sn.

� Normalize these values.

� Replace the distribution function �S , which specifies the distribution of the SNTs in the
grammar, with the normalized values. For SNTs that are not on paths from sn, set their
distributions to 0.

� Replace the distribution function �sn , which specifies the distribution of subtrees
generated from sn, with 0. This indicates that the state, sn, has already been generated

163

i.1. N → RHS1
i.2. N → RHS2

i.k. N → RHSκ

...

p = ψ(i.1)
p = ψ(i.2)

p = ψ(i.k)

i.a. N → Nnt

i.1. Nnt
 → RHS1

i.2. Nnt → RHS2

i.k. Nnt
 → RHSκ

...

p = ψ(i.1)
p = ψ(i.2)

p = ψ(i.k)

i.b. N → Nt p = Probability (partial) interpretation
 N has been generated.

p = Probability (partial) interpretation
 N has not been generated.

Figure 9.6. Grammar Transformation for Calculating Potential

and the associated cost should be excluded from further estimations of distance to
termination. In effect, this makes sn a terminal symbol (if it is not already a terminal
symbol).

� Calculate Csn using the algorithm for calculating E�C� from Chapter 5.4.

The second mapping and expected distance to termination calculation is a little more
complex. It requires that a fundamental transformation be made to the original grammar,
IDPG. The new grammar will be represented as IDPG�� The transformation is shown in
Fig. 9.6. In effect, for each nonterminal of the grammar, N , a new rule is added with the
form N � Nnt j N t. In the new rule, Nnt represents a nonterminal and N t represents a
terminal symbol. In all other rules of the grammar that include N on the left-hand-side of the
rule, N is replaced with Nnt. (Note that there should not be any recursive rules, so N will
not be on both the left and right hand side of the same rule.) The distribution function, �N ,
specifies whether an N should be interpreted as a nonterminal (Nnt), in which case it can be
used to generate additional interpretation subtrees, or whether an N should be interpreted as
a terminal symbol, N t. When N is interpreted as a terminal symbol, it means that the state
already exists and the costs associated with deriving it should be ignored.

To calculate E�C�, the distribution function for N will always generate Nnt. This will
result in a grammar that produces problem instances that are identical to the original grammar,
IDPG. After some time, t, the current state of problem solving is modeled by adjusting the
distribution function forN . The adjustment is a function of time, t, and other factors including
the characteristics of a state such as credibility. The adjustment will increase the probability
that an N generates an Nnt. This corresponds to the probability that the partial interpretation
corresponding to N has been generated at time, t. Now, to calculate the expected distance to
termination, CS��t��sn�t the following procedure is used:

� For each nonterminal element, N , of the grammar, adjust the distribution function �N ,
which specifies whether or not a partial interpretation corresponding to N has been
generated. The adjustment is made based on a function of time, t, and other relevant
factors such as the credibility of the state sn, etc.

� Calculate CS��t��sn�t using the algorithm for calculating E�C� from Chapter 5.4. (Note
that the calculation of Csn�t must also use this technique.)

164

1. A → CD

3. C → fg
5. D → hi

7. f → (signal data)

9. g → (signal data)

11. h → (signal data)

13. i → (signal data)

2. B → DEW

4. E → jk
6. W → xyz

8. j → (signal data)

10. k → (signal data)

12. x → (signal data)

14. y → (signal data)

15. z → (signal data)

Interpretation
Grammar G'

0. S → A | B

Figure 9.7. Interpretation Search Operators Shown as a Set of Production Rules

9.2 An Example of Potential

Consider the implications associated with the structure of a complex search space. In
particular, consider the fundamental structure of a convergent search space. In these domains,
the measures relating a state to the potential final states it implies are not dependent solely
on the characteristics of the state. They also depend to a large degree on the existence,
and characteristics, of other intermediate states in the search space. As a consequence, the
calculation of the measures must be made dynamically.

This will be illustrated with a simple example using the problem solving grammar
introduced in Chapter 3. The rules of this grammar are shown again in Fig. 9.7.

In this grammar, A and B are the SNTs, or solution-nonterminals, that define the potential
final states in the search space. For this example, assume that S’s distribution functions are both
��. Thus, the start symbol generates an A with probability �� and a B with probability ��.

Figure 9.8 represents the UPC values for paths from a state, h, of the convergent search
space derived from this structure. The two potential final states associated with h are A and B.
Some of the necessary details to compute full UPC values for the paths from h to A and from
h to B have been omitted, and the values for cost and utility are shown as functions as a result.
However, in this example we will concentrate on the values for the expected probability of
successfully reaching a potential final state. It should be clear that, given an h, the probability
of generating an A is the same as the probability of generating a B. Both are ��.

Though this is a relatively trivial example, it is, by definition, a complex domain since the
search paths interact. Specifically, consider the case of the problem solver’s internal database
containing both an h and an f . These states interact in that they only coexist in one situation,
when the complete interpretation is an A. This is because, by definition, an interpretation must
explain all the data and, in this example grammar, an A and a B cannot be generated in the
same derivation. Therefore, the only interpretation that includes both an h and an f is A. This
observation is represented in Fig. 9.8. Here, an abstract state called f� h is shown along with
the associated UPC values.

Now consider the implications of this observation, some of which are illustrated in Fig. 9.9.
In this figure, we assume that the expected cost of generating an f or an h is 1, the expected
cost of generating an A is 8, and the expected cost of generating a B is 11. For this example,
we will ignore credibility calculations.

165

h

A

B
u = f B(h)
p = 0.5
c = g B(h)

u = f A(h)

p = 0.5
c = g A(h)

A
u = f A(f,h)
p = 1.0
c = g A(f,h)

f,h

extended representation of state h

extended representation of state f,h

Figure 9.8. Representation of the UPC Values for Base- and Abstract States

PS

internal state

f h Termination
distance to termination

Computation of distance to termination:
open state: f ⇒ potential final state A

cost associated with open state f =
 P(A | f)*(cost(A) - Cost(f)) = 1*(8 - 1) = 7

open state: h ⇒ potential final states A, B
cost associated with open state h =

 P(A | h)*(cost(A) - Cost(h)) = 0.5*(8 - 1) = 3.5 +

P(B | h)*(cost(B) - Cost(h)) = 0.5*(11 - 1) = 5

Total distance to termination = 7 + 3.5 + 5 = 15.5

a.

Figure 9.9. Calculating Distance to Termination

166

Computation of distance to termination
(after state f,h has been generated and
mapped back to the base-space):

connected state: f ⇒ nil

cost associated with
connected state f = 0

open state: h ⇒ potential final states A

cost associated with open state h =
 P(A | f,h)*(cost(A) - Cost(h) - Cost(f)) =

1*(8 - 1-1) = 6

P(B | f,h)*(cost(B) - Cost(h) - Cost(f)) =
 0*(11 - 1 -1) = 0

PS

internal state

f h Termination
distance to termination

f,h

Total distance to termination = 6

Figure 9.10. Effects of Abstract Processing on Distance to Termination

In Fig. 9.9, the distance to termination is determined by summing the expected costs of
the paths from states h and f to their associated potential final states. For this example, we will
use the simplified calculation:

E(cost from sn to F) � P �F j sn� � �E�costF �� costsn�

i.e., the expected cost of a path from intermediate state sn to a potential final state F
is the probability that the final state can be reached from sn multiplied by the expected cost
of deriving the final state minus the cost of generating sn. (Adjusting the expected cost of
generating the final state is necessary because the cost of generating the intermediate state, sn,
is included in the expected cost of generating the final state, but this cost has already been
incurred and will not recur as a path is extended from sn to the final state. A full discussion of
calculating UPC values accurately is given in Chapter 6.)

Now consider the implications of the existence of the abstract state f� h. Given this state,
the problem solver would know that B could not be a solution (for the reasons discussed above)
and it could adjust the UPC values for states f and h accordingly. The relationship represented
by the state f� h is therefore an important one. To exploit this relationship, an operator would
be added to the grammar that creates the state f� h and a mapping operator would also be added
that would propagate the effects of f� h back to the base space. In this situation, the existence
of states f and h would be associated with a new operator. However, the execution of this
operator and the corresponding mapping function, are not related to the cost of termination in
the sense that they directly reduce the cost of termination by extending paths in the base space
and, as a consequence, the problem solver’s control component has no way to evaluate their
worth compared with alternative actions. Thus, the question becomes, how do we represent
the value of the operator that generates the state f� h? This value is what we refer to as potential

167

and we will compute it as the expected reduction in cost associated with the existence of a state,
or P �state� � �expected-cost-reduction�.

The calculation of potential is illustrated in Fig. 9.10. In Fig. 9.10, the distance to
termination is calculated based on the UPC values of statesf andh after they have been modified
to reflect the existence of state f� h. The difference between the distances to termination for
the two examples is �� � � � �� In other words, the expected cost to termination from
the problem solving states in Fig. 9.9 is �� units more than the expected cost to termination
from the problem solving states in Fig. 9.10. If we assume that the cost of generating state
f� h is 1 and the cost of mapping the implications of f� h is also 1, then the expected cost
reduction associated with f� h is ��� �� � � ��. Furthermore, the probability that f� h can
be generated given an h is ��, so, from state h, the potential of the operator that will generate
state f� h is �� � �� � ���.

It is also important to observe that abstractions and approximations are useless without
operators designed explicitly to exploit them. In other words, it does no good to climb a tree
for a better look at the surrounding territory if you have no way to get down from the tree.
In the IDP/UPC framework, we refer to the functions that transfer the results of problem
solving in an abstract space back to the base space as mapping functions. In Chapter 9.3, the
mapping functions will be critical components for calculating the potential of an action. In
other words, the potential of a given action will be based on the degree to which subsequent
mapping functions can exploit the results of the action to modify the base space in a way that
reduces the cost of problem solving.

9.3 Incorporating Potential in Control Decisions

Using Definition 9.0.1, we have altered the objective strategy used in the simulator to
include a consideration of an action’s potential as well as its direct effects on the distance to
termination, C . Based on the definition for the calculation of potential from Chapter 9.1, we
have developed mechanisms for calculating potential for two forms of processing, bounding
functions and approximate processing operators. In this section, we will discuss the approximate
calculation of the potential associated with bounding functions. This calculation is useful in
situations where the cost of calculating precise values of potential are prohibitively high. This
approximation is effective in situations where it maintains the relative ordering of problem
solving activities.

As discussed previously, the paths to states with potential are all independent, so their costs
are determined individually and summed where appropriate, and the sets of states affected by
mapping potential back to the base space are completely interacting, so the maximum potential
is used to determine Pot�sn� S �� where appropriate. In the next section, we will present the
preliminary results of experiments that incorporate this information in their problem solving
decisions.

The original objective strategy was defined in Chapter 6.4.2 and it was based on choosing
the operator that maximized the equation c�opi�

cost�opi�
, where c�opi� is the degree to which opi

directly reduces C and cost�opi� is the cost of executing opi. The evaluation function for
operators used for this set of experiments was changed to �c�opi��Pot�opi�sn��

cost�opi�
, wherePot�opi� sn�

is the potential of operator opi applied to state sn.
The potential associated with bounding functions is based on the expected utility of the

final states, Fi, that can be reached along paths including opi. To calculate this potential, the

168

problem solver first calculates the cost of problem solving in a search space where the bounding
functions have a cutoff threshold equal to the expected credibility of the potential final states,
Fi, that can be reached along paths including opi. This calculation is made for each of the
potential final states and will be called CFi . For each of the final states, Fi, its potential,
Potential�Fi�, can be approximated by C � CFi , where C is the current expected cost to
termination. (Note that the exact value of Potential�Fi� is given by Csn�t � CFi�sn�t, where
Csn�t is the expected cost of problem solving given that state sn has been generated at time
t, CFi�t

�
�sn�t

is the expected cost of problem solving given that state sn has been generated at
time t and that state Fi has been generated at time t

�

, and t � t
�

.) Next, the problem solver
references the expected cost of reaching the final states from the UPC vectors. This is the cost
of generating the potential. From Definition 9.0.1 this quantity is referred to as costg�Fi� sn�.
For the grammar used in these experiments, the bounding functions are “built in” – they are
executed as part of the normal course of problem solving and are already factored into the
calculation of CFi . Therefore, the cost of realizing the potential, costm�Fi�, is 0.

Given that a specific potential final state can be reached, the actual distance to termination
is thenCFi�costg�Fi� sn�, and the net potential of the action is the probability that the specific
potential final state can be reached multiplied by Potential�Fi� minus the cost of reaching the
final state, or P �Fi j sn�� �Potential�Fi�� costg�. For a given operator, the maximum value
is taken for all potential final states that can be reached along paths from sn that include the
operator. This value is used in the problem solver’s operator rating function as Pot�opi� sn�.

To summarize this calculation, the following are the steps used to compute the approximate
potential of an operator, opi, applied to a state, sn:

1. DetermineC , the current expected cost to termination. C � E�C�� expected-cost(sn).

2. For sn, determine the expected utility of the potential final states, Fi, that can be reached
along paths from sn starting with opi. This is done dynamically by referencing the UPC
values of sn. The expected utility of Fi appears in the utility vector corresponding to
opi. Each Fi corresponds to an S� in Definition 9.0.1.

3. For each of the potential final states, Fi, compute CFi ; the expected cost of problem
solving for an IDP with bounding functions that use a cutoff threshold equal to the
expected credibility of Fi. CFi � E�CFi�� expected-cost(Fi). The cost of problem
solving given Fi is the cost of connecting the search space using a bounding function
cutoff threshold equal to Fi’s utility minus the cost of generating Fi, which already exists.

4. For each of the potential final states, Fi, compute Potential�Fi� = C - CFi .

5. For each potential final state, Fi, that can be reached from sn, the cost, costg�Fi� sn�,
of generating the associated Potential�Fi� is the expected cost of a path from sn to Fi.
This value is referenced in the UPC values.

6. Finally, Pot�opi� sn� � max�FiP �Fi j sn� � �Potential�Fi�� costg�Fi��.

9.4 Initial Experiments with Potential

We have implemented the process for calculating potential described above and we have
used it in several experiments. These initial experiments were intended to explore the effects of

169

the use of potential. In these experiments, E�C� was calculated using a pruning threshold that
is a function of the expected credibility of the “correct” result of a problem solving instance and
the equations and procedures defined in Chapter 5. In general, this will yield an approximation
of the actual value of E�C�. However, in situations where the final state(s) used to specify
a pruning threshold is (are) generated before any of the states that they eventually prune are
created, this calculation will be exact. This is not an unreasonable assumption to make, even
in non-monotonic domains. This is especially true if the pruning threshold is a function of
the credibility of the final state(s) such as “pruning threshold = 0.5 * best credibility of the final
states generated so far.”

In these experiments, conditional probabilities and values for ��s� for all elements of the
grammar are computed a priori. The problem solver computes expected credibilities, costs,
and probabilities dynamically, using the previously computed values for conditional probability
and �.

The most striking effect is in the increased time required to conduct an experiment.
Given that the rating of every problem solving action requires costly computations, i.e., the
computation of CFi , this result was not surprising. Furthermore, we have found that the
cost of the computation of C�S�PS� can be reduced significantly through the use of dynamic
programming techniques.

Another significant result is that the use of Potential substantially reduces the cost of
problem solving. This is consistent with our intuitions that bounding functions reduce the
expected cost of problem solving, but the grammar used in these experiments was designed
specifically to demonstrate the advantages of bounding functions and this result may not
be consistent with real-world performance. (To demonstrate the advantages of bounding
functions, potential interpretations derived using noise and missing data rules were given
credibility ratings significantly lower than other paths. In addition, the distribution of noise
and missing data in the generation of problem instances was less than 10%. In other words,
most of the correct interpretations derived did not involve the use of noise or missing data
rules.)

Table 9.1 summarizes experiments 18, 19, and 20; the experiments with potential and
bounding functions. The experimental methods were identical to those used in the first set of
experiments.

9.4.1 Experiments 1 and 18

In Experiment 18, the grammar used was identical to previously used versions of G� except
that the bounding function used was based on dynamic thresholds. Experiment 1 is included
for comparison. In 18, the problem solver ran faster with the bounding functions and it
did not mistakenly prune any correct paths. Compared with Experiment 1, the performance
improvement is noticeable. It is interesting to note that the use of dynamic bounding functions
improved the percentage of correct answers generated when compared with Experiments 8
through 17.

9.4.2 Experiment 19

For this experiment, we extended the grammar G� by including new nonterminals that
have RHSs with multiple occurrences of nonterminals from G�. This extension was intended
to approximate a grammar representative of a vehicle tracking domain such as the domain

170

Table 9.1. Results of Verification Experiments – Potential

Exp Generation Interpretation Sig % C
G Dist U E�C� G Dist U Avg. C

1 1 even 0.5 201 1 even 0.5 200 N 100
18 4 even 0.5 179 4 even 0.5 182 N 100
19 5 even 0.5 2,231 5 even 0.5 2,234 N 100
20 6 even 0.5 1,639 6 even 0.5 1,658 N 100

Abbreviations
Exp: Experiment
G: The problem solving grammar used;

1: G�

4: G� and dynamic bounding functions with cost 1
5: G�
6: G� and dynamic bounding functions with cost 0.01

Dist: Distribution of Domain Events;
even: domain events evenly distributed

U ; expected problem instance credibility;
0.5: problem instances have expected credibility 0.5

E�C�: Expected Cost of problem solving for given grammar
Avg. C: actual average cost for 100 samples of 50 random problem instances each
Sig: Whether or not the difference between expected cost and

the actual average cost was statistically significant
Y: yes, there is a statistically significant difference
N: no, there is not a statistically significant difference

% Correct: percentage of correct answers found

171

...
N1 N5...
...

B1 B5...
...

A1 A5...
...

M M

...
x y z

......
j k

......
h i

... ...
f g

(Signal Data)

A B

C D E W

... ...
q r

M

Y

......
h i

...
r

... ...
f g

...
q

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

S

NBAOM

M2 M5 O1M1

M M M M M M

...

...

O5...
...

Figure 9.11. Interpretation Grammar G�

associated with the DVMT [Corkill, 1983] For each of the SNTs of G�, M, O, A, B, N, we
added nonterminals of the form A1, A2, A3, A4, A5 where the symbol could be any one
of the SNTs and the number indicates the number of time-locations in a vehicle track. For
example, one of the rules that was added is A� AAAAA. We refer to this grammar as G�.
Figure 9.11 shows the expanded grammar. The SNTs in this grammar are A, B, M , N , and
O. As seen in the table, these additions to the grammar increased the expected cost of problem
solving considerably. No bounding functions were used in this experiment.

9.4.3 Experiment 20

In this experiment, we added dynamic bounding functions with cost 0.01 throughout the
grammar. The effects of this are quite dramatic. Specifically, the expected (and actual) cost of
problem solving decreased by approximately 33% when compared with Experiment 19. It is
also interesting to note that the percentage of correct answers found was 100.

9.5 Chapter Summary

This chapter introduces the concept of potential that is used to formally define the long-term
benefits associated with a problem solving action. In many cases, the locally optimal control
decision will not result in globally optimal problem solving. This occurs in situations where
an operator on a search path does more than simply expand a state and extend a search path –
where the operator actually increases the information available to a problem solver regarding the
interrelationships between partial solutions. i.e., the operator increases the understanding of a
partial solution’s global significance. In these situations, the operator does not have to actually
extend a search path in order to move the problem solver closer to termination, rather, the
operator may alter the search space in some way that reduces the cost of problem solving (or
increases the effectiveness of problem solving efforts) for some other set of operators. We will
refer to this property of an operator as its potential.

172

The concept of potential allows the costs and benefits associated with meta-level operators
to be directly compared with those associated with domain operators. Potential is calculated
using the analytical tools enabled by the IDP and UPC formalisms. In general, the potential
of an action is calculated by first examining what the long-term goals of the action are and then
determining what the cost of problem solving would be if the long-term goals had already been
achieved.

C H A P T E R 10

REPRESENTING SOPHISTICATED CONTROL TECHNIQUES

In Chapter 4, several examples demonstrated how meta-level operators could be represented
as production rules in IDPI , the formal specification of a problems solver’s available search
operations. The examples, which included bounding functions and a form of goal processing
intended to reduce overhead associated with redundant processing, were shown for simple
grammars. In this section, two additional forms of meta-level operators, preconditions and
focus-of-control goal operators, are presented using the vehicle tracking domain. These examples
will be used in subsequent chapters to demonstrate some IDP/UPC analysis techniques that
can be applied to sophisticated problem solvers.

The basic problem solving operators used in the vehicle tracking domain can be derived
from the production rules of IDPG. These operators are represented as production rules in
IDPI . For vehicle tracking, most of the production rules in IDPI are be identical to their
counterparts in IDPG. The rules at the track level are slightly different from the corresponding
production rules in IDPG because they allow a track to be interpreted either forward or backward
in time. This is in contrast to the generational rules which only generate data forward in time
from a specified starting point. This is to allow more opportunistic search processes. Thus,
given specific vehicle location data, the problem solver can attempt to form an interpretation
by combining the data with other data that is either forward or backward in time. The problem
solver is not restricted to going either one or the other direction.

The IDPI production rules that define track processing operators are shown in Fig. 10.1.
Note that IDPI does not rely on the feature list convention but it does use a similar
representation to indicate time dependencies. (The feature list convention is used in IDPG
to model the generation of data that exhibits relationships that span time and distance. It is
not needed in IDPI , which represents relationships between problem solving operators and
intermediate and final results.) For example, rules 5 and 6 represent different operators that
extend an existing track either forward or backward in time, respectively.

Rules 4, 9, 14, 19, 24, and 29 are used to construct a partial track from a vehicle location
for different types of vehicles. Any vehicle location data can be used to start a track. There is
no restriction that the initial partial track start at time 0 or on a region boundary. The problem
solver can formulate a track starting anywhere along its length and then extending in either or
both directions (i.e., forward and backward in time). Rules such as 5 and 6 are used to extend
a partial track incrementally forward or backward in time. Partial tracks of arbitrary length can
be combined using rules such as 7 and 8.

Note that the representation of operators in IDPI is for analysis purposes only. When
constructing an actual problem solver, it is not necessary to use this many distinct operators
to represent different types of vehicle tracks. For practical implementations, it is reasonable to
assume that there would be several “macro-operators” that would each correspond to multiple
rules from IDPI . For example, in an actual implementation, there might be an “extend forward”

174

1. S � Tracks
2. Tracks � Tracks Track

� Track
3. Track � I-Track1

� I-Track2
� P-Track1
� P-Track2
� G-Track1
� G-Track2

4. I-Track1 � T1
5. I-Track1 � I-Track1�t� T1�t� ��

6. I-Track1 � I-Track1�t� T1�t	 ��

7. I-Track1 � I-Track1�t� I-Track1�t � ��

8. I-Track1 � I-Track1�t� I-Track1�t 	 ��

9. I-Track2 � T2
10. I-Track2 � I-Track2�t� T2�t� ��

11. I-Track2 � I-Track2�t� T2�t	 ��

12. I-Track2 � I-Track2�t� I-Track2�t � ��

13. I-Track2 � I-Track2�t� I-Track2�t 	 ��

14. P-Track1 � P-T1
15. P-Track1 � P-Track1�t� P-T1�t� ��

16. P-Track1 � P-Track1�t� P-T1�t	 ��

17. P-Track1 � P-Track1�t� P-Track1�t � ��

18. P-Track1 � P-Track1�t� P-Track1�t 	 ��

19. P-Track2 � P-T2
20. P-Track2 � P-Track2�t� P-T2�t� ��

21. P-Track2 � P-Track2�t� P-T2�t	 ��

22. P-Track2 � P-Track2�t� P-Track2�t � ��

23. P-Track2 � P-Track2�t� P-Track2�t 	 ��

24. G-Track1 � G-T1
25. G-Track1 � G-Track1�t� G-T1�t� ��

26. G-Track1 � G-Track1�t� G-T1�t	 ��

27. G-Track1 � G-Track1�t� G-Track1�t � ��

28. G-Track1 � G-Track1�t� G-Track1�t 	 ��

29. G-Track2 � G-T2
30. G-Track2 � G-Track2�t� G-T2�t� ��

31. G-Track2 � G-Track2�t� G-T2�t	 ��

32. G-Track2 � G-Track2�t� G-Track2�t � ��

33. G-Track2 � G-Track2�t� G-Track2�t 	 ��

Figure 10.1. IDPI Production Rules for Interpreting Patterns and Tracks

175

macro-operator that would represent the problem solving actions corresponding to production
rules 6, 11, 16, 21, 26, and 31 and that could be applied to any type of vehicle track.

The following sections present the definitions of preconditions and focus-of-control goal
operators.

10.1 Representing Preconditions

Preconditions are meta-level operators that help focus search processes more effectively in
sophisticated domains by performing some kind of preprocessing to more accurately judge the
relative merits of executing an expensive problem solving action. For example, in a blackboard
problem solver, a precondition might be executed before an operator is instantiated to determine
if the data necessary to extend a partial result is present. This meta-level operation can be very
effective in constructive search processes because each intermediate search state contains only
local information about that particular state. Thus, if the rating of a potential search operation is
heavily dependent on non-local information, the problem solver will not be able to accurately
evaluate that action. The effectiveness of preconditions has been demonstrated in many
interpretation systems including Hearsay II [Erman et al., 1980] and the DVMT [Corkill,
1983].

Figure 10.2 illustrates the effect of using preconditions on the basic control architecture.
The original control architecture is shown in Fig. 10.3 for comparison. During each control
cycle, new states are created and the problem solver identifies which operators can be applied
to the new states. Preconditions are applied to determine which operators are eligible for
execution. The eligible operators are then rated and added to the queue of operators available
for execution.

To clarify the use of preconditions, consider the production rule: A� B C D. As suggested
by Fig. 10.3, if the problem solver has generated a search state “B,” the operator associated with
the production rule would be eligible for execution whether or not the required states C and D
had been generated. In situations where C and D had not been generated, the operator would
fail to generate an A. In contrast, using preconditions, the operator would not be eligible for
execution until all the required syntactic elements were present.

In more formal terms, as defined in Chapter 6, a problem solver is characterized by the
four-tuple � S��� ��� �, where;

S = the start state; S is defined by the input data to the problem solver and the initial values
of any relevant Characteristic Variables (CVs)�.

� = the base search space with associated CVs and operators. � corresponds to the traditional
notion of a search space. It is defined by CVs that specify the characteristics of individual
states (including the UPC vectors), operators that map one state to another, and functions
of CVs that define final states. In terms of an IDP, � is defined by the interpretation
grammar.

� = a set of projections, or abstractions, of the base search space, each with their associated CVs
and operators. Final states are those from the base space that can be reached via mapping

�A state in the search space is defined by a set of CV s, where each CVi is a characteristic variable with a
corresponding attribute value.

176

flow of data

flow of control

choose operator
to execute

execute operator

rate new
operators

add new operators to pool
of potential operators

operators available
for execution

identify potential operators
with satisfied preconditions

add operators with satisfied
preconditions to pool of

available operators

Figure 10.2. The Basic Control Cycle With Preconditions

177

flow of data

flow of control

choose operator
to execute

execute operator rate new
operators

add new operators to pool
of available operators

operators available
for execution

Figure 10.3. The Basic Control Cycle (Without Preconditions)

operators. A given search space projection�i is defined by two sets of operators,OP���	i�
and OP�	i�	i�. OP���	i� is the set of operators that project states from � to states in �i.
OP�	i�	i� is the set of operators that map states in �i to other states in �i. As with �,
each state in a projected search space is characterized by a set of CVs and a set of UPC
vectors.

� = a set of mapping functions from projection spaces back to the base search space. Functions
in � can be thought of as the mechanisms that map constraints from an abstract space,
�i, back to the base search space, �. This can be done by creating new states in �, or by
modifying existing states.

To represent preconditions using the IDP formalism, we will define a projection space
of satisfied precondition states. This space is created by operators of the form: Aop

�B�C�D �

B C D. Thus, a symbol with a superscript op will represent a state created by a successful
precondition operator. op will correspond to the operator that will map the abstract state
back to the base space. For clarity, the subscripted brackets will include the required syntactic
elements used to create the precondition state. A production rule of this form will be created
for each precondition operator. More formally, we say that the set of projection operators
from the base space to the precondition abstraction space, OP���	precondition�, is made up of
precondition operators.

In addition, a mapping operator from the precondition projection space back to the
base space will have the form: A �Aop

�B�C�D. This operator will correspond to the original
operator except that it can only be applied to the states in the precondition space. The original
operator will be replaced by these two rules. Formally, the set of mapping operators from the
precondition abstraction space back to the base space is represented as OP�	precondition��� � �.

For the moment, we will not define any operators that create new states in the precondition
space from states already in the space. Formally, this means that the setOP�	precondition �	precondition�
is empty.

178

50. P-T1 � T1 T2
51. P-T2 � T2 T2
52. G-T1 � GT1 T1
53. G-T2 � GT2 T2
54. T1 � V1 N
55. T2 � V2 N

Figure 10.4. IDPI Production Rules for Interpreting Vehicle and Track Locations

P.50. P-T1op��T��T� � T1 T2
P.51. P-T2op��T��T� � T2 T2
P.52. G-T1op��GT��T� � GT1 T1
P.53. G-T2op��GT��T� � GT2 T2
P.54. T1op��V ��N � V1 N
P.55. T2op��V ��N � V2 N

Figure 10.5. Precondition Operators for Vehicle and Track Locations

Figures 10.4, 10.5, and 10.6 show examples of preconditions, mapping functions, and
the original production rules for the vehicle tracking domain. Figure 10.4 shows the base
space rules for interpreting vehicle, pattern, and ghost track locations. The production rules
in Fig. 10.5 are the projection operators corresponding to the base space rules. The operators
that map states from the precondition abstraction space back to the base space are shown in
Fig. 10.6.

10.2 Representing Goal Processing

A variety of goal processing systems have been developed to focus problem solving activities
more efficiently and to reduce redundant processing [Erman et al., 1980, Lesser et al., 1989a,

M.P.50. P-T1 � P-T1op��T��T�

M.P.51. P-T2 � P-T2op��T��T�

M.P.52. G-T1 � G-T1op��GT��T�

M.P.53. G-T2 � G-T2op��GT��T�

M.P.54. T1 � T1op��V ��N

M.P.55. T2 � T2op��V ��N

Figure 10.6. Mapping Operators for Vehicle and Track Locations – From Precondition Space
to the Base Space

179

Corkill and Lesser, 1981]. In Chapter 4, we showed how a specific form of goal processing
used in the DVMT to eliminate redundant local activity [Corkill, 1983] could be represented
in IDPI grammars.

Another form of goal processing was developed and applied in the DVMT to focus problem
solving activity more effectively. Focus of control goal processing was used to increase the rating
of problem solving activities that were related to extending highly-rated partial results. For
example, given a partial track with a high-rating, the focus of control goal processing would
increase the ratings of operators that would generate the low-level data needed to extend the
track. This would cause the low-level data to be generated sooner than it otherwise would
have been, allowing the problem solver to extend the highly-rated partial track hypothesis.
Figure 10.7 shows the architecture of a problem solver that uses focus-of-control goal processing
and preconditions. Goal processing is represented as the subprocess labeled, “rerate operators
based on goals.” As shown, this process takes information from the pool of available operators,
modifies it, and updates the appropriate elements of the pool.

To understand the benefits associated with this form of goal processing, consider a problem
solver that combines it with dynamic pruning operators. Assuming that the pruning operators
eliminate paths from consideration by comparing them with existing full interpretations, the
more quickly the problem solver can construct a highly-rated full interpretation, the less total
work is likely to be required. Given a partial track with a high-rating, it may be desirable to
extend the track as quickly as possible to a full solution to maximize its pruning potential.
However, if the data needed to extend the partial track is not available, the partial track cannot
be extended. Focus-of-control goal processing is used to increase the rating of intermediate
operators that will generate data needed to extend the partial track.

From a more general perspective, focus-of-control goal processing is a mechanism that
allows a problem solver to selectively rerate problem solving operators based on their rela-
tionships with other, dynamically changing operators. As discussed in Chapter 2, one of the
characteristics of sophisticated domains is that partial search paths are often related and the
structure of these relationships can sometimes be exploited to increase the efficiency of problem
solving. Exhaustive processing of these relationships during each problem solving cycle is
infeasible because the number of relationships is combinatoric in the number of partial search
paths and each relationship could involve arbitrarily complex processing. Focus-of-control
goal processing restricts the search for and processing of relationships to cover only those
relationships for which it is cost effective. This is a very general technique that is likely to have
applicability in a wide range of domains.

Example goal processing operators are shown in Fig. 10.8. Operator G.4.1 is used to raise
the ratings of operators that will generate data needed to extend a partial I-Track1 forward in
time. Similarly, G.4.1 is used to extend a partial I-Track1 backwards in time. Rules G.5.1 and
G.5.2 function similarly for I-Track2 partial results.

Like the precondition operators, the goal processors define a projection space. Example
mapping operators for this space are shown in Fig. 10.9. The mapping operators are applied
to the states of the goal projection space. The � notation on the LHS of the production rules
indicates that no new states are generated in the base space. Instead, the ratings for instantiated
operators is modified to reflect the information contained in the goal state.

For example, in a vehicle monitoring domain, the result of approximate processing could
be the generation of a goal to extend a partial track into an area where there is noise. This is
illustrated in Fig. 10.10. (Figure 10.10 and the following discussion is based on the grammar
introduced in Figures 4.25, 4.27, 4.29, and 4.30.) In order to extend the partial track

180

flow of data

flow of control

choose operator
to execute

execute operator

rate new
operators

operators available
for execution

add operators with satisfied
preconditions to pool of

available operators

add new operators to pool
of potential operators

identify potential operators
with satisfied preconditions

rerate operators based on
goals

goal filters

Figure 10.7. The Basic Control Cycle With Preconditions and Goal Processing

G.4.1. Goal-TL1�t�� � I-Track1�t
G.4.2. Goal-TL1�t�� � I-Track1�t
G.5.1. Goal-TL2�t�� � I-Track2�t
G.5.2. Goal-TL2�t�� � I-Track2�t

Figure 10.8. Meta-Level Operators for Focus-of-Control Goal Processing

181

M.G.5. � � Goal-TL1�t
M.G.6. � � Goal-TL2�t

Figure 10.9. Mapping Operators for the Goal Projection Space

Vt2

Vt3

t4S1

t5S1

t4
S13

t4G3

t4S3

t4G1
t4S5

Vt1

area encompassed by goal

track extension operator that
triggered the goal

partial track

Figure 10.10. Example of the Use of Goal Processing in Vehicle Tracking

I-Track1���, the problem solver needs to first generate one or more track location level results,
T1�, in the area indicated by the noise. However, because of the noise, the low-level operators
that are needed to generate the track location level result have low ratings compared with other
operators and, consequently, the required partial results are not available.

To generate the required track location result, the problem solver creates a goal, Goal-
TL1��a, where the subscript indicates the characteristics of the partial results to which the goal
is applicable. In this example, the subscript 4 corresponds to the time characteristics and the
subscript “a” corresponds to a representation of the area encompassed by the goal. In the
experimental problem solver, the area is specified by a center point and a radius. For more
details, see Appendix C.

The goal is mapped to the base space as described above. In the experimental problem
solver, the mapping mechanism is implemented as two processes. In the first process, which is
represented by the subprocess labeled “rerate operators based on goals” in Fig. 10.7, the rating
of all the operators encompassed by the goal are examined and are raised to the goal rating. (If
an operator’s current rating exceeds the goal rating, it is not modified.) In the situation shown
in Fig. 10.10, the goal rating would be equivalent to the rating of the operator attempting
to extend the partial track, op�. Figure 10.11 shows the effects of mapping the goal back
to the base space. The figure contains three sections, a goal description, representations of a
set of states and operators before goal processing, and a set of states and operators after goal
processing.

The goal description includes the goal’s name, its time and location attributes, the potential
solutions that can be reached on paths from goal, and the goal’s rating. The state/operator

182

Goal Description
Goal Time/Location Potential Solutions Rating
Goal-TL1 4/a I-Track1 0.8

States/Operators Before Goal Processing
State Time/Location Operator Potential Solutions Rating
S1 4/a op�� I-Track1, P-Track1, G-Track1 0.5
S1 5/a op�� I-Track1, P-Track1, G-Track1 0.5
S3 4/a op�� I-Track1, P-Track1, G-Track1 0.6
S5 4/a op�� I-Track1/2, P-Track1/2, G-Track1/2 0.9
S13 4/a op�� I-Track2, P-Track2, G-Track2 0.4
G1 4/a op�
 I-Track1, P-Track1, G-Track1 0.6
G3 4/a op�
 I-Track1, P-Track1, G-Track1 0.7
G3 4/a op�� I-Track2, P-Track2, G-Track2 0.7

States/Operators After Goal Processing
State Time/Location Operator Potential Solutions Rating
S1 4/a op�� I-Track1, P-Track1, G-Track1 0.8
S1 5/a op�� I-Track1, P-Track1, G-Track1 0.5
S3 4/a op�� I-Track1, P-Track1, G-Track1 0.8
S5 4/a op�� I-Track1/2, P-Track1/2, G-Track1/2 0.9
S13 4/a op�� I-Track2, P-Track2, G-Track2 0.4
G1 4/a op�
 I-Track1, P-Track1, G-Track1 0.8
G3 4/a op�
 I-Track1, P-Track1, G-Track1 0.8
G3 4/a op�� I-Track2, P-Track2, G-Track2 0.7

Figure 10.11. Results of Mapping a Goal Back to the Base Space

representations shows a set of states, the time/location characteristics of the states, the operators
instantiated to process the states, the operator ratings, and the potential solutions� that can
be reached on paths starting from the state and including the operator. The state subscripts
indicate the time and location characteristics of the state.

As shown in the figure, op�� applied to states S1 and S3 with Time/Locations that are
encompassed in the goal’s Time/Location have their ratings increased to be the same as the goal
rating. op�� applied to state S1 with Time characteristic 5 does not have its rating increased
because the state is not encompassed by the goal. op�� applied to state S5 does not have its
rating changed because, even though it is encompassed by the goal, its rating is already higher
than the goal rating. op�� applied to state S13 does not have its rating increased because the
state is not a member of the goal’s component set. The goal’s component set only includes

�The potential solutions, which we refer to as Solution nonterminals (SNTs) correspond to corresponding
to the entries in each operator’s UPC utility vector. As described in Chapter 6, each operator has an associated
utility vector that lists the expected utility of each of the SNTs, or potential solutions, that can be reached on
paths starting with the path segment(s) that are to be created by the operator.

183

states that are included in paths to the SNTs I-Track1, P-Track1, and G-Track1. op�
 applied
to state G3 has its rating increased, but op��, applied to the same state, does not. This is
because op�� is not on a path to one of the SNTs in the goal’s Potential Solutions set.

The second form of processing used to implement goal mapping is very similar to the first
form, but it focuses on operators that are not yet created when the original goal is created and,
consequently, do not have their ratings increased by the first process. The second process uses
filters to raise the ratings of new operators as they are generated and added to the queue. This is
illustrated in Fig. 10.7 by the processes labeled “Process Goal Filters.” As implied by the figure,
each new operator that is created passes through each goal filter. The rerating mechanism used
by a goal filter is identical to that described above only it is applied to operators as they are
created.

As with the precondition abstraction space, there are no operators in the setOP�	goal�	goal�.
Thus, in this example, there are no operators that create new goal states from existing goal
states. However, it is easy to imagine such operators and to see how they have been incorporated
into sophisticated problem solving systems. These operators are described in the next section.

10.3 Representing Clustering and Abstract Level Processing

Many research projects have demonstrated the benefits of aggregating data for subsequent
approximate processing or for generating approximate solutions based on preliminary problem
solving and then using these results to increase the efficiency of subsequent processing. Examples
of these in interpretation domains include the clustering mechanisms and associated abstractions
used by Durfee and Lesser in [Durfee and Lesser, 1986] and similar mechanisms developed
in Hearsay II [Erman et al., 1980]. In addition, these strategies are commonly applied to
other domains with similar results, such as those demonstrated by Knoblock in planning tasks
[Knoblock, 1991b].

The following sections demonstrate how the IDP formalism can be used to represent
abstract states formed by approximations or aggregations and the mechanisms that are used to
create, process, and refine abstract states.

10.3.1 Generating Abstract Clusters Through Aggregation

Approximating data into abstract clusters is a strategy that attempts to efficiently apply
constraints to aggregations of data and it is particularly useful in domains with large quantities
of noise. Instead of processing each individual piece of data, a problem solver can aggregate
data into an abstract unit and then process the unit as a whole. For example, if the initial input
data is very noisy, and if the noise and the correct data have very similar characteristics, they can
be clustered into a single datum with characteristics encompassing both [Decker et al., 1990].

Figure 10.12 illustrates a situation with a number of partial results where each partial result
has an attribute for time and location. Shown are the clusters formed by ignoring one of the
attributes - vehicle location. This form of approximation can also be thought of as replacing
a single value with a range of values. In this case, specific x and y locations are replaced by a
center point and radius (which will subsequently be referred to as “R”) that encompasses all
the aggregated data.

These approximations result in the definition of a more abstract state-space. The problem
solver can then continue the interpretation process in this projection space to create complete
interpretations that are abstractions of potential complete interpretations in the base space.

184

a. original data

t1

t2

t2
t3

t3

t3

t3
t3

t4

t5

t5

t1

t2

t2
t3

t3

t3

t3
t3

t4

t5

t5

b. solutions constructed with original data

t1 t4

t5
t3t2

c. result of clustering original data

t4

t5
t3t2

t1

d. solutions constructed with clustered data

Figure 10.12. Abstract States and Projection Space Solutions Constructed from Approximate
Data

185

This is shown in Figures 10.12.c and 10.12.d. It must be stressed that these projection space
solutions are not guaranteed to contain base space solutions. Representing the processes used
to create projection space solutions using cluster abstractions and mapping them back to the
base space is discussed in Chapter 10.3.3.

C.1. S1p � S1�f��t � � � S1�fn�t
C.2. S2p � S2�f��t � � � S2�fm�t
� � �

C.x Sxp � Sx�f��t � � � Sx�fm�t

Figure 10.13. Clustering Operators for Signal Data

The clustering operators available to a problem solver define a projection space and are
represented in the IDP formalism with the form shown in Fig. 10.13. As shown in the figure,
the abstract clustered data is represented with a superscript, p, that indicates a precision level,
which is defined below. Each cluster comprises an arbitrary number of partial results of the
same type. Thus, as shown in rule C.1, the abstract state S1p is formed from some number of
S1 partial results from the base space and exists in the projection space defined by the precision
metric p. In the vehicle tracking domain, the partial results that are aggregated into a cluster
can have different feature list characteristics that define “event class,” but they must share the
same time characteristic. In other words, a signal cluster can comprise data from different
signal classes.

As suggested by Fig. 10.13, the clustering operators specify a projection space and a
set of operators OP���	p�, where p, a partial result’s precision, is a specification of the level
of abstraction of a given projection space. As shown in Fig. 10.14, this definition effectively
expands the dimensionality of the blackboard along an axis corresponding to precision. In the
vehicle tracking domain, a partial result’s precision is a function of its size, R (which indicates
the radius of the area that encompasses all the partial results included in a cluster), the number
of different types of partial results, E (which indicates the number of different elements in the
cluster), and the variance of the partial result’s likely location within R.

In the IDP/UPC formalism, the semantics associated with approximate data must be
consistent with those associated with precise data so that meaningful combinations of the two
can be constructed through projection and mapping functions. If approximate data has a
significantly different semantic interpretation than precise data, it might not be possible to
incorporate both into a single perspective of problem solving.

For example, several acoustic signals might be clustered into a single partial result that
encompasses not only the area of the sensed data, but areas where no data was sensed as well.
The new data cluster has several interpretations. It can take on an existential interpretation, such
as “there is some support for a signal source somewhere in this area”, or it can take on a universal
interpretation, such as “there is some support for a signal source at every point in this area.”
If some problem solving activity involves checking for physical overlap among data, then the
existential and universal interpretations will produce distinct results. In particular, determining

186

signal level datagroup level
vehicle level

track level
pattern level

solution level

signal level data

(meta-level n)
group level

(meta-level n)
vehicle level

(meta-level n)
track level

(meta-level n)
pattern level

(meta-level n)
solution level

(meta-level n)

signal level data

(meta-level m)
group level

(meta-level m)
vehicle level

(meta-level m)
track level

(meta-level m)
pattern level

(meta-level m)
solution level

(meta-level m)

precision

Figure 10.14. Blackboard Meta-Levels Defined by Precision Metric

A

D

B C

grammar used for
synthesis

A

C

A

B

C

A

B
C

A

B

C

original data with no
overlap

A B C

clustered data with
overlap

C

C

CC

B
B

B
A

A

A
A

Figure 10.15. Data Approximation and Loss of Certainty

whether or not an existentially interpreted datum and a universally interpreted datum overlap
might be semantically inconsistent. On the other hand, if precise and approximate data
are readily interchangeable, then the universal problem solving perspective of the IDP/UPC
formalism is preserved.

These issues are illustrated in Fig. 10.15. In the figure, an interpretation of a D requires
overlapping A, B, and C. However, when the data is clustered, the clusters overlap, indicating
that it is possible to generate an interpretation of a D. With a universal interpretation of the
data clusters, it might be reasonable to consider the D a correct interpretation. However, with
an existential interpretation of the data clusters, the problem solver will recognize that there is a
possibility that, even though the clusters overlap, the precise data might not. Thus, additional
refinement will be required to map the results back to the base space.

187

An existential interpretation of data has been adopted for the IDP/UPC framework. An
exact, or precise, hypothesis is represented with a range attribute specified by a single point,
an event class set with cardinality one, and a precision of zero�. A cluster hypothesis has a
range, R, defined as a convex region encompassing all the component locations, an event class
E � 	�component event classes�, and a precision � fp�size of R� j E j� fv�, where fv is the
variance of the clustered hypotheses’ locations within R.

Figure 10.16 shows several examples of approximated data. In this example, fp � ec * size
* s(x) * s(y), where ec is the cardinality of E, size is the size of the cluster, and s(x) and s(y)
are the standard deviations of the x and y location coordinates. Part (a) is an exact location
hypothesis with precision zero; the size of the range spanned is zero and the vehicle’s variance
within that range is also zero. The location cluster shown in (b) is less precise than the exact
location hypothesis because nine distinct vehicle hypotheses have been aggregated into one.
The result is a cluster spanning a larger range and having a non-zero variance within that
range. Even though they have similar sized ranges, (b) is more precise than the location cluster
shown in (c) because the variance of vehicle locations within (c) is much greater than in (b).
(d) highlights the adverse impact wide distributions of data can have on a cluster’s precision.
Despite having a slightly smaller range,(d) is less precise than either (b) or (c) because of the
large variance of vehicle locations it encompasses. (e) shows the adverse effects of clustering
multiple event classes. (e) is similar in size and variance to (c) but it is much less precise because
it encompasses multiple event classes. (f) and (g) show how quickly precision is reduced when
widely distributed data with multiple event classes is clustered.

When a location clustering operator, such as those defined in Fig. 10.13, is invoked, it
generates clusters using an exclusive, intrinsic, hierarchical method as shown in Fig. 10.17. This
algorithm is incorporated into the experimental problem solver described in Chapter 12 and
the general approximate processing architecture in Appendix C.

10.3.2 Generating Abstract States Through Search and Knowledge Approximation

Two general approximation strategies can be used to generate abstract states; search
approximation and knowledge approximation. These strategies are defined and discussed
in [Decker et al., 1990, Lesser et al., 1988a]. The specific techniques described here are
eliminating corroborating support and level hopping. These techniques are also defined and
discussed in [Decker et al., 1990, Lesser et al., 1988a]. Both general strategies are based on
reducing the amount of the search space that is explored in generating an interpretation. As a
consequence, the resulting interpretation is considered an abstract state in a projection space.

Given the IDP/UPC framework, it is possible to formalize the representation of each of
these techniques. This formalization can then be used for design and analysis. This capability
is based on the extent to which a domain and the associated problem solver can be represented
with the IDP/UPC framework. In general, the production rules of IDPg explicitly represent all
the natural constraints of a problem domain. Specifically, as shown in Fig. 10.18, constraints
exist among the elements of a RHS of a grammar rule and between the LHS of a grammar
rule and all the elements of a RHS. Furthermore, constraint relationships are transitive. Thus,
constraints are propagated from an LHS element to all its descendants. Thus, in the IDP
formalism, approximate processing can be viewed as a form of constraint relaxation. The

�Because the precision measure is unbound, the problem solver uses an inverted precision scale. Thus, exact
data has precision zero, and greater values of precision indicate less precise data.

188

Precision

1

2

3

1 2 3

.6

1

2

3

1 2 3

.3 .3

.3 .3

.4

.4 .4

.4

.5

1

2

3

1 2 3

.6

.6

.3

.4

1

2

3

1 2 3

.8

.8

1

2

3

1 2 3

.3 .3

.3 .3

.4

.4 .4

.4

.5

1

2

3

1 2 3

.6

.6

.3

.4

1

2

3

4

5

1 2 3 4 5

.8

.8

.3

.6

1

2

3

4

5

1 2 3 4 5

.8

.3.6

.3

.2

.2

.7.7

.1

.9

(ec)(size) + s + s

a. size = 0, s(x) = 0, s(y) = 0,
ec = 1; precision = 0

e. size = 9, s(x) = 3, s(y) = 3,
ec = 2; precision = 42

c. size = 9, s(x) = 8, s(y) = 6,
ec = 1; precision = 23

d. size = 9, s(x) = 11, s(y) = 11,
ec = 1; precision = 31

b. size = 9, s(x) = 3, s(y) = 3,
ec = 1; precision = 15

f. size = 9, s(x) = 8, s(y) = 6,
ec = 2; precision = 50

g. size = 25, s(x) = 16, s(y) = 14, ec = 1;
precision = 55

h. size = 25, s(x) = 10, s(y) = 9, ec = 1;
precision = 44

Figure 10.16. Examples of Precision Metric

189

1) GIVEN region R, cluster size limits and desired cluster precision �

Where � defines the maximum number of clusters to be returned.

2) FIND all hyps overlapping R and put them in hyplist

SORT hyplist by belief

SET j=1

FOR each hyp,hi, in hyplist DO

SET CSj = (hi)

FOR every hyp, hk, k �� i, in hyplist DO

IF hk is within of hi

THEN ADD hk to CSj

ENDIF

INCREMENT j

(Note:step 2 forms “preclusters”. This step isn’t necessary, but it

reflects the algorithm used in the example.)

3) REPEAT (UNTIL number of clusters = �)

FOR all clusters, CSi, DO

DETERMINE �i and �i

FOR all clusters, CSj , DO

FOR all clusters, CSk , DO

tolerancej�k = DISTANCE(�j� �k) / �j +

DISTANCE(�j� �k) / �k

COMBINE CSj and CSk such that tolerancei�j is minimized

ENDREPEAT

Figure 10.17. Cluster Generation Algorithm

190

B

x y z

D E W

j kh i

constraint propagation

Figure 10.18. Domain Constraint Propagation

formal representation of approximation techniques that is described in the following sections
is therefore similar to Knoblock’s approach in that it is based on dropping or simplifying
constraints [Knoblock, 1994].

More specifically, eliminating corroborating support is an approximation strategy we have
defined for interpretation domains that avoids some of the processing that would otherwise
be used to generate a precise interpretation. If a problem solver can identify processing that
is based on highly probable events or indicators, it might be able to eliminate alternative
work with predictable effects. For example, in Fig. 10.19, an approximation of H is defined
by modifying the grammar rules to eliminate processing of A, B, C, and F. This can be
a very effective approximation technique if there is a strong causal relationship between
the remaining components, D and E, and H. i.e., if H is strongly implied by D and E.
Chapter 12 discusses techniques for designing effective approximation operators that eliminate
corroborating support.

The IDP definition of abstract operators that eliminate corroborating support have the
form shown in Fig. 10.20. These examples are of vehicle location level production rules that are
approximations of rules 19 and 20 from the vehicle interpretation grammar. The superscript
indicates that they define a projection space ecs. To be precise, these operators define the set
OP���	ecs�. In ECS.19, the corroborating support from G3 and G7 is eliminated. In ECS.20,
the corroborating support from G3 and G1 is eliminated.

In contrast to search approximations, knowledge approximations simplify or eliminate
the constraints used by a problem solver. For example, a problem solver may have a very
accurate algorithm for determining some solution attribute. However, this algorithm may be
computationally expensive. If the problem solver can predict the effects of using a less costly,
under constrained algorithm, it is possible to define a projection space based on this algorithm.
In general, if the partial results generated by a knowledge approximation are a superset of
the partial results that would be generated with the corresponding exact knowledge, then the

191

H

FC

D E

A B

or or

and

actual grammar

group level

signal level

H

FC

D E

A B

or or

and

group level

portion of grammar
used by approximate

knowledge source

Figure 10.19. IDP Representation of Approximating Search - Eliminating Corroborating
Support

ECS.19 V1ecs�f � G1�f
ECS.20 V2ecs�f � G8�f

Figure 10.20. Abstract Operators Based on Eliminating Corroborating Support

knowledge approximation is a candidate for use as a control mechanism. This is also the case if it
is true “most” of the time.

Figure 10.21 illustrates level-hopping, an other form of approximate processing we have
defined for interpretation domains. Level-hopping takes constraints that would normally span
multiple levels of the blackboard in the base space and simplifies and compresses them into a
single operator. In Fig. 10.21, the intermediate level of processing has been eliminated and the
multiple levels are compressed into a single-step operation.

The general effect of level-hopping is shown in Fig. 10.22. As shown, level-hopping does
not eliminate from consideration any supporting data. Instead, it eliminates the constraint
processing that would have generated the intermediate results W and Y at the group level. As
a consequence, the abstract Z that is created is underconstrained and, as such, it is a superset
of the vehicle level interpretations that would have been generated in the base space.

In the IDP formalism, level-hopping operators have the form shown in Fig. 10.23. These
examples are level-hopping operators corresponding to rules 19 and 20 from the vehicle
interpretation grammar. The superscript indicates that they define a projection space lh. To
be precise, these operators define the set OP���	elh�. These operators are constructed by fully
expanding the group level results that would be used to generate V1 and V2 results in the base
space.

192

Z

W Y

DCBA

group level

vehicle level

signal level

actual grammar

Z

DCBA

vehicle level

signal level

simplified grammar used to "skip"
 a level of processing

Figure 10.21. IDP Representation of Level Hopping in the Vehicle Tracking Domain

A B

C

D

W

Y

Z

A B

C

D

Z

representation of synthesis of Z using
complete knowledge, multiple knowledge

source invocations are required,
intermediate results are produced

representation of synthesis of Z using
approximate knowledge (level hopping),
a single knowledge source invocation is

required, intermediate results are not

vehicle
level

group
level

signal

vehicle
level

group
level

signal
level

Figure 10.22. Illustration of Level Hopping

LH.19 V1lh�f � S1�f S2�f S5�f S7�f S11�f S15�f
LH.20 V2lh�f � S5�f S6�f S7�f S13�f S14�f S17�f S18�f

Figure 10.23. Abstract Operators Based on Level Hopping

193

10.3.3 Processing Abstract Clusters

The important consideration relative to the preceding sections is whether or not the abstrac-
tions generated by aggregating data, approximating search, and approximating knowledge can
somehow be used to reduce the cost of problem solving. As mentioned previously, it has been
demonstrated that using approximations to developing a general understanding of a particular
problem instance and then using that understanding to more effectively control problem solving
can be an effective problem solving technique. Approximations can also be used for real-time
processing [Decker et al., 1990]. Such use would complicate IDP representations by setting
a fixed time constraint on an interpretation problem which would affect the precision and
credibility of possible results. This would change the optimality criterion and the associated
decision strategy.

AP.14 T1p � V1p

AP.4 I-Trackp1 � I-Track1p� t� T1p� t � ��

Figure 10.24. Abstract Operators for Processing Approximations

194

T T T

T1 a T2 b T3 c

A A B B C C

a. grammar rules for forming tracks

b. grammar rules for vehicle, group, and signal locations

A

G1 G2

S1 S2 S11 S12

A

G1 G2

S1 S2 S11 S12

a

G1 G2

S1 S2 S11 S12S6

B

G3 G4

S1 S11 S2 S6

B

G3 G4

S1 S11 S2 S6

b

G3 G4

S1 S11 S2 S6S12

C

G5 G6

S1 S2 S12 S6

C

G5 G6

S11 S2 S12 S6

c

G5 G6

S11 S2 S12 S6S11

Figure 10.25. Approximate Processing IDP/UPC Example

With respect to interpretation domains, Chapter 12 discusses IDP/UPC -based techniques
for designing problem solving operators and control strategies that use these approximations.
This section defines how the approximate processing techniques are represented.

As discussed in more detail in Appendix C, the IDP/UPC framework relies on an existential
perspective of data. This allows the framework to extend the unified representation of base space
processing and control to encompass the approximations defined in the preceding sections.
Specifically, in the IDP/UPC framework, approximate processing operators have the form
shown in Fig. 10.24. In the example form, the precision metric p is used to specify the
abstraction level at which the operator is applied. Thus, the abstract operators are merely
extensions of the base space operators.

Intuitively, this representation works because the constraints that are applied in the abstract
space are identical to those that are applied in the base space. The only difference is that in the
abstract space, the constraints are applied to CVs that are specified as ranges rather than precise
values. In fact, as will be discussed in Appendix C, the experimental testbed was modified to
process range data rather than precise data.

10.3.4 Mapping Abstract Results to the Base Space

There are a variety of techniques for mapping the results of abstraction level processing
back to the base space. In general, all these techniques involve manipulating UPC values of
search paths. In this section, we describe several of the techniques we have implemented and
discuss their relation to existing problem solving systems.

The simplest form of mapping, rating modification mapping, is to use the results of
approximate processing to modify the ratings of operators in order to bias, or focus, the

195

problem solver’s actions toward a particular set of search paths. For example, as discussed in
Chapter 10.2, goal processing can be used to increase the ratings of lower-level actions so that
intermediate results required by a high-level action are generated more quickly. The form of
mapping described in Chapter 10.2 is rating modification mapping.

A more drastic alternative is grammar transformation mapping. In this approach, the map-
ping function alters the structure of the problem solving grammar by using the characteristics
of the meta-level results to eliminate rules. This results in a corresponding elimination of
operators. By eliminating the operators, the mapping function reduces the cost of problem
solving by pruning search operators before they are considered.

For example, the results of approximate process may indicate that the solution to a vehicle
tracking interpretation problem must be a vehicle track of type “A.” As a consequence, the
mapping function might eliminate all operators that are not on paths to an “A” interpretation.
Chapter 13 and Appendix D.4 discuss this form of mapping in greater detail.

A third alternative is explicit plan mapping. Here, the mapping operator explicitly reorders
the sequence of operators on the queue. This is in contrast to implicit plan mapping in which
the mapping operator adjusts the UPC values associated with an operator and then allows the
queue reordering to be conducted implicitly with the established rating function. We do not
experiment with this form of mapping in this thesis.

10.4 Chapter Summary

This chapter introduces the IDP approach to representing a variety of sophisticated control
mechanisms in a heuristic problem solver. The control mechanisms that are modeled include
preconditions, goal processing, bounding functions, and approximate processing mechanisms.

C H A P T E R 11

EXPERIMENTAL APPROACH WITH A HEURISTIC PROBLEM

SOLVER

One of the primary goals of the work described in this thesis is to demonstrate that the
IDP/UPC framework can be used to analytically determine the expected performance of a
sophisticated problem solver in a complex domain. This section presents the organization and
results of experiments designed to address this goal. Section 11.1 presents the problem domain
used in the experiments. Section 11.2 describes the architecture of the problem solver used in
these experiments. The results of experiments are detailed in Section 11.3.

11.1 The Experimental Problem Domain

The problem domain used in these experiments is based on the vehicle tracking domain
described in previous chapters and summarized with the generational grammar shown in
Fig. 11.1. Two general forms of this grammar are used in the experiments. Grammar VT1,
which is equivalent to that shown in the figure, models a domain in which there are multiple
independent (“I”), pattern (“P”), and ghost (“G”) tracks. This grammar is used in experiment
1. Grammar VT2 is used in experiments 2 through 6 and it differs only slightly from VT1.
Specifically, VT2 supports only single track “scenarios.” This is accomplished by modifying
the original grammar’s rule 2 so that the � value of the first RHS is 0 and the value of the
second RHS is 1. Thus, the grammar only creates single track phenomena.

This change is required to test the forms of pruning used in these experiments. The static
and dynamic pruning operators used include an implicit assumption that there is only a single
track to be interpreted. Consequently, without this change, the static and dynamic pruning
functions would eliminate many paths from consideration that are actually correct paths.

Even with the modified grammar, scenarios can include multiple vehicle tracks. Pattern
tracks consist of two vehicle tracks and Ghost tracks consist of a vehicle track and a “reflection”
or “ghost” of that track.

The actual grammar used in the experiments is also modified so that it creates paths of
length 6. In general, it is not feasible or realistic to model domains where phenomena are
allowed to represent unrestricted time sequences. The amount of data in a realistic domain
would be overwhelming. Instead, real-world domains must employ some form of time-slicing
in which data from one given period is analyzed before proceeding to the next time period. For
these experiments, the time period was chosen to be 6.

The original vehicle tracking grammar was based on a model of a sensed area with vehicles
moving in and out of the area. The grammar would generate vehicle track data that would
originate on a boundary of the sensed region and traverse some portion of the region. In these
experiments, the grammar generates tracks that are then “centered” in the imaginary sensed
region. The current interpretation model does not include a component representing sensor
degradation as a function of distance from the center of the region or any similar representations
that take into account a phenomenon’s position within the sensed region, so this assumption
has no noticeable effect on the experiments other than to simplify the implementation.

197

1. S�f� � Tracks�f� p=1
2. Tracks�f� � Tracks�f� Track�f� p=0.1

� Track�f� p=0.9
3. Track�f� � I-Track1�f� p=0.25

� I-Track2�f� p=0.25
� P-Track1�f� p=0.10
� P-Track2�f� p=0.10
� G-Track1�f� p=0.15
� G-Track2�f� p=0.15

4. I-Track1�f� � I-Track1�f�t���x�V �A�y�V�A� T1�f� p=1
5. I-Track2�f� � I-Track2�f�t���x�V �A�y�V�A� T2�f� p=1
6. P-Track1�f� � P-Track1�f�t���x�V �A�y�V�A� P-T1�f� p=1
7. P-Track2�f� � P-Track2�f�t���x�V �A�y�V�A� P-T2�f� p=1
8. G-Track1�f� � G-Track1�f�t���x�V �A�y�V�A� G-T1�f� p=1
9. G-Track2�f� � G-Track2�f�t���x�V �A�y�V�A� G-T2�f� p=1
10. P-T1�f� � T1�f�t�x�O�y�O� T2�f� p=1 11. P-T2�f� � T2�f�t�x�O�y�O� T2�f� p=1
12. G-T1�f� � GT1�f�t�x�O�y�O� T1�f� p=1 13. G-T2�f� � GT2�f�t�x�O�y�O� T2�f� p=1
14. T1�f� � V1�f� N�f� p=1 15. T2�f� � V2�f� N�f� p=1
16. GT1�f� � GV1�f� N�f� p=1 17. GT2�f� � GV2�f� N�f� p=1
18. N�f� � n�f� N�f� p=0.1 19. V1�f� � G1�f� G3�f� G7�f� p=0.4

� n�f� p=0.25 � G1�f� G3�f� p=0.3
� � p=0.65 � G1�f� G7�f� p=0.25

20. V2�f� � G3�f� G8�f� G12�f� p=0.4 � � p=0.05
� G8�f� G12�f� p=0.3 21. GV1�f� � G-G1�f� G-G3�f� G-G7�f� p=0.2
� G3�f� G12�f� p=0.25 � G-G1�f� G-G3�f� p=0.3
� � p=0.05 � G-G1�f� G-G7�f� p=0.25

22. GV2�f� � G-G3�f� G-G8�f� G-G12�f� p=0.4 � � p=0.05
� G-G8�f� G-G12�f� p=0.3 23. G1�f� � S1�f� S2�f� p=0.45
� G-G3�f� G-G12�f� p=0.25 � S1�f� S3�f� p=0.1
� � p=0.05 � S1�f� S4�f� p=0.1

24. G3�f� � S5�f� S7�f� p=0.45 � S2�f� S3�f� p=0.1
� S5�f� S6�f� p=0.1 � S2�f� S3�f� S4�f� p=0.1
� S6�f� S7�f� p=0.1 � S1�f� p=0.05
� S4�f� S5�f� p=0.1 � S2�f� p=0.05
� S7�f� S8�f� p=0.1 � � p=0.05
� S5�f� p=0.05 25. G7�f� � S11�f� S15�f� p=0.55
� S7�f� p=0.05 � S11�f� S16�f� p=0.43
� � p=0.05 � � p=0.02

26. G8�f� � S13�f� S18�f� p=0.55 27. G12�f� � S6�f� S14�f� S17�f� p=0.45
� S13�f� S17�f� p=0.1 � S6�f� S14�f� p=0.25
� S14�f� S18�f� p=0.1 � S7�f� S14�f� S18�f� p=0.25
� S15�f� S17�f� p=0.1 � � p=0.05
� S13�f� p=0.05 29. G-G3�f� � S5�f� S7�f� p=0.2
� S18�f� p=0.05 � S5�f� S6�f� p=0.05
� � p=0.05 � S6�f� S7�f� p=0.05

28. G-G1�f� � S1�f� S2�f� p=0.2 � S4�f� S5�f� p=0.05
� S1�f� S3�f� p=0.05 � S7�f� S8�f� p=0.05
� S1�f� S4�f� p=0.05 � S5�f� p=0.2
� S2�f� S3�f� p=0.05 � S7�f� p=0.15
� S2�f� S3�f� S4�f� p=0.05 � � p=0.25
� S1�f� p=0.2 31. G-G8�f� � S13�f� S18�f� p=0.15
� S2�f� p=0.2 � S13�f� S17�f� p=0.05
� � p=0.2 � S14�f� S18�f� p=0.05

30. G-G7�f� � S11�f� S15�f� p=0.30 � S15�f� S17�f� p=0.05
� S11�f� S16�f� p=0.30 � S13�f� p=0.2
� � p=0.40 � S18�f� p=0.25

32. G-G12�f� � S6�f� S14�f� S17�f� p=0.2 � � p=0.25
� S6�f� S14�f� p=0.2 35. n�f�t� � S1�f� p=0.05
� S7�f� S14�f� S18�f� p=0.25 � S2�f� p=0.05
� � p=0.35 � � � � � � � � � � � �

� S20�f� p=0.05

Figure 11.1. Grammar Rules for a Vehicle Tracking Domain

198

11.2 The Experimental Problem Solving Architecture

The experimental problem solver used a blackboard control strategy based on six levels of
abstraction: signal events, group events, vehicle events, vehicle tracks, pattern tracks, and solu-
tions. The control architecture is based on that shown in Fig. 11.2. This architecture includes
use of preconditions, pruning functions, and goal processing as described in Chapter 10.

The problem solver’s termination criteria is a fully connected search space and a selection
of a “correct” interpretation. As defined in Chapter 3, a search space is fully connected when
the path from every state lead to either a final solution (i.e., a complete interpretation) or an
explicit termination. Thus, a fully connected search space corresponds with an empty operator
queue.

The decision regarding the “correct” interpretation is made by selecting the interpretation
with the highest rating. This does not necessarily correspond to the domain event that
generated the signal data. Thus, the problem solver does not generate an interpretation and
halt. It generates all possible interpretations and selects the one with the highest rating.

Also, it is important to note that data is used exclusively in this system. Therefore, no single
piece of data can be used in two different ways within the same interpretation. For example, if
a pattern track involves two crossing tracks, there must be data to independently support each
individual track. In scenarios that include multiple tracks, the problem solver cannot construct
a solution in which multiple tracks share a single piece of data. Such solutions are invalid.

The operator evaluation function used is specified in Equation 11.2.1 and is based on the
rating (i.e., credibility) assigned to a partial result that an operator is extending and its level
on the blackboard. Ratings are determined by the semantic functions of the grammar and are
based on the concept of consistency. As described in Chapter 3, the semantic functions define
a partial result’s credibility in a recursive manner. In the experimental problem solver, they are
used in an inverse manner to calculate ratings.

Equation 11.2.1 R�opi�nj�� � LEV EL�nj� � CRED�nj �,

whereR�opi� is the rating for the potential problem solving operator opi applied to search state
nj , LEV EL�nj� is the level of the blackboard corresponding to state nj , and CRED�nj� is
nj ’s credibility.

The concept of consistency represents the degree to which individual components of an
interpretation are consistent with each other. For example, in a natural language understanding
domain, consistency would represent the degree to which a verb phrase and a noun phrase
“make sense.” In this simulated vehicle tracking domain, we represent a variety of domain
characteristics in the rating metric. These include energy level of the signal (which is represented
as credibility), turning radius (vehicles are not expected to turn or decelerate sharply), and length
of track (short tracks are considered anomalies).

The number of a partial result’s level is used in the evaluation function to rate the problem
solving actions that can be applied to the partial result. This has the effect of skewing the
heuristic problem solving strategy to be more depth-first by increasing the ratings of partial
results that are on “higher” levels of the blackboard.

The knowledge sources used by the problem solver correspond to the production rules of
the domain grammar and are summarized in Tables 11.1, 11.2, and 11.3. These operators are,
in large part, automatically constructed.

There are several modifications that are made to the set of operators that are not reflected
in the domain grammar. These are required to correctly process partial interpretations at the

199

flow of data

flow of control

choose operator
to execute

execute operator

rate new
operators

operators available
for execution

add operators with satisfied
preconditions to pool of

available operators

add new operators to pool
of potential operators

identify potential operators
with satisfied preconditions

rerate operators based on
goals

goal filters

Figure 11.2. The Basic Control Cycle For the Experimental Problem Solver

200

Table 11.1. Summary of Track and Scenario Problem Solving Operators

IDPi Rule Operator BB Level Description

Track
f � � I-Track1
f � SC-IT1 Scenario synthesis of I-Track1 scenarios
Track
f � � I-Track2
f � SC-IT2 Scenario synthesis of I-Track2 scenarios
Track
f � � P-Track1
f � SC-PT1 Scenario synthesis of P-Track1 scenarios
Track
f � � P-Track2
f � SC-PT2 Scenario synthesis of P-Track2 scenarios
Track
f � � G-Track1
f � SC-GT1 Scenario synthesis of P-Track1 scenarios
Track
f � � G-Track2
f � SC-GT2 Scenario synthesis of P-Track2 scenarios
I-Track1
f � � I-Track1
f�t���x�V�A�y�V �A� T1
f � EX-T11 Track I-Track1 Forward Extension
I-Track1
f � � I-Track1
f�tb�te�x�V�A�y�V�A� T1
tb���f � EX-T12 Track I-Track1 Backward Extension
I-Track1
f � � T1
t�f � T1
t���f � EX-T13 Track I-Track1 Initialization
I-Track2
f � � I-Track2
f�t���x�V�A�y�V �A� T2
f � EX-T21 Track I-Track2 Forward Extension
I-Track2
f � � I-Track2
f�tb�te�x�V�A�y�V�A� T2
tb���f � EX-T22 Track I-Track2 Backward Extension
I-Track2
f � � T2
t�f � T2
t���f � EX-T23 Track I-Track2 Initialization
P-Track1
f � � P-Track1
f�t���x�V�A�y�V�A� P-T1
f � EX-PT11 Track P-Track1 Forward Extension
P-Track1
f � � P-Track1
f�tb�te�x�V�A�y�V�A� P-T1
tb���f � EX-PT12 Track P-Track1 Backward Extension
P-Track1
f � � P-T1
t�f � P-T1
t���f � EX-PT13 Track P-Track1 Initialization
P-Track2
f � � P-Track2
f�t���x�V�A�y�V�A� P-T2
f � EX-PT21 Track P-Track2 Forward Extension
P-Track2
f � � P-Track2
f�t���x�V�A�y�V�A� P-T2
f � EX-PT22 Track P-Track2 Backward Extension
P-Track2
f � � P-T2
t�f � P-T2
t���f � EX-PT23 Track P-Track2 Initialization
G-Track1
f � � G-Track1
f�t���x�V�A�y�V �A� G-T1
f � EX-GT11 Track G-Track1 Forward Extension
G-Track1
f � � G-Track1
f�t���x�V�A�y�V �A� G-T1
f � EX-GT12 Track G-Track1 Backward Extension
G-Track1
f � � G-T1
t�f � G-T1
t���f � EX-GT13 Track G-Track1 Initialization
G-Track2
f � � G-Track2
f�t���x�V�A�y�V �A� G-T2
f � EX-GT21 Track G-Track2 Forward Extension
G-Track2
f � � G-Track2
f�t���x�V�A�y�V �A� G-T2
f � EX-GT22 Track G-Track2 Backward Extension
G-Track2
f � � G-T2
t�f � G-T2
t���f � EX-GT23 Track G-Track2 Initialization

Abbreviations
ITn: Individual Track of class n
PTn: Pattern Track of class n
GTn: Ghost Track of class n

track levels. For production rules that generate individual vehicle track locations and that have
the form:
a-Track�f � a-Track�f�tb�te�x�V�A�y�V �A a�te���f ,
where tb and te represent the begin and end times of the track, an additional problem solving
operator is created to extend the track backward in time. Specifically, the following rule is
added to the set of operators:
a-Track�f � a-Track�f�tb�te�x�V�A�y�V �A a�tb���f .

201

In other words, the first production rule combines a vehicle location partial result, a, at
time t with a track that has an end time of t-1. The second production rule combines a vehicle
location partial result, a, at time t with a track that has a begin time of t+1. These rules are
required to allow the problem solver to do island driving by extending a track either forward or
backward in time. Note that these production rules allow the corresponding operator to start
with either a track partial result and extend it with a vehicle location partial result, or vice-versa.

In addition, a variety of rules have been added to initiate track level partial results.
Specifically, for each production rule of the form:
a-Track�f � a-Track2�f�tb�te�x�V�A�y�V �A a�te���f ,
a new production rule is added that does not correspond to any rule in the domain grammar.
This rule has the form:
a-Track�f � a�t�f a�t���f . This rule allows track partial results to be initially formed by
combining two adjacent vehicle location partial results. This additional rule is necessary
because the production rule used to generate track data is inadequate for creating track level
interpretations. Specifically, it requires that a track level partial results already be present on
the blackboard in order to create a track. The new rule defeats this conundrum by allowing
the interpretation of a track level partial result from two adjacent vehicle level partial results.
Without this additional rule, there would be no operator to create the original tracks that are
then extended by the existing track rules.

As previously mentioned, in the experimental domain, scenarios are generated with a path
length of six and this data is then “centered” in the problem solver’s sensed region. This is
not reflected in either the domain grammar or the problem solving operators. Thus, operators
attempt to extend tracks past time 6 and before time 1. In the experiments described here,
this has the effect of increasing the cost of problem solving. However, these costs could be
avoided by creating a grammar that explicitly limited the track length syntactically. However,
the results from such a reorganization would be more difficult to generalize.

202

Table 11.2. Summary of Track and Vehicle Location Problem Solving Operators

IDPi Rule Operator Name BB Level Description
P-T1
f � � T1
f�t�x�O�y�O� T2
f � S-PT1 Track Location synthesis of P-Track1 locations
P-T2
f � � T2
f�t�x�O�y�O� T2
f � S-PT2 Track Location synthesis of P-Track2 locations
G-T1
f � � GT1
f�t�x�O�y�O� T1
f � S-GT1 Track Location synthesis of G-Track1 locations
G-T2
f � � GT2
f�t�x�O�y�O� T2
f � S-GT2 Track Location synthesis of G-Track2 locations
T1
f � � V1
f � N
f � S-T1 Track Location synthesis of I-Track1 locations
T2
f � � V2
f � N
f � S-T2 Vehicle Location synthesis of I-Track2 locations
GT1
f � � GV1
f � N
f � S-GVL1 Vehicle Location synthesis of G-Track1 locations
GT2
f � � GV2
f � N
f � S-GVL2 Vehicle Location synthesis of G-Track2 locations
N
f � � n
f � N
f � S-N1 Vehicle Location synthesis of noise
N
f � � n
f � S-N2 Vehicle Location synthesis of noise
V1
f � � G1
f � G3
f � G7
f � S-V11 Vehicle Location synthesis of V1
V1
f � � G1
f � G3
f � S-V12 Vehicle Location synthesis of V1
V1
f � � G1
f � G7
f � S-V13 Vehicle Location synthesis of V1
V2
f � � G3
f � G8
f � G12
f � S-V21 Vehicle Location synthesis of V2
V2
f � � G8
f � G12
f � S-V22 Vehicle Location synthesis of V2
V2
f � � G3
f � G12
f � S-V23 Vehicle Location synthesis of V2
GV1
f � � G-G1
f � G-G3
f � G-G7
f � S-GV11 Vehicle Location synthesis of GV1
GV1
f � � G-G1
f � G-G3
f � S-GV12 Vehicle Location synthesis of GV1
GV1
f � � G-G1
f � G-G7
f � S-GV13 Vehicle Location synthesis of GV1
GV2
f � � G-G3
f � G-G8
f � G-G12
f � S-GV21 Vehicle Location synthesis of GV2
GV2
f � � G-G8
f � G-G12
f � S-GV22 Vehicle Location synthesis of GV2
GV2
f � � G-G3
f � G-G12
f � S-GV23 Vehicle Location synthesis of GV2

Abbreviations
ITn: Individual Track of class n
PTn: Pattern Track of class n
GTn: Ghost Track of class n
Tn: Individual Track Location of class n
Gn: Ghost Vehicle Location of class n
Vn: Vehicle of class n
GVn: Ghost Vehicle of class n

203

Table 11.3. Summary of Group Synthesis Problem Solving Operators

IDPi Rule Operator Name BB Level Description
G1
f � � S1
f � S2
f � S-G11 Group synthesis of G1
G1
f � � S1
f � S3
f � S-G12 Group synthesis of G1
G1
f � � S1
f � S4
f � S-G13 Group synthesis of G1
G1
f � � S2
f � S3
f � S-G14 Group synthesis of G1
G1
f � � S2
f � S3
f � S4
f � S-G15 Group synthesis of G1
G1
f � � S1
f � S-G16 Group synthesis of G1
G1
f � � S2
f � S-G17 Group synthesis of G1
G3
f � � S5
f � S7
f � S-G31 Group synthesis of G3
G3
f � � S5
f � S6
f � S-G32 Group synthesis of G3
G3
f � � S6
f � S7
f � S-G33 Group synthesis of G3
G3
f � � S4
f � S5
f � S-G34 Group synthesis of G3
G3
f � � S7
f � S8
f � S-G35 Group synthesis of G3
G3
f � � S5
f � S-G36 Group synthesis of G3
G3
f � � S7
f � S-G37 Group synthesis of G3
G7
f � � S11
f � S15
f � S-G71 Group synthesis of G7
G7
f � � S11
f � S16
f � S-G72 Group synthesis of G7
G8
f � � S13
f � S18
f � S-G81 Group synthesis of G8
G8
f � � S13
f � S17
f � S-G82 Group synthesis of G8
G8
f � � S14
f � S18
f � S-G83 Group synthesis of G8
G8
f � � S15
f � S17
f � S-G84 Group synthesis of G8
G8
f � � S13
f � S-G85 Group synthesis of G8
G8
f � � S18
f � S-G86 Group synthesis of G8
G12
f � � S6
f � S14
f � S17
f � S-G121 Group synthesis of G12
G12
f � � S6
f � S14
f � S-G122 Group synthesis of G12
G12
f � � S7
f � S14
f � S18
f � S-G123 Group synthesis of G12

Abbreviations
Gn: Group Data of class n

204

Table 11.4. Summary of Ghost Group Level Synthesis Problem Solving Operators

IDPi Rule Operator Name BB Level Description
G-G1
f � � S1
f � S2
f � S-GG11 Group synthesis of G-G1
G-G1
f � � S1
f � S3
f � S-GG12 Group synthesis of G-G1
G-G1
f � � S1
f � S4
f � S-GG13 Group synthesis of G-G1
G-G1
f � � S2
f � S3
f � S-GG14 Group synthesis of G-G1
G-G1
f � � S2
f � S3
f � S4
f � S-GG15 Group synthesis of G-G1
G-G1
f � � S1
f � S-GG16 Group synthesis of G-G1
G-G1
f � � S2
f � S-GG17 Group synthesis of G-G1
G-G3
f � � S5
f � S7
f � S-GG31 Group synthesis of G-G3
G-G3
f � � S5
f � S6
f � S-GG32 Group synthesis of G-G3
G-G3
f � � S6
f � S7
f � S-GG33 Group synthesis of G-G3
G-G3
f � � S4
f � S5
f � S-GG34 Group synthesis of G-G3
G-G3
f � � S7
f � S8
f � S-GG35 Group synthesis of G-G3
G-G3
f � � S5
f � S-GG36 Group synthesis of G-G3
G-G3
f � � S7
f � S-GG37 Group synthesis of G-G3
G-G7
f � � S11
f � S15
f � S-GG71 Group synthesis of G-G7
G-G7
f � � S11
f � S16
f � S-GG72 Group synthesis of G-G7
G-G7
f � � S11
f � S15
f � S-GG73 Group synthesis of G-G7
G-G8
f � � S13
f � S18
f � S-GG81 Group synthesis of G-G8
G-G8
f � � S13
f � S17
f � S-GG82 Group synthesis of G-G8
G-G8
f � � S14
f � S18
f � S-GG83 Group synthesis of G-G8
G-G8
f � � S15
f � S17
f � S-GG84 Group synthesis of G-G8
G-G8
f � � S13
f � S-GG85 Group synthesis of G-G8
G-G8
f � � S18
f � S-GG86 Group synthesis of G-G8
G-G12
f � � S6
f � S14
f � S17
f � S-GG121 Group synthesis of G-G12
G-G12
f � � S6
f � S14
f � S-GG122 Group synthesis of G-G12
G-G12
f � � S7
f � S14
f � S18
f � S-GG123 Group synthesis of G-G12

Abbreviations
GGn: Ghost Group Data of class n

205

The experiments described in the following sections demonstrate that the analysis tools
accurately predict the effects of various sophisticated control mechanisms, preconditions,
pruning functions, and goal processing. Each of these mechanisms are implemented as
previously described.

11.2.1 Precondition Mechanisms

A new precondition operator is added for each existing production rule of the grammar as
described in Chapter 10.1. Precondition operators are automatically given a rating of “MAX”
so that they are executed before any other operators are executed, as shown in Fig. 11.2. The
precondition for a rule: A� B C D has the two part form: 1) Aop

�B�C�D � B C D; 2) A�
Aop
�B�C�D. When executed, the precondition determines if the data necessary to match the RHS

of the production rule is present on the blackboard. If the data is present, the state Aop
�B�C�D

is created and operators applicable to it are assigned ratings by the evaluation function. If the
precondition determines that the data necessary to match the RHS of the rule is not present on
the blackboard, no new states are created. This effectively prevents all further problem solving
along the path.

In the IDP/UPC representation, preconditions are considered to be separable knowledge
sources rather than components of the control mechanism. In fact, in the original imple-
mentation of preconditions in the Hearsay II speech understanding system, preconditions
were treated as knowledge sources rather than components of the control mechanism. Later,
they were always executed immediately after being created. As a result, in later presentations,
preconditions were not considered to be separate knowledge sources [V.R.Lesser et al., 1975].
Thus, the treatment of preconditions here is reasonable and, as stated above, the problem solver
forces preconditions to be executed before any domain actions.

This specification of a precondition is risky in the sense that it requires the problem solver
to be “symmetric” in the sense that every production rule must be applicable to every member
of the rule’s RHS. For example, if a B, C, or D is added to the blackboard, the precondition
must be executed. Otherwise, the precondition could prune paths when they should not be
pruned. For example, for the rule Aop

�B�C�D � B C D, assume that the corresponding problem
solving operator can only be applied to a state corresponding to “D.” If the “D” is created
before the “B” and/or the “C” the precondition will be created and executed and it will prune
the paths from “D” that would have created the “A.” Since the operator is not applicable to
“B” or “C,” the “A” will never be created when, in fact, it should. Furthermore, this pruning is
purely syntactic and will eliminate many solution paths that should not be eliminated.

11.2.2 Pruning Mechanisms

Two forms of pruning operators are used in the experiments, static and dynamic. Both
forms are represented and function as described in Chapters 4 and 10. In the experiments
conducted here, pruning functions were added to all track-level states. When executed,
both static and dynamic operators compare the “expected” credibility rating of complete
interpretations on a path from a partial result to a threshold. If the probability that the
complete interpretation’s rating will exceed the threshold is less than 10%, the path is pruned
as described in Chapter 4.

The difference between the two forms of pruning is in the manner in which the thresholds
are established. Static pruning uses a threshold that is determined a priori. Dynamic pruning

206

uses a threshold that is determined during processing by dynamically choosing the highest
rating for complete interpretations generated so far.

11.2.3 Goal Processing

The third sophisticated control mechanism used in the experiments is goal processing
described in Chapter 10.2. This mechanism is used to support more depth-first, goal driven
problem solving by increasing the ratings of lower-level partial results that are needed to extend
higher-level partial results. In the experiments, goal processing is added at the track level. For
track-level partial results of the form a � Track��tb�te, where tb and te represent the track’s
begin and end times, operators of the following form are added:
Goal-a�tb�� � a-Track1�tb�te
and Goal-a�te�� � a-Track1�tb�te. In other words, a “goal” is created to generate data needed
to extend the track forward and backward in time.

The rating and blackboard level of the goal is identical to the partial result from which it
is generated. For each goal, there is a mapping operator of the form:
� � Goal-a�t.
When executed, this operator finds all the partial results that can support the generation of the
partial results that are needed to extend the track. It then finds all of the operators that can
be used to extend the partial-results to new partial results that can support the extension of
the track and attempts to modify their ratings. Ratings are modified by first calculating a new
rating for an operator based on the rating of the high-level goal. If this operator evaluation
rating is higher than the existing evaluation of the operator, the existing rating is replaced with
the higher rating. After the mapping operator processes existing data, it establishes a filter that
examines all newly generated data and processes it as described above.

The specific rerating process used in the experimental problem solver is as follows:

1. Determine a goal rating that corresponds to the rating of the operator(s) that require one
or more elements from a set of partial results represented by the goal.

2. Find all intermediate states currently on the blackboard that are included in the compo-
nent set of the goal state.

3. For each intermediate state, find all the associated operator instantiations currently on
the queue that are components of paths to the goal.

4. For each operator found in step 2, if the current rating is less than the goal rating, replace
the operator’s current rating with the goal rating and replace the operator in the queue.

5. Create a filter� for new operator instantiations. The filter functions as follows. For each
new state, s, that is created, the filter determines if s is a member of the goal state’s
component set. If it is, the filter checks the ratings of all the operators instantiated based
on s that are components of paths leading to the goal. If an operator’s rating is lower
than the goal rating, the operator’s rating is replaced with the goal rating.

�Filters are implemented as a list of Lisp functions. For each new state created, each element of the filter
function list is applied to each of the instantiated operators.

207

IDP
G

IDP
I

Statistical Domain
Expectations (E(C),

expected utilities, etc.)

Problem SolutionIDP
G

Analysis Tools

Problem Solver
Knowledge

Sources
Control
Strategy

(Problem
Instance)

inputs

output

outputinput

a. General organization of analysis system

b. General organization of problem solver

Figure 11.3. The Experimental Framework

11.3 Experimental Results

We have conducted a series of experiments based on the domain grammar shown in
Fig. 11.1. The results of the experiments are shown in Table 11.5. The method used is
illustrated in Fig. 11.3. As shown, the grammar was used to analyze the domain and predict
the performance of a problem solver and to generate problem instances that were passed to the
problem solver. By generating numerous problem instances and recording the performance of
the problem solver, it was possible to statistically verify the validity of the analysis tools.

Four sets of experiments were conducted. In the first set, the problem solving operators
corresponded to rules of the IDPg grammar shown in Fig. 11.1. In the second set of experiments,
pruning operators were added to the grammar. The third set of experiments used goal processing
operators and did not use pruning operators. The fourth set used both pruning and goal
processing. The generational grammar was modified slightly in some of the experiments to
facilitate analysis. This will be discussed in the following sections which give details of the
experimental results.

11.4 Experiments with a Complex Grammar

Experiments 1 and 2 were conducted as base cases to which other experiments are compared.
In addition, they verify that the analysis tools from Chapter 5 can be applied successfully in more
complex, real-world domains. Note that in all of these experiments, scenarios are restricted
to vehicle tracks of length six. This is necessary for computational purposes. It is extremely
difficult to calculate and verify UPC values in situations where there is no limit to the length
of the vehicle track. Though many techniques exist for calculating reasonable approximations
for average path length in an unrestricted domain, these complicate the verification process
unnecessarily as the six time frame restriction does not limit the applicability of the techniques
to real-world domains, as discussed above.

Experiment 1 was conducted using a domain grammar that allows for multiple scenarios
per run. Though multiple scenarios occur relatively infrequently, they result in a dramatic

208

increase in the cost of problem solving due to the interactions between partial results associated
with different scenarios.

Experiment 2 uses a domain grammar that does not allow multiple scenarios in a single
problem instance. This restriction greatly reduced the cost of problem solving, as expected.
Again, the analysis tools accurately predicted the expected cost of problem solving.

In Table 11.5, the results of the heuristic problem solver are compared to a problem solver
using an operator evaluation function based on UPC values. In the first two experiments,
there is no difference between the expected results from heuristic search and UPC search. This
is because the problem solving architecture does not use any form of pruning and is essentially
doing an exhaustive search.

11.5 Experiments with Preconditions

In experiment 3, the problem solver was modified as described in Chapter 11.2 to
incorporate the use of preconditions. As shown in Table 11.5, this resulted in a reduction
in problem solving cost of over one-third. A quick review of the table indicates that this is the
most effective technique used for reducing the cost of problem solving. Although it relies on
the problem solver essentially being “symmetric,” the use of preconditions does not preclude
the problem solver from finding any correct answers.

In this experiment, the heuristic problem solver and the UPC -based problem solver again
perform identically. Preconditions have several distinctive characteristics that lead to this result.
First, the pruning is only one level deep. In other words, the problem solver does not need
a sophisticated mechanism to estimate the long-range value of a pruning mechanism that is
applied to search paths of length one. A heuristic function will compare favorably with the
more complex potential calculation used by the UPC problem solver. In addition, the use of
preconditions is overwhelmingly beneficial and is always the correct thing to do, especially when
the cost is much less than the cost of domain processing. Therefore, if the heuristic always gives
precondition operators the highest possible rating, it will always be taking the most efficient
course of action.

11.6 Experiments with Pruning

Static and dynamic pruning operators are introduced in experiments 4 and 5 where they
are incorporated into a problem solving architecture that also uses preconditions. As shown, the
use of pruning operators further decreases the cost of problem solving by eliminating low-rated
paths from consideration. Compared with static pruning, dynamic pruning is slightly more
efficient at reducing the cost of problem solving and significantly better in terms of only pruning
paths that do not lead to the highest rated interpretation.

Both pruning mechanisms were set to eliminate operators that only lead to complete
interpretations with an expected rating that have less than a 10 % chance of exceeding the
threshold. In the static pruning architecture, the threshold was set at ����. Thus, if the “U”
value of a path has less than a 10% likelihood of exceeding ����, the path is pruned by setting
its rating to 0. In the vehicle tracking problem domain, the expected rating of all scenarios is set
to ���. During problem instance generation, this value is modified to represent the occurrence
of various domain phenomena and then propagated to the low-level data by the generational
grammar rules. Note that when the low-level data is interpreted, the final credibility may be
significantly lower than the original credibility used to create the data. This is due to the effects
of domain phenomena and is described more fully in Chapter 3.

209

Table 11.5. Results of Verification Experiments – Set 3

Exp IDPg IDPi E�C� Avg. C E�C�� Sig1 % Correct E(% Correct) Sig2
1 VT1 VT00 26,110 26,130 26,110 N 100 100 N
2 VT2 VT00 18,980 19,060 18,980 N 100 100 N
3 VT2 VT10 6,032 6,113 6,032 N 100 100 N
4 VT2 VT20 5,687 5,734 5,687 N 88 86 N
5 VT2 VT21 5,505 5,565 5,112 N 99 99 N
6 VT2 VT22 6,108 6,175 6,108 N 100 100 N
7 VT2 VT23 5,487 5,524 5,223 N 100 100 N
8 VT2 VT24 15,557 15,484 15,557 N 88 84 N
9 VT2 VT25 15,007 14,928 14,142 N 99 99 N
10 VT2 VT26 14,462 14,674 14,263 N 100 100 N
11 VT2 VT20 5,687 5,712 5,687 N 88 86 N
12 VT2 VT23 6,032 6,113 5,223 N 100 100 N

Abbreviations
Exp: Experiment
IDPg: Description of IDP Domain Grammar used to generate problem instances.

VT1: complex vehicle tracking grammar (maximum/average path length of 6);
VT2: VT1 restricted to single scenarios (maximum/average path length of 6).

IDPi: Description of IDP Interpretation Grammar specifying the problem solver.
VT00: complex vehicle tracking grammar (operator cost of 10);
VT10: VT00 with preconditions (cost 1);
VT20: VT10 with static pruning operators (cost 1);
VT21: VT10 with dynamic pruning operators (cost 1);
VT22: VT10 with goal processing at the I-, P-, and G-Track levels (cost 1);
VT23: VT21 and VT22 combined;
VT24: VT00 with static pruning operators (cost 1);
VT25: VT00 with dynamic pruning operators (cost 1);
VT26: VT25 with goal processing at the I-, P-, and G-Track levels (cost 1).

E�C�: Expected Cost of problem solving for given grammar and heuristic evaluation function.
E�C��: Expected Cost of problem solving using exact UPC values.
Avg. C: actual average cost for 100 samples of 50 random problem instances each.
Sig1: Whether or not the difference between expected cost and the

actual average cost was statistically significant, Y:yes; N:no.
% Correct : Percentage of correct answers found.
E��Correct�: Expected percentage of correct answers found by problem solver,

where the correct answer is the interpretation with the highest credibility rating.
Correct answers are not found in situations where paths to final states corresponding
to the highest rated interpretation are pruned by bounding functions.

Sig2: Whether or not the difference between expected percentage of correct answers found
and the actual percentage of correct answers found was statistically significant, Y:yes; N:no.

210

In these experiments, dynamic pruning performs more efficiently because it sets the
threshold during problem solving after a complete interpretation is created and the average
value for the threshold, ����, is higher than the one used in static pruning. More significantly,
in certain instances, the dynamic threshold is set much higher than the static threshold, � ���,
and there is a significant amount of pruning.

Furthermore, dynamic pruning is superior to static pruning in that it eliminates far fewer
“correct” paths. In a typical problem instance, there is at least one component of a path that
has a relatively low rating. In many instances, the static pruning operators eliminate paths
from these components from consideration. In some cases, this does not matter because the
symmetric nature of the problem domain compensates for the mistake. For example, a vehicle
level partial result with a low rating may have all associated problem solving operators pruned.
However, it is still possible to use this partial result in a track if the track extension operator is
instantiated after the vehicle level data. In other cases, the static pruning operators can prune
correct interpretations by eliminating critical elements.

Dynamic pruning is superior in this regard because it does not establish the pruning
threshold until a full interpretation is formed. Although the first such interpretation is often
not the best, the impact is the same because the low-level data is often shared with what turns
out to be the “correct” or highest-rated interpretation. As a consequence, the data needed to
create the highest-rated interpretation is generated before a threshold is established and is never
subjected to pruning.

Note that although the table indicates that dynamic pruning found the correct solution
99% of the time, the actual results were much better. In actual runs, dynamic pruning rarely
eliminated correct interpretations and the actual percentage of correct answers found is 99.8.
The table truncates this value to draw attention to the fact that dynamic pruning does, in
certain instances, eliminate the high-rated interpretations from consideration.

Also, it should be noted that for most problem instances, static pruning actually is more
efficient. However, in instances where the complete interpretation found by dynamic pruning
has a very high rating, � ���, it prunes significantly more low-level data than static pruning
and thus reduces the overall expected cost of problem solving.

The use of static pruning has the same effect on both the heuristic and the UPC problem
solver. This is because there is no “thought” involved in the pruning process. It does not matter
what order the operators are applied, they will be subjected to the same pruning conditions.

The results of dynamic pruning, however, are quite different. In this experiment, the UPC
problem solver performs much better than the heuristic problem solver. This is interesting to
note because the heuristics used are intended to closely match the effects of using UPC values.
The problem occurs because the heuristic problem solver is not as effective at generating
high-quality results early that can be used to guide the pruning. Specifically, the heuristic
problem solver’s reliance on partial result ratings and on the weighting associated with a partial
result’s blackboard level to make control decisions was intended to have the effect of creating
a more depth-first search that should lead to the generation of a complete interpretation more
quickly than a breadth-first search. However, the heuristics fail when a component of a path
has a relatively low rating. In these situations, the effort to construct a highly-rated complete
interpretation stall and there is a delay in establishing a pruning threshold.

The UPC problem solver suffers from these effects to a lesser degree. The potential
calculation functions as a means for seeing past the immediate implications of a low rating and
it allows the problem solver to more accurately estimate the effects of processing the data to
a level of the blackboard from which it can be incorporated into a more highly-rated result

211

that can be used to establish a pruning threshold. The specifics of this result are interesting.
The potential calculation works most effectively in situations where the probability of creating
a highly-rated complete interpretation using partial results with low ratings is likely from a
syntactic perspective.

11.7 Experiments with Goal Processing

Goal processing is shown in conjunction with (experiment 7) and without (experiment
6) dynamic pruning. The results are shown in Table 11.6. Without the use of pruning
mechanisms, goal processing simply increases the cost of problem solving. This is because the
overhead of goal processing is incurred, but no benefits are derived.

When incorporated with dynamic pruning, goal processing has two effects. First, it
significantly increases the efficiency of the pruning mechanisms to the point where they are
comparable to the performance of the UPC problem solver. Second, they allow the problem
solver to find the highest rated interpretation 100% of the time.

The use of goal processing reduces expected cost because it allows the problem solver to
look past the immediate implications of a low rating on a partial result by replacing the low
rating with a higher rating derived from the rating of a goal to extend a track. This causes the
problem solver to more quickly generate highly-rated complete interpretations that can be used
to prune other problem solving activities.

In addition, the use of goal processing eliminates situations where the problem solver prunes
the data needed to construct the highest rated solution. When the pruning functions eliminate
a path from consideration, they do not remove the associated operators from the set of potential
activities. Instead, they set the rating of the operators to 0. The goal processing mechanisms
search through the set of potential operators and modify the ratings of all applicable operators.
As a consequence, the goal processing mechanisms restore previously pruned paths.

11.8 Experiments with Verifying Preconditions

Experiments 8, 9, and 10 demonstrate the advantages of preconditions. The results are
shown in Table 11.7. The architecture used in these experiments included static pruning
in experiment 8, dynamic pruning in experiment 9, and both goal processing and dynamic
pruning in experiment 10. In each situation, the problem solver’s performance failed to match
the performance of corresponding architectures that used preconditions. Experiment 8 should
be compared with experiment 4, 9 with 5, and 10 with 7, respectively.

11.9 Experiments with Alternate Evaluation Functions

Experiments 11 and 12 demonstrate the effects, shown in Table 11.8, of using an evaluation
function that is not as appropriate for this domain. The results of experiment 4 should
be compared with the results of experiment 11 and 7 should be compared with 12. The
experiments were run using identical problem solving instances. This evaluation function used
in 11 and 12 is more “breadth-first” and it is less efficient than the evaluation function used
in 4 and 7. The evaluation function used in experiments 11 and 12 reversed the weightings
of the blackboard levels. Thus a signal level operator had a blackboard coefficient of 6 and a
scenario level operator had a blackboard coefficient of 1 in the evaluation function.

In experiments 4 and 11, there is no difference in the performance of the problem solvers.
This is because, with a static pruning function, the evaluation function used has no impact.

212

Table 11.6. Comparison of Goal Processing Experiments

Exp IDPg IDPi E�C� Avg. C E�C�� Sig1 % Correct E(% Correct) Sig2
6 VT2 VT22 6,108 6,175 6,108 N 100 100 N
7 VT2 VT23 5,487 5,524 5,223 N 100 100 N

Abbreviations
Exp: Experiment
IDPg: Description of IDP Domain Grammar used to generate problem instances.

VT1: complex vehicle tracking grammar (maximum/average path length of 6);
VT2: VT1 restricted to single scenarios (maximum/average path length of 6).

IDPi: Description of IDP Interpretation Grammar specifying the problem solver.
VT00: complex vehicle tracking grammar (operator cost of 10);
VT10: VT00 with preconditions (cost 1);
VT20: VT10 with static pruning operators (cost 1);
VT21: VT10 with dynamic pruning operators (cost 1);
VT22: VT10 with goal processing at the I-, P-, and G-Track levels (cost 1);
VT23: VT21 and VT22 combined;
VT24: VT00 with static pruning operators (cost 1);
VT25: VT00 with dynamic pruning operators (cost 1);
VT26: VT25 with goal processing at the I-, P-, and G-Track levels (cost 1).

E�C�: Expected Cost of problem solving for given grammar and heuristic evaluation function.
E�C��: Expected Cost of problem solving using exact UPC values.
Avg. C: actual average cost for 100 samples of 50 random problem instances each.
Sig1: Whether or not the difference between expected cost and the

actual average cost was statistically significant, Y:yes; N:no.
% Correct : Percentage of correct answers found.
E��Correct�: Expected percentage of correct answers found by problem solver,

where the correct answer is the interpretation with the highest credibility rating.
Correct answers are not found in situations where paths to final states corresponding
to the highest rated interpretation are pruned by bounding functions.

Sig2: Whether or not the difference between expected percentage of correct answers found
and the actual percentage of correct answers found was statistically significant, Y:yes; N:no.

213

Table 11.7. Summary of Precondition Verification Experiments

Exp IDPg IDPi E�C� Avg. C E�C�� Sig1 % Correct E(% Correct) Sig2
4 VT2 VT20 5,687 5,734 5,687 N 88 86 N
8 VT2 VT24 15,557 15,484 15,557 N 88 84 N
5 VT2 VT21 5,505 5,565 5,112 N 99 99 N
9 VT2 VT25 15,007 14,928 14,142 N 99 99 N
7 VT2 VT23 5,487 5,524 5,223 N 100 100 N
10 VT2 VT26 14,462 14,674 14,263 N 100 100 N

Abbreviations
Exp: Experiment
IDPg: Description of IDP Domain Grammar used to generate problem instances.

VT1: complex vehicle tracking grammar (maximum/average path length of 6);
VT2: VT1 restricted to single scenarios (maximum/average path length of 6).

IDPi: Description of IDP Interpretation Grammar specifying the problem solver.
VT00: complex vehicle tracking grammar (operator cost of 10);
VT10: VT00 with preconditions (cost 1);
VT20: VT10 with static pruning operators (cost 1);
VT21: VT10 with dynamic pruning operators (cost 1);
VT22: VT10 with goal processing at the I-, P-, and G-Track levels (cost 1);
VT23: VT21 and VT22 combined;
VT24: VT00 with static pruning operators (cost 1);
VT25: VT00 with dynamic pruning operators (cost 1);
VT26: VT25 with goal processing at the I-, P-, and G-Track levels (cost 1).

E�C�: Expected Cost of problem solving for given grammar and heuristic evaluation function.
E�C��: Expected Cost of problem solving using exact UPC values.
Avg. C: actual average cost for 100 samples of 50 random problem instances each.
Sig1: Whether or not the difference between expected cost and the

actual average cost was statistically significant, Y:yes; N:no.
% Correct : Percentage of correct answers found.
E��Correct�: Expected percentage of correct answers found by problem solver,

where the correct answer is the interpretation with the highest credibility rating.
Correct answers are not found in situations where paths to final states corresponding
to the highest rated interpretation are pruned by bounding functions.

Sig2: Whether or not the difference between expected percentage of correct answers found
and the actual percentage of correct answers found was statistically significant, Y:yes; N:no.

214

Table 11.8. Comparison of Experiments Using Alternative Evaluation Functions

Exp IDPg IDPi E�C� Avg. C E�C�� Sig1 % Correct E(% Correct) Sig2
4 VT2 VT20 5,687 5,734 5,687 N 88 86 N
11 VT2 VT20 5,687 5,712 5,687 N 88 86 N
7 VT2 VT23 5,487 5,524 5,223 N 100 100 N
12 VT2 VT23 6,032 6,113 5,223 N 100 100 N

Abbreviations
Exp: Experiment
IDPg: Description of IDP Domain Grammar used to generate problem instances.

VT1: complex vehicle tracking grammar (maximum/average path length of 6);
VT2: VT1 restricted to single scenarios (maximum/average path length of 6).

IDPi: Description of IDP Interpretation Grammar specifying the problem solver.
VT00: complex vehicle tracking grammar (operator cost of 10);
VT10: VT00 with preconditions (cost 1);
VT20: VT10 with static pruning operators (cost 1);
VT21: VT10 with dynamic pruning operators (cost 1);
VT22: VT10 with goal processing at the I-, P-, and G-Track levels (cost 1);
VT23: VT21 and VT22 combined;
VT24: VT00 with static pruning operators (cost 1);
VT25: VT00 with dynamic pruning operators (cost 1);
VT26: VT25 with goal processing at the I-, P-, and G-Track levels (cost 1).

E�C�: Expected Cost of problem solving for given grammar and heuristic evaluation function.
E�C��: Expected Cost of problem solving using exact UPC values.
Avg. C: actual average cost for 100 samples of 50 random problem instances each.
Sig1: Whether or not the difference between expected cost and the

actual average cost was statistically significant, Y:yes; N:no.
% Correct : Percentage of correct answers found.
E��Correct�: Expected percentage of correct answers found by problem solver,

where the correct answer is the interpretation with the highest credibility rating.
Correct answers are not found in situations where paths to final states corresponding
to the highest rated interpretation are pruned by bounding functions.

Sig2: Whether or not the difference between expected percentage of correct answers found
and the actual percentage of correct answers found was statistically significant, Y:yes; N:no.

In each situation, the problem solver fully connects the search space and the order in which it
does so is not of significance.

In experiments 7 and 12, the problem solver did significantly better using the evaluation
function that proceeded depth-first with goal processing. In these experiments, the original
evaluation function led to the generation of complete interpretations that were used to dy-
namically prune competing partial interpretations. Very little pruning occurred in experiment
12. For the most part, all processing at a lower level of the blackboard was completed before
any processing at the next higher level was completed. As a result, by the time a complete
interpretation was generated, there was very little activity left subject to pruning.

11.10 Chapter Summary

These experiments indicate that the analysis framework, which was originally based on
the use of statistically optimal control decisions, can be extended to incorporate the use of

215

heuristic control functions if the analysis can be tied to statistical characteristics of the domain.
These experiments further demonstrate that the framework can be used for analyzing not only
heuristic evaluation control mechanisms, but also heuristic control decisions that incorporate
other types of control functions such as pruning, goal processing, and preconditions.

C H A P T E R 12

TOWARD GENERAL DESIGN PRINCIPLES AND THEORIES

Chapter 10.3 introduced definitions of approximate processing. In this section we
present additional examples to illustrate the use of the IDP/UPC representation and to
informally introduce some of the analysis techniques that have been developed. Chapter 12.1
introduces two design techniques for addressing some of issues associated with approximate
processing. Chapter 12.2 presents additional approximate processing examples. These
examples illustrate some of the problems that are encountered when designing approximate
processing operators and control strategies. Chapter 12.3 presents examples of how the
techniques from Chapter 12.1 can be used to analyze the structure of a domain and to
design more effective approximation strategies. Section 12.4 introduces several basic analysis
tools and techniques.

12.1 Analysis and Design Techniques for Approximate Processing

Two general analysis techniques will be illustrated. We will refer to these as comparative
cost analysis and constraint flow analysis. Comparative cost analysis and constraint flow analysis
are complementary tools. Constraint flow analysis is used to generate potential sophisticated
control mechanisms and comparative cost analysis is used to conduct pairwise evaluations of
alternative control mechanisms.

Using comparative cost analysis, the IDP/UPC framework can evaluate the relative worth
of a sophisticated control mechanism by calculating the cost associated with generating and
processing the partial interpretation associated with the sophisticated control mechanism and
then comparing it with the cost of generating the partial interpretation the control mechanism
is, essentially, replacing.

The power of comparative analysis is based on the context-free nature of the IDPg and
IDPi grammars. As discussed in Chapters 4.7 and 10 of this thesis and in [Whitehair and
Lesser, 1993], the implication of a context-free grammar is that the subproblems represented
by different interpretation/generation subtrees interact in strictly defined ways. Thus, given
a context-free representation of a problem, it is possible to analyze the characteristics of
subproblems, such as expected cost, in well-defined ways. This implication is, at least
superficially, counterintuitive in many real world domains and it may seem that restricting
the applicability of the comparative analysis to context-free domains might limit its usefulness.
However, as discussed in Section 4.7, a context-free grammar can be extended with our feature
list convention to represent relationships that appear to be context-sensitive. The critical aspect
of the feature list convention is that it does not alter the context-free nature of the IDPg or IDPi
grammars. Consequently, the comparative analysis techniques described here can be applied
within the IDP/UPC framework.

In contrast, if the representation of an interpretation domain requires a context-sensitive
grammar or an unrestricted grammar, comparative analysis in the form used here will not

217

1. A → CD

3. C → fg
5. D → hi

7. f → (signal data)

9. g → (signal data)

11. h → (signal data)

13. i → (signal data)

2. B → DEW

4. E → jk
6. W → xyz

8. j → (signal data)

10. k → (signal data)

12. x → (signal data)

14. y → (signal data)

15. z → (signal data)

Interpretation
Grammar G'

0. S → A | B

Figure 12.1. Interpretation Search Operators Shown as a Set of Production Rules

work. This is because, in evaluating the costs associated with a subtree of an interpretation
graph, you must also factor in costs associated with other subtrees. Consequently, you cannot
evaluate two alternative control mechanisms by comparing the characteristics of their associated
subtrees. Instead, your analysis will have to take into account characteristics associated with
other subtrees and this could become an arbitrarily complex and difficult computation.

Constraint flow analysis identifies potentially useful abstract states based on an analysis
of relationships between base space states. This analysis relies on determining the constraint
relationships that exist between states. As shown in Fig. 10.18, constraint can be thought of in
two ways, top-down and sibling. Top-down constraints are propagated from a parent node in
an interpretation graph to its children. Sibling constraints are propagated among the children
of a single node. In terms of a grammar, the LHS of a rule passes constraints to the elements
of its RHS, and the elements of the RHS constrain each other.

In synthesizing abstract states, a cost benefit ratio specifies which are the most effective
abstract states to incorporate in problem solving. The costs are expressed in terms of the cost
to generate the abstract state and subsequently map the implications back to the base space.
The benefits are measured in terms of the degree to which the abstract state constrains or limits
the ensuing search process.

Constraint flow analysis estimates the degree to which knowing the characteristics of a
particular state in a search space constrains the generation of other states. It does this by
identifying search states that can interact during the generation of an interpretation. (In
the IDP formalism, these search states correspond to elements of the grammar.) Problem
solving activities associated top-down constraints can be analyzed from two general directions,
top-down, in which constraints from from parent nodes to their children and siblings, and
bottom-up, in which constraints flow from children nodes to their siblings and then to their
respective parents.

The process involves three steps. The first step is to create single-step connectivity matrices
representing top-down and sibling constraints. In these matrices, the existence of a direct
constraint relationship between two nodes of a graph (or elements of a grammar) is represented
with a 1 in the matrix. In a grammar, a direct constraint relationship can be said to exist
between the LHS of a rule and all the elements of its RHS and pairwise between all the
elements of a RHS of some rule. This is shown in Figures 12.2 and 12.3, which show
top-down and bottom-up constraints, and in Fig. 12.4, which shows sibling constraints. Note

218

S A B C D E W f g j k h i x y z
S 1 1
A 1 1
B 1 1 1
C 1 1
D 1 1
E 1 1
W 1 1 1
f
g
j
k
h
i
x
y
z

Figure 12.2. Example of Single-Step, Top-Down Connectivity Matrix used in Constraint Flow
Analysis

that the bottom-up constraint flow in Fig. 12.3 is simply the transpose of the single-step,
top-down constraint flow in Fig 12.2. As will become clear later in this section, these two
flows are used for distinct analysis purposes and for the sake of clarity, they will be represented
separately rather than combined in a single matrix. However, to improve the readability of
this document, the bottom-up matrix will not be shown in most situations unless this causes
confusion. The grammar used in this example is shown in Fig. 12.1.

In Fig. 12.2, element A-C, where A represents the row and C the column, is 1 because
A constrains C in a top-down fashion. Similarly, A-D, where A represents the row and d the
column, is also a 1. The implication is that if you knew something about the characteristics
of A, you would also know constraints on the characteristics of C and D. For example, if the
known characteristics of A include a location, C and D might be forced to have the same
location or a known function of the location of A. From a graphical perspective, top-down
constraints are represented with directed arcs. Thus, the existence of a 1 in element A-C does
not mean that element C-A is also 1.

Element C-D of the matrix in Fig. 12.4is also 1 and represents a sibling constraint. Again,
the implication is that constraining D in some way might also constrain C. (More concrete
examples will be given later in this chapter with a vehicle tracking problem.) Sibling constraints
are bidirectional. Thus, if matrix element C-D is 1, then element D-C is also 1.

The second step is to take the transitive closure of the top-down, single-step connectivity
matrix. This is shown in Fig. 12.5. The entries of this matrix represent all the components of
the grammar that can be derived from specific element of the grammar in an arbitrary number
of steps.

219

S A B C D E W f g j k h i x y z
S
A 1
B 1
C 1
D 1 1
E 1
W 1
f 1
g 1
j 1
k 1
h 1
i 1
x 1
y 1
z 1

Figure 12.3. Example of Single-Step, Bottom-Up Connectivity Matrix used in Constraint Flow
Analysis

S A B C D E W f g j k h i x y z
S
A
B
C 1
D 1 1 1
E 1 1
W 1 1
f 1
g 1
j 1
k 1
h 1
i 1
x 1 1
y 1 1
z 1 1

Figure 12.4. Example of Single-Step Sibling Connectivity Matrix used in Constraint Flow
Analysis

220

S A B C D E W f g j k h i x y z
S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1
C 1 1
D 1 1
E 1 1
W 1 1 1
f
g
j
k
h
i
x
y
z

Figure 12.5. Transitive Closure of Single-Step, Top-Down Connectivity Matrix

The third and final step is to take the transitive closure of the closed, single-step, top-down
connectivity matrix with respect to the single-step, sibling matrix. This is accomplished by
starting with the closed, single-step, top-down connectivity matrix and “or-ing” together rows
i and j if element (i,j) = 1 in the single-step, sibling matrix. This is referred to as the constraint
connectivity matrix. Elements that are 1 indicate that the grammar element represented by
the row index can interact with grammar elements that are represented by the column index.
Specifically, a “1” indicates that the two elements can be combined into a single interpretation,
either partial or complete. This is an existential representation. There is no indication of how
strong the relationship might be. The connectivity matrix after transitive closure is shown in
Fig. 12.6.

In the constraint connectivity matrix, A is shown to constrain all of the elements that can be
derived from it. C constrains not only the elements that can be derived from itself, but also the
elements that can be derived from D. This is because C constrains D with a sibling constraint,
and D subsequently constrains all the elements that can be derived from it. Consequently,
by transitive closure of D’s single-step top-down constraint relationships, C constrains all the
elements that can be derived from D.

It is interesting to note that even though A constrains D, it does not constrain D’s siblings,
E and W. From an algorithmic perspective, this is because the only sibling constraints that are
reflected in the connectivity matrix are direct relationships. In other words, the connectivity
matrix does not reflect a transitive closure of all sibling relationships. Thus, A is not related to
E and W. From an intuitive perspective, A does not constrain E and W because it cannot be
combined into a single solution with either of them. These grammar elements never interact
and their local characteristics are never combined. Consequently, they do not constrain each
other in any way.

221

S A B C D E W f g j k h i x y z
S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1
C 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1 1
W 1 1 1 1 1 1 1 1 1
f 1
g 1
j 1
k 1
h 1
i 1
x 1 1
y 1 1
z 1 1

Figure 12.6. Example of Constraint Connectivity Matrix used in Constraint Flow Analysis

It is also worth noting that D is more connected than any of its siblings. This can be
determined by summing the entries in row D of the constraint connectivity matrix. This means
that a constraint on D will, more than likely, have a greater limiting effect on search than a
constraint on any of its siblings. This is a significant observation because it can be used in the
design of meta-operators and problem solving strategies.

For example, problem solving can be viewed as the production and application of constraint.
As discussed by a number of researchers, including Berliner [Berliner, 1979] and Carver [III,
1990], search can be thought of in terms of either a “find best” or a “disprove rest” strategy.
In Berliner’s B* algorithm, the problem solver can either prove that one search path leads to a
solution that is better than all others, or it can prove that other search paths lead to solutions that
are worse than a specific path. Carver’s differential diagnosis is similar in nature to a “disprove
rest” strategy, but it is more sophisticated and uses intelligence about the structure of the search
space to plan an efficient strategy for eliminating competing solution paths by resolving the
uncertainty associated with the path. (The relationship between IDP/UPC analysis tools and
Carver’s work is discussed further in Chapter 12.4.)

The constraint connectivity matrix can be used to construct efficient strategies that are
similar to “disprove rest” or differential diagnosis. For example, as shown in Fig. 12.6, the
constraint connectivity matrix can be used as a guide to determine which elements of a search
space might be most useful for eliminating competing solutions. In the case of element D, we
can see that knowledge about its characteristics will have more of a constraining influence than,
for example, knowledge about the characteristics of C, E, or W. Understanding this search
space structure would allow a problem solver to focus its efforts on first constraining D, then
propagating these constraints to other solution paths.

222

The following sections will illustrate how these analysis tools can be used in the design
of approximation techniques. The next section will discuss several approximation techniques
that can be used to reduce problem solving cost. It will also illustrate how these mechanisms
can fail to reduce problem solving cost. The subsequent section, Chapter 12.3, illustrates how
flow-analysis and comparative analysis can be used to address these issues and design more
effective approximations.

12.2 Simple Approximate Processing Examples

Figure 12.7 shows two grammars that will be used in a series of analysis examples.
Figure 12.7.a shows a simple grammar that is extended with the level hopping operators shown
in Fig. 12.7.b. This grammar will be referred to as the Level Hopping Grammar. Similarly,
Fig. 12.7.c shows a base grammar that is extended in Fig. 12.7.d with abstract operators that
eliminate corroborating support. This grammar will be referred to as the ECS Grammar.
Though similar, these grammars have subtle differences that will be used to illustrate several
important issues.

Figure 12.8 illustrates the use of comparative analysis of the ECS Grammar. The top half
of the figure depicts the results of interpretation using the base space operators. The initial
data appears in 12.8.a, 12.8.b shows the results of intermediate processing, and 12.8.c shows
the full search space explored using the base space operators.

In contrast, the bottom half of the figure shows the results of problem solving using the ECS
Grammar. Again, the initial data appears in 12.8.d, 12.8.e shows the results of intermediate
abstract processing that generates the meta state Aecs, and 12.8.f shows the full search space
explored using the extended grammar with abstract operators.

No precondition operators or goal processing operators are used in this example and, as a
result, it is a simple example of comparative analysis. The two costs that are to be compared
are the cost of fully connecting the search space shown in 12.8.c and the cost of generating and
processing the abstract state Aecs. Assuming the cost of all operator applications is 10, the cost
of connecting the base space in 12.8.c is 150. This is calculated using the method described in
Chapter 5.1. In general, this method determines cost by summing the cost associated with each
state. The cost of each state is equal to the sum of the cost of applying all relevant operators to
the state. In this example, the cost of applying all relevant operators is the product of a state’s
out degree and 10. i.e., each out arc from a state represents the application of an operator and
the cost of each operator is 10. Although not shown in the figure, the out degree of G3 and
G5 is 1.

In contrast, the cost of problem solving using the ECS grammar with abstract states is the
sum of the cost of generating Aecs and the cost of processing Aecs. The cost of processing Aecs

is equal to the cost of generating all the elements of the component set of the base space state,
A, that corresponds to the abstract state, Aecs. The definition of a component set appears in
Chapter 4 and is repeated in Definition 12.2.1.

Definition 12.2.1 Component Set (CS) - The component set of a state, sn, includes all the states
that lie on paths from the signal data to sn. In terms of an interpretation grammar, IDPi, the
component set of a grammar element, E, includes all the grammar elements that can be derived from
E, inclusive.

223

A B C

G1 G2 G3 G4 G5 G6

S1 S2 S11 S12 S1 S11 S2 S11 S2 S12 S6S6

A B C

G1 G2 G3 G4 G5 G6

S1 S2 S11 S12 S1 S11 S2 S11 S2 S12 S6S6

G10

S20 S30

G11

S20 S40

G12

S30 S40

A B C

S1 S2 S11 S12 S1 S11 S2 S11 S2 S12 S6S6

A B C

G10

S20 S30

G11

S20 S40

G12

S30 S40

lh lh lh

ecsecsecs

a. graphical representation of grammar defining base space operators

b. graphical representation ofgrammar extensions defining level-hopping operators

c. graphical representation of grammar defining base space operators

d. Graphical representation of grammar extensions defining operators that
eliminate corroborating support

Figure 12.7. Level Hopping and ECS Example Grammars

224

S1 S2 S11 S12S20 S30

A

G10

S20 S30

ecs

G1 G2

S1 S2 S11 S12

G10

S20 S30

G3
G5

A

G1 G2

S1 S2 S11 S12

G10

S20 S30

G3G5

S1 S2 S11 S12S20 S30

A
ecs

A

G1 G2

S1 S2 S11 S12

G10

S20 S30

G3

G5

a. initial data b. results of intermediate
level processing

c. full search space explored
during interpretation

d. initial data e. result of approximate
processing that eliminates
corroborating support (ecs)

f. result of mapping abstract ecs
results back to the base space

Summary of problem solving activity without approximation

Summary of problem solving activity with approximation

Figure 12.8. Comparative Analysis Example Using the ECS Grammar

Let the cost of generating Aecs be the cost of generating the intermediate state G10 plus the
cost of the abstract ECS operator. For now we will assume that the cost of the ECS operator
is 10. Thus, the cost of generating Aecs is 30. The cost of processing Aecs is the sum of the
cost of mapping Aecs back to the base space and the cost of connecting the enclosed search
space shown in 12.8.f. The arrow from Aecs represents mapping Aecs back to the base space.
This operator, when executed, functions by setting the rating of all intermediate operators that
do not lead to the interpretation of an A to 0. This effectively prunes the generation of the
states G5 and G3. Assuming the cost of mapping is 10 and the cost of connecting the enclosed
search space is 70, the full cost of problem solving using the ECS abstraction is 110. (Note
that the cost of connecting the enclosed search space in 12.8.f includes the cost of generating
G10 and this cost is only included once in the total.) Consequently, in this example, the use
of abstract operators for eliminating corroborating support reduce the cost of problem solving
from 150 to 110.

Figure 12.9 illustrates the use of comparative analysis of the Level Hopping Grammar. The
top half of the figure depicts the results of interpretation using the base space operators. The
initial data appears in 12.9.a, 12.9.b shows the results of intermediate processing, and 12.9.c
shows the full search space explored using the base space operators.

In contrast, the bottom half of the figure shows the results of problem solving using the
Level Hopping Grammar. Again, the initial data appears in 12.9.d, 12.9.e shows the results
of intermediate abstract processing that generates the meta state Alh, and 12.9.f shows the full
search space explored using the extended grammar with abstract operators.

225

A

S1 S2 S11 S12

lh

S1 S2 S11 S12

Alh

G1 G2

S1 S2 S11 S12

G3 G5

S1 S2 S11 S12

A

G1 G2

S1 S2 S11 S12

G3 G5

A

G1 G2

S1 S2 S11 S12

G3 G5

d. initial data e. result of approximate
level hopping

a. initial data b. results of intermediate
level processing

c. full search space explored
during interpretation

Summary of problem solving activity without approximation

Summary of problem solving activity with approximation

f. result of mapping abstract
level hopping results back to

the base space

Figure 12.9. Comparative Analysis Example Using the Level Hopping Grammar

Assuming the cost of all operator applications is 10, the cost of connecting the base space
in 12.9.c is 120.

In contrast, the cost of problem solving using the extended Level Hopping Grammar is the
sum of the cost of generating Alh and the cost of processing Alh. Let the cost of generating Alh

be 10, the cost of applying a single instance of the level hopping grammar. (In this example and
in the experiments that follow, level hopping is treated as a clustering or aggregating abstraction
and its associated costs are computed as described in Chapter 13.1.) The cost of processing Alh

is the sum of the cost of mapping Alh back to the base space (10) and the cost of connecting
the enclosed search space shown in 12.9.f. As before, the mapping operator, when executed,
functions by setting the rating of all intermediate operators that do not lead to the interpretation
of an A to 0. This effectively prunes the generation of the states G5 and G3. Assuming the
cost of mapping is 10 and the cost of connecting the enclosed search space is 60, the full cost
of problem solving using the ECS abstraction is 80.

With both the ECS Grammar and the Level Hopping Grammar, comparative analysis
indicates that the use of abstract operators is beneficial. In the case of the ECS Grammar,
the cost of connecting the base space without using abstract states is 150. With the abstract
states, the cost is 110. Similarly, in the case of the Level Hopping Grammar, the costs are 120
versus 80. In both situations, the analysis to determine whether or not the use of abstractions
is beneficial was a direct comparison of the processing that occurred with and without the
abstractions. No other computations or analysis was needed.

226

P.1.1. T � T1 A
P.1.2. T � T2 B
P.1.3. T � T3 C
P.2. T1 � A A
P.3. T2 � B B
P.4. T3 � C C
P.5. A � G1 G2
P.6. B � G3 G4
P.7. C � G5 G6
P.8.1. G1 � S1 S2
P.8.2. G1 � S1 S2 S6
P.9. G2 � S11 S12
P.10.1. G3 � S1 S11
P.10.2. G3 � S1 S11 S12
P.11. G4 � S2 S6
P.12.1. G5 � S2 S11
P.12.2. G5 � S1 S2 S11
P.13. G6 � S6 S12

Figure 12.10. Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations

12.3 Extended Approximate Processing Examples

In contrast to the two examples of the use of abstract processing from Chapter 12.2,
consider the grammar shown in Fig. 12.10. This is a simple vehicle tracking grammar which
we will call VTG-1. An example of processing with VTG-1 is shown in Fig. 12.11. This
example is interesting because, as shown in the figure, level hopping does not appear to be
effective because it does not prune any states. In fact, use of level hopping in this example
actually seems to increase the cost of problem solving�.

In Fig. 12.11.a, the full set of the search space explored during exhaustive processing of
the given inputs for one time period is shown. The results of level hopping using the same
input data is shown in Fig. 12.11.b. Figure 12.11.c shows the area of the search space that
will be explored after the results of level hopping are mapped back to the base space. Quick
inspection will reveal that the areas of the search space covered in 12.11.a and 12.11.b are
identical. Therefore, the cost of search in the base space will be the same with or without
level hopping, but the overall cost of problem solving will be increased by the cost of level
hopping and mapping the results of level hopping back to the base space. If the approximate

�In general, the use of meta-operators will reduce the cost of problem solving in two ways, as described
in [Decker et al., 1990]. One is by eliminating certain search paths from consideration. This reduces the cost
of problem solving because the costs of executing the operators required to explore that area are not incurred.
Meta-operators can also generate information or otherwise constrain problem solving so that, even though no
areas of the search space are eliminated from consideration, the cost of the operators used to expand the space are
reduced. In other words, a meta-operator may not eliminate a problem solving activity, but it might significantly
reduce its cost. For the sake of clarity, the discussions in this section will focus on cost reductions that involve
eliminating areas of the search space from consideration.

227

S1 S2 S11 S12S6

A B C
lh lh lh

S1 S2 S11 S12S6

G1' G2G3' G4 G5' G6G5G1G3

B' C'A'A CB

S1 S2 S11 S12S6

G1' G2G3' G4 G5' G6G5G1G3

B' C'A'A CB

a. search space explored
during interpretation

b. approximations created
using level hopping

c. areas of search space covered by
level hopping approximations

Figure 12.11. Example Problem Scenario With Level Hopping in VTG-1

processing used were based on eliminating corroborating support instead of level hopping, the
results would be similar.

Figure 12.12 shows a fully expanded search space for a complete VTG-1 interpretation
problem. There are three sets of signal data, each corresponding to a different time period.
The results from the first two time periods are ambiguous. The signal data could correspond
to any of the events A, B, and C. In fact, in each case, it is possible to generate ambiguous
interpretations of each individual event. Thus, there are two ways to interpret an event A in
time period 1, there are two ways to interpret an event B, etc.

The use of approximations based on level hopping or eliminating corroborating support
at the A, B, and C event class level are not useful for reducing the cost of problem solving in
this domain. However, it is not clear whether or not there is some form of approximation that
could be used to reduce the cost of problem solving. We have developed methods based on the
use of constraint flow analysis to address this issue.

228

S1t1 S2t1 S6t1
S11t1 S12t1

G3t1 G1t1 G1't1 G4t1 G5't1 G5t1 G2t1 G6t1G3't1

Bt1 B't1 At1 A't1 C't1 Ct1

S1t2 S2t2 S6t2
S11t2 S12t2

G3t2 G1t2 G1't2 G4t2 G5't2 G5t2 G2t2 G6t2G3't2

Bt2 B't2 At2 A't2 C't2 Ct2

S1t3 S2t3
S11t3 S12t3

G3t3 G1t3 G5't3 G5t3 G2t3G3't3

At3

T1t1-2 T1t1-2 T1t1-2 T1t1-2T2t1-2
T2t1-2 T2t1-2 T2t1-2 T3t1-2 T3t1-2 T3t1-2 T3t1-2 T1t2-3 T1t2-3

Tt1-3 Tt1-3 Tt1-3 Tt1-3

 fully expanded search space

time period 1 time period 2 time period 3

Figure 12.12. Track Interpretation Example

The methodology we have developed is still in a formative phase. As mentioned throughout
this thesis, the IDP/UPC framework is intended to form the basis of theories and principles
for designing sophisticated control strategies that are based on the use of abstractions and
approximations. Our current methodology is based on the principle of differentiation. This
principle holds that, in order for an approximation to be useful, it must differentiate portions
of the search space that can be eliminated from consideration and it must do so more efficiently
than base-space processing.

Examining Fig. 12.12, we see that the ambiguities are differentiated only at the full track
level. In fact, for the given data, there are four complete interpretations that ultimately must be
differentiated by their credibilities. i.e., the “correct” interpretation is the one with the highest
credibility. This is typical of most interpretation tasks. There are usually several (or even many)
interpretations that will explain the observed data and the problem solver’s task is to find the
most credible one.

The ambiguity of this domain grammar is reflected in the constraint connectivity matrices,
shown in Figures 12.13, the single-step, top-down connectivity matrix, 12.14, the single-step,
sibling connectivity matrix, 12.15, the transitive closure of the single-step matrix, and in 12.16,
the full constraint connectivity matrix.

In analyzing the flow of constraint in this domain, first notice that in Fig. 12.15, the
transitive closure of top-down connectivity, the rows for grammar elements T, T1, T2, T3, A,
B, and C are all similar through their connection to signal groups S1 - S12. This indicates
that all of these grammar elements constrain signal groups S1 - S12. This is a reflection of the

229

T T1 T2 T3 A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
T 1 1 1 1 1 1
T1 1
T2 1
T3 1
A 1 1
B 1 1
C 1 1

G1 1 1 1
G2 1 1
G3 1 1 1
G4 1 1
G5 1 1 1 1
G6 1 1
S1
S2
S6
S11
S12

Figure 12.13. Single-Step, Top-Down Connectivity Matrix for VTG-1

T T1 T2 T3 A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
T
T1 1
T2 1
T3 1
A 1
B 1
C 1

G1 1
G2 1
G3 1
G4 1
G5 1
G6 1
S1 1 1 1 1
S2 1 1 1
S6 1 1 1
S11 1 1 1
S12 1 1 1

Figure 12.14. Single-step, Sibling Connectivity Matrix for VTG-1

230

T T1 T2 T3 A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T1 1 1 1 1 1 1 1 1
T2 1 1 1 1 1 1 1 1
T3 1 1 1 1 1 1 1 1
A 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1

G1 1 1 1
G2 1 1
G3 1 1 1
G4 1 1
G5 1 1 1 1
G6 1 1
S1
S2
S6
S11
S12

Figure 12.15. Transitive Closure of Single-Step, Top-Down Connectivity Matrix for VTG-1

ambiguity of the grammar. It indicates that, from a purely syntactic perspective, these elements
cannot be differentiated on an aggregate basis. In other words, the aggregated data is the same
for all of these grammar elements and the only way to differentiate them is to actually interpret
the data and compare credibility values. (Note that this illustrates the classic difference between
interpretation tasks and classification tasks. Interpretation tasks require significant processing
to disambiguate the potential answers.)

In contrast is a grammar in which some interpretations require a signal level event and some
do not. In this situation, it would be possible to construct an abstraction that would search for
this element in the aggregated data and, if it did not appear, eliminate from consideration all
possible interpretations that required the signal level event.

Examining the entries for grammar elements G1 - G6, we see that there are significant
differences at the group level. Specifically, the entries in each row corresponding to each group
element’s interaction with signal data is unique. This is significant because unique signal data
row entries often indicate grammar structures that allow a problem solver to quickly differentiate
areas of the search space that can be eliminated from consideration. This is discussed at greater
length in Chapter 12.4. Unfortunately, the group level data is only one level removed from
the signal data. Consequently, there is little to gain from constructing meta-operators at this
level of the grammar. Such operators would essentially be the equivalent of existing problem
solving operators.

Although there are no rows with unique entries corresponding to the signal data, it is also
clear that each row is unique with respect to group level data. Unfortunately, as seen in the
example in Fig. 12.12, the group level data is ambiguous. Even though the individual group
level events are capable of differentiating potential solutions, their occurrence is ambiguous
with each other. For example, the existence of a G2 group would seem to indicate that the

231

T T1 T2 T3 A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T1 1 1 1 1 1 1 1 1
T2 1 1 1 1 1 1 1 1
T3 1 1 1 1 1 1 1 1
A 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1

G1 1 1 1 1 1 1
G2 1 1 1 1 1 1
G3 1 1 1 1 1 1
G4 1 1 1 1 1 1
G5 1 1 1 1 1 1
G6 1 1 1 1 1 1
S1 1 1 1 1
S2 1 1 1
S6 1 1 1
S11 1 1 1
S12 1 1 1

Figure 12.16. Constraint Connectivity Matrix for Extended Grammar

interpretation must include an A. However, the data that generated the G2 might also generate
a G3, which would indicate that the interpretation must include a B, or the data might generate
a G5, indicating that the interpretation must include a C. These relationships are shown in the
transitive closure of the top-down constraint matrix, Fig. 12.15.

Given that there are no other rows of the matrix that contain unique entries, it is necessary
to try an alternative approach to finding an appropriate abstraction level. This alternative
is required since the purely syntactic approach has failed. The alternative is to choose an
abstraction level that encompasses enough of the search space to generate semantic constraints
that can be used to differentiate the search space. The concept of a “semantic” approximation
or abstraction indicates that the projection space defined by the approximation will contain
operators that will process meta-states and generate new meta-states. Thus, the operators
defined by OP�	a�	a�, where a is an abstraction level, can be thought of as representing
semantic approximations or abstractions. It would also be appropriate to think of the operators
inOP���	a� as primarily syntactic approximations or abstractions. In other words, the operators
that define projection spaces are typically approximations or abstractions of base-space grammar
rules that alter the syntactic structure of the rules. The operators in the projection space, on
the other hand, typically preserve the structure of the base-space rules and include simplified
or approximated knowledge.

Referring to the connectivity matrix in Fig. 12.16, we see that the T level of the grammar
constrains all the other elements of the grammar and, consequently, the entire search space.
Consequently, T is a good candidate for the basis of an abstraction space that will incorporate
semantic processing elements.

An alternative would be to construct an abstraction space based on T1, T2, or T3. Each of
these encompasses a significant area of the search space and could form the basis for semantic

232

AP.1. ATc��c� � AT1c� VLCc�

AP.2. AT1c��c� � VLCc� VLCc�

C.1. VLCA
B
C � Alh � � � Blh � � � Clh

LH.1. Alh � S1 S2 S6 S11 S12
LH.2. Blh � S1 S2 S6 S11 S12
LH.3. Clh � S1 S2 S6 S11 S12

Figure 12.17. Approximations Used to Extend VTG-1

approximations. However, there are several problems this would present. First, this approach
would require the specification of three distinct abstraction spaces, one corresponding to each
of T1, T2, and T3. Second, these elements suffer from the same problem as the group level
events. Specifically, a given set of data could lead to the generation of a T1, a T2, and a T3.
Therefore, a given set of data could result in abstract processing occurring in three different
projection spaces, none of which would be able to meaningfully differentiate the search space.

This illustrates an important issue. In order for certain uses of abstraction spaces to be
effective, the abstract solution that gets mapped back to the base-space must be unique. In
the examples we present in this thesis, the abstraction spaces are used to prune areas of the
search space that are not consistent with an abstract solution determined in a projection space.
If there are multiple projection spaces, each mapping its solution back to the base-space, this
approach will not work. Each of the distinct projection space solutions might be mutually
exclusive and the result would be the elimination of all data from consideration. For example,
if T1, T2, and T3 projection spaces were formed, mapping solutions back to the base-space
might be implemented so that the result of mapping T1’s abstract solution would eliminate
from consideration all solution paths except those that lead to T1, and so forth.

Figure 12.18 shows the operators that are used to extend VTG-1. The approximate
operators that are used in subsequent experiments have the same form as those shown here.
The rules LH.1, LH.2, and LH.3 are level hopping operators that generate an abstraction
space. Rule C.1 is a clustering operator that combines multiple vehicle class events from the
level hopping abstraction space and projects them to a new abstraction space. In this rule, the
notation � � � indicates that all results of the types shown, i.e., Alh, Blh, and Clh, are combined
with an aggregating operation that acts like a logical “or.” Thus, if there is no data associated
with one or two of the results, for example, if there is no data corresponding to an Alh or Blh,
the operator will still successfully cluster any Clh results, Furthermore, if there are multiple
instances of any of the elements, they will all be aggregated into a single meta-level result. In
the figure, the subscripts c1 and c2 indicate a set of event classes. These sets are generated by
the clustering operator as shown in the figure. Rules AP.1 and AP.2 mirror the corresponding
rules from the base-space grammar. As indicated in the figure, each combines two elements
and takes the intersection of their event class sets.

The use of these grammar extensions is illustrated in Fig. 12.18 and 12.19. Figure 12.18
shows how the extensions would be applied to the example problem. As shown, the signal data
generates abstract states in a level hopping projection space. For each of the distinct sets of signal
data (sets of signal data correspond to the time period in which the events occurred), distinct
states are created in the level hopping space. For time periods 1 and 2, three abstract states

233

lh lh lh lh lh lh

S1t1 S2t1 S6t1
S11t1 S12t1

S1t2 S2t2 S6t2 S11t2 S12t2

At1
Bt1 Ct1 At2

Bt2 Ct2

lh

S1t3 S2t3 S11t3 S12t3

At3

VLCt1
p VLCt1

p VLCt1
p

[A,B,C] [A,B,C] [A]

AT1t1-t2
p

[A,B,C]

AT1t2-t3
p

[A,B,C]

ATt1-t3
p

[A]

Figure 12.18. Track Level Abstraction Example

corresponding to vehicle level events A, B, and C are created in the level hopping abstraction
space. For time period 3, only one abstract state is generate corresponding to an A vehicle level
event class.

The level hopping results are then clustered into a new projection space. This space
contains the states labeled VLC, for “vehicle location clusters.” Each of these states has a
subscript indicating the set of vehicle level event classes that are clustered together in the state.

The abstract states generated by clustering are processed in the same projection space by
operators AP.2 and AP.1. These operators correspond to operators P.1 and P.2 from the base
space. AP.2 combines two VLC elements into an approximate “T1” partial track. The event
class set of the new state is the intersection of the sets from the component clusters. AP.1
combines a partial track with a VLC element, again taking the intersection of the component
event class sets. The result is an abstract solution with a single event class, A.

Figure 12.19 illustrates the effects of mapping the results of problem solving in an abstract
space back to the base-space. As shown, all search paths that lead to solutions for event classes
other than A are eliminated. Still, the solution is ambiguous. There are four possible solutions
that must be differentiated by their credibilities. However, the reduction is problem solving cost
is substantial. The cost to fully expand the base search space is 1,320. There are 132 required
search operations, each at a cost of 10. Using VTG-1 with the extensions for approximate
processing, the cost of problem solving is only 580. This includes a cost of generating the
abstract solution, 210, the cost of mapping the solution back to the search space, 10, and the
cost of generating the four full interpretations, 360. For such a simple example, this is a very
significant savings.

234

S1t1 S2t1 S6t1
S11t1 S12t1

G3t1 G1t1 G1't1 G4t1 G5't1 G5t1 G2t1 G6t1G3't1

Bt1 B't1 At1 A't1 C't1 Ct1

S1t2 S2t2 S6t2
S11t2 S12t2

G3t2 G1t2 G1't2 G4t2 G5't2 G5t2 G2t2 G6t2G3't2

Bt2 B't2 At2 A't2 C't2 Ct2

S1t3 S2t3
S11t3 S12t3

G3t3 G1t3 G5't3 G5t3 G2t3G3't3

At3

T1t1-2 T1t1-2 T1t1-2 T1t1-2T2t1-2
T2t1-2 T2t1-2 T2t1-2 T3t1-2 T3t1-2 T3t1-2 T3t1-2 T1t2-3 T1t2-3

Tt1-3 Tt1-3 Tt1-3 Tt1-3ATt1-t3
p

[A]

areas of search space effectively pruned by approximate processing

time period 1 time period 2 time period 3

Figure 12.19. Track Processing Example

12.4 Basic Analysis Tools and Techniques

Given a formal IDPg model, it is possible to analytically characterize properties of the
domain for use in explanation, prediction, and design of problem solver performance. In
Chapter 5 we present analytical techniques for calculating a variety of different domain
properties including expected cost of problem solving, expected frequencies of domain events,
expected costs of individual interpretation search paths, the expected cost associated with
incorrect search paths, ambiguity relationships, a quantified potential value for meta-operators,
and more. Two specific domain structures are the concept of marker and differentiator. In the
remainder of this section, we demonstrate the IDPg formalism by defining these two domain
structures and we discuss how they can be used in dynamic control strategies and in the design
of problem solver architectures.

The definitions of markers and differentiators are relative to the concept of a solution
nonterminal, or SNT, described previously. For a given SNT, an intermediate result (i.e., a
terminal or a nonterminal different from the SNT) is a strong marker if it is always (or, from
a statistical perspective, almost always) implied by the SNT. Information about markers can
be used to predict the occurrence and nature of low-level events and, thus, can be used to
support top-down, model-based processing. Furthermore, analysis of the component structure
can be used to determine the degree to which an intermediate result differentiates an SNT.
Differentiation refers to the extent to which an intermediate result is exclusively associated with
an SNT. The differentiation relationship is the inverse of the marker relationship and it can be
used to support bottom-up, island-driving processing.

235

1. S�f� � Tracks�f� p=1
2. Tracks�f� � Tracks�f� Track�f� p=0.1

� Track�f� p=0.9
3. Track�f� � I-Track1�f� p=0.25

� I-Track2�f� p=0.25
� P-Track1�f� p=0.10
� P-Track2�f� p=0.10
� G-Track1�f� p=0.15
� G-Track2�f� p=0.15

4. I-Track1�f� � I-Track1�f�t���x�V �A�y�V�A� T1�f� p=1
5. I-Track2�f� � I-Track2�f�t���x�V �A�y�V�A� T2�f� p=1
6. P-Track1�f� � P-Track1�f�t���x�V �A�y�V�A� P-T1�f� p=1
7. P-Track2�f� � P-Track2�f�t���x�V �A�y�V�A� P-T2�f� p=1
8. G-Track1�f� � G-Track1�f�t���x�V �A�y�V�A� G-T1�f� p=1
9. G-Track2�f� � G-Track2�f�t���x�V �A�y�V�A� G-T2�f� p=1
10. P-T1�f� � T1�f�t�x�O�y�O� T2�f� p=1 11. P-T2�f� � T2�f�t�x�O�y�O� T2�f� p=1
12. G-T1�f� � GT1�f�t�x�O�y�O� T1�f� p=1 13. G-T2�f� � GT2�f�t�x�O�y�O� T2�f� p=1
14. T1�f� � V1�f� N�f� p=1 15. T2�f� � V2�f� N�f� p=1
16. GT1�f� � GV1�f� N�f� p=1 17. GT2�f� � GV2�f� N�f� p=1
18. N�f� � n�f� N�f� p=0.1 19. V1�f� � G1�f� G3�f� G7�f� p=0.4

� n�f� p=0.25 � G1�f� G3�f� p=0.3
� � p=0.65 � G1�f� G7�f� p=0.25

20. V2�f� � G3�f� G8�f� G12�f� p=0.4 � � p=0.05
� G8�f� G12�f� p=0.3 21. GV1�f� � G-G1�f� G-G3�f� G-G7�f� p=0.2
� G3�f� G12�f� p=0.25 � G-G1�f� G-G3�f� p=0.3
� � p=0.05 � G-G1�f� G-G7�f� p=0.25

22. GV2�f� � G-G3�f� G-G8�f� G-G12�f� p=0.4 � � p=0.05
� G-G8�f� G-G12�f� p=0.3 23. G1�f� � S1�f� S2�f� p=0.45
� G-G3�f� G-G12�f� p=0.25 � S1�f� S3�f� p=0.1
� � p=0.05 � S1�f� S4�f� p=0.1

24. G3�f� � S5�f� S7�f� p=0.45 � S2�f� S3�f� p=0.1
� S5�f� S6�f� p=0.1 � S2�f� S3�f� S4�f� p=0.1
� S6�f� S7�f� p=0.1 � S1�f� p=0.05
� S4�f� S5�f� p=0.1 � S2�f� p=0.05
� S7�f� S8�f� p=0.1 � � p=0.05
� S5�f� p=0.05 25. G7�f� � S11�f� S15�f� p=0.55
� S7�f� p=0.05 � S11�f� S16�f� p=0.43
� � p=0.05 � � p=0.02

26. G8�f� � S13�f� S18�f� p=0.55 27. G12�f� � S6�f� S14�f� S17�f� p=0.45
� S13�f� S17�f� p=0.1 � S6�f� S14�f� p=0.25
� S14�f� S18�f� p=0.1 � S7�f� S14�f� S18�f� p=0.25
� S15�f� S17�f� p=0.1 � � p=0.05
� S13�f� p=0.05 29. G-G3�f� � S5�f� S7�f� p=0.2
� S18�f� p=0.05 � S5�f� S6�f� p=0.05
� � p=0.05 � S6�f� S7�f� p=0.05

28. G-G1�f� � S1�f� S2�f� p=0.2 � S4�f� S5�f� p=0.05
� S1�f� S3�f� p=0.05 � S7�f� S8�f� p=0.05
� S1�f� S4�f� p=0.05 � S5�f� p=0.2
� S2�f� S3�f� p=0.05 � S7�f� p=0.15
� S2�f� S3�f� S4�f� p=0.05 � � p=0.25
� S1�f� p=0.2 31. G-G8�f� � S13�f� S18�f� p=0.15
� S2�f� p=0.2 � S13�f� S17�f� p=0.05
� � p=0.2 � S14�f� S18�f� p=0.05

30. G-G7�f� � S11�f� S15�f� p=0.30 � S15�f� S17�f� p=0.05
� S11�f� S16�f� p=0.30 � S13�f� p=0.2
� � p=0.40 � S18�f� p=0.25

32. G-G12�f� � S6�f� S14�f� S17�f� p=0.2 � � p=0.25
� S6�f� S14�f� p=0.2 35. n�f�t� � S1�f� p=0.05
� S7�f� S14�f� S18�f� p=0.25 � S2�f� p=0.05
� � p=0.35 � � � � � � � � � � � �

� S20�f� p=0.05

Figure 12.20. Grammar Rules for a Vehicle Tracking Domain

236

To analytically determine marker and differentiator relationships for a given SNT, A, and
a partial result, b, it is necessary to define several relationships between search state A and
search state b. To accomplish this, it is necessary to think of a given IDPg grammar as a
definition of a search space in which the states belong to classes corresponding to terminals
and nonterminals of the grammar and final states belong to the class of SNTs. For example,
in the vehicle tracking grammar from Fig. 11.1 in Chapter 11.1 and reproduced in Fig. 12.20,
the nonterminal V2 defines a class of states in the search space. During problem solving, there
could be many instances of the class, each associated with a different vehicle 2 location. Given
the correspondence between elements of an IDPg grammar and states in a search space, it is
possible to compute relationships between states by computationally determining relationships
between elements of the grammar.

The following definitions are needed to formally define the concepts of marker and
differentiator.

Definition 12.4.1 D�A� � P �S �� A�, where A � fSNTg. D�A� defines domain specific
frequency distribution functions for the set of SNTs, i.e., D�A� = probability of the domain event
corresponding to interpretation A occurring. In general, these distributions will be represented with
production rules of the grammar associated with the start symbol. The RHSs of these rules will be
from the grammar’s set of SNTs (i.e., A � fSNTg). The variance associated with this distribution
leads to problem solving uncertainty.

For example, the SNTs for the vehicle tracking grammar are I-Track1, I-Track2, G-Track1,
G-Track2, P-Track1, and P-Track2. From production rules 2 and 3 (see Fig. 4.27 on page 84),
the domain specific distribution function for the SNTs can be computed from the frequency
of the nonterminal Track multiplied by the values for � corresponding to each of the SNTs.
For example, D�I-Track1� � ���� � ��� � ����. Similarly, D�I-Track2� � ����, D�G-
Track1� � ����, D�G-Track2� � ����, D�P-Track1� � ����, and D�P-Track2� � ����.

If the values for � in production rule 2 were to change, these values would be different. For
example, if the � values for the RHSs of rule 2 were both 0.5, the distributions would be D�I-
Track1� � � � ��� � ��, D�I-Track2� � ��, D�G-Track1� � ���, D�G-Track2� � ���,
D�P-Track1� � ���, and D�P-Track2� � ���.

Note that the frequency of an individual SNT can be greater than 1 due to domain
ambiguity and to multi-track scenarios.

Definition 12.4.2 fRHS�A�g � the set of elements that appear on right-hand-sides of production
rules with A on the left-hand-side, A � N 	 SNT .

From production rule 20, fRHS�V ��g � fG�� G�� G��g. A more complex rule is 26,
fRHS�G��g � fS��� S��� S�� S��� S��g.

Definition 12.4.3 P �b � fRHS�A�g�
�

� �
P
�iP �b � RHSi�A���

P
�r��P �r

� � fRHS�A�g��
P �b � fRHS�r��g�

�

��, where fRHS�A�g is the set of all RHSs of A, RHSi�A� is the ith

potential RHS of production rule of A, P �b � RHSi�A�� � ��RHSi�A�� if b � RHSi�A�, 0
otherwise, each element r� is a nonterminal that appears in a RHS of A that does not also include
b, b � V 	 N 	 SNT , and A � N 	 SNT . The probability of partial interpretation b being
included in any RHS of A, as defined by the distribution function ��A�. The “��” notation
indicates that the definition of RHS is recursive. i.e., fRHS�A�g�

�

represents the transitive closure
of all states that can be generated from A. Thus, b can be in an RHS of A, or in the RHS of some
element of an RHS of A, etc.

237

From production rules 20, 24, 26, and 27,

fRHS�V ���
�

g � fG�� G�� G��� S	� S
� S�� S�� S�� S��� S�	� S�
� S��� S��g (12.1)

P �S	 � fRHS�V ��g�
�

� � (12.2)

P �G� � fRHS�V ��g� � P �S	 � fRHS�G��g�
�

� � ��
 � �� � ��
 (12.3)

Definition 12.4.4 P �A �� b� � D�A� � P �b � fRHS�A�g��� A � SNT� b � V 	 N .
Probability that the partial interpretation, b, is generated from full or partial interpretation A,
where b is a descendant of A.

Definition 12.4.5 Ambiguity – Given a domain event, A, its interpretation is ambiguous with
the interpretation of a second domain event, B, when B subsumes A (the subsume relationship is
specified in Chapter 4). i.e., A is ambiguous with B when the low-level signal data generated by
B can be mistaken for an A. Note that this definition of ambiguity is not reflexive. Thus, A being
ambiguous with B does not imply that B is ambiguous with A.

Definition 12.4.6 P �A
 b� � P �A �� b� �
P
�B P �B �� b�� A�B � SNT� b � V 	 N ,

and where the interpretation of A is ambiguous with the interpretation of each B. Intersection of
domain events A and b, where b is a descendant of A. The intersection of A and b will occur when
both A and b are generated during the course of a specific problem solving instance. This will occur
when A leads to the generation of b and when the occurrence of a distinct event, B, leads to the
generation of b and when A is ambiguous with B. In the case where B leads to the generation of b,
b and A still intersect because an A will be generated during processing since A is ambiguous with
B.

Definition 12.4.7 P �b� �
P
�AD�A� � P �A
 b j A�� A � SNT� b � V 	N 	 SNT . The

probability of partial interpretation b being generated. The notation P �b
A j A� is the probability
that b andA intersect in situations where event A is responsible for the generation of the signal data.

Given these definitions, it is now possible to formally define the concept of marker:

Definition 12.4.8 MARKER(A� b� � P �A�b�
D�A�

, where A is an element of the set SNT and b is
any terminal or nonterminal. The value of the MARKER function indicates the probability that
the generation of an A will cause the generation of a b. A value of MARKER(A� b� that is close to 1
indicates a relationship where every occurrence of A indicates that a b can be derived. The value of
MARKER(A� b� indicates the strength of the relationship between A and b.

Knowledge of markers can be used to design a problem solving architecture and to construct
focusing mechanisms in a dynamic control strategy. Intuitively, if you have a strong marker
for an SNT, and the marker is not present, then you can eliminate the SNT from further
consideration with known risk. For example, assume that the vehicle tracking system is
attempting to extend a track of type I-Track1 through a large amount of noise spread over a
wide region. This could be computationally expensive if the problem solver has to examine the
implications of every possible point of noise in a bottom-up fashion. The number of potential
tracks, and the cost, will increase combinatorially with the amount of noise. Information about
markers can be used to design control strategies to reduce search costs in these situations. In

238

the sample grammar from Fig. 12.20, the strongest marker at the group level for an individual
component of an I-Track1 (i.e., a vehicle location, V1) is G1. Specifically,

MARKER�V �� G�� � P �V � �G���P �V �� � (12.4)

�P �V �� � P �G� � fRHS�V ��g�
�

���P �V �� � P �G� � fRHS�V ��g�
�

� � ��
� (12.5)

This information could be used to design an expectation driven control strategy for
extending an I-Track1 (from ti to tj) by predicting the characteristics of all G1’s that can be
used to extend the track to time tj�� and then only following the implications of the G1’s
that match the predictions. Also, this information could be used in differential diagnosis
processing to disambiguate competing hypotheses [Carver and Lesser, 1993]. For example,
in certain situations it is possible to use marker information to determine if a hypothesis was
erroneously derived from noise. By examining a hypothesis’ supporting data, a problem solver
can determine if the support from a strong marker is consistent with expectations. If the
support is either much less or much greater than expected, this would be a good indication that
the hypothesis is not correct.

For example, assume that, for hypothesis X , MARKER�X� y� � ����. If the problem
solver generates an X for which there is no y supporting data, the problem solver can conclude
that the probability of this happening is � � ���� and that the X might be erroneous. In the
vehicle tracking domain, this might occur if there is a signal group, s, that is a strong marker
for a particular kind of track, t. If the problem solver can derive an interpretation of a twithout
finding any s signals, it is likely that the hypothesis is incorrect.

In contrast, the signal data S15 is a poor marker for the group level event G8.

MARKER�G�� S�
� � P �G�� S�
��P �G�� � (12.6)

�P �G�� � P �S�
 � fRHS�G��g�
�

���P �G�� � P �S�
 � fRHS�G��g�
�

� � ��� (12.7)

A formal definition of the differentiator relationship can be given as:

Definition 12.4.9 DIFF(A� b� � P �A�b�
P �b�

where A � SNT, and b � V 	 N 	 SNT is any
terminal or nonterminal. A value of DIFF(A� b� that is close to 1 indicates a strong causal
relationship between A and b to the exclusion of all other causes. A value of DIFF(A� b� that is close
to 0 indicates a weak causal relationship between A and b.

Knowledge about differentiators can be used both in the design of problem solving
architectures and dynamic control algorithms. Architecturally, differentiators can be used
to construct special operators for differential diagnosis [Carver and Lesser, 1993]. In control
algorithms, differentiators can be used to focus problem solving activity [Erman et al., 1980].

In the vehicle tracking grammar, S1, S2, and S3 are strong differentiators for the event V1
(a vehicle location of type 1). Specifically,

DIFF �V �� S�� � P �V � � S���P �S�� � (12.8)

�P �V �� � P �S� � fRHS�V ��g�
�

���P �S�� � �

 � ������ � ���� (12.9)

(Note that S1 is also generated by production rule 35, and, consequently, P �S��is greater
than the probability of S1 being derived solely from V1.) Similarly, DIFF(V �� S�� � �� �

239

��������� � ���� and DIFF(V �� S�� � �� � �������� � ����. Given a large amount of
noise, a possible control strategy would be to determine if there was a large amount of S1, S2,
and S3 events in the data. If there are, there is a strong likelihood that they were generated by
a track with V1 as a component. This information could be used to filter out data that are
weak markers for V1. For example, MARKER(V1,S8) = 0.07. Consequently, ignoring S8 data
might be a reasonable strategy in this situation.

In general, the marker and differentiator relationships can be used to explain the success of
techniques such as approximate processing and incremental planning [Carver and Lesser, 1991].
From a bottom-up perspective, the differentiator relationship can identify the intermediate
results that are most appropriate for abstracting and clustering. From a top-down perspective,
the marker relationship can help predict the expected characteristics of intermediate results
derived from model-driven processing and thus focus processing by filtering out noise.

Though not discussed in this thesis, the concepts of marker and differentiator can be
further refined to include information about the credibilities of the hypotheses. For example,
the relationships could vary significantly for low-credibility events and high-credibility events.
Given a track level hypothesis that has a low-credibility, its relationship with markers could be
quite different from that of a hypothesis with similar characteristics and a high-credibility. The
same is true for differentiator relationships. A low-level hypothesis with a high-credibility may
be a much better differentiator than a similar hypothesis with a low-credibility.

Also, a similar strategy could be based on the value of a specific characteristic variable (CV).
For example, given the grammar rule n.A � C , the grammar could be modified by adding
the rules, n.1.A� Cs and n.2.A� C�s, where s is a specific value for a CV and each rule has
a corresponding distribution value �n�� and �n��, respectively. In the vehicle tracking domain,
s could be a particular location in a sensed region, an energy level, a vehicle type, a velocity,
etc. Given these new rules, MARKER(A�Cs) would then represent the degree to which the
CV value s is a marker for A.

12.5 Architectural Design Issues

In the design of a problem solving architecture, markers can play a significant role in the
specification of the operators of �, �, and �. Constructive search spaces are often associated
with opportunistic problem solving strategies that can use any of the low-level data as a starting
point for the derivation of an interpretation. This is also referred to as island driving [Erman et
al., 1980]. As will be discussed in Chapter 12.7, this technique can result in significant gains in
efficiency. However, opportunistic search can also result in large amounts of redundancy [Lesser
et al., 1989b].

Markers can be used to reduce this uncertainty by identifying paths that can be pruned a
priori without the risk of eliminating the ability to connect the search path. This can be a very
effective strategy in domains that have certain kinds of redundant search paths. However, for
various reasons, it may not be advantageous to do this. For example, in some domains, this may
restrict the ability of a problem solver to do timely pruning. This can happen in situations
where a problem solver is using dynamic pruning and where the eliminated paths would have
lead to a final solution more quickly and where the final solution could have been used to prune
paths that were not pruned by other means.

The use of markers in the design of an architecture will be illustrated using the IDP
grammar shown in Fig. 12.21 on page 240. The IDPG version of this grammar is shown in
Fig. 12.22. This grammar was originally described in Chapter 3. The SNTs of this grammar

240

...
x y z

......
j k

......
h i

... ...
f g

(Signal Data)

A B

C D E W

... ...
q r

M

Y

......
h i

...
r

... ...
f g

...
q

... ...
q r

...

h

...

i

... ...
x y

N

Z

O

X

...

g

S

Figure 12.21. Interpretation Grammar G

are A, B, M, N, and O. For this example, the initial base space operators are those shown in
Fig. 12.23. These are derived directly from the rules of the generative grammar. The rules
corresponding to b� �signaldata�, rules 7 - 15 of Fig. 12.22, are not included in the set of
base space operators as they will not be used in this example.

Observation of the generative grammar indicates that there are a number of relationships
in this grammar for which the MARKER function returns a value of 1. For example,
both MARKER�M� q� and MARKER�M� r� have values of 1. Similarly, MARKER�O� f�,
MARKER�O� g�, MARKER�A� f�, and MARKER�A� g� all have values of 1. Note the
relationships between SNTs A and O and the intermediate results f and g. The f and g
intermediate results are markers for both SNTs.

The basic control cycle shown in Fig. 1.2 indicates that an operator is instantiated for each
of the partial results to which it can be applied. Thus, given intermediate results q, h, r, and
i, four instantiations of operator 17 would be created, one for each of the four intermediate
results. Obviously, this level of redundancy is excessive and leads to large and unnecessary
increases in problem solving cost. (This sentence is redundant but necessary.) One solution
is to add precondition operators or the goal processing operators from Chapter 4. Another
alternative is to modify the operators so that they are only applied to the intermediate states
with marker values of 1. This is represented as shown in Fig. 12.24. The parentheses indicate
intermediate results to which the operator is not applied.

There is a significant problem with this approach. If the data in parentheses is not available
when the operator is applied, the operator will fail in situations where it should succeed. Or it
will generate a result with lower credibility, missing or incorrect characteristics, etc. This is not
a problem if the data in parentheses is the “low-level” data that is part of the start state, S . This
is because low-level signal data cannot be generated at a later point in problem solving (unless
the problem solver/problem domain receives signal data incrementally). Otherwise, additional
measures are necessary to insure that it is still possible to connect the search space after deleting
paths.

In the example in Fig. 12.25, there are multiple derivation paths resulting from the
interaction between the recursive rule A� AA and the other rules. These interactions result
in redundancy. The base interpretation grammar is shown in Fig. 12.26.

Assuming that all interpretations of a given input are identical regardless of the rules used
to generate them, significant efficiencies can be gained by eliminating some of the rules from

241

Interpretation Grammar G'

0.1 S → A ψ(0.1) = 0.2 f0.1 (fA) g0.1 (gA)

0.2 S → B ψ(0.2) = 0.2 f0.2 (fB) g0.2 (gB)

0.3 S → M ψ(0.3) = 0.2 f0.3 (fM) g0.3 (gM)

0.4 S → N ψ(0.4) = 0.2 f0.4 (fN) g0.4 (gN)

0.5 S → O ψ(0.5) = 0.2 f0.5 (fO) g0.5 (gO)

1. A → CD ψ(1) = 1 f1 (fC,fD, Γ1(C,D)) g1 (gC,gD,C(Γ1(C,D)))

2. B → DEW ψ(2) = 1 f2 (fD,fE,fW, Γ2(D,E,W)) g2 (gD,gE,gW,C(Γ2(D,E,W)))

3.0 C → fg ψ(3.0) = 0.5 f3.0 (ff, fg, Γ3.0(f,g)) g3.0 (gf, gg,C(Γ3.0(f,g)))

3.1. C → fgq ψ(3.1) = 0.5 f3.1 (ff,fg,fq, Γ3.1(f,g,q)) g3.1 (gf,gg,gq,C(Γ3.1(f,g,q)))

4. E → jk ψ(4) = 1 f4 (fj,fk, Γ4(j,k)) g4 (gj,gk,C(Γ4(j,k)))

5.0 D → hi ψ(5.0) = 0.5 f5.0 (fh,fi, Γ5.0(h,i)) g5.0 (gh,gi,C(Γ5.0(h,i)))

5.1. D → rhi ψ(5.1) = 0.5 f5.1 (fr,fh,fi, Γ5.1(r,h,i)) g5.1 (gr,gh,gi,C(Γ5.1(r,h,i)))

6.0 W → xyz ψ(6.0) = 0.5 f6.0 (fx,fy,fz, Γ6.0(x,y,z)) g6.0 (gx,gy,gz,C(Γ6.0(x,y,z)))

6.1. W → xy ψ(6.1) = 0.5 f6.1 (fx,fy, Γ6.1(x,y)) g6.1 (gx,gy,C(Γ6.1(x,y)))

7. f → (s) ψ(7) = 1 f7 (f(s), Γ7((s))) g7 (g(s),C(Γ7((s))))

8. j → (s) ψ(8) = 1 f8 (f(s), Γ8((s))) g8 (g(s),C(Γ8((s))))

9. g → (s) ψ(9) = 1 f9 (f(s), Γ9((s))) g9 (g(s),C(Γ9((s))))

10. k → (s) ψ(10) = 1 f10 (f(s), Γ10((s))) g10 (g(s),C(Γ10((s))))

11. h → (s) ψ(11) = 1 f11 (f(s), Γ11((s))) g11 (g(s),C(Γ11((s))))

12. x → (s) ψ(12) = 1 f12 (f(s), Γ12((s))) g12 (g(s),C(Γ12((s))))

13. i → (s) ψ(13) = 1 f13 (f(s), Γ13((s))) g13 (g(s),C(Γ13((s))))

14. y → (s) ψ(14) = 1 f14 (f(s), Γ14((s))) g14 (g(s),C(Γ14((s))))

15. z → (s) ψ(15) = 1 f15 (f(s), Γ15((s))) g15 (g(s),C(Γ15((s))))

16. M → Y ψ(16) = 1 f16 (fY) g16 (gY)

17.0 Y → qr ψ(17.0) = 0.5 f17.0 (fq,fr, Γ17.0(q,r)) g17.0 (gq,gr,C(Γ17.0(q,r)))

17.1 Y → qhri ψ(17.1) = 0.5 f17.1 (fq,fh,fr,fi, Γ17.1(q,h,r,i)) g17.1 (gq,gh,gr,gi,C(Γ17.1(q,h,r,i)))

18. N → Z ψ(18) = 1 f18 (fZ) g18 (gZ)

19. Z → xy ψ(19) = 1 f19 (fx,fy, Γ19(x,y)) g19 (gx,gy,C(Γ19(x,y)))

20. O → X ψ(20) = 1 f20 (fX) g20 (gX)

21.0. X → fgh ψ(21.0) = 0.5 f21.0 (ff,fg,fh, Γ21.0(f,g,h)) g21.0 (gf,gg,gh,C(Γ21.0(f,g,h)))

21.1. X → fg ψ(21.1) = 0.5 f21.1 (ff,fg, Γ21.1(f,g)) g21.1 (gf,gg,C(Γ21.1(f,g)))

credibility costdistributiongrammar rule

(s) = signal data C(Γn(i,j,...)) = cost of executing Γn(i,j,...)Γn(i,j,...) = semantic evaluation function for rule n

Figure 12.22. Interpretation Grammar G with Fully Specified Distribution, Credibility, and
Cost Functions

242

1. S � A
2. S � B
3. S � C
4. S � D
5. S � E
6. A � CD
7. B � DEW
8. C � fg
9. C � fgq
10. E � jk
11. D � hi
12. D � rhi
13. W � xyz
14. W � xy
15. M � Y
16. Y � qr
17. Y � qhri
18. N � Z
19. Z � xy
20. O � X
21. X � fgh
22. X � fg

Figure 12.23. IDPi, Base Space Operators for Grammar G

8. C � f(g)
9. C � f(gq)
16. Y � q(r)
17. Y � q(hri)
21. X � f(gh)
22. X � f(g)

Figure 12.24. Modified Base Space Operators for Grammar G

243

A

A

A

A

S

u v w x y z

T TTTTT

A A

A
A

S

u v w x y z

T TTTTT

(a.) (b.)

1. S → A A

2. S → A T

3. A → A T

4. A → A A

5. A → T T

6. T → u | v | w | x | y | z

Figure 12.25. Grammar R and Redundant Interpretations for Input “uvwxyz”

1. S � A A
2. S � A T
3. A � A T
4. A � A A
5. A � T T
6. T � u
7. T � v
8. T � w
9. T � x
11. T � y
12. T � z

Figure 12.26. Base Space Operators for Grammar R

the set of base space operators. The issue is then to decide which operators to remove that will
still allow the search space to be connected and that will result in an increase in problem solver
efficiency. Markers can be used to guide this process. One simple heuristic is the following: If
the removal of a rule does not restrict a problem solver’s ability to connect both signal data to a
strong marker and the marker to the set of SNTs, then the rule is a good candidate for removal.

In this example, the nonterminal A is a strong marker for the single SNT, S since
MARKER�S�A� = 1. As a consequence, rule 4 is a good candidate for elimination. Eliminating
this rule will not preclude the problem solver from connecting any of the signal data to A. Nor
will it preclude the generation of S from A.

This example is simple enough that it is possible to identify strong markers by inspection.
It is also possible to identify candidate rules for elimination and to check if the search space
is still connected after their removal. In more complex domains, it is necessary to construct a
connectivity matrix and take the transitive closure of it to insure that the search space is still
connected.

244

Goal A Goal B
Goal C

Goal D Goal E

Use of the Arity Texture demonstrated for a vehicle
tracking domain. A potential problem solution consists of

one vehicle location from each of the goals.

A1

B1

B2

C1

C2

D1

D3D2

E1

E3E2

E4

Figure 12.27. Arity Example

12.6 Dynamic Control Design Issues - Estimating UPC Values

In some domains, it is feasible to use the a priori calculation of MARKER�A� b� as an
estimate �P instead of the dynamic calculation of the precise value of the probability vector,
P , in the UPC vectors, where P is the probability of reaching a particular SNT from a state.
If there is a relatively small amount of ambiguity, this approximation will be fairly accurate.
However, if there is a significant amount of ambiguity or if the problem solver uses pruning
operators, the estimate could be too erroneous to be of any use.

The intersection relationship was defined in Definition 12.4.6 and in Chapter 12.4.
Intersection is similar to the concept of markers but it is stronger in the sense that it is
bidirectional. For example, given P �A
 b� = 1, then every occurrence of an A will result in the
occurrence of a b. Furthermore, the derivation of a b will indicate that it is possible to derive
an A. However, like markers, an intersection value of 1 does not rule out the possibility that a
third event, C , caused both the A and the b.

The expected costs associated with paths from intermediate states to SNTs, �C , can be
estimated from a priori expectations derived from the IDPgrepresentation of the domain. In
domains that do not use pruning, this can be a relatively accurate estimate. Even in domains
that use pruning, the estimate can be adjusted to account for the pruning. This will result in
greater variance, but it might still be a reasonable estimate to use in control decisions.

12.7 Arity

The IDP/UPC framework can be used to extract a variety of features from a domain.
One such feature is what we will call arity. Issues related to arity are associated with the
frequency of certain domain events and the related implications for the branching factor of the
resulting search space. As many researchers including Fox and Kanal have noted [Fox, 1983,
Kumar and Kanal, 1988], the order in which a problem solver attempts to solve subproblems
can have a significant impact on the overall cost of problem solving. In general, if a search space
is viewed as a tree, it is most efficient to solve the subproblems with the smallest branching
factors (or arity) first.

For example, consider the situation shown in Fig. 12.27. This figure represents an
interpretation problem domain in which the problem solver attempts to track a vehicle moving
through multiple time periods. In the example, each time period is represented by a goal which
includes multiple possibilities for the vehicle’s position in that time period.

245

A1 A1

level 1, 2 operations

level 2, 4 operations

level 3, 12 operations

level 4, 48 operations

level 0, 4 λ transitions

level 2, 24 operations

level 3, 48 operations

level 4, 48 operations

Graphical representation of the effects of the Arity texture.
(Nodes represent search states, arcs represent search operations.)

a. Scheduling low-arity nodes for expansion first results in 66 search operations.

b. Scheduling high-arity nodes for expansion first results in 132 search operations.

A1

C1 C2

D2 D3D1 D1 D2 D3 D1 D2 D3 D1 D2 D3

S

S

E1 E2 E4E3

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

C1

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1

C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

B1

B1

B2

B2 B1 B2

level 1, 12 operations

level 0, 1 λ transition

E1 E2 E3 E4 E1 E4 E2 E3 E4 E3 E1 E2 E3 E4 E1 E2 E3 E4 E1 E4 E2 E3 E4 E1 E2 E3 E4E1E4E3E2E1E2 E3E4E3E2E1E4E2E1E2E1E4E3E1E2 E3

Figure 12.28. Search Paths for Arity Example

Figure 12.28 represents the the effects of arity on the cost of search-based problem solving.
Figure 12.28.a represents the cost of problem solving when the operator applications are
arranged in the most efficient order. Figure 12.28.b represents the cost of problem solving
when the operator applications are arranged in the least efficient order. As shown, the difference
in cost is a factor of two.

Figure 12.29 shows several IDPi grammars that could specify the problem solving actions
for interpreting this domain data. In each grammar example, “NTx” represents a nonterminal
and “F” represents a final state. The lettered elements represent the respective subproblems. As
shown, grammars can be used to generate virtually any sequence of problem solving events. It
is important to recognize that we assume the subproblems are independent and can therefore
be solved in any order. The interpretation trees in Fig. 12.29 indicate the order in which
the problem solving occurs. Thus, Fig. 12.29.a indicates that the problem solver first finds a
solution to subproblem A, then B, etc. Fig. 12.29.d indicates the problem solver first finds a
solution to subproblem A, then E, then D, etc.

The grammar shown in Fig. 12.29.a generates a left-to-right interpretation of the data.
This happens to correspond to the least cost organization of the operators. The grammar in
Fig. 12.29.b generates a right-to-left interpretation of the data that corresponds to the greatest
cost solution. Figures 12.29.c and 12.29.d generate inside-out and outside-in interpretations
with costs that are between the maximum and minimum.

The significance of this example is that it illustrates how the structure of a problem can be
exploited to reduce problem solving cost and how this structure can be represented and exploited
with a grammar. In the IDP/UPC framework, a problem solver that uses an evaluation function

246

A
l

B
l

NT1
l

NT2
l

C
l

NT3
l

D
l

E
l

F
l

E
l

D
l

NT1
l

NT2
l

C
l

NT3
l

B
l

A
l

F
l

a. left-to-right interpretation

C
l

B
l

NT1
l

NT2
l

D
l

NT3
l

A
l

E
l

F
l

A
l

E
l

NT1
l

NT2
l

D
l

NT3
l

B
l

C
l

F
l

b. right-to-left interpretation

c. inside-out interpretation d. outside-in interpretation

Figure 12.29. Example Grammars for Exploiting Arity Information

based on actual UPC values will automatically choose a sequence of operators that minimizes
the cost of problem solving. As discussed in this thesis, the cost of implementing a UPC based
evaluation function is prohibitive and problem solvers that are deployed in real-world situations
must use approximations of some kind.

With respect to real-world problems, this example illustrates how the cost of problem
solving can be significantly affected by a consideration that might easily be overlooked. For
example, in vehicle tracking domains, it is reasonable to expect that the accuracy of sensors will
vary over the range of a sensed area. They might be more accurate in the center of the region
and less accurate toward the fringes. This often results in the sensor picking up more noise
and false signals on the fringe areas and more accurate readings with less noise in the center.
Similarly, there may be areas within a sensed region that are known to generate greater than
average levels of noise.

In each of these situations, the design of the problem solving grammar can make an
important contribution to the overall efficiency of the problem solver. In the case of the
sensor’s accuracy decreasing toward the fringe of a region, an inside-out grammar can be used
to reduce problem arity. In the case of known areas of noise, the grammar can be suitably
adjusted to limit the effects of the noise. Designing a grammar so that it exploits the specific
statistical properties of a domain, such as arity, to reduce the overall cost of problem is, in effect,
embedding a control decision in the grammar.

247

1.00.50.25 0.75

frequency

credibility
1.00.50.25 0.75

frequency

credibility

1.00.50.25 0.75

frequency

credibility
1.00.50.25 0.75

frequency

credibility

a. b.

c. d.

Figure 12.30. Solution Credibility Frequency Map

12.8 Utility Analysis

Given definitions for IDPg and IDPi, it is possible to define a map of a grammar’s
expected utility or credibility values. This is significant because it can be used in the design of
sophisticated control mechanisms such as bounding functions for the grammar. As a reminder,
bounding functions prune search paths by comparing their credibility based rating to fixed
or dynamically determined thresholds. For example, consider the credibility maps shown in
Fig. 12.30. These graphs show the expected frequency distribution of the credibility values
of interpretations, both correct and incorrect, generated by a problem solver. In each of the
graphs, the y axis represents the number of occurrences of a particular frequency. The x axis
represents a specific credibility value. In these graphs, and in the domains described in this
thesis, an interpretation’s credibility spans a range from 0 to 1, where 1 is completely credible.
In Fig. 12.30.a, the graph indicates that each problem instance will result in multiple full
interpretations. The graph shows the frequency distribution of their frequencies, with most of
the interpretations will have high credibilities. If one were designing a problem solver for this
domain, this graph would not be encouraging because it indicates that for each problem solving
instance, there will be numerous highly-rated possible interpretations. This could indicate that
it will be expensive to differentiate these possible interpretations.

In Fig. 12.30.b, most of the interpretations have relatively low credibilities. There are a
few that have high frequencies, and it might be possible to use these to prune alternatives while
they are still being processed. The fact that the distribution has a greater variance can also
be factored into pruning considerations. Distributions with greater variances are more likely

248

to have outliers that can be used to establish dynamic pruning thresholds, when the outlier
is on the higher end of the credibility range, or to establish candidates for pruning, when the
outlier is at the lower end. This would be true for the experiments in Chapter 11, but it is not
necessarily a valid generalization. Fig. 12.30.c is similar to b but there is a distinctive “hump”
of increased frequency toward the higher end of the range. This domain structure could be
exploited to construct effective bounding function operators.

Figure 12.30.d shows a distribution that is close to a normal distribution. This is an
interesting example to consider because distributions with such well-understood properties can
be exploited with predictable effects. For example, given a normal distribution such as this,
it is possible to state the probability of a given interpretation being the highest rated solution
with a well-defined expected error rate. With this knowledge, a problem solver can make a
well-informed decision as to whether or not to continue processing in order to find a higher
rated solution or whether to accept a given interpretation as the highest rated, with a known
probability of error, and terminate processing.

Credibility maps can also be generated for other elements of the grammar or for the
grammar as an aggregate, as shown in Fig. 12.31 and as discussed below. The information
shown in the figure can be used for designing bounding functions. Ideally, a bounding function
will prune “incorrect” paths (i.e., paths that do not lead to the interpretation with the highest
rating) and have no effect on “correct” paths. In a best case scenario, analysis of a domain’s
utility map can result in the specification of bounding functions that are close to this ideal.
Because real-world domains are non-monotonic, as described in Chapter 2, this ideal bounding
function is not a realistic goal. However, even in real-world domains the analysis of a utility map
can greatly improve the performance of a problem solver and can provide an understanding of
a problem solver’s behavior, such as a statistically generated expected error rate.

In Fig. 12.31, the x axis is labeled with the names of equivalence classes representing groups
of grammar elements. In a vehicle tracking domain, representative equivalence classes would
include signal data, group data, vehicle location data, partial tracks of length 2, partial tracks
of length 3, and so on. In situations where the elements of a grammar have very individualistic
behavior, the equivalence classes can represent specific grammar elements. The y axis represents
credibility level. The horizontal line indicates a pruning threshold and the vertical lines above
each label on the x axis represents the distribution of credibility values for elements of that
class. Elements with values below the pruning threshold correspond to search paths that are
eliminated by bounding functions.

Figures 12.31.a and b might represent data from the same domain. Figure 12.31.a might
represent the expected credibility distributions of intermediate results that are included on a
path to the correct interpretation and 12.31.b might represent intermediate results that are not
on a path to the correct interpretation. If this were the case, this would be a very well-behaved
domain! As shown, the majority of intermediate results on correct paths have credibilities that
are above the threshold while all of the incorrect partial results have credibilities that are below
the threshold.

In reality, though, most credibility maps look more like that shown in Fig. 12.31.c.
As shown, the credibility distribution of each class lies partly below and partly above the
threshold. In most non-monotonic real-world domains, this is true for both correct and
incorrect intermediate results. This is why, in large part, problem solving in non-monotonic
domains is so difficult.

Figure 12.31.d shows a domain in which only one equivalence class straddles the pruning
threshold. This structure could be used in a variety of ways in the design of a problem solver.

249

b.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

a.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

d.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

c.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

T T

T T

f.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

e.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

T T

h.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

g.

1.0

0.5

0.25

0.75

credibility

ec1 ec2 ec3 ec4 ec5
 event equivalence classes

T T

Figure 12.31. Example Frequency Maps

250

If this map were for correct intermediate results, this might indicate that the problem solver
should not apply bounding functions to search paths corresponding to elements from this
equivalence class. Alternatively, if this map were for incorrect results, it would indicate that the
problem solver should not try to prune equivalence classes 2 - 5 because it will be a waste of
effort.

Figures 12.31.e and f illustrate a common problem. Assume that 12.31.e represents the
credibility map for correct partial results and f for incorrect results. In the example, a given
pruning threshold is effective for some equivalence classes, but not for others. Consequently,
it is necessary to design customized pruning threshold for each class. This is shown in
Fig. 12.31.g. As shown, it is possible to specify a bounding function that is different for each
event equivalence class. For example, the equivalence classes could correspond to partial results
stored on different levels of a blackboard. The elements in ec1 might all be on the “signal
event” level, etc.

Fig. 12.31.h shows a situation where a very sophisticated bounding function could be used.
As shown, assuming that this is a credibility map for correct results, a bounding function could
be designed in such a way that the pruning threshold increased or decreased as a function of
the equivalence class to which it was applied.

In general, the point of these examples is to illustrate how the IDP specification of a
problem domain can be used to design more effective sophisticated control mechanisms.

12.8.1 Calculating Solution Credibility Frequency Maps

Solution credibility frequency maps are generated based on the statistical distribution
of the domain credibility factor, �, the structure of the domain grammar, and the domain
specific credibility functions. The calculation is based on the use of the Sample Sets from
Definition 5.1.1 in Chapter 5.1.1, and the SNTs for the grammar.

For a given set of SNTs, the solution credibility frequency map for a grammar is defined
as:

Definition 12.8.1 �i�I CMAP(CRED(I)) = CMAP(CRED(I)) + wi, where i is an element of
Ssample, I is an interpretation derived for I, wi the weighting of i in Ssample, CRED(I) is the
credibility of I, and CMAP is the credibility frequency map. The generation of interpretations
from the sample sets assumes a credibility for each sample set equal to the expected credibility of the
domain, the domain credibility factor, �.

Intuitively, this definition takes all the sample sets and all the interpretations that can
be constructed for the sample sets and computes the number of times an interpretation of a
particular credibility is generated. In the experimental problem solver used in this thesis, the
credibility of a solution has a value between 0 and 1. To compute the credibility of a solution
of purposes of determining the credibility frequency map, CRED(I) is defined as:

Definition 12.8.2 CRED(I) = TRUNC((credibility of I) * 100), where TRUNC is the Lisp
function “truncate.” In essence, the CRED function takes a real value between 0 and 1 and converts
it to an integer value between 0 and 100.

251

12.8.2 Calculating Domain Credibility Maps

Domain credibility maps are generated based on the statistical distribution of the domain
credibility factor, mu, the structure of the domain grammar, and the domain specific credibility
functions. The calculation is based on the use of the Sample Sets from Definition 5.1.1 in
Chapter 5.1.1.

For a given element, i, of Sample Set, Ssample, the problem domain is divided into two
sets of partial results, those that are on a paths to the highest rated interpretation for s (These
are the correct partial interpretations.), and those that are not on a path to the highest rated
interpretation for s (These are the incorrect partial interpretations.).

For a given Sample Set, the domain credibility map for correct partial interpretations is
calculated as follows:

Definition 12.8.3 �i�ecc
j

ECRED(eccj) = (�ec CRED(ec) * wi�� j eccj j, where i is an element
of Ssample, wi the weighting of i � Ssample, ecc is the set of event equivalence classes defined for the
domain, eccj is a specific event equivalence class, ec is an event in eccj , CRED(ec) is the credibility
of ec, and ECRED(eccj) is the map of expected credibilities for the event equivalence class eccj . The
superscript notation in ecc and ec indicate that these sets only include partial results that are on paths
to the full interpretation with the highest credibility. The notation j eccj j represents the cardinality
of the set j eccj j, i.e., the total number of elements ec in eccj . In this computation, an “event” is a
specific instantiation of a partial result in a search space. The generation of interpretations from the
sample sets assumes a credibility for each sample set equal to the expected credibility of the domain,
the domain credibility factor, �.

For the same Sample Set, the domain credibility map for incorrect partial interpretations
is calculated as follows:

Definition 12.8.4 �i�ec�c
j

ECRED(ec�cj) = (�e�c CRED(e�c) * wi�� j ec
�c
j j, where i is an element

of Ssample, wi the weighting of i � Ssample, ec�c is the set of event equivalence classes defined for the
domain, ec�cj is a specific event equivalence class, e�c is an event in ec�cj , CRED(e�c) is the credibility
of e�c, and ECRED(ec�cj) is the map of expected credibilities for the event equivalence class ec�cj . The
superscript notation in ec�c and e�c indicate that these sets only include partial results that are NOT
on paths to the full interpretation with the highest credibility. The notation j ec�cj j represents the
cardinality of the set j ec�cj j, i.e., the total number of elements e�c in ec�cj . In this computation, an
“event” is a specific instantiation of a partial result in a search space. The generation of interpretations
from the sample sets assumes a credibility for each sample set equal to the expected credibility of the
domain, the domain credibility factor, �.

Intuitively, these definitions simply compute the average credibilities of the elements of
equivalence classes. One definition is for partial results that are on paths to correct interpre-
tations and the other is for partial resuls that are on paths to incorrect partial interpretations.
Note that these definitions allow for interactions between the two sets.

12.9 Chapter Summary

This chapter discusses some of the implications and uses of the IDP/UPC framework
and demonstrates several prototype design tools/theories. It introduces two general analysis

252

techniques referred to these as comparative cost analysis and constraint flow analysis. It also
discusses some of the implications and uses of the IDP/UPC framework and demonstrates
several prototype design tools/theories not necessarily related to approximate processing. These
include the concept of marker and differentiator that are based on statistical characteristics of a
domain derived from an IDP specification.

C H A P T E R 13

EXPERIMENTS WITH APPROXIMATE PROCESSING

We conducted a number of experiments to determine whether or not the analysis frame-
work, in its current state of development, can be applied to domains that use sophisticated
control techniques based on approximate processing. Specifically, we wanted to test the
framework in a domain where the problem solver’s control strategy included all forms of
approximate processing discussed in Chapter 10.3. The specific objective was to determine if
the analysis tools are capable of representing and analyzing the sophisticated control mechanisms
used in problem solvers such as that described by Durfee in [Durfee, 1987]. The experiments
that were conducted are described in this section.

The problem solver used for these experiments is based on the grammar introduced in
Chapter 12 and shown again in Fig. 13.1. This grammar is somewhat simpler than the grammar
used in the experiments in Chapter 11, but it contains many of the same complexities such as
noise/missing data and context sensitive attributes linked through the feature list convention.

In the grammar, the elements A, B, and C represent different vehicle types. The feature
lists used in these experiments were identical to those used in the experiments in Chapter 11

P.1.1. T � T1 A p=0.33
P.1.2. T � T2 B p=0.33
P.1.3. T � T3 C p=0.33
P.2. T1 � A A p=1.0
P.3. T2 � B B p=1.0
P.4. T3 � C C p=1.0
P.5. A � G1 G2 p=1.0
P.6. B � G3 G4 p=1.0
P.7. C � G5 G6 p=1.0
P.8.1. G1 � S1 S2 p=0.9
P.8.2. G1 � S1 S2 S6 p=0.1
P.9. G2 � S11 S12 p=1.0
P.10.1. G3 � S1 S11 p=0.9
P.10.2. G3 � S1 S11 S12 p=0.1
P.11. G4 � S2 S6 p=1.0
P.12.1. G5 � S2 S11 p=0.9
P.12.2. G5 � S1 S2 S11 p=0.1
P.13. G6 � S6 S12 p=1.0

Figure 13.1. Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations

254

AP.1. ATc��c� � AT1c� VLCc�

AP.2. AT1c��c� � VLCc� VLCc�

C.1. VLCA
B
C � Alh � � � Blh � � � Clh

LH.1. Alh � S1 S2 S6 S11 S12
LH.2. Blh � S1 S2 S6 S11 S12
LH.3. Clh � S1 S2 S6 S11 S12
M.G.1. � � AT

Figure 13.2. Approximations Used to Extend VTG-1

and included time, location (x, y), velocity, acceleration, and energy level (loudness). The
semantic functions used were also identical.

The set of base space operators corresponded to the rules of the grammar shown in Fig. 13.1.
The meta-level operators used in the problem solver are represented in Fig. 13.2. Threedifferent
kinds of operators were used, a level-hopping operator that approximated domain knowledge, a
clustering operator that aggregated data in abstract states, and approximate processing operators
that generated interpretations in a projection space.

Rules LH.1, LH.2, and LH.3 in Fig. 13.2 are level-hopping operators. Level-hopping
takes constraints that would normally span multiple levels of the blackboard in the base space
and simplifies and compresses them into a single operator. A more detailed discussion of
level-hopping appears in Chapter 10.3.2.

Rule C.1 is a clustering operator that approximates data. This strategy attempts to
efficiently apply constraints to aggregations of data and it is useful in domains with large
quantities of noise. Instead of processing each individual piece of data, a problem solver
aggregates data into an abstract unit and processes the unit as a whole. A discussion of abstract
data aggregation appears in Chapter 10.3.1. Rule C.1 combines the results of level hopping
into abstract states that are subsequently processed by rules AP.1 and AP.2.

Rules AP.1 and AP.2 are abstract operators in a projection space that mirrors the base space.
The results of processing in this space are mapped back to the base space. Ideally, the mapping
process reduces the cost of problem solving in the base space by an amount that exceeds the
cost of the approximate processing and mapping.

Four experiments were conducted. The first, AE1 (Approximate Experiment 1) did
not use any approximate processing. Experiments AE2, AE3, and AE4 used level-hopping,
clustering, and approximate processing. The cost of the approximate operators and the mapping
functions was varied from 10, to 1, to 50 in the experiments. The results of the experiments
are summarized in Table 13.1.

The mapping procedure used in these experiments was the transformation strategy de-
scribed in Chapter 10.3.4. Given a set of input data, the problem solver first uses level-hopping
to generate abstract, vehicle level results. These results are then clustered into an abstract states
that are processed as using operators derived from base space operators. The results of this
processing are mapped back to the base space by using the results of approximate processing to
transform the base space grammar.

The transformation of the base space grammar involves eliminating rules based on the
characteristics of the results of approximate processing. For example, the results of approximate

255

Table 13.1. Summary of Approximate Processing Experiments

Exp Approx Approx Cost E�C� Avg. C Sig
AE1 none na 930 927 N
AE2 LH, C, AP 10 337 338 N
AE3 LH, C, AP 1 250 258 N
AE4 LH, C, AP 50 720 723 N

Abbreviations
Exp: Experiment
Approx: Description of approximate operators used by the problem solver.

LH: Level-hopping was used;
C: Clustering was used;
AP: Approximate processing was used.

Approx Cost: Cost assigned to approximate operators in this experiments. All base space operators have cost 10.
E�C�: Expected Cost of problem solving.
Avg. C: actual average cost for 100 samples of 50 random problem instances each.
Sig: Whether or not the difference between expected cost and the

actual average cost was statistically significant, Y:yes; N:no.

processing include a track type characteristic. The grammar transformation that takes place
eliminates all grammar (and all the associated operators) rules that do not contribute to paths
that lead to results of a different track type.

For example, as shown in Fig. 13.3, approximate processing generates an abstract result
with properties characteristic of a vehicle track of type A. In the Fig. 13.3, the states labeled
with the superscript “LH” represent the results of level-hopping. The states labeled “VLC”
represent clusters of vehicle locations. In this case, the clusters are formed using the results of
level-hopping. The cluster states are also labeled with a subscript that indicates the conjunction
of the vehicle type characteristics of the component states. The results of approximate processing
are labeled “AT1” and “AT” for “approximate T1” and “approximate T.” Each of the abstract
states that is generated by approximate processing has a subscript indicating the vehicle type
characteristics encompassed by the state.

Given that the result of approximate processing has a vehicle type characteristic of A, the
problem solver can eliminate all operators that lead to results other a vehicle track of type A.
The modified grammar is shown in Fig. 13.4. This grammar is then applied to the input data to
generate one or more interpretations with no more modifications to the problem solver. (In this
particular case, the problem solver will generate four possible solutions.) As will be discussed
in the following sections, this approximation/grammar transformation process significantly
reduces the cost of problem solver, even in this simple domain.

The following section discuss the changes that were made to the system and the analysis
framework to support the analysis of approximate processing and the details of the different
sets of experimental results.

256

lh lh lh lh lh lh

S1t1 S2t1 S6t1
S11t1 S12t1

S1t2 S2t2 S6t2 S11t2 S12t2

At1
Bt1 Ct1 At2

Bt2 Ct2

lh

S1t3 S2t3 S11t3 S12t3

At3

VLCt1
p VLCt1

p VLCt1
p

[A,B,C] [A,B,C] [A]

AT1t1-t2
p

[A,B,C]

AT1t2-t3
p

[A,B,C]

ATt1-t3
p

[A]

Figure 13.3. Approximate Processing Example

P.1.1. T � T1 A p=1.0
P.2. T1 � A A p=1.0
P.5. A � G1 G2 p=1.0
P.8.1. G1 � S1 S2 p=0.9
P.8.2. G1 � S1 S2 S6 p=0.1
P.9. G2 � S11 S12 p=1.0

Figure 13.4. VTG-1 Transformed By Mapping Operator

257

13.1 Modifications

Several modifications were made to the analysis tools and the experimental testbed to
support these experiments. The changes to the analysis tools involved incorporating analytical
methods for approximate processing that would properly compute the expected frequency of
approximate results and the expected costs associated with the approximate results.

Specifically, a base level operator can generate multiple results from a given set of input
data. The input to the operator corresponds to the RHS side of a grammar rule and the
number of results generated by the operator is a function of the combinatorics of combining
the inputs. Thus, if an operator with two inputs has 2 instances of the first input and 3 of the
second input, the operator will produce � � � � � distinct results. This process is described in
greater detail in Chapter 5.1 and Appendix D. In contract, clustering operators used in these
experiments generate a single result, regardless of the number of inputs.

To account for these differences, the analysis framework was modified by associating a
“combining” function to each rule of the grammar. During the computation of frequency
maps, the analysis tools use the combining function for each specific grammar rule. This is
illustrated in the detailed example in Appendix D.

The computation of cost associated with the approximate processing operators is identical
to that for base space operators. However, the cost of problem solving in the base space has
been modified to reflect the impact of using transformed grammars. This modification is
relatively simple. Instead of computing the cost of problem solving based on the original
grammar, the costs are computed based on the transformed grammars. Then the distribution
of the transformed grammars is computed from the original base space distributions and this
is used to determine a weighting factor that is used to combine the results from the distinct
transformed grammars.

The modifications to the experimental testbed are extensive and are described in detail,
along with the conceptual issues involved, in Appendix C.

13.2 Experimental Details

The purpose of these experiments was to determine whether or not the analysis tools
could accurately predict and explain the performance of a sophisticated control strategy that is
based on the use of approximate processing. In addition, these experiments test the viability
and validity of the representations we introduced for approximate processing in Chapter 10.3.
As shown in Table 13.1, the analysis tools accurately predicted the expected cost of each
experiment. In addition, the formulations of approximate processing worked well and were
able to reduce the cost of problem solving in a complex problem domain.

Experiment AE1 is the control. AE1 uses no approximate processing, but the expected
results were calculated using the modified methods described above in Chapter 13.1. The cost
of all problem solving operations in this grammar was 10. The problem solver used a four level
blackboard including levels for signal, group, vehicle, partial track, and track data.

In experiments AE2 - AE4, level-hopping, clustering, and approximate processing operators
were added, along with a mapping operator that uses the results of approximate processing to
transform the base space grammar. The control strategy processed the level-hopping, clustering,
approximate processing and mapping before any domain processing was carried out. This was
implemented using an evaluation function that rated the meta-level operators higher than any
other operator. The mapping function used was a grammar transformation that eliminated

258

all operators that only generated paths to states that were not consistent with the results of
approximate processing, as described above.

In each of the approximate processing experiments, the analysis tools accurately predicted
the expected cost of problem solving. In addition, the formulation of approximate processing
used functioned accurately and effectively. In each of the experiments, the cost of problem
solving was significantly reduced through the use of approximate processing.

13.3 Chapter Summary

This chapter discusses experiments that were conducted to determine whether or not the
analysis framework, in its current state of development, can be applied to domains that use
sophisticated control techniques based on approximate processing. In all the experiments, the
performance predicted by the quantitative analysis tools was consistent with the actual observed
results. This verifies that the analysis tools accurately predict the performance of problem solvers
that include sophisticated control mechanisms based on abstractions and approximations.

C H A P T E R 14

CONCLUSION

This thesis represents a step toward the development of design theories for sophisticated
problem solving systems. It experimentally demonstrates that, for an important class of AI
problem solving architectures, the class of sophisticated, blackboard-based problem solvers,
answers to critical design issues can be related to specific problem domain and problem solver
characteristics that are represented in formal, quantifiable ways. The approach used involves
developing formal specifications of the characteristics and inherent properties, or structure, of
problem solvers and the domains in which they are applied and then using this representation
to build a quantitative analysis framework for predicting and explaining the performance of a
sophisticated problem solver operating in a complex domain. The particular complex domain
studied is a signal interpretation task – vehicle monitoring.

In general terms, the most important conclusion that can be drawn from the work presented
in this thesis is that the performance of a problem solving system can be analyzed based on
formal descriptions of the structure of the domain in which the problem solver is applied
and the structure of the sophisticated control architecture used by the problem solver. This
analysis can take the form of both predicting the performance levels of the problem solver
using analytically derived closed form equations and explaining the performance levels relative
to structures in the formal models of the domain and/or the sophisticated control architecture.
In addition, the IDP/UPC framework can be used for conducting experiments to determine
the structure of a specific domain or the objective strategy being used by a problem solver.

The formal approach developed in this thesis, the emphasis it places on the structure of a
problem domain, and its relationship to problem solving performance has given new insight into
the nature of search-based problem solving. In particular, problem solving and the sophisticated
control techniques that are based on the use of abstractions and approximations can now be
viewed from a unified perspective. This unified perspective has important implications for
analyzing control architectures such as approximate processing, goal processing, and other
meta-level control architectures. Using the IDP/UPC framework, or other formal approaches,
it is possible to compare and contrast alternative architectures in a range of different domains in
order to develop an understanding of how a particular architecture might be generalized. This
ability could eventually shift the emphasis of AI research to the exploration, and formalization,
of the characteristics of natural problem domains.

Furthermore, in developing the IDP/UPC framework, this thesis develops a better
understanding of sophisticated problem solving and its relationship to other forms of problem
solving. The IDP/UPC framework was designed intentionally as an extension to the framework
introduced by Kanal and Kumar [Kumar and Kanal, 1988] and used to develop a taxonomy
of search-based problem solving techniques. By extending this framework to include the
sophisticated control mechanisms used in AI problem solving, it is now possible to view many
AI control architectures as generalizations of problem solving techniques described formally in
other fields, such as operations research.

260

The following sections review the major contributions that were described in the intro-
duction. For each of the contributions, a detailed summary is given including how the thesis
achieved the contribution, where in the thesis the work related to the contribution is described,
and the implications associated with the contribution.

14.1 Defining Sophisticated Control, Interpretation Problems, and Complex Domains

Chapter 2 defines the class of problems referred to in this thesis as sophisticated control
problems and the class of complex problem domains and relates both to previous problem and
domain definitions. The resulting taxonomy is shown in Fig. 2.2 on page 30. Sophisticated
control and complex domains are formally defined in the context of search problems. Specifi-
cally, sophisticated control problems are those where, in order to find the statistically optimal
operator to execute, the control mechanism must examine the relationships between all possible
sets of partial search paths. Complex domains are search problems in which the cost of applying
a single operator is potentially exponential with respect to the input to the operator and where
the functions for extending search paths are non-monotonic. These definitions establish a
formal specification for an important set of AI research problems, they allow these problems to
be characterized more precisely, and they enable the results from research on these AI problems
to be compared and contrasted to the results of other research efforts in AI and to work in
other fields, such as operations research, that have developed search-based formalisms. This
chapter also defines the related concepts of restricted problem domains, in which search operators
have a constant cost, and local control, which does not examine any interrelationships between
potential problem solving actions.

The IDP/UPC analysis framework introduced in this thesis extends work on the analysis
of search-based problem solving by eliminating many of the restrictions used previously, such
as monotonicity constraints, and by increasing the expressive power of a formal grammar to
include elements that are necessary for conducting analysis, such as the specification of solution
nonterminals, functions associated with a grammar rule’s cost, credibility, and probability, and
more.

14.2 Formally Specifying Domain Structures and Problem Solving Architectures

Chapter 3 defines the specific class of problems, the interpretation decision problem (IDP),
studied in this thesis. An IDP is a constructive search problem where, given an input
string of signal data, the problem solver tries to find the best interpretation corresponding
to the events that could have caused the signal data. IDP problems are defined in terms of
discrete optimization problems. Specifically, the problem solver is trying to determine which
interpretation from a set of possible interpretations has the highest credibility. This defines the
problem in such a way that it is possible to quantitatively analyze it. This is because it provides
a clear criterion for termination – problem solving halts when every possible search path has
been connected to a final state or eliminated from consideration – and it explicitly represents
all meta-level actions that implicitly enumerate (i.e., prune) portions of the search space. At
this point the problem solver conducts a linear search of the set of interpretations that were
found to determine which has the highest credibility. Also, since it casts interpretation as a
discrete optimization problem, it clearly defines interpretation’s relationship to other classes of
problems and it makes it possible to understand the general applicability of algorithms and
other results that are constructed or determined for interpretation domains.

261

In IDP models, the different feature structures that are defined by domain theories are
combined into a unified representation by expressing them in terms of formal grammars
and functions associated with production rules of the grammar. Nonterminals of the grammar
represent intermediate problem solving states, terminal symbols represent raw sensor input, and
the production rules of the grammar represent potential problem solving actions. The grammar
rules of IDP models specify the component structure of a domain and each production, p, has
associated cost and utility functions, gp and fp, that define the cost and utility structures. In
addition, IDP models explicitly represent aspects of inherent uncertainty in a domain with the
distribution function, �, that defines the probability structure of the domain. (i.e., �, along
with other mechanisms, define inherent uncertainty in a domain.) For a given production, p,
the frequency of the occurrence of p’s right-hand-side (RHS) is specified by the distribution
function ��p�. Thus, p can have multiple RHSs, RHS� through RHSn, and the distribution of
the RHSs is defined by��p�. Each production rule, p, is associated with a semantic function, �p
that is a function of the subtree components represented by the elements on the right-hand-side
of p. �p measures the “consistency” of the semantics of its input data and returns a value that is
included in the credibility function. For example, in a speech understanding domain, �p would
rate the consistency of the meaning of a sentence and return a value indicating whether or not
the sentence made any sense. An IDP grammar also includes an extension to its representation
called a feature list to represent the characteristics of real-world phenomena.

The framework involves the use of two distinct grammars that reflect the concept of a
domain theory and an approximation of the domain theory used in problem solving. These
grammars consist of a generational grammar, IDPG, and an interpretation grammar, IDPI . IDPG
corresponds to the domain theory in the sense that it can be used to generate problem instances
that correspond to the actual events that occur in a domain. IDPI is a representation of
the problem solving actions available to a problem solver, including abstract and approximate
operators used by the control mechanism. Thus, there is a clear connection between the
structure of a problem domain and the associated problem solving architecture.

Chapter 3 defines the four structures that are studied in this thesis, component (or syntax),
cost, utility (credibility), and distribution (probability). These structure are defined and
illustrated in terms of the generalized hypergraph structure shown in Fig. 3.4 on page 46.
Chapter 3 also defines the concept of structural interaction. The IDP definition is that it
supports the formal specification of an important class of AI problems in such a way that
related problem domains and problem solvers can be represented and analyzed quantitatively.
As shown in this thesis, this allows comparative studies to be conducted and it is an important
tool for prediction and explanation. As such, the IDP definition is an important step toward
establishing design theories for AI problem solvers.

The IDP definition also supports the definition of the convergent search space concept. An
example is shown in Fig. 3.3 on page 45. The convergent search space concept constitutes
a formal specification of a class of search spaces that is an important step in establishing
design theories for AI problem solvers. Convergent search spaces have characteristic structures
that can be exploited in the design of problem solving systems. Specifically, as discussed in
Chapters 3 and 4, convergent search spaces include states that are implicitly created during
problem solving. These implicit states can be used as candidates or templates for automatically
constructing meta-level operators.

Examples of how the IDP formalism modifies a domain grammar to represent phenomena
such as noise and missing data are discussed in Chapters 4.1.2 and 4.1.3. Formal definitions
for these phenomena are presented in Definitions 4.1.3 and 4.1.6. For example, the definition

262

of noise is: A grammar, G, is subject to noise iff:
� a rule p � P, where p: A� uBv� p

�

: A� n�un�Bn�vn�, for u,v � (V 	N)�, A � (SNT 	
N), B � (V 	 N), ni � (V 	 N)�, and fp�fu� fB� fv��p�u�B� v��� fp� �fn� ,fu� fn�� fB� fn��
fv� fn� � �p� �fn� � u� fn� � B� fn�� v� fn��� for maximum ratings of the fni . The distribution of
p and p� is modeled by �.

An example of the value of these definitions is demonstrated in Definition 4.1.4, which for-
mally specifies the concept of correlated noise. Correlated noise is a characteristic phenomenon
of interpretation domains that increases the ambiguity of the domain and, as a consequence, the
associated cost of problem solving is usually increased as well. This example demonstrates how
the IDP formalism can be used to precisely define concepts and phenomena so that they can
be clearly understood and analyzed. The definition of correlated noise enables the definition of
uncorrelated noise and it allows us to explain why, in some situations, adding noise to a domain
increases the cost of problem solving and, in other situations, adding noise to a domain does
not increase the cost of problem solving. Without formal definitions and representations, such
explanations are difficult.

The IDP formalism is also used to specify the concept of interacting subproblems in
Chapter 4.4. This supports precise definitions and representations of important concepts
such as overlapping goals, competing goals, etc. Given such precise definitions, it is possible to
analyze relationships, and their implications, quantitatively. The examples in this chapter are all
presented in terms of formal set theory and are related to elements of an IDP grammar. Thus,
it is shown how many concepts related to subproblem interaction can be formally defined and
studied in terms of an IDP grammar and traditional set theory.

Using these specifications, it is possible to automatically determine and analyze subproblem
interactions using an IDP model. The IDP model supports the definition of two important
sets, a component set (Definition 4.4.1 on page 67) and a result set (Definition 4.4.2 on page 67).
The component set of a state, sn, includes all the states that lie on paths from the signal data
to sn. The result set of a state, sn, in a search space includes all the states that can be reached
from sn. The elements of both sets can be determined from an IDP grammar. Later chapters
show how the component set and result set are used in quantitative analysis (Chapter 5) and
in the construction of approximate processing techniques (Chapter 10).

An extended definition of monotonicity is presented in Chapter 4.5. This definition is an
extension of a similar definition from Kanal and Kumar [Kumar and Kanal, 1988] and it clearly
distinguishes AI problem domains from other domains in which search-based problem solvers
are used. Specifically, Kanal and Kumar use their definition of monotonicity to differentiate
between a variety of search techniques. Their differentiation results in a taxonomy of problem
solving techniques, each of which is distinguished by the kind of domain in which it can be
applied. Given our extended definition of monotonicity, it is now possible to view certain
AI search problems from the same perspective and to understand why traditional OR search
methods fail in the complex domains typically thought of as "AI domains."

Chapter 4 also shows how sophisticated control mechanisms, such as bounding functions,
can be represented in the IDP framework. The approach is similar to that used for representing
domain phenomena – sophisticated control mechanisms are represented with extensions to the
base grammar. Specifically, given a state, n, for which a bounding function can be defined,
every appearance of n on the RHS of a grammar rule in IDPi is replaced with the nonterminal
nb and the rule p 	 nb � n is added to the grammar. The knowledge incorporated in the
operator corresponding to p is the bounding function on n.

263

A demonstration of how the IDP formalism represents complex, real-world domains,
in this case a vehicle tracking domain, is given in Chapter 4.7. This section of the paper
demonstrates how the feature list convention developed in this thesis can be used to model
the characteristics of real-world phenomena. Specifically, the feature list convention is used
to model complex domain events that seem to interact over time and space. The ability to
model such interactions is crucial in establishing the applicability of the IDP formalism. The
vehicle tracking grammar is extensive and it is shown in Figures 4.25 (page 80), 4.27 (page 84),
4.29 (page 87), and 4.30 (page 89). The example shows how different types of correlated and
uncorrelated noise and missing data are modeled in real-world domains and how a sophisticated
control mechanism, goal processing, is represented in an IDPi grammar. The goal processing
mechanism is patterned after goal processing mechanisms introduced in Hearsay II [Erman et
al., 1980] and the DVMT [Corkill, 1983]. Figure 4.28 on page 85 shows some of the specific
problem instances that are generated with this grammar.

The use of the feature list convention is shown in Chapter 4.6. This chapter shows the
process that is used to generate problem instances in the experimental testbed developed in this
thesis. It demonstrates how subproblem interaction over time and space can be modeled with
a context-free grammar. This representation is critical to the IDP/UPC framework because
the characteristics of context-free grammars support the calculation of the statistical properties
of a domain and the development of design and analysis tools, such as those described in
Chapter 12. In short, each the feature list convention is used to propagate characteristics and
functions of characteristics from a parent node to its children and from a node to its siblings.
This suggests that many other real-world domains can be modeled by exploiting a similar
approach.

Finally, Chapter 4.8 demonstrates how the IDP formalism can be used in the analysis of
a sophisticated control mechanism, bottom-up goal processing. This chapter shows how a
control mechanism is represented in the IDP formalism in such a way that it is integrated with
the domain processing and can be quantitatively evaluated in the same manner.

14.3 Defining Quantitative Analysis Tools and Methodologies

Chapter 5 defines quantitative analysis tools based on statistical properties of IDP problem
and problem solver specifications. These tools can be used to calculate characteristics such as
the expected cost of a problem solving instance, the expected frequency with which partial and
full interpretations will be generated, the expected utilities of partial and full interpretations,
the relative ordering of problem solving actions, and the expected number of correct answers
that are eliminated by pruning operators. These measures are significant from an analytical
perspective because they measure important properties of a problem solver’s performance and
they are significant from a conceptual perspective because they demonstrate that relevant
quantitative analysis can be conducted using the IDP formalism.

The most important analysis tool defined is the calculation of the complexity of a domain.
This is calculated in terms of the expected cost of problem solving for a specific problem
instance, E�C�. E�C� is measured in terms of computational cost and it represents the
cumulative cost of applying all operators required to generate an interpretation. This is a
general measure that has several advantages. It is intuitively easy to understand compared to
other measures such as expected ambiguity, which is used in the calculation of E�C�. E�C�
can be used to compare both the performance of a problem solver across different domains or
different problem solvers applied to the same domain with units of measure that are consistent.

264

Most importantly, E�C� represents what is probably the most significant aspect of a problem
solver’s performance. The definitions in Chapter 5 are verified in the experimental results
presented in Chapters 7, 9 and 13.

The basic approach is a three step calculation. The first step calculates the expected frequency
with which states are generated corresponding to each of the elements of the grammar. (Note
that the set of all state frequencies is referred to as the frequency map of the domain.) This step
relies primarily on the structure of the domain as specified in the grammar and the distributions
associated with the rules of the grammar. The definition of frequency calculation is given in
Chapter 5.1.1. The second stage calculates the expected probability with which paths from the
states are pruned, which is called the pruning factor. This step relies both on the structure of
the grammar and the domain’s characteristics associated with the feature list. The definition of
pruning factors is given in Chapter 5.1.4. Pruning factors depend on another calculation, the
precedence relation, defined in Chapter 5.1.5. Precedence relations are used to calculate pruning
factors in situations where dynamic bounding functions are used. The final stage multiplies
the expected frequency of path extensions (state frequency multiplied by pruning factor) by the
expected cost of state expansion. In addition to being used to calculate E�C�, these measure
are also used to calculate the expected number of correct answers that will be found. This is
defined in Chapter 5.3.

265

The general approach to calculatingE�C� is shown in Fig. 1.5 on page 12. The generational
grammar, IDPg, is used to determine the statistical distributions for sets of signal data. These
distributions, in turn, define the sample sets and the sample set weightings. The sample sets and
weightings are used to calculate the statistical properties of groups of low-level domain events.
These properties are then combined to determine the expected properties of higher-level results.

Chapter 5 defines several important concepts. One is the concept of a singularity. A
singularity can be thought of as a fundamental unit of analysis that repeatedly appears in a
domain grammar. By first calculating the properties of a domain’s singularities, it is possible
to accurately and efficiently calculate the related properties of all the elements of the domain.
For example, in the vehicle tracking grammars shown in this thesis, a singularity is a data
point that occurs at a specific time-location. A vehicle track is not a singularity, since it
spans multiple time-locations but a vehicle-location is a singularity. In the vehicle tracking
grammar, other singularities include groups, signals, and noise. By calculating the properties
of vehicle-locations, the properties of tracks can be determined. Similarly, a singularity in a
natural language processing task might be a verb phrase. Verb phrases are used repeatedly in a
natural language domain and understanding the properties of verb phrases would be necessary
to determine the properties of sentences or paragraphs.

Another important concept used in the analysis tools is that of the solution nonterminal
(SNT). An SNT represents a class of final states or full interpretations. SNTs are used
throughout this thesis and are necessary for defining a variety of other concepts including
noise, missing data, subproblem relationships, and quantitative analysis tools. SNTs are
required for quantitative analysis because their formal specification makes it possible to specify
the characteristics of a search space relative to them. This supports the calculation of expected
lengths of search paths, the number of search paths, etc., that are needed by other computations.

14.4 Formally Specifying the Structure of Search Spaces and Control Algorithms

The UPC formalism defined in Chapter 6 provides a representation of a search space that
can explain and predict the behavior of a search control mechanism. In the UPC representation,
the traditional concept of a search space state is extended to include vectors indicating a state’s
location in a search space relative to final states in terms of the cost and probability of reaching
the final state and the final state’s expected utility. The UPC formalism can be thought of
as computational structure based on statistical characteristics of IDP models that can be used
to simulate an optimal problem solving strategy based on IDP statistics and a specification of
problem solving operators. Using the UPC representation, we can construct problem solving
systems capable of achieving the levels of performance predicted by quantitative analysis of IDP
domain specifications and the optimal interpretation control strategy. The optimal interpretation
control strategy is defined in Chapter 6.4. This is a necessary component of an analytical
framework because it provides a basis for experimental control, comparison and evaluation. For
example, in the experiments in Chapter 7, the base-line used in the experimental comparisons
is the performance of a problem solver that uses the optimal interpretation control strategy to
evaluation operators. As a consequence, domains with different structures can be compared
using identical evaluation function based control architectures or these architectures can be
varied to compare performance of different problem solvers within a given domain.

The formal definitions of UPC vectors appears in Chapter 6.3. This chapter includes
numerous definitions of important UPC concepts such as Definition 6.3.3 related to the

266

probability that a path exists from a given state to a particular set of final states, Definition 6.3.1
related to the expected utility of a state, and many more.

The formal definition of the statistically optimal control strategy in Chapter 6.4 is based
on a decision theoretic control strategy that selects operators based on statistical information
derived from an IDP specification of a domain and problem solver. At each step of problem
solving, the optimal control strategy selects the problem solving action that maximizes the
cost/benefit ratio among all available operators. Here, cost is the cost of executing the operator
and the benefits are the extent to which the action moves the problem solver closer to the
termination, which is to fully connect the base space. These concepts are defined and discussed
in Chapters 3 and 11.

Additional strategies that can be similarly used as an experimental control are defined
and discussed in Appendix A. These additional strategies include Total Utility Optimality
(TUO), which ignores cost, Utility per Unit Cost Optimality (UUCO), which maximizes the
utility generated per unit cost, and Minimum Cost (MC), which minimizes the cost of problem
solving regardless of the utility of the result generated. Any of these strategies could be used
in a fashion similar to the optimal strategy used in the experiments in this thesis. Specifically,
where appropriate, these strategies could be incorporated into an experimental testbed and the
quantitative results from Chapter 5 could be rederived as needed.

Chapter 6.5 demonstrates the UPC vector calculations for a grammar. The grammar is
shown in Fig. 6.4 on page 126. The chapter demonstrates the effect of phenomena such as
noise and missing data on UPC values (Chapter 6.5.2) as well as interacting subproblems
(Chapter 6.7). The results are summarized in figures such as 6.5.

14.5 Verification Experiments

The IDP/UPC framework is validated in a series of experiments. The experimental testbed
consists of a problem instance generator that uses a generation grammar, IDPg, to create problem
instances and a problem solver specified by an interpretation grammar, IDPi, to interpret
each problem instance. The first set of experiments in Chapter 7 demonstrate the validity of
the analysis framework using the statistically optimal control strategy. The initial validation
experiments demonstrate that the IDP/UPC framework can be used to accurately predict and
explain the performance of a sophisticated problem solver. In these experiments, the problem
solver’s model of the actual problem domain’s structure is distorted in a variety of ways. The
intent was to investigate the manner in which a problem solver’s performance is affected by a
deviation from an ideal domain theory. The experiments demonstrate that accurate predictions
can be made in situations where the problem solver has a model of the problem domain that is
identical to the actual problem domain and where the problem solver has a model of the problem
domain that is significantly different from the actual problem domain.

The grammars used in these experiments are shown in Figures 7.1 (page 140) and 7.2
(page 140). IDPg includes rules representing noise and missing data and IDPiincludes rules
representing bounding functions. Two sets of experiments were conducted. The results of the
first set are shown in Table 7.1 (page 142), and the second in Table 7.2 (page 145). In all the
experiments, the performance predicted by the quantitative analysis tools was consistent with
the actual observed results.

Specifically, each experiment involved two distinct grammars, one corresponding to IDPg
and one to IDPi. A series of 50 problem instances were generated and measurements of
the actual cost of interpreting each instance and the number of correct answers found were

267

gathered. An “experiment” consisted of 100 such trials. (i.e., an experiment consisted of 100
“samples” each of which included 50 problem instances.) In each experiment, the analysis
tools correctly predicted the expected problem solving cost and the expected number of correct
answers found. (Note: Correct answers are not found in situations where one or more of their
required component paths are eliminated by bounding functions.)

The first set of 7 experiments included a base-line (Exp 1) and 6 other experiments in which
the characteristics of the IDPg and IDPi grammars were varied. For example, in experiments 4
and 5 the problem solver used a model of the domain that was different from the domain model
used to generate problem instances. In both situations, the analysis tools correctly predicted the
problem solver performance. Experiments 4 and 6 demonstrate the effects noise and missing
data have on the cost of problem solving. In experiment 4, the generational grammar is skewed
to use more rules associated with noise and missing data. The corresponding cost of problem
solving rose dramatically, almost 100%. In experiment 6, the generational grammar is skewed
to use fewer rules associated with noise and missing data. The corresponding cost of problem
solving dropped significantly.

A second set of 10 experiments is summarized in Table 7.2 on page 145. The approach
used is similar to that of the first set. Each experiment consists of 100 trials of 50 instances
each and measures the actual cost of problem solving and the number of correct answers found.
The emphasis of these experiments is on the characteristics of the problem solver and the
accuracy of the analysis tools. In these experiments, the problem solver’s semantic functions
were modified to rate “bad data” (i.e., data from noisy or missing data rules) and “good data”
(i.e., data from non-noisy rules) either higher or lower than it would if it had statistically precise
domain data. In all cases, the analysis tools accurately predict the problem solver’s performance.
This includes experiment 17, which is the most realistic. The problem solver in experiment
17 makes errors of all types in evaluating partial results but the analysis tools still accurately
predict its performance.

14.6 Unifying the Representation of Meta-Level and Base-Level Processing

The IDP/UPC framework extends the traditional notion of a search space to incorporate
abstract and approximate states, and the operators that create, modify, and exploit them, in a
unified representation including traditional forms of search-based problem solving. Chapter 8
introduces and defines the concepts of projection spaces and projecting and mapping operators.
Projection spaces are abstractions of a base search space in which an approximate, (hopefully)
less costly version of a problem can be solved. Projection spaces are defined by special meta-level,
projecting operators, and the results of problem solving in these spaces are propagated back to
the base space by mapping operators. By defining projection spaces and the associated projecting
operators, approximate/abstract operators, and mapping operators in terms of the as extensions
of the base space, an integrated perspective of both domain and meta-level processing. This
supports the analysis of problem solvers that use sophisticated control mechanisms to function
incrementally and simultaneously in a continuum of abstraction spaces.

This contribution supports the analysis of the tradeoffs between meta-level processing and
domain processing. This is accomplished by first integrating the the operators associated with
projection spaces into an IDPi grammar and then calculating the quantitative performance
characteristics of the problem solver using the previously defined techniques based on the UPC
formalism. Furthermore, the unified representation formally defines the concept of meta-level
processing in such a way that its relationship to domain processing is precise and so that it

268

can be thought of as part of the same search paradigm as domain processing. This allows
entirely new forms of experimentation and analysis to be conducted. Specifically, this not only
supports the study of the relative costs and benefits of domain and meta-level processing, but it
also supports experimentation in which a known control algorithm is applied in an unknown
domain in order to determine the structure of that domain.

The extended search formalism is defined in Section 8.2. The new characterization of a
search problem is based on the four-tuple� S��� ��� �, whereS is the start symbol; � is the
base search space with associated CVs and operators; � corresponds to the traditional notion of
a search space; � is a set of projections, or abstractions, of the base search space, each with their
associated CVs and operators; and �] is a set of mapping functions from projection spaces back
to the base search space. A representation of the extended search space appears in Fig. 8.2 on
page 151. Chapter 8.3 shows an example of how UPC values are calculated for the extended
search space.

14.7 Introducing the Concept of Potential

Chapter 9 introduces the concept of potential that is used to formally define the long-term
benefits associated with a problem solving action. In many cases, the locally optimal control
decision will not result in globally optimal problem solving. This occurs in situations where
an operator on a search path does more than simply expand a state and extend a search path –
where the operator actually increases the information available to a problem solver regarding the
interrelationships between partial solutions. i.e., the operator increases the understanding of a
partial solution’s global significance. In these situations, the operator does not have to actually
extend a search path in order to move the problem solver closer to termination, rather, the
operator may alter the search space in some way that reduces the cost of problem solving (or
increases the effectiveness of problem solving efforts) for some other set of operators. We will
refer to this property of an operator as its potential.

The concept of potential allows the costs and benefits associated with meta-level operators
to be directly compared with those associated with domain operators. Potential is calculated
using the analytical tools enabled by the IDP and UPC formalisms. In general, the potential
of an action is calculated by first examining what the long-term goals of the action are and then
determining what the cost of problem solving would be if the long-term goals had already been
achieved. The formal definition of potential is in Definition 9.0.1.

Formally, the potential of operator opi applied to state sn is:
Pot�opi� sn� = FTN�S� �P �S� j sn�, Potential�S��, costg�S�� sn�, costm�S���, where each
element S� is a state that can be reached from sn that increases the information available to
a problem solver regarding the interrelationships between partial solutions (i.e., a state with
potential), P �S� j sn� is the probability of generating S� given sn, Potential�S�� is a measure
of the degree to which S� reduces the cost of problem solving, costg�S�� sn� is the expected
cost of generating S� given sn, and costm�S�� is the cost of realizing Potential�S��, i.e., the
cost of mapping S� back to the base space.

FTN�S�, the general computation of Pot�opi� sn�, is �P �S� j sn� � �Potential�S�� �
costg�S

�� sn��costm�S����. This is for situations where the cardinality ofS� is 1. For situations
where an operator, opi, represents the first step on paths to multiple S�i, the computation is
more complicated. In these situations, the function FTN determines Pot�opi� sn� based on
the relationships between the states S�i. These relationships are defined in terms of the paths
from sn to the states S�i (i.e., the costs costg�S�� sn�) and the set of states that are affected when

269

the potential of the states S�i is mapped back to the base space. Figure 9.2 (page 158) depicts
the possible relationships between states S�i. Figure 9.2 (page 158) represents the possible
relationships in terms of search space paths and base space states.

Chapter 9.1 introduces an important methodology for analyzing potential. This method-
ology involves automatically transforming an IDP grammar, computing properties of the new
grammar, and incorporating these results in the analysis of the original grammar. Specifically,
in determining the potential of an operator. This technique is also demonstrated in the analysis
of the expected cost of problem solving in Chapter 5 and Appendix D.

The grammar transformation technique suggests a methodology for automatically con-
structing control mechanisms. The methodology would take a base grammar, create new
control mechanisms by automatically transforming the grammar, then evaluate the properties
of the transformed grammar. Such a methodology could be used to identify potential candidates
for control mechanisms or, perhaps, select the best control mechanisms automatically.

An intuitive example and discussion of potential appears in Chapter 9.2. This example
illustrates how the potential of an operator is calculated in a complex domain. A discussion of
how potential is incorporated into a control function is presented in Chapter 9.3.

Finally, experimental results are presented in Chapter 9.4 that demonstrate the validity
of the analysis tools applied to a problem solver that incorporates the concept of potential in
its control strategy. In these experiments, conditional probabilities and values for ��s� for
all elements of the grammar are computed a priori. The problem solver computes expected
credibilities, costs, and probabilities dynamically, using the previously computed values for
conditional probability and �. The results of the experiments are summarized in Table 9.1 on
page 170. The grammar used in these experiments is modified from the previous experiment
to simulate a vehicle tracking grammar. The modified grammar is shown in Fig. 9.11 on page
171. Problem instances from the modified grammar are much more costly to solve than those
in the original experiments and this is shown in the experimental results table. The results from
two of the original experiments are included for comparison.

The conclusion of the experiments conducted in this chapter are that the analysis tools
accurately predict the performance of a problem solver that uses the concept of potential in its
control mechanism. The most striking effect of the use of potential is in the increased time
required to conduct an experiment. Given that the rating of every problem solving action
requires costly computations, i.e., the computation of CFi , this result was not surprising.
Furthermore, we have found that the cost of the computation of C�S�PS� can be reduced
significantly through the use of dynamic programming techniques that cache intermediate
values and reuse them when necessary. Another result is that the use of potential substantially
reduces the cost of problem solving. This is consistent with our intuitions that bounding
functions reduce the expected cost of problem solving.

14.8 Defining the Pruning, Preconditions, Goal Processing, and Approximate Processing
Sophisticated Mechanisms

Chapter 10 introduces the IDP approach to representing a variety of sophisticated control
mechanisms in a heuristic problem solver. This chapter and Chapter 11 demonstrate how the
IDP/UPC framework can be used to analyze sophisticated control mechanisms in real-world
domains. The control mechanisms that are modeled include preconditions, goal processing,
bounding functions, and approximate processing mechanisms.

270

Chapter 10.1 presents the details of representing precondition functions in an IDP
grammar. Figure 10.2 graphically depicts the control strategy associated with preconditions.
To clarify the use of preconditions, consider the production rule: A� B C D. Given a control
strategy where there are no preconditions, if the problem solver has generated a search state
“B,” the operator associated with the production rule would be eligible for execution whether
or not the required states C and D had been generated. In situations where C and D had
not been generated, the operator would fail to generate an A. In contrast, using preconditions,
the operator would not be eligible for execution until all the required syntactic elements were
present.

To represent preconditions using the IDP formalism, we will define a projection space
of satisfied precondition states. This space is created by operators of the form: Aop

�B�C�D �

B C D. Thus, a symbol with a superscript op will represent a state created by a successful
precondition operator. op will correspond to the operator that will map the abstract state
back to the base space. For clarity, the subscripted brackets will include the required syntactic
elements used to create the precondition state. A production rule of this form will be created
for each precondition operator. More formally, we say that the set of projection operators
from the base space to the precondition abstraction space, OP���	precondition�, is made up of
precondition operators.

In addition, a mapping operator from the precondition projection space back to the
base space will have the form: A �Aop

�B�C�D. This operator will correspond to the original
operator except that it can only be applied to the states in the precondition space. The original
operator will be replaced by these two rules. Formally, the set of mapping operators from the
precondition abstraction space back to the base space is represented as OP�	precondition��� � �.

Examples of precondition specification in the vehicle tracking grammar are shown in
Figures 10.4 and 10.6.

A form of goal processing, focus-of-control goal processing, is defined in Chapter 10.2.
Focus-of-control goal processing is a mechanism that allows a problem solver to selectively
rerate problem solving operators based on their relationships with other, dynamically changing
operators. An example of goal processing is:
G.4.1. Goal-TL1�t�� � I-Track1�t.
Operator G.4.1 is used to raise the ratings of operators that will generate data needed to extend
a partial I-Track1 forward in time. Other goal processing operators are shown in Fig. 10.8 on
page 180.

Like the precondition operators, the goal processors define a projection space. Example
mapping operators for this space are shown in Fig. 10.9 on page 181. For example, M.G.5.
� � Goal-TL1�t is a mapping operator for a goal. The mapping operators are applied to the
states of the goal projection space. The � notation on the LHS of the production rules indicates
that no new states are generated in the base space. Instead, the ratings for instantiated operators
is modified to reflect the information contained in the goal state. A detailed discussion of the
mapping procedure is presented in Chapter 10.2.

Another contribution made in Chapter 10 is that it formally defines a taxonomy of
sophisticated control mechanisms based on approximations and abstractions. These definitions
support the automatic synthesis of abstraction operators from an IDP grammar specification.
In addition, given that these abstractions are represented in the IDP formalism, alternative
strategies can be quantitatively evaluated and compared to each other.

Chapter 10.3.1 formally defines data approximation. Approximating data into abstract
clusters is a strategy that attempts to efficiently apply constraints to aggregations of data and

271

it is particularly useful in domains with large quantities of noise. An example of a data
approximation rule represented in the IDP formalism is:
C.1. S1p � S1�f��t � � � S1�fn�t, where S1p is the result of aggregating the elements S1�f��t � � �
S1�fn�t.

This chapter also defines how the abstract aggregation is represented on a blackboard as a
cluster hypothesis. A cluster hypothesis has a range,R, defined as a convex region encompassing
all the component locations, an event class E � 	�component event classes�, and a precision
� fp�size of R� j E j� fv�, where fv is the variance of the clustered hypotheses’ locations within
R. Figure 10.16 on page 188 shows examples of data aggregated into clusters and the associated
precision measures. The formal clustering algorithm is shown in Fig. 10.17 on page 189.

Two general approximation strategies can be used to generate abstract states; search
approximation and knowledge approximation. These strategies are defined and discussed
in Chapter 10.3.2. The specific techniques described here are eliminating corroborating support
and level hopping. Both general strategies are based on reducing the amount of the search space
that is explored in generating an interpretation. As a consequence, the resulting interpretation
is considered an abstract state in a projection space.

An example of an operator based on eliminating corroborating support from rule 19 of the
vehicle interpretation grammar is:
ECS.19 V1ecs�f � G1�f , where the corroborating support from G3 and G7 is eliminated. The
original grammar rule is: 19. V1�f�t�x�y � G1�f�t�x�y G3�f�t�x�y G7�f�t�x�y. The superscript of
the approximate rule indicates that the rule defines a projection space ecs. To be precise, this
operators defines the set OP���	ecs�. In ECS.19, the corroborating support from G3 and G7 is
eliminated.

An example of a IDP level-hopping approximation of rule 19 is:
LH.19 V1lh�f � S1�f S2�f S5�f S7�f S11�f S15�f . The superscript indicates that this rule
defines a projection space lh and the set OP���	elh�. This operator is constructed by fully
expanding the group level results that would be used to generate V1 and V2 results in the base
space.

Chapter 10.3.3 Discusses an important consideration as to whether or not the abstractions
generated by aggregating data, approximating search, and approximating knowledge can
somehow be used to reduce the cost of problem solving. Using approximations to developing
a general understanding of a particular problem instance and then using that understanding to
more effectively control problem solving can be a very effective problem solving technique. An
example of an IDP rule for problem solving in an abstract space is:
AP.4 I-Trackp1 � I-Track1p� t�
T1p� t� ��. This is an abstraction of rule 4 from the vehicle tracking grammar,
4. I-Track1�f�t�x�y� I-Track1�f�t���x�vel�acc�y�vel�acc T1�f�t�x�y.

Chapter 10.3.4 defines the mapping strategies that are used to propagate the results of
abstract processing back to the base space. These include the simplest form of mapping,
rating modification mapping, which uses the results of approximate processing to modify the
ratings of operators in order to bias, or focus, the problem solver’s actions toward a particular
set of search paths. A more drastic alternative is grammar transformation mapping. In this
approach, the mapping function alters the structure of the problem solving grammar by using
the characteristics of the meta-level results to eliminate rules. A third alternative is explicit
plan mapping. Here, the mapping operator explicitly reorders the sequence of operators on the
queue. This is in contrast to implicit plan mapping in which the mapping operator adjusts the

272

UPC values associated with an operator and then allows the queue reordering to be conducted
implicitly with the established rating function.

14.9 Demonstrating the Analysis of Heuristic Control

The experiments shown and discussed in Chapter 11 demonstrate that the analysis
framework can be applied to heuristic problem solvers in addition to the optimal control
strategy used in previous experiments. The experiments in this chapter involve the use
of a sophisticated, search-based, blackboard problem solver in a vehicle tracking domain.
The IDP domain model used is the complex, real-world domain introduced in the vehicle
tracking grammar in Chapter 4. The problem solver used in these experiments included the
precondition, goal processing, and pruning control mechanisms defined in Chapter 10. The
representation and the analysis associated with these mechanisms is introduced in Chapter 8
and involves expanding the dimensionality of the base search space to include the necessary
projection spaces. The operators for projecting base processing to these spaces, for solving
problems in these abstract spaces, and for mapping the results back to the base space are all
integrated into the IDP formalism.

The problem domain used in these experiments is based on the vehicle tracking domain
described in previous chapters and summarized with the generational grammar shown in
Fig. 11.1 on page 197. Two general forms of this grammar are used in the experiments.
Grammar VT1, which is equivalent to that shown in the figure, models a domain in which
there are multiple independent (“I”), pattern (“P”), and ghost (“G”) tracks. The actual grammar
used in the experiments is also modified so that it creates paths of length 6. In general, it is not
feasible or realistic to model domains where phenomena are allowed to represent unrestricted
time sequences. The amount of data in a realistic domain would be overwhelming. Instead,
real-world domains must employ some form of time-slicing in which data from one given
period is analyzed before proceeding to the next time period.

The structure of the heuristic problem solver, including the specific details regarding the
implementation of the sophisticated control mechanisms, is presented in Chapter 11.2. The
experimental problem solver used a blackboard control strategy based on six levels of abstraction:
signal events, group events, vehicle events, vehicle tracks, pattern tracks, and solutions. The
evaluation function used is based on the rating (i.e., credibility) assigned to a partial result and
its level on the blackboard:
R�opi�nj�� � LEV EL�nj� � CRED�nj�, where R�opi� is the rating for the potential
problem solving operator opi applied to search state nj , LEV EL�nj� is the level of the
blackboard corresponding to state nj , and CRED�nj� is nj ’s credibility.

The results of the experiments are described in Chapter 11.3 and summarized in Table 11.5
on page 209. Four sets of experiments were conducted. In the first set, the problem solving
operators corresponded to rules of the IDPg grammar shown in Fig. 11.1 on page 197. In the
second set of experiments, pruning operators were added to the grammar. The third set of
experiments used goal processing operators and did not use pruning operators. The fourth set
used both pruning and goal processing. A series of 50 problem instances were generated and
measurements of the actual cost of interpreting each instance and the number of correct answers
found were gathered. An “experiment” consisted of 100 such trials. In each experiment, the
analysis tools correctly predicted the expected problem solving cost and the expected number
of correct answers found.

273

In general, these experiments indicate that the analysis framework, which was originally
based on the use of statistically optimal control decisions, can be extended to incorporate the use
of heuristic control functions if the analysis can be tied to statistical characteristics of the domain.
These experiments further demonstrate that the framework can be used for analyzing not only
heuristic evaluation control mechanisms, but also heuristic control decisions that incorporate
other types of control functions such as pruning, goal processing, and preconditions.

Specifically, the experiments show that preconditions are the most effective form of control.
They eliminate a great deal of redundant processing and processing that will only lead to failed
paths due to the lack of required data. The experiments also indicate that the heuristic
evaluation function is a “reasonable” approximation of a statistically optimal control strategy in
that the performance of the heuristic problem solver was only 10% worse than optimal. The
experiments also demonstrate that dynamic pruning, though not as effective at reducing cost
as static pruning, eliminate far fewer correct answers.

14.10 Defining Design Methodologies

Chapter 12 discusses some of the implications and uses of the IDP/UPC framework and
demonstrates several prototype design tools/theories. Chapter 12.1 introduces two general
analysis techniques referred to these as comparative cost analysis and constraint flow analysis.
Constraint flow analysis is used to generate potential sophisticated control mechanisms and
is based on determining a directed graph of constraint flow based on the rules of an IDP
grammar. Comparative cost analysis is used to conduct pairwise evaluations of alternative
control mechanisms. Chapters 12.2 and 12.3 present an extended example of how the IDP
formalism is used in the design and analysis of approximate processing techniques.

Chapter 12.4 discusses some of the implications and uses of the IDP/UPC framework
and demonstrates several prototype design tools/theories not necessarily related to approximate
processing. These include the concept of marker and differentiator that are based on statistical
characteristics of a domain derived from an IDP specification. The concept of a marker defines
phenomena that are indicative of a high-level event and that can be used to derive top-down
control mechanisms that use information about markers to guide search for low-level results.
In contrast, the concept of a differentiator defines low-level phenomena that are indicative of
specific high-level results. Thus, the presence of certain differentiators can be used to guide
problem solving by focusing on a small set of search paths or by eliminating alternative paths.
Also, the concept of a differentiator suggests that the IDP/UPC framework can be extended
to the analysis of interpretation problem solvers that rely on differential diagnosis strategies.

Other design methodologies are introduced for dealing with the texture of a problem
domain in terms of a domain component structure, or arity, (Chapter 12.7), and its utility
structure (Chapter 12.8). The importance of arity is that the basic component structure of a
problem domain can be exploited to reduce the cost of by ordering problem solving activities
to limit the branching factor of the search. The utility texture of a domain can be analyzed
using credibility maps to estimate the effects of certain kinds of bounding functions.

The developments in Chapter 12 represent prototype design theories and principles for
the construction of sophisticated problem solving systems. For example, by relating the
specification of approximations to an IDP grammar, a mechanism for automatically generating
approximations is introduced. As discussed in Chapter 9, this thesis demonstrates how
grammar transformations can be automated and then quantitatively analyzed. Though no
experiments or demonstrations were made of how this methodology can be used to automate

274

the construction of approximate processing mechanisms, the implication is clear. Further,
relating approximations to IDP representations allows the development of design theories
and principles, such as constraint flow analysis, that can be used in the construction of
sophisticated control mechanisms that are based on approximations and abstractions. In
addition, Chapter 10 and Appendix C define important concepts and principles for a general,
blackboard-based architecture for approximate processing that is, in large part, derived from
the IDP/UPC framework. Some of the definitions include the concept of precision for defining
a dimensional index for referencing abstract projection spaces, the four-valued belief system,
and other general architectural concepts.

14.11 Experiments with Approximate Processing

Chapter 13 discusses experiments that were conducted to determine whether or not the
analysis framework, in its current state of development, can be applied to domains that use
sophisticated control techniques based on approximate processing. Specifically, we wanted to
test the framework in a domain where the problem solver’s control strategy included all forms
of approximate processing discussed in Chapter 10.3.

The problem solver used for these experiments is a simplified vehicle tracking grammar
based on the grammar introduced in Chapter 12 and shown in Fig. 13.1 on page 253. This
grammar is somewhat simpler than the grammar used in the experiments in Chapter 11, but
it contains many of the same complexities such as noise/missing data and context sensitive
attributes linked through the feature list convention. Three different kinds of operators were
used, a level-hopping operator that approximated domain knowledge, a clustering operator
that aggregated data in abstract states, and approximate processing operators that generated
interpretations in a projection space.

Four experiments were conducted. The first, AE1 (Approximate Experiment 1) did
not use any approximate processing. Experiments AE2, AE3, and AE4 used level-hopping,
clustering, and approximate processing. The cost of the approximate operators and the mapping
functions was varied from 10, to 1, to 50 in the experiments. The results of the experiments
are summarized in Table 13.1 on page 255.

The mapping procedure used in these experiments was the transformation strategy de-
scribed in Chapter 10.3.4. Given a set of input data, the problem solver first uses level-hopping
to generate abstract, vehicle level results. These results are then clustered into an abstract states
that are processed as using operators derived from base space operators. The results of this
processing are mapped back to the base space by using the results of approximate processing to
transform the base space grammar.

Chapter 13.1 discusses the modifications that were made to the quantitative tools to support
the analysis of approximate processing. These primarily involved modifying the computation
of frequency maps and the expected cost of mapping operators.

The experimental results are discussed in Chapter 13.2. A series of 50 problem instances
were generated and measurements of the actual cost of interpreting each instance and the
number of correct answers found were gathered. An “experiment” consisted of 100 such trials.
In each experiment, the analysis tools correctly predicted the expected problem solving cost
and the expected number of correct answers found. In all the experiments, the performance
predicted by the quantitative analysis tools was consistent with the actual observed results.
This verifies that the analysis tools accurately predict the performance of problem solvers that
include sophisticated control mechanisms based on abstractions and approximations.

275

14.12 Future Directions

There are a number of open issues related to the concepts discussed in this thesis. One
of the issues is related to the cost of computability. The techniques for computing potential
used in the experiments described in this thesis are too expensive to be used in a real problem
solving system. Consequently, the cost of determining UPC values in general is too expensive
for real problem solving systems. Future research will attempt to address this issue by defining
more comprehensive search space structures (which will be referred to as macro-structures) that
characterize the overall state of problem solving at various points and that can be used to
efficiently estimate the effect a precise calculation of potential would have on UPC values.
Such an estimate would have a level of accuracy that would approximate some form of optimal
processing. Defining the macro-structures will involve formalizing the concepts of control
uncertainty and solution uncertainty in terms of the UPC formalism.

Using dynamic estimates of control uncertainty and solution uncertainty, it will be possible
to address the general issue of, “When is it worthwhile for the control component to use
some calculated estimate of potential in its decision making?” In some domains, it may be
advantageous to do this for every single search state. In other domains, it may only be necessary
to do this for certain states. For example, a domain may be structured in such a way that
the problem solver can determine what action to take for certain states a priori. Similarly,
the problem solver may be able to determine the best course of action for states with certain
characteristics that are determined dynamically. For example, the problem solver may be able
to determine a priori that it should always prune states with a credibility lower than some
threshold. Intuitively, it is clear that in many situations the decision to include a calculation
of potential will need to be based on the current set of states or on dynamically determined
properties of the current set of states.

More specifically, this issue will be addressed by defining the concept of � that characterizes
the degree to which the estimates of UPC values used by a problem solver deviate from the
values that would be derived from an ideal domain theory, i.e., from values that take precise
calculations of potential into consideration. In many ways, � is analogous to the correlation
between U�P� and C vectors derived from an ideal domain theory and the estimates of these
values used by a problem solver, �U� �P � and �C. However, �’s representation is based on the
additional problem solving cost incurred resulting from inaccuracies in the estimation of UPC
values and is “inverted” compared to correlation measures. Thus, in situations where � � �,
�U� �P � and �C are equivalent to U�P� and C and the problem solving will be optimal in the
sense that it will be equivalent to problem solving based on UPC values derived from the ideal
domain theory. In situations where � � �, �U� �P � and �C and U�P� and C are different and
problem solving will not be optimal. Over long periods of problem solving, a problem solver
with a � value that is greater than 0 will incur unneeded costs and/or generate less than optimal
utility.

276

In general, the performance of a problem solver will vary in a way that is inversely
proportional to the value of �. When � is small (i.e., close to 0), the problem solver will
perform well. When � is large, the problem solver will perform poorly. Furthermore, when the
performance of two problem solvers is compared, the problem solver with the higher � value
will incur additional costs and/or generate less utility.

The concept of � is related to the computation of potential (and UPC values) because it
can be used to analyze the advantages and disadvantages associated with expending resources
to obtain a better estimate of UPC values. This will involve addressing issues such as, “When
should a problem solver improve its estimates of UPC values by executing information gathering
actions and when should it simply extend paths in the base search space?”

In general, it is expected that there are many techniques for determining when potential
is an important consideration for the control decision making process. These techniques are
all sensitive to the structure of a search space including the operators that exist, both base-level
and meta-operators, and their interactions with other operators.

As more complex real-world domains are examined, it will be necessary to address the
issue of developing design theories based on an increasingly sophisticated understanding of
problem structures. In particular, through experimentation and analysis, many commonalities
between disparate domains are being discovered that seem to indicate that certain control
architectures can be used to form a basis for a very powerful and general form of problem solving.
Specifically, it is becoming apparent that approximate processing [Lesser and Pavlin, 1988,
Decker et al., 1990] and goal processing [Corkill and Lesser, 1981, Corkill et al., 1982,
Lesser et al., 1989a, Lesser et al., 1989b] are forms of processing that can be generalized
to many real-world domains. This general strategy is one in which a problem solver uses
approximate processing operators to gain a comprehensive view of the data it must interpret,
then uses this perspective to guide subsequent problem solving. The implications of these
observations will be investigated and attempts will be made to discover principles that will
lead to the development of design theories supporting the automatic construction of problem
solving operators such as approximate processing operators. Hopefully, it will be possible to
demonstrate how this use of the IDP and UPC formalisms will support the synthesis of new,
more flexible control architectures.

APPENDICES

A P P E N D I X A

GENERAL OBJECTIVE STRATEGIES AND THE UPC

FORMALISM

This section will define a general taxonomy of objective strategies in terms of the UPC
model that can be used to analyze alternative problem solving strategies. To accomplish this, the
process of control will now be defined as the process of searching for the best operator to apply. The
space searched by the control mechanism is defined by the UPC vectors and will be referred
to as operator space. When an operator is executed, it usually causes other operators to become
eligible for execution. These are rated and then added to a pool of available operators. This
pool is identical to operator space. In the IDP/UPC framework, the search for the best operator
is a linear search of operator space. (In the actual implementation, newly rated operators are
inserted into a list of operators sorted by their evaluation function ratings. Consequently, the
process of search operator space for the best operator is equivalent to selecting the first element
of the sorted list.) The basic control cycle used in the IDP/UPC framework is reproduced
from a previous section in Fig. A.1.

The evaluation of an operator is based on the objective function used by a problem solver.
Thus, investigating the properties associated with alternative objective strategies, which we
define as the experimentation(agent objective strategy) analysis paradigm in Chapter 1.7, involves
the use of alternative evaluation functions. For the experiments described in this thesis, the

flow of data

flow of control

choose operator
to execute

execute operator rate new
operators

add new operators to pool
of available operators

operators available
for execution

Figure A.1. The Basic Control Cycle

279

objective strategy used is based on the optimal strategy defined in Chapter 6.4. The following
sections specify a taxonomy of objective strategies based on the use of evaluation functions
and UPC values. This taxonomy can be used in the analysis framework to construct control
architectures and simulation tools to investigate the effects of alternative objective strategies.
Ultimately, we hope to use this taxonomy to generalize control architectures to new domains
and for other general analytical purposes.

A.1 Total Utility Optimality (TUO)

The TUO strategy is to maximize the total amount of utility generated regardless of cost.
In the TUO strategy, there is an implication that the problem solver should find the optimal
utility as efficiently as possible. (The IDP optimality specification of Chapter 6.4 is essentially
the TUO strategy with explicit efficiency requirements.) This strategy can be thought of as
always choosing for expansion the path that most efficiently leads to the maximum expected
utility. Formally,

Definition A.1.1 TUO Objective Strategy -max�ni�sn�ui��� where sn�ui� is the expected utility
of potential final state i that can be reached by extending a path from sn. The problem solver will
choose the operator that extends a path leading to the potential final state with the highest expected
utility. In the case of ties, the problem solver will choose the path with the lowest expected cost.

The entries in the UPC vectors are expected values and that the actual values vary.
Consequently, a problem solver will not know the real utility of a final state until it reaches that
state and, once a problem solver reaches a final state that is optimal according to the estimated
values, it cannot, without additional processing, rule out the possibility that a different final
state exists with a higher utility. Given that a domain may exhibit extreme variance, a problem
solver must take this fact into consideration. This may require the problem solver to conduct
additional search to prove that a specific final state has the highest utility.

The TUO strategy is best suited for domains that do not include some consideration of
cost when computing the utility generated by the system. More specifically, the TUO strategy
is not well suited for domains that require real-time responsiveness.

A.2 Utility per Unit Cost Optimality (UUCO)

This strategy is to pursue a course of action that maximizes the expected utility per unit of
cost expended. Formally,

Definition A.2.1 UUCO Objective Strategy - max�n�i�
�sn�ui��sn�pi��

sn�ci�
�, where sn�pi� is the

expected probability of generating potential final state i by extending a path from state sn, and
sn�ci� is the expected cost of the path to potential final state i. The problem solver will choose the
operator that is expected to generate the most utility per unit cost.

The UUCO strategy is best suited for domains where the ultimate utility generated by a
problem solver is a function of cost. This is especially applicable for domains where time is the
primary cost and where there are implicit (or explicit) real-time responsiveness requirements.
For example, for a speech understanding system, there are implied requirements that the system
respond to spoken input in a timely fashion.

280

Situations where this strategy is appropriate are sometimes described as satisficing problems
[Simon, 1969]. For interpretation tasks, satisficing strategies are based on the assumption that a
“good” interpretation, i.e., one that is within some
 of the optimal (or “correct”) interpretation,
has a semantic interpretation that is very similar to that of the correct interpretation. As a
result, the problem solver’s best course of action may be to return a good answer in a timely
manner, rather than an optimal answer requiring significantly more resources to derive.

The UUCO strategy is not well suited for domains where processing costs are irrelevant or
where it is imperative that the highest quality solution be found.

A.3 Minimum Cost (MC)

The MC strategy is to minimize the total cost of reaching a final state.

Definition A.3.1 MC Objective Strategy - max�n�i�sn�ci��. The problem solver will choose the
operator that extends the search path with the least expected cost that leads to any final state.

This strategy can be used when any final state is acceptable, especially for domains where
real-time responsiveness is required.

A P P E N D I X B

MAPPING STRATEGIES

In the experiments that are described in this thesis, and in the examples and related
discussion, the mapping strategies that are used do not create any new states in the base search
space. They only update UPC values based on the information derived from abstract states in
projection search spaces. This, however, is not a requirement of the IDP/UPC framework, it is
merely the convention that has been used for this thesis. The following is a taxonomy of classes
of mapping strategies that we have identified and that can be incorporated in the IDP/UPC
analysis framework in ways that are consistent with the definitions presented in this thesis.
Sophisticated Control - The most straight forward form of mapping is when the problem

solver uses the results of search in projection search spaces to increase the accuracy of the
UPC estimates in the base search space and thereby increase the efficiency of problem
solving. In this method, states in the base search space are linked to states in a projection
space and the mapping function uses information from states in the projection search
space to modify UPC values in the base space. Problem solving in the base space is then
directed by a standard control architecture, such as TUO.

As described previously, this is the mapping strategy used throughout this thesis. The
process of mapping a state in a projection space to states in the base space is represented
by meta-operators of an IDP grammar with an abstract state as a RHS of a base space
state. The base space state on the LHS of the rule defining the meta-operator defines the
information that is used to update UPC values, and the component set of the abstract
state on the RHS of the rule defines the states that have their UPC values modified.

Refinement - An alternative approach is to modify the control architecture to include opera-
tors that map states in a projection space back to newly created states in the base space. In
general, these operators are very costly and can be thought of as collections of operators
from the base space. (As described previously, the semantic functions corresponding to
the base space operators must be executed to generate an interpretation.) Consequently,
refinement can also be thought of as transforming a search problem to a sequencing
problem. This method essentially transforms the abstract solution into a plan for solving
the base search problem. Such a plan would have well defined tasks that correspond to
base space operators as well as mechanisms for verifying that the plan was working.

Constraint Directed Search - A hybrid approach involves treating the projection space solu-
tion as a constraint network, such as the constraint networks defined by Fox [Fox, 1983].
Selective refinement is used to map portions of the projection space solution back to the
base search space, or sophisticated control based search can be used to achieve a similar
result. The partial result that is generated in the base space is then projected back to the
abstract space and incorporated into the abstract solution. The constraints implied by
the more precise partial result from the base space are then propagated to the components
of the abstract solution. This process can continue until a solution is determined.

282

Approximate Processing (Satisficing) - Another direct method for using the results of pro-
jection space search is to return them as the actual result of problem solving. This
method is applicable for domains that admit satisficing solutions [Simon, 1969]. In
particular, approximate processing can be used when an acceptable solution can sacrifice
precision, certainty or completeness [Lesser and Pavlin, 1988, Lesser et al., 1988b,
Decker et al., 1990].

A P P E N D I X C

IMPLEMENTING AN APPROXIMATE PROCESSING SYSTEM

A system that uses the approximate reasoning methods described in this thesis must address
a number of general issues. These issues are related to how approximate processing affects the
system’s representation of belief and uncertainty, its representation of input data and partial
results, its organization of knowledge, and its control of problem solving.

In the state space paradigm, a problem solver assigns a rating to each partial result that
it uses to determine which of them to extend next. This rating is the system’s best estimate
of the degree to which an action reduces the distance to termination. In an optimal system,
the correlation between the system’s rating and the actual best rating (denoted Pa or Pa�PRi�
wherePRi represents “Partial Result number i”) is 1, and at each point the problem solver can
optimize its performance by expanding the partial result with the highest rating. Thus, there
are two forms of uncertainty associated with problem solving. The first is simply the probability
that a given partial result is on a correct solution path, Pa�PRi�. This reflects uncertainty
inherent in a given domain. The second is the correlation between the system generated rating
and Pa�PRi� (denotedC�r� Pa� orC�r� Pa�PRi��). Approximate processing affects a system’s
representation of both forms of uncertainty.

Approximate search that eliminates corroborating support can generate partial results that
would not have been generated by exact search. These states will have a nonzero rating
because constraints that would otherwise reduce their ratings to zero have not been applied.
Furthermore, the generation of correct partial results will also be underconstrained and the
problem solver will not be able to assign them accurate ratings. As a consequence, C�r� Pa�
will be reduced for states generated by approximate search.

Similarly, if a problem solver eliminates competing alternatives, it does so by implicitly
assigning them a rating of zero. This has no effect if the partial result is not on any solution path,
but reduces C�r� Pa� if it is. In addition, premature pruning of potential solution paths could
restrict the problem solver’s ability to generate accurate ratings for other states and, indirectly,
reduce C�r� Pa�.

Data approximations are aggregations of individual partial results, PRi, each associated
with a corresponding Pa�PRi�. The probability of the new, abstract state being on a solution
path is a function of the individual PRi’s that varies within and between domains. There is no
guarantee that, for a given domain, PRi can be estimated accurately and, therefore, it is very
likely that use of data approximations will reduceC�r� Pa�.

The use of approximate knowledge has an effect similar to that of approximate search.
Underconstrained operators generate partial results that would not have been generated
otherwise and whose ratings are overestimates. They also generate correct, but over rated,
partial results. Both of these events result in a reduction of C�r� Pa�.

The use of approximate processing affects a system’s representation of partial results and
solutions. In a state space search, a partial result or a solution is represented as a sequence of
operators that were applied to the start state. As discussed in [Decker et al., 1990], the use

284

of approximate search and approximate knowledge result in partial results and solutions that
are offset along the axes defining solution quality. In addition, the use of approximate data
confounds the solution path by extending it over multiple levels of abstraction. These two
phenomena extend the dimensionality of a partial result or a solution to represent where in the
state-space a given state exists in terms of solution quality and data abstraction.

Approximate processing affects the way a problem solver organizes its knowledge. There
may be a large, possibly infinite number of data abstraction levels in any given domain. In
addition, the ranges along the axes defining the quality of partial results and solutions may be
continuous. As a consequence, it may not be feasible for a problem solver to decompose its
knowledge into a discrete number of operators and some other form of organization may be
required.

Finally, approximate processing affects the way a problem solver applies its knowledge. In
many problem solving systems, resource constraints, such as time constraints, are implicit.
Other systems are required to incorporate resource constraints into their reasoning. In
order to exploit approximate processing techniques successfully, a problem solver will need
to recognize situations where the risk reward ratio makes it advantageous to use approximate
processing. This is important because data approximation may yield levels of abstraction
where aggregations of states are so large they are meaningless, or approximate search and
approximate knowledge may generate solutions of undesirable quality. In these situations,
resources expended on approximate processing were wasted since no usable results were
produced. The underconstrained nature of approximate search and knowledge approximation
can lead to the creation of a large number of partial results. If the cost of processing additional
partial results is greater than the saving gained using approximate processing, resources will
again have been wasted. Finally, if the cost of generating abstract state spaces is higher than the
corresponding saving, resources will again have been wasted. Furthermore, a problem solver
will have to be capable of refining approximate results if additional resources become available.

The following sections discuss how these issues were addressed in the experimental problem
solver described in Chapter 13 that uses approximate processing.

C.1 Defining Projection Spaces

In Chapter 10.3.1 we define precision and discuss how it it used to represent a level of
abstraction. This definition is used extensively in the following sections.

C.2 Belief Representation and Uncertainty

Uncertainty arises in any system from the reliability of the initial data, the imprecision of that
data or the language used to represent it, the incompleteness of the data, and the aggregation of the
data from data approximations or multiple sources[Bonissone and Decker, 1986]. Additional
uncertainty is introduced with the use of approximate search, data and knowledge. For example,
the credibility of a partial result constructed by ignoring potentially corroborating data must
be distinguishable from the credibility of a similar partial result constructed using all available
data. In the first case, further processing could raise the credibility of the partial result, but
in the second case, no amount of processing will increase the credibility of the partial result
because all corroborating data has already been considered.

In addition, our system is capable of making certain assumptions about the state of problem
solving in order to develop various approximations. For example, the system can assume that a

285

required piece of data is available in order to make a best/worst case assessment of a potential
solution path.

To represent uncertainty caused by the use of approximate search, data, and knowledge,
the representation of credibility must be expanded to a four-valued system. The new belief
system was derived from evidential reasoning [Lowrance and Garvey, 1982] and is similar
to that in RUM [Bonissone et al., 1987]. The belief in a hypothesis is now represented by
a measure of positive belief (certainty) and of negative belief (refutation). To represent the
completeness of the solution, the positive and negative beliefs are further divided into upper
and lower bounds. Belief in a hypotheses therefore is summarized with four values, (certainty,
plausibility, refutation, doubt), where:

certainty - The lower bound of belief in a partial result. This is a measure of the amount of
irrefutable evidence supporting the partial result.

plausibility - The upper bound of belief in a partial result. This is a measure of the degree
to which available evidence does not refute the partial result. No amount of consistent
processing will raise a partial result’s certainty above its plausibility.

refutation - The lower bound of disbelief associated with a partial result. This value is analogous
to certainty.

doubt - The upper bound of disbelief associated with a partial result. Similar to plausibility,
doubt reflects the degree to which available evidence does not support a partial result.
No amount of consistent processing will raise a partial result’s refutation above its doubt.

The need for four values can be demonstrated with a simple example. Approximate search
is implemented by allowing a knowledge source to make an assumption that some relevant
supporting data exists. After this assumption is made, the system needs to represent certainty
so it can determine if an approximate solution meets the satisficing criteria. However, since
some supporting data is not used, certainty will be less than it would have been using exact
processing. Therefore, plausibility needs to be represented so that the problem solver does
not prematurely eliminate from consideration a result that could be improved with additional
processing. Furthermore, since problem solving control is based partially on the credibility
associated with partial results, it is necessary to temper overly optimistic assumptions by
representing the associated doubt that the assumption might be false. Finally, it is necessary
to represent refutation in order to differentiate assumptions that are found to be false from
assumptions that are merely unconfirmed. Figure C.1 introduces a graphic representation of
the four-valued belief system.

Furthermore, second-order relationships between the elements of the belief system can also
be used to control problem solving. Specifically, various measures of ignorance[Lowrance and
Garvey, 1982] and conflict can be computed. Ignorance measures, such as �plausibility �
certainty�, �doubt� refutation�, ��� plausibility�, ��� doubt� and ��� �certainty�
refutation��, indicate the amount of useful work that can be done to refine the belief in
a hypothesis. Conflict measures, such as �� � �certainty � refutation��, indicate the
consistency of the processing that generated a hypothesis.

By changing the belief representation used by the problem solver, we are trying to enable
the system to reason about the control of uncertainty. Specifically, we want the system to be
able to reason explicitly about the tradeoffs between the certainty, completeness and precision

286

0

1 0

1

ignorance
doubt

refutation

certainty

plausibility

0

1

(min)

(max)

1(max)

0 (min)

certainty and
plausibility scale

refutation and
doubt scale

Example credibility: (0.50, 0.90, 0.10, 0.45)

Figure C.1. Graphic Belief Representation Key

of a partial result. In order to accomplish this, we are also enabling the the system to represent
not only belief in a partial result, but also the ignorance (i.e., noncommitment) and refutation.
These changes will allow the system to reason about the following kinds of uncertainty.

� Ambiguity and uncertainty inherent in the grammar.

� Sensor errors that are correlated to true data.

� Sensor errors that are inherent in the domain.

� Sensors that span ranges.

� Errors that are correlated to other phenomena (masking).

� Uncertainty caused by aggregating data.

� Uncertainty introduced by approximate reasoning mechanisms.

� Uncertainty introduced by approximating goal states.

� Uncertainty resulting from incomplete processing.

This belief system allows the problem solver to represent a number of interesting and useful
states of uncertainty. Graphic examples of these states are shown in Fig. C.2.

Complete Certainty - The problem solver can represent its unequivocal certainty that an event
occurred by assigning the corresponding partial result the belief ��� �� �� ��.

287

0

1

certainty, (1,1,0,0)

0

1

 uncertainty, (0,0,0,0)

0

1 0

1

impossibility, (0,0,1,1)

0

1 0

1

doubt, (0,0,0,1)

0

1 0

1 0

1

assumption, (0,1,0,1)

0

1

Figure C.2. Belief Examples

Impossibility - The problem solver can represent its certainty that an event did not occur by
assigning the corresponding partial result the belief ��� �� �� ��.

Complete Uncertainty - The problem solver can represent its complete lack of conviction
regarding an event with the belief ��� �� �� ��.

Assumption - With the new belief system the problem solver can pursue a line of default or
conjectural reasoning by assigning a hypothesis the belief ��� �� �� ��.

Doubt - The problem solver can represent circumstantial refutation of an event with the belief
��� �� �� ��. For example, if a knowledge source attempts to locate certain data and is
unable to do so, it might want to consider the corresponding hypothesis doubtful.

In addition, various relationships between the belief elements indicate the state of ignorance
associated with a partial result.

� �certainty�plausibility�and �refutation�doubt� indicate the amount of ignorance
that can be resolved with local processing.

� �� � plausibility� and �� � doubt� indicate the amount of ignorance that can not be
resolved locally.

� �� � �certainty � refutation�� indicates the total amount of ignorance potentially
resolvable locally or externally.

288

� ��plausibility� doubt�� �� indicates the amount of conflict associated with a partial
result.

C.3 Modifying the Problem Solving Architecture

In order to extend the problem solver to support approximate processing, significant
changes were made to the problem-solving architecture. The resulting architecture allows a
range of approximate problem-solving strategies to be efficiently integrated. The implementa-
tion of these extensions required that the following questions be resolved.

1. How should intermediate results of problem solving be represented so that precise and
approximate intermediate results can be combined in further processing?

2. How should a knowledge source be structured so that it can exploit intermediate results
of varying levels of approximation?

3. How should approximate knowledge sources of different types be organized and con-
trolled?

4. How should uncertainty caused by the use of approximate search, data, and knowledge
be represented?

5. How should the control architecture be structured so that it can smoothly integrate
different types of approximate processing strategies?

6. How should the control architecture be implemented to minimize overhead when the
current approximate processing strategy uses only a subset of the partial results and a
subset of the applicable knowledge?

C.3.1 Data Representation

Data approximations are created by expanding the representation of precise data along one
or more dimensions. The semantics associated with approximate data should be consistent
with those associated with precise data so that meaningful combinations of the two can be
constructed. If approximate data has a significantly different semantic interpretation than
precise data, it might not be possible to incorporate both into a single partial result and this
might severely limit any advantages offered by approximate processing.

For example, a single valued location attribute can be expanded to cover a range of
locations. Several acoustic signals might be combined, or clustered, into a single partial result
that encompasses not only the area of the sensed data, but areas whereno data was sensed as well.
The new data cluster has several interpretations. It can take on an existential interpretation,
such as “there is some support for a signal source somewhere in this area”, or it can take on a
universal interpretation, such as “there is some support for a signal source at every point in this
area.” If some knowledge source activity involves checking for physical overlap among data,
then the existential and universal interpretations will produce distinct results. In particular,
determining whether or not an existentially interpreted datum and a universally interpreted
datum overlap might be prohibitively expensive or impossible. On the other hand, if precise
and approximate data are readily interchangeable, then a system has tremendous flexibility in

289

deciding when to produce approximate data, how to incorporate it into the solution, and how
much of it to use.

In order to combine both precise and approximate intermediate results, the vehicle tracking
problem solver was modified to represent all partial results as clusters of data with characteristics
defined by ranges of values. Specifically, each partial result is now represented by a set of event
classes, E, and a location range, R. In addition, partial result attributes were extended with
the addition of a domain specific precision, or “level of approximation”, statistic. A partial
result’s precision is a function of the size of R, the size of E, and the variance of the partial
result’s likely location within R. This extension effectively expands the dimensionality of the
blackboard along an axis corresponding to precision.

Using this representation, an existential interpretation of data has been adopted. An exact
hypothesis is represented with a range attribute specified by a single point, an event class set
with cardinality one, and a precision of zero�. A cluster hypothesis has a range, R, defined as
a convex region encompassing all the component locations, an event class E � 	�component
event classes�, and a precision� fp�size ofR� j E j� fv�, where fv is the variance of the clustered
hypotheses’ locations within R.

Figure C.3 shows several examples of approximated data. Part (a) is an exact location
hypothesis with precision zero; the size of the range spanned is zero and the vehicle’s variance
within that range is also zero. The location cluster shown in (b) is less precise than the exact
location hypothesis because nine distinct vehicle hypotheses have been aggregated into one.
The result is a cluster spanning a larger range and having a non-zero variance within that
range. Even though they have similar sized ranges, (b) is more precise than the location cluster
shown in (c) because the variance of vehicle locations within (c) is much greater than in (b).
(d) highlights the adverse impact wide distributions of data can have on a cluster’s precision.
Despite having a slightly smaller range,(d) is less precise than either (b) or (c) because of the
large variance of vehicle locations it encompasses. (e) shows the adverse effects of clustering
multiple event classes. (e) is similar in size and variance to (c) but it is much less precise because
it encompasses multiple event classes. (f) and (g) show how quickly precision is reduced when
widely distributed data with multiple event classes is clustered.

C.3.2 Knowledge Organization

The introduction of approximate knowledge sources leads to a range of options for
organizing a problem solver’s knowledge. At one end of the spectrum, there is a specific
knowledge source for each form and level of approximation. For example, in a vehicle tracking
domain, there could be a specific synthesis knowledge source for eliminating corroborating
support of necessity � ���, a specific track extension knowledge source for extending data
with precision � , and so forth. At the opposite end, there is a single, general knowledge
source corresponding to each of the original knowledge sources that encompasses the full range
of exact and approximate processing strategies.

The approach taken in modifying the problem solver architecture was at the second end
of the spectrum. In order to organize and control the the different types of approximate
knowledge sources and to enable a knowledge source to exploit intermediate results of varying
levels of approximation, the original knowledge sources were parameterized and restructured so

�Because the precision measure is unbound, the problem solver uses an inverted precision scale. Thus, exact
data has precision zero, and greater values of precision indicate less precise data.

290

Precision

1

2

3

1 2 3

.6

1

2

3

1 2 3

.3 .3

.3 .3

.4

.4 .4

.4

.5

1

2

3

1 2 3

.6

.6

.3

.4

1

2

3

1 2 3

.8

.8

1

2

3

1 2 3

.3 .3

.3 .3

.4

.4 .4

.4

.5

1

2

3

1 2 3

.6

.6

.3

.4

1

2

3

4

5

1 2 3 4 5

.8

.8

.3

.6

1

2

3

4

5

1 2 3 4 5

.8

.3.6

.3

.2

.2

.7.7

.1

.9

(ec)(size) + s + s

a. size = 0, s(x) = 0, s(y) = 0,
ec = 1; precision = 0

e. size = 9, s(x) = 3, s(y) = 3,
ec = 2; precision = 42

c. size = 9, s(x) = 8, s(y) = 6,
ec = 1; precision = 23

d. size = 9, s(x) = 11, s(y) = 11,
ec = 1; precision = 31

b. size = 9, s(x) = 3, s(y) = 3,
ec = 1; precision = 15

f. size = 9, s(x) = 8, s(y) = 6,
ec = 2; precision = 50

g. size = 25, s(x) = 16, s(y) = 14, ec = 1;
precision = 55

h. size = 25, s(x) = 10, s(y) = 9, ec = 1;
precision = 44

Figure C.3. Examples of Precision Metric

291

that they are now capable of working with any level of approximate data. Belief combination
functions and other domain problem-solving functions were modified to take into account
the new interpretation of data described in Chapter C.3.1. For example, synthesis knowledge
sources now use the precision statistic to reason about the probability that location hypotheses
overlap. Similarly, extension knowledge sources use the precision statistic to reason about
the probability of a hypothesis satisfying velocity and acceleration constraints. With these
modifications, knowledge sources process exact and approximate data identically and problem
solvers can use exact and approximate processing interchangeably.

In addition, a clustering knowledge source for aggregating data was added. The precision
of the data approximations produced by the clustering knowledge source is controlled by two
parameters, C , the number of clusters to form, and I , the information loss threshold. To
combine individual partial results, the clustering mechanism creates a new hypothesis with
characteristics subsuming all of the clustered hypotheses. The clustering mechanism cycles
through a set of input data forming clusters until a cluster is generated with a precision� I or
until the input data has been combined into C or fewer clusters, at which point it halts and
outputs the generated clusters.

In order to control the different types of approximation, an approximation control block
(ACB) was added to each knowledge source instantiation. After determining that it needs
to use approximate processing to meet some objective, a specific approximation strategy is
implemented by adjusting the ACBs of the appropriate knowledge source instantiations. When
it is invoked, a knowledge source internally chooses from its repertoire of approximations the
best way to satisfy the specification defined in the control block. As will be shown later, this
method is extremely flexible and allows for a wide range of approximation strategies. The
approximation control block contains the following slots.

Input Rating Threshold (IRT): The IRT limits the number of partial results used as input
by a knowledge source. A knowledge source ignores all input data with a rating �
IRT . This approximation is based on a non-global evaluation of the input data and is
therefore ill-defined. In situations where a problem solver predicts that it cannot form
an acceptable answer using well-defined approximation techniques, it can risk using
ill-defined approximations that may lead to incorrect solutions, or no solutions at all.

Output Rating Threshold (ORT): The ORT limits the number of partial results generated
as output by a knowledge source. A knowledge source discards all partial results it forms
with rating � ORT . This approximation is based on a non-global evaluation of the
partial results formed by a knowledge source and is therefore ill-defined.

Input Precision Filter (IPF): The IPF indicates the level of approximate data the knowledge
source retrieves from the blackboard. A knowledge source will not consider potential
input data with precision � IPF .

Work Level Precision Filter (WPF): TheWPF indicates the level of data approximation the
knowledge source actually processes. It has the form �N�C� I�, where N � maximum
number of partial results to use as input, C � number of clusters to form, and I �
the information loss threshold. A knowledge source uses these values to cluster input data
to the desired level of approximation. By manipulating the WPF , a problem solver
can specify the quantity of the highest rated input hypotheses to process, the number of
clusters to form, and the amount of precision it is willing to sacrifice.

292

Output Level Precision Filter (OPF): TheOPF determines the level of data approximation
of the knowledge source outputs and has the form �N�C� I�, where N , C , and I have
the previously defined interpretations.

Search Approximation Level (SAL): The SAL indicates the knowledge source’s level of ap-
proximate search. The SAL has the form �SL�, where SL specifies the approximate
search strategy to use. Specifically, for synthesis, SL � n indicates that the knowledge
source should assume the existence of any subtree of the grammar with necessity � n,
and for extension, SL indicates the number of time frames it should skip when extending
a track.

Knowledge Approximation Level (KAL): TheKAL indicates the level of approximate knowl-
edge the knowledge source should use and has the form �KL�, whereKL specifies which
knowledge approximations to use. Different values of KL indicate whether a synthesis
knowledge source should ignore constraints or perform level-hopping. Similarly, KL
specifies whether or not an extension knowledge source should ignore velocity or
acceleration constraints.

By manipulating combinations of parameters in the approximation control block, a
problem solver has great flexibility in its use of approximate processing. It can adopt well-defined
strategies that are either local or global in extent. For example, it can tailor the precision of a
specific area of the solution by setting the appropriate approximation control block parameters
in a few specific knowledge source instantiations. Alternatively, it can implement a strategy
where all knowledge sources work at a given level of precision, P , by first grouping all data
to level P with the clustering knowledge source, then setting every knowledge source’s IPF
to P . Furthermore, when the situation warrants, a problem solver can also use ill-defined
approximation strategies. This can be done with the IRT , the ORT and the N component
of the precision filters. Finally, a problem solver can combine thresholding filters, such as the
IRT and the ORT , with clustering to moderate the effects of ill-defined approximations.

A P P E N D I X D

EXAMPLE OF FREQUENCY MAP CALCULATION

This section presents a detailed example of the processes that have been implemented to
calculate frequency maps. The grammar that will be used for these examples, VTG-1, is shown
in Fig. D.1. This grammar, which is a stylized vehicle tracking grammar, was used for various
examples in previous chapters. It is smaller than the full vehicle tracking grammar used in
Chapter 11, but it contains many of the same complexities and is preferable for this example
because it is smaller and more manageable for the representations that will be used.

As alluded to in Chapter 5.1, an important concept in the calculation of frequency maps is
the singularity. A singularity is a data point that occurs at a specific time-location. For example,
a vehicle track is not a singularity, since it spans multiple time-locations but a vehicle-location
is a singularity. In the vehicle tracking grammar, other singularities include groups, signals,
and noise. For a given singularity, a CSS represents the distribution of terminal symbols that
can be derived from a singularity. For a vehicle-location or group singularities, the CSS would
be the distribution of signal data that can be generated from it.

The calculation of a frequency map for a domain grammar consists of two distinct phases.
The first phase is the calculation of a frequency map for the nonterminals corresponding to the

P.1.1. T � T1 A p=0.33
P.1.2. T � T2 B p=0.33
P.1.3. T � T3 C p=0.33
P.2. T1 � A A p=1.0
P.3. T2 � B B p=1.0
P.4. T3 � C C p=1.0
P.5. A � G1 G2 p=1.0
P.6. B � G3 G4 p=1.0
P.7. C � G5 G6 p=1.0
P.8.1. G1 � S1 S2 p=0.9
P.8.2. G1 � S1 S2 S6 p=0.1
P.9. G2 � S11 S12 p=1.0
P.10.1. G3 � S1 S11 p=0.9
P.10.2. G3 � S1 S11 S12 p=0.1
P.11. G4 � S2 S6 p=1.0
P.12.1. G5 � S2 S11 p=0.9
P.12.2. G5 � S1 S2 S11 p=0.1
P.13. G6 � S6 S12 p=1.0

Figure D.1. Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations

294

CSS Num Singularity Rules Characteristic Signal Set Distribution Factor
1. A (5, 8.1, 9) (S1, S2, S11, S12) 0.9
2. A (5, 8.2, 9) (S1, S2, S6, S11, S12) 0.1
3. B (6, 10.1, 11) (S1, S2, S6, S11) 0.9
4. B (6, 10.2, 11) (S1, S2, S6, S11, S12) 0.1
5. C (7, 12.1, 13) (S2, S6, S11, S12) 0.9
6. C (7, 12.2, 13) (S1, S2, S6, S11, S12) 0.1

Figure D.2. Characteristic Signal Sets for VTG-1

highest-level singularities. The second phase involves using cached values from the first phase
to calculate the frequencies for the non-singularities in the grammar. These phases, and the
constituent parts, are described in the following sections.

D.1 Frequency Map Calculation, Phase I

In phase one, the frequency map of each of the individual singularities is calculated. This
is done as generally described in the thesis. First, a set of characteristic signal sets, or CSSs,
is generated for each singularity. From these, a frequency map is computed. These steps are
described in the following sections.

D.1.1 Singularity CSS Calculation

The CSSs for singularities are calculated using the generational grammar, IDPg. The
distribution functions in IDPg determine the statistical distributions for the CSSs. These
distributions define the weightings used to combine the results from different CSSs into a
frequency map. This is necessary because it is not sufficient to determine the distributions of
individual low-level domain events. Instead, it is necessary to determine the distribution of
groups of low-level events that can be used to generate higher-level interpretations.

Thus, CSS calculations involve two parts. The first part is the calculation of the elements
of each possible CSS, the second is the calculation of the statistical distribution of all the CSSs.
Figure D.2 shows the CSSs for the singularities in grammar VTG-1. The distributions are
calculated in a top-down fashion from VTG-1’s � functions. In the figure, each row indicates
the singularity from which the CSS was derived, the grammar rules used to derive the CSS,
the elements in the CSS, and the CSS’s distribution factor. Note that each CSS is identified
with a singularity. We will refer to these as the root singularities because all other singularities
are derived from them. For example, the distribution factor of the first CSS in the figure is
calculated from the distribution of the rules that were used to generate it. These RHSs were 5.
A � G�G� with probability = 1; G� � S�S�, with probability 0.9; G� � S��S��, with
probability 1.0. The distribution factor for this CSS is then ��� � ��� � ��� � ���.

D.1.2 Singularity Frequency Map Calculation

Once the CSSs are calculated for each singularity, the frequency map for each CSS is
determined. For the CSSs of the singularities in VTG-1, the individual frequency maps are

295

Sing. CSS Dist A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
A 1 0.9 1 1 1 2 2 1 1 1 1
A 2 0.1 2 2 2 2 1 2 1 2 1 1 1 1 1 1
B 3 0.9 1 2 1 1 2 1 1 1 1
B 4 0.1 2 2 2 2 1 2 1 2 1 1 1 1 1 1
C 5 0.9 1 1 1 1 1 1 1 1 1
C 6 0.1 2 2 2 2 1 2 1 2 1 1 1 1 1 1

Figure D.3. CSS Frequency Map for Singularities

A B C
A 1.1 0.2 0.2
B 0.2 1.1 0.2
C 0.2 0.2 1.1

Figure D.4. Frequency Map for Root Singularities in Grammar VTG-1

shown in Fig. D.3. Each row of the figure contains the name of a singularity, a specific CSS
for the singularity, the distribution factor for the specific CSS, and the frequency map for the
CSS. The individual frequency elements in the map are calculated for each element, n, of the
interpretation grammar IDPi. For a given production rule, p, for which n is the left-hand-side
element, n’s frequency is calculated in a two step process. First, the frequency of n from each
of the RHSs of p is calculated as the product of the frequencies of the elements of the RHSs,
or
Q
j Frequency�ej�, where each ej is an element of the RHS. Second, the frequencies from

each of the RHSs of p are combined by a function that is specific for n. For singularities,
the combination function is “addition.” Thus, the frequency of n from p is the sum of the
frequencies from each of the RHSs of p. In the case where n is a terminal symbol, its frequency
corresponds to the number of occurrences in the CSS.

For example, in the frequency maps shown in Fig. D.3, the entry for G3 in the first row
in 2 because, given the data in the CSS, there are two rules, 10.1 and 10.2, that can be used
to generate distinct G3’s. Nothing can be generated with a G3 in the first CSS. In the second
row, the frequency of G1 is two because there are two rules, 8.1 and 8.2, that can be used to
generate distinct G1’s. The two G1’s are combined with the single G2 to generate � � � � �
distinct A’s.

The CSS frequency maps are combined into the singularity frequency map shown in
Fig. D.4. This frequency map is used to calculate the frequencies of non-singularities. It
only contains information relevant to root singularities. This is because only root singularities
appear directly in the LHS of grammar rules corresponding to non-singularities. The map is
formed by multiplying each row of the CSS frequency map by the distribution factor and then
summing. Thus, the entry for A in the first row is �� � ���� � �� � ����.

296

A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
FB
n 0.5 0.5 0.5 1.1 0.7 1.1 0.7 1.7 0.4 0.7 1.0 0.7 1.0 0.7

Figure D.5. Domain Singularity Frequency Map for VTG-1

CSS Num CSS Generation Rules Characteristic Signal Set Distribution Factor
1. (1.1, 2) (A, A, A) 0.33
2. (1.2, 3) (B, B, B) 0.33
3. (1.3, 4) (C, C, C) 0.33

Figure D.6. Characteristic Signal Sets for Non-Singularities in VTG-1

The frequency map for all singularities over all single period CSSs is shown in Fig. D.5.
This figure does not include elements of the grammar that are non-singularities.

D.2 Frequency Map Calculation, Phase II

Once the singularity frequency map has been calculated and cached, the non-singularity
frequencies are calculated. As described in Chapter D.1, the calculation of frequencies for the
singularities is exhaustive in nature. As a result, frequency maps for singularities do not consist
of any approximations or estimates and are very accurate.

For non-singularities, it is often not possible to maintain this level of precision because it is
not possible to exhaustively compute every possible CSS for the non-singularity. This is because
the typical grammar can generate an infinite number of distinct strings of non-singularities. As
a result, it is necessary to generate a sample set of specific problem instances and to calculate
the frequency map from the sample set, giving each sample instance equal weighting.

The detailed process for computing frequency maps for non-singularities is similar to
that for singularities. First, a set of sample CSSs is generated. Then, the frequencies of
the nonterminals is computed, using cached singularity values, and combined into a domain
frequency map.

D.2.1 Non-Singularity CSS Calculation

As with singularities, a set of CSSs is calculated and each is given a distribution factor.
In cases where it is possible to exhaustively calculate the set of CSSs, the distribution factor is
computed from the grammar as it was for singularities. In cases where a sample set is used, the
distribution factor is proportional to the number of elements in the set.

For the grammar VTG-1, the CSSs for non-singularities are shown in Fig. D.6. Note that,
for non-singularities, an individual CSS is not associated with a distinct non-singularity but
with a derivation tree (i.e., a sequence of grammar rules) that that halts with root singularities.
Thus, the non-singularities are generated with a version of the grammar that, effectively, uses
the root singularities as terminal symbols.

297

D.2.2 Non-Singularity Frequency Map Calculation

A distinct frequency map is computed for each CSS and the set of frequency maps are
then combined into the frequency map for the domain. The computational process is more
difficult, however, because, as noted in Chapter 5.1.3, the fact that a non-singularity spans
multiple time/locations must be considered. Consider the situation shown in Fig. D.7. In
this example, the grammar element t has a RHS consisting of Vt and Vt��, i.e., t � Vt Vt��.
Given five sequential instances of V, it is possible to combine them in four distinct ways, as
shown. If t is treated as a singularity, the frequency, from Def. 5.1.3 would be computed based
on Frequency(V) * Frequency(V). Clearly this is not correct. The actual frequency of t should
be the frequency of V V combinations, multiplied by the number of combinations of different
Vt Vt�� combinations. Thus, as shown in the example, there are four combinations of V V;
V� V�, V� V�, V� V�, and V� V�. Thus, the actual frequency of t is 4 * (Frequency(V) *
Frequency(V)).

As discussed in the thesis, we address this problem by mapping IDPg to a new grammar,
IDPg’, and then computing the frequency of the elements of the new grammar. Specifically, the
frequency of each element n of the VTG-1 interpretation grammar is determined by mapping
rules containing n as the LHS to a new grammar, VTG-1’, and then summing the frequencies
of the elements of VTG-1’ corresponding to n. The relevant rules in VTG-1’ are generated
as follows. For each sequential time interval (tx, ty) that can be formed using rules with n
as the LHS, create a new rule in VTG-1’ of the form nx�y � RHS. In addition, all root
singularities are marked with a subscript indicating the period with which they are associated.
When combined, elements of the transformed grammar must be consistent in their period
subscripts. Then Frequency(n)�

P
x�y Frequency�nx�y�, where nx�y is treated as a singularity.

The transformed grammar for VTG-1 is shown in Fig. D.8. Rules P.2.a and P.2.b were
added to represent two possible ways of generating a T1 interpretation from a sequence of
A’s. Rule P.2.a uses the first two A’s in a sequence and rule P.2.b uses the second two A’s in a
sequence. Rules P.3.a and P.3.b serve the same purpose for T2 as do rules P.4.a and P.4.b for
T3. In addition, rules P.1.1, P.1.2, and P.1.3 have been modified to indicate that a T can only
be generated with a T1���, T2���, or T3���. Thus, the nonterminal symbols T1���, T2���,
and T3��� are not connected to the start symbol. Consequently, any effort directed toward
their creation or extension is wasted effort. Conceivably, it would be possible for a problem
solver to conduct some form of preprocessing to identify nonterminals that weren’t connected
and to eliminate them from the grammar.

For the CSSs of the non-singularities in VTG-1, the individual frequency maps are shown
in Fig. D.9. Each row of the figure contains the non-singularity CSS, the distribution factor for
the specific CSS, and the frequency map for the elements of VTG-1’. The individual frequency
elements in the map are calculated for each element, n, of the interpretation grammar VTG-1’.
For a given production rule, p, for which n is the left-hand-side element, n’s frequency is
calculated using the same two step process used for singularities. First, the frequency of n from
each of the RHSs of p is calculated as the product of the frequencies of the elements of the
RHSs, or

Q
j F �ej�, where each ej is an element of the RHS. Second, the frequencies from

each of the RHSs of p are combined by a function that is specific for n. The combination
functions are “addition.” Thus, the frequency of n from p is the sum of the frequencies from
each of the RHSs of p. In the case where n is a terminal symbol, its frequency corresponds to
the number of occurrences in the CSS.

For example, for CSS 1, the frequency of T1��� is computed from Frequency(A given
CSS 1) * Frequency(A given CSS 1), or ��� � ��� based on rule P.2.a from the grammar

298

Vt1

Vt2
Vt3

Vt4

Vt5

a. initial vehicle level data from 5 time periods

b. all possible partial tracks sequences spanning two
consecutive time periods generated by the rule t -> VV

Vt1

Vt2
Vt3

Vt4

Vt5

Vt1

Vt2
Vt3

Vt4

Vt5

Vt1

Vt2
Vt3

Vt4

Vt5

Vt1

Vt2
Vt3

Vt4

Vt5

combination 1

combination 2

combination 3

combination 4

Figure D.7. Calculating the Frequency of Non-Singularities

299

P.1.1. T � T1��� A�

P.1.2. T � T2��� B�
P.1.3. T � T3��� C�

P.2.a. T1��� � A� A�

P.2.b. T1��� � A� A�

P.3.a. T2��� � B� B�
P.3.b. T2��� � B� B�
P.4.a. T3��� � C� C�

P.4.b. T3��� � C� C�

P.5. A � G1 G2
P.6. B � G3 G4
P.7. C � G5 G6
P.8.1. G1 � S1 S2
P.8.2. G1 � S1 S2 S6
P.9. G2 � S11 S12
P.10.1. G3 � S1 S11
P.10.2. G3 � S1 S11 S12
P.11. G4 � S2 S6
P.12.1. G5 � S2 S11
P.12.2. G5 � S1 S2 S11
P.13. G6 � S6 S12

Figure D.8. Modified Grammar, VTG-1’, for Calculating Non-Singularity Frequencies

Non-Singularity CSS Dist T T1��� T1��� T2��� T2��� T3��� T3���
1 (A, A, A) 0.33 1.35 1.21 1.21 0.04 0.04 0.04 0.04
2 (B, B, B) 0.33 1.35 0.04 0.04 1.21 1.21 0.04 0.04
3 (C, C, C) 0.33 1.35 0.04 0.04 0.04 0.04 1.21 1.21

Figure D.9. CSS Frequency Maps for the Transformed Grammar, VTG-1’

VTG-1’ in Fig. D.8. The frequency of T2��� for the same CSS is Frequency(B given CSS 1)
* Frequency(B given CSS 1), or ��� � ���, based on rule P.3.a from VTG-1’. The frequency
of T is the sum of the frequencies from rules P.1.1, P.1.2, and P.1.3. The frequency of T from
P.1.1 is Frequency(T1��� given CSS 1) * Frequency(A given CSS 1), or ���� � ��� � ����.
The frequency of T from P.1.2 is Frequency(T2��� given CSS 1) * Frequency(B given CSS
1), or ���� � ��� � �����. The frequency of T from P.1.3 is Frequency(T3��� given CSS
1) * Frequency(C given CSS 1), or ���� � ��� � �����. Finally, the frequency of T is
���� � ����� � ����� � ���.

The CSS frequencymaps for VTG-1’ are combined into the non-singularity frequencymap
for VTG-1 shown in Fig. D.10. The non-singularity frequency map is formed by summing
the corresponding frequencies from VTG-1 for each of the non-singularities. Thus, for CSS 1,

300

Non-Singularity CSS Distribution Factor T T1 T2 T3
1 0.33 1.35 2.42 0.08 0.08
2 0.33 1.35 0.08 2.42 0.08
3 0.33 1.35 0.08 0.08 2.42
(Totals) 1.00 1.35 0.86 0.86 0.86

Figure D.10. Frequency Map for Non-Singularities in Grammar VTG-1

T T1 T2 T3 A B C G1 G2
FB
n 1.35 0.86 0.86 0.86 1.5 1.5 1.5 3.3 2.1

G3 G4 G5 G6 S1 S2 S6 S11 S12
FB
n 3.3 2.1 5.1 1.2 2.1 3.0 2.1 3.0 2.1

Figure D.11. Domain Frequency Map for VTG-1

the frequency of T1 in VTG-1 is the sum of the frequencies of T1��� and T1��� in VTG-1’.
Finally, the domain frequency map is created by combining the singularity and non-

singularity frequency maps. This is shown in Fig. D.11. For non-singularities, the domain
frequencies are computed for each CSS multiplying the values in the non-singularity frequency
map by the CSS’s distribution factor and then summing over all CSSs. For singularities, the
frequencies are computed by multiplying the singularity frequencies from Fig. D.5 by the
expected number of periods. In this example, the expected number of periods for VTG-1 is 3.
Thus, in Fig. D.11, the entry for A is � � �� � ��.

D.3 Frequency Maps and Approximate Processing

In Chapter 13, we present experimental results that are based on a grammar that has been
modified to support approximate processing. The processes used to calculate expected costs
in these experiments is slightly modified from those described in Chapters D.1 and D.2. The
modifications are minor and are described in Chapter 5.1. In this section, we present a detailed
example of the processes used to calculate frequency maps for the portions of a grammar
associated with approximate processing.

Figure D.12 shows the modifications that were made to the grammar to support approxi-
mate processing. Rules LH.1, LH.2, and LH.3 support level hopping, rule C.1 is a clustering
operator, and rules AP.1 and AP.2 are rules that process approximations in an abstract projection
space. The results of AP.1 are mapped back to the base space via rule M.G.1.

The basic procedures for calculating the frequency map for the grammar extensions
that support approximate processing are identical to those for base space operators. The
grammar elements are separated into singularities and non-singularities and appropriate CSSs
are determined for each. Figure D.13 shows the CSSs and the associated frequency maps
for the meta-level singularities. Note that the frequencies in this map are, at most, 1. This
observation is related to the only difference between the calculations for base space frequencies

301

AP.1. ATc��c� � AT1c� VLCc�

AP.2. AT1c��c� � VLCc� VLCc�

C.1. VLCA
B
C � Alh � � � Blh � � � Clh

LH.1. Alh � S1 S2 S6 S11 S12
LH.2. Blh � S1 S2 S6 S11 S12
LH.3. Clh � S1 S2 S6 S11 S12
M.G.1. � � AT

Figure D.12. Approximations Used to Extend VTG-1

CSS Dist Alh Blh Clh VLCA
B
C
1 0.9 1 1
2 0.1 1 1 1 1
3 0.9 1 1
4 0.1 1 1 1 1
5 0.9 1 1
6 0.1 1 1 1 1

Figure D.13. CSS Frequency Maps for Meta-Level Singularities

and meta-level frequencies. In general, most projection operators are clustering operators
that inherently aggregate all the possible individual results into a single, abstract result. As a
consequence, the frequencies of these states is never greater than 1 in a given period.

Figure D.14 shows the meta-level equivalent of root singularities. Each row in the figure
contains the name of the element from IDPg that corresponds to the CSS and a set of
frequencies. Thus, when the domain event that generated the CSS is an A, it will be possible
to form an Alh 100 percent of the time. However, as discussed above, there will be at most
1 of these partial results generated. Similarly, when the CSS is generated by an A, it will be
possible to form Blh and Clh approximations 10 percent of the time. In all circumstances, a
VLCA
B
C approximation will be formed and the entries in the table reflect this.

It is interesting to compare the entries in this table from those of the corresponding
root singularities in the base space shown in Fig. D.4. In Fig. D.4, the frequency entries
represent situations where there are multiple instances of each of the root singularities. Since
the meta-level singularities never have frequencies greater than 1 in a given period, their
frequencies are less than those of base space singularities.

302

Alh Blh Clh VLCA
B
C
A 1.0 0.1 0.1 1.0
B 0.1 1.0 0.1 1.0
C 0.1 0.1 1.0 1.0

Figure D.14. Frequency Map for Approximations as Related to Root Singularities in Grammar
VTG-1

VLCA
B
C Alh Blh Clh

FB
n 1.0 0.4 0.4 0.4

Figure D.15. Approximation Singularity Frequency Map for VTG-1

Figure D.15 shows the frequency map for meta-level states in VTG-1 combined over all
CSSs. The entry for VLCA
B
C is 1 because in each period, all the level-hopping results are
aggregated into a single abstract cluster.

The process for calculating the frequencies of meta-level non-singularities starts with the
same grammar transformation used in the base space calculations. The transformed elements
of the grammar are shown in Fig. D.16. The only rules that are transformed correspond to the
rules that are used to construct an abstract solution in a projection space. The original rule
AP.2 is represented by two new rules, AP.2.a and AP.2.b, that correspond to the two possible
combinations of sequences of VLC partial results.

All the elements of the transformed grammar are treated as singularities and the frequency
map shown in Fig. D.17 is computed. There is no restriction on meta-level states formed
with AP operators that precludes their frequencies from being greater than 1. Instead, in this
example, the AP operators are being applied to clustered data and the frequency of the clusters
is always 1. Consequently, the combining function which multiplies the frequency of the
components simply multiplies � � � and the resulting frequency is always 1.

The frequency map of the transformed grammar is used to construct the frequency map
for meta-level non-singularities shown in Fig. D.18. The process used is identical to that used
for the base space processing.

Finally, the complete meta-level frequency map is computed by combining the frequency
maps for meta-level singularities and non-singularities. This is shown in Figure D.19.

AP.1. ATc��c� � AT1c����� VLCc���

AP.2.a AT1c��c����� � VLCc��� VLCc���

AP.2.b AT1c��c����� � VLCc��� VLCc���

Figure D.16. Transformed Approximations For Frequency Computation

303

Non-Singularity CSS Dist ATc��c� AT1c��c����� AT1c��c�����
1 (A, A, A) 0.33 1.0 1.0 1.0
2 (B, B, B) 0.33 1.0 1.0 1.0
3 (C, C, C) 0.33 1.0 1.0 1.0

Figure D.17. CSS Frequency Maps for the Meta-Level Non-Singularities in the Transformed
Grammar, VTG-1’

Non-Singularity CSS Distribution Factor ATc��c� AT1c��c�
1 0.33 1.0 2.0
2 0.33 1.0 2.0
3 0.33 1.0 2.0
(Totals) 1.00 1.0 2.0

Figure D.18. Frequency Map for Meta-Level Non-Singularities in Grammar VTG-1

D.4 Approximate Processing and Base Space Frequency Maps

In Chapter 13, we describe a set of experiments that were conducted to validate the
application of the IDP/UPC framework in the analysis of approximate processing domains.
In these experiments, the frequency maps for meta-levels were calculated as described in
Chapter D.3. Chapter D.3 did not discuss the effects that approximate processing has on the
base space or on the frequencies of base space elements. These issues are discussed in detail in
this section.

Chapter 10.3.4 describes a variety of methods for mapping the results of processing in a
projection space back to the base space. In the experiments in Chapter 13, the problem solver
used a grammar transformation to map the results of problem solving back to the base space.
After using approximate processing to determine a set of potential solutions, the problem solver
transforms the interpretation grammar by removing all rules that are not on paths to elements
in the set of potential solutions. We will now illustrate the processes used to transform the
grammar and to compute the resulting frequency map.

The grammar used in the experiments is shown again in Fig. D.20. Now, consider the
problem instance shown in Fig. D.21. The input data is shown with subscripts indicating the
time period in which the signal was detected.

ATc��c� AT1c��c� VLCA
B
C Alh Blh Clh

FB
n 1.0 2.0 3.0 1.2 1.2 1.2

Figure D.19. Meta-Level Frequency Map for VTG-1

304

P.1.1. T � T1 A p=0.33
P.1.2. T � T2 B p=0.33
P.1.3. T � T3 C p=0.33
P.2. T1 � A A p=1.0
P.3. T2 � B B p=1.0
P.4. T3 � C C p=1.0
P.5. A � G1 G2 p=1.0
P.6. B � G3 G4 p=1.0
P.7. C � G5 G6 p=1.0
P.8.1. G1 � S1 S2 p=0.9
P.8.2. G1 � S1 S2 S6 p=0.1
P.9. G2 � S11 S12 p=1.0
P.10.1. G3 � S1 S11 p=0.9
P.10.2. G3 � S1 S11 S12 p=0.1
P.11. G4 � S2 S6 p=1.0
P.12.1. G5 � S2 S11 p=0.9
P.12.2. G5 � S1 S2 S11 p=0.1
P.13. G6 � S6 S12 p=1.0

Figure D.20. Full Grammar VTG-1 for Tracking Vehicles Through Multiple Time-Locations

lh lh lh lh lh lh

S1t1 S2t1 S6t1
S11t1 S12t1

S1t2 S2t2 S6t2 S11t2 S12t2

At1
Bt1 Ct1 At2

Bt2 Ct2

lh

S1t3 S2t3 S11t3 S12t3

At3

VLCt1
p VLCt1

p VLCt1
p

[A,B,C] [A,B,C] [A]

AT1t1-t2
p

[A,B,C]

AT1t2-t3
p

[A,B,C]

ATt1-t3
p

[A]

Figure D.21. Example Problem Instance

305

P.1.1. T � T1 A p=1.0
P.2. T1 � A A p=1.0
P.5. A � G1 G2 p=1.0
P.8.1. G1 � S1 S2 p=0.9
P.8.2. G1 � S1 S2 S6 p=0.1
P.9. G2 � S11 S12 p=1.0

Figure D.22. VTG-1 Transformed By Mapping Operator

CSS Num Singularity Rules Characteristic Signal Set Distribution Factor
1. A (5, 8.1, 9) (S1, S2, S11, S12) 0.9
2. A (5, 8.2, 9) (S1, S2, S6, S11, S12) 0.1

Figure D.23. Characteristic Signal Sets for Transformed VTG-1

The figure shows the approximate processing that is conducted on the input. Level
hopping approximations are clustered at an abstract level and combined into an approximate
track. The approximate track result indicates that the characteristics of the potential solution
set are restricted to tracks of vehicles of type A. This result is mapped back to the base space by
transforming the base space grammar to that shown in Fig. D.22. The grammar is transformed
by eliminating all paths that lead to results are not in the potential solution set. Thus, all paths
to other than A are eliminated.

Now, the computation of the frequency map is identical to that described in the preceding
sections as illustrated in the following figures.

Figure D.23 shows the CSSs for the transformed grammar. Note that all CSSs other than
those that can be generated from an A are deleted.

306

Sing. CSS Dist A B C G1 G2 G3 G4 G5 G6 S1 S2 S6 S11 S12
A 1 0.9 1 1 1 1 1 1 1
A 2 0.1 2 2 1 1 1 1 1 1

Figure D.24. CSS Frequency Map for Singularities in the Transformed Grammar

CSS Num CSS Generation Rules Characteristic Signal Set Distribution Factor
1. (1.1, 2) (A, A, A) 1.0

Figure D.25. Characteristic Signal Sets for Non-Singularities in Transformed VTG-1

Figure D.24 shows the CSS frequency maps for the elements of the transformed grammar.
Although many of the elements shown have actually been deleted in the transformed grammar,
they are left in the figure to contract the transformed frequency map with the original frequency
map in Fig. D.3. For example, in the second row, the entries for B and C are both 0. In the
original frequency map, they were both 2. However, since neither B or C is on a path to an “A”
track, these partial results are not generated by the transformed grammar.

In the transformed grammar, there is only a single non-singularity CSS and it is shown in
Fig. D.25.

The transformed grammar is still modified to compute the frequencies of non-singularities
as shown in Fig. D.26.

The frequencies of the modified version of the transformed grammar are shown in
Fig. D.27.

The modified CSS frequencies are converted to the frequencies for the non-singularities as
shown in Fig. D.28.

Finally, the domain frequency map for the transformed grammar is created by combining
the singularity and non-singularity frequency maps. This is shown in Fig. D.29.

P.1.1. T � T1��� A�

P.2.a. T1��� � A� A�

P.2.b. T1��� � A� A�

P.5. A � G1 G2
P.8.1. G1 � S1 S2
P.8.2. G1 � S1 S2 S6
P.9. G2 � S11 S12

Figure D.26. Modified Version of Transformed Grammar for Calculating Non-Singularity
Frequencies

307

Non-Singularity CSS Dist T T1��� T1���
1 (A, A, A) 0.33 1.33 1.21 1.21

Figure D.27. CSS Frequency Maps for the Transformed Grammar, VTG-1’

Non-Singularity CSS Distribution Factor T T1
1 1.0 1.33 2.42

Figure D.28. Frequency Map for Non-Singularities in the Transformed VTG-1

D.5 Discussion

It should be clear from the preceding examples that the concepts of singularities and non-
singularities are important components of the IDP/UPC framework. The use of singularities
makes it possible to accurately compute frequency maps of even very large, complex domains.
More specifically, the use of singularities makes it possible to generate frequency maps based
on exhaustive CSS enumeration in many instances where it would not otherwise be possible to
do so. If one tried to compute these frequencies maps without the use of singularities, it would
be necessary to estimate frequency values based on sample sets and this would inherently skew
the results with sampling errors.

A very important contribution associated with the use of singularities is that of compu-
tational efficiency. By computing singularity values and then using cached information, it is
possible to quickly calculate analyses for large, complex grammars.

In the vehicle tracking domain, the definition of singularities is naturally associated with
the time periods that are characteristic of the problem. However, it is possible to define
singularities for virtually any interpretation domain. In essence, a singularity is a component
of a problem domain that is repeated multiple times within a single problem instance. For
example, in a natural language (NLP) or image processing (IP) domain, it is possible to define
many kinds of singularities. Verb Phrases, noun phrases, sentences, and paragraphs are all
example of singularities that can be found in NLP domains. Images of people, faces, cars, etc.,
are examples of singularities that are found in image processing domains.

An important consideration in designing a domain grammar is that the elements of a
singularity should be as heterogeneous as possible. For example, if a verb phrase singularity
were defined for an NLP domain, it might be necessary to define two different kinds of verb

T T1 A G1 G2 S1 S2 S6 S11 S12
FB
n 1.33 2.42 3.3 3.3 3.0 3.0 3.0 0.1 3.0 3.0

Figure D.29. Domain Frequency Map for VTG-1

308

phrases, active and passive. This is sometimes necessary to get meaningful differentiation in
an analysis. For example, in a vehicle tracking domain, it is not necessarily useful to lump
all vehicle types into a single grammar element. This makes it impossible to differentiate the
behavior of distinct kinds of tracks in the analysis.

REFERENCES

[Berliner, 1979] Hans Berliner. The B* tree search algorithm: A best-first proof procedure.
Artificial Intelligence, 12:23–40, 1979.

[Bonissone and Decker, 1986] Piero P. Bonissone and Keith S. Decker. Selecting uncertainty
calculi and granularity: An experiment in trading-off precision and complexity. In L. N.
Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence. North Holland, 1986.

[Bonissone et al., 1987] Piero P. Bonissone, Steven S. Gans, and Keith S. Decker. RUM: A
layered architecture for reasoning with uncertainty. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, August 1987.

[Campbell et al., 1991] I. C. Campbell, K. J. Luczynski, and I. Hood. Putting knowledge-
based concepts to work for mechanical design. In Reid Smith and Carlisle Scott, editors,
Innovative Applications of Artificial Intelligence 3: Proceedings of the IAAI-91 Conference, pages
157–176. AAAI Press/The MIT Press, 1991. ISBN 0-262-68068-8.

[Carver and Lesser, 1991] Norman Carver and Victor Lesser. The Evolution of Blackboard
Control. Expert Systems with Applications, 7(1), 1991. Special issue on The Blackboard
Paradigm and Its Applications.

[Carver and Lesser, 1993] Norman Carver and Victor R. Lesser. Planning for the control of
an interpretation system. IEEE Transactions on Systems, Man, and Cybernetics, 23(6), 1993.
Special Issue on Scheduling, Planning, and Control.

[Corkill and Lesser, 1981] Daniel D. Corkill and Victor R. Lesser. A goal-directed Hearsay-II
architecture: Unifying data-directed and goal-directed control. Technical Report 81-15,
Department of Computer and Information Science, University of Massachusetts, Amherst,
Massachusetts 01003, June 1981.

[Corkill et al., 1982] Daniel D. Corkill, Victor R. Lesser, and Eva Hudlická. Unifying
data-directed and goal-directed control: An example and experiments. In Proceedings of
the National Conference on Artificial Intelligence, pages 143–147, Pittsburgh, Pennsylvania,
August 1982.

[Corkill, 1983] Daniel David Corkill. A Framework for Organizational Self-Design in Dis-
tributed Problem Solving Networks. PhD thesis, University of Massachusetts, February 1983.
(Also published as Technical Report 82-33, Department of Computer and Information
Science, University of Massachusetts, Amherst, Massachusetts 01003, December 1982.).

[Davis, 1980] Randall Davis. Meta-rules: Reasoning about control. Artificial Intelligence,
15:179–222, 1980.

[Decker et al., 1989] Keith Decker, Marty Humphrey, and Victor Lesser. Experimenting with
control in the DVMT. Technical Report 89-00, Department of Computer and Information
Science, University of Massachusetts, Amherst, Massachusetts 01003, March 1989.

310

[Decker et al., 1990] Keith S. Decker, Victor R. Lesser, and Robert C. Whitehair. Extending
a blackboard architecture for approximate processing. The Journal of Real-Time Systems,
2(1/2):47–79, 1990. Also COINS TR-89-115.

[Durfee and Lesser, 1986] Edmund H. Durfee and Victor R. Lesser. Incremental planning
to control a blackboard-based problem solver. In Proceedings of the National Conference on
Artificial Intelligence, pages 58–64, Philadelphia, Pennsylvania, August 1986.

[Durfee, 1987] Edmund H. Durfee. A Unified Approach to Dynamic Coordination: Planning
Actions and Interactions in a Distributed Problem Solving Network. PhD thesis, University of
Massachusetts, September 1987. (Also published as Technical Report 87-84, Department
of Computer and Information Science, University of Massachusetts, Amherst, MA,
September,1987.).

[Erman et al., 1980] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy.
The Hearsay-II speech-understanding system: Integrating knowledge to resolve uncertainty.
Computing Surveys, 12(2):213–253, June 1980.

[Fox, 1983] Mark S. Fox. Constraint-directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Carnegie-Mellon University, 1983. (Also published as Technical Report
CMU-CS-83-161, Computer Science Department, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania 15213.).

[Fu, 1982] King Sun Fu. Syntactic Pattern Recognition and Applications. PH, 1982.

[Garvey and Lesser, 1993] Alan Garvey and Victor Lesser. Design-to-time real-time schedu-
ling. IEEE Transactions on Systems, Man, and Cybernetics, 23(6):1491–1502, 1993.

[Gazdar et al., 1982] Gerald Gazdar, Geoffrey K. Pullum, and Ivan A. Sag. Auxiliaries and
related phenomena in a restrictive theory of grammar. Language, 58(3):591–638, 1982.

[Genesereth and Smith, 1982] Michael R. Genesereth and David E. Smith. Meta-level archi-
tecture. Technical report, Computer Science Department, Stanford University, Stanford,
California 94305, December 1982.

[Genesereth, 1983] Michael R. Genesereth. An overview of meta-level architecture. In
Proceedings of the National Conference on Artificial Intelligence, pages 119–124, Washington,
D.C., August 1983.

[Hayes-Roth and Hayes-Roth, 1979] Barbara Hayes-Roth and Frederick Hayes-Roth. A
cognitive model of planning. Cognitive Science, 3(4):275–310, October–December 1979.

[Hayes-Roth and Lesser, 1977] Frederick Hayes-Roth and Victor R. Lesser. Focus of attention
in the Hearsay-II system. In Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, pages 27–35, Tiblisi, Georgia, USSR, August 1977.

[Hayes-Roth, 1985] Barbara Hayes-Roth. A blackboard architecture for control. Artificial
Intelligence, 26(3):251–321, July 1985.

311

[Hudlická and Lesser, 1984] Eva Hudlická and Victor R. Lesser. Meta-level control through
fault detection and diagnosis. In Proceedings of the National Conference on Artificial
Intelligence, pages 153–161, Austin, Texas, August 1984.

[III, 1990] Norman F. Carver III. Sophisticated Control for Interpretation: Planning to Resolve
Sources of Uncertainty. PhD thesis, University of Massachusetts, September 1990.

[Johnson and Hayes-Roth, 1987] M. Vaughn Johnson and Barbara Hayes-Roth. Integrating
diverse reasoning methods in the BB1 blackboard control architecture. In Proceedings of the
National Conference on Artificial Intelligence, pages 30–35, Seattle, Washington, July 1987.

[Knoblock, 1991a] Craig A. Knoblock. Automatically Generating Abstractions for Problem
Solving. PhD thesis, Carnegie Mellon University, 1991. (Also published as Technical
Report CMU-CS-91-120, School of Computer Science, Carnegie Mellon University.).

[Knoblock, 1991b] Craig A. Knoblock. Search reduction in hierarchical problem solving. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages 686–691, San
Diego, California, July 1991.

[Knoblock, 1994] Craig A. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, 68:243–302, 1994.

[Knuth, 1968] D. Knuth. Semantics of context-free grammars. Mathematical Systems Theory,
2(2):127–145, 1968.

[Kumar and Kanal, 1988] Vipin Kumar and Laveen N. Kanal. The CDP: A unifying
formulation for heuristic search, dynamic programming, and branch-and-bound. In
L. Kanal and V. Kumar, editors, Search in Artificial Intelligence, Symbolic computation,
chapter 1, pages 1–27. Springer-Verlag, 1988.

[Lesser and Corkill, 1983] Victor Lesser and Daniel Corkill. The Distributed Vehicle Moni-
toring Testbed: A tool for investigating distributed problem solving networks. AI Magazine,
4(3):15–33, Fall 1983. (Also to appear in Blackboard Systems, Robert S. Engelmore and
Anthony Morgan, editors, Addison-Wesley, in press, 1988 and in Readings from AI Magazine
1980–1985, in press, 1988).

[Lesser and Pavlin, 1988] Victor R. Lesser and Jasmina Pavlin. Performing approximate
processing to address real-time constraints. COINS Technical Report 87-126, University
of Massachusetts, 1988.

[Lesser et al., 1987] Victor R. Lesser, Daniel D. Corkill, and Edmund H. Durfee. An update
on the Distributed Vehicle Monitoring Testbed. Technical Report 87-111, Department of
Computer and Information Science, University of Massachusetts, Amherst, Massachusetts
01003, December 1987.

[Lesser et al., 1988a] Victor Lesser, Jasmina Pavlin, and Edmund Durfee. Approximate
processing in real-time problem solving. AI Magazine, 9(1):49–61, Spring 1988.

[Lesser et al., 1988b] Victor R. Lesser, Jasmina Pavlin, and Edmund Durfee. Approximate
processing in real-time problem solving. AI Magazine, 9(1):49–61, Spring 1988.

312

[Lesser et al., 1989a] V. R. Lesser, D. D. Corkill, R. C. Whitehair, and J. A. Hernandez.
Focus of control through goal relationships. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Detroit, August 1989.

[Lesser et al., 1989b] V. R. Lesser, R. C. Whitehair, D. D. Corkill, and J. A. Hernandez.
Goal relationships and their use in a blackboard architecture. In V. Jagannathan, Rajendra
Dodhiawala, and Lawrence Baum, editors, Blackboard Architectures and Applications, pages
9–26. Academic Press, Inc., 1989.

[Lesser et al., 1993] Victor Lesser, Hamid Nawab, Izaskun Gallastegi, and Frank Klassner.
IPUS: An architecture for integrated signal processing and signal interpretation in complex
environments. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
Washington, DC, July 1993.

[Lowrance and Garvey, 1982] John D. Lowrance and Thomas D. Garvey. Evidential rea-
soning: A developing concept. IEE 1982 Proceedings of the International Conference on
Cybernetics and Society, pages 6–9, 1982.

[Minsky, 1963] Marvin Minsky. Steps towards artificial intelligence. In E. A. Fiegenbaum
and J. Feldman, editors, Computers and Thought, pages 406–450. McGraw-Hill, 1963.

[Mullins and Rinderle, 1991a] Scott Mullins and James Rinderle. Grammatical approaches
to engineering design, part I: An introduction and commentary. Research in Engineering
Design, 2:121–135, 1991.

[Mullins and Rinderle, 1991b] Scott Mullins and James Rinderle. Grammatical approaches
to engineering design, part II: Melding configuration adn parametric design using atrribute
grammars. Research in Engineering Design, 2:137–146, 1991.

[Newell et al., 1962] A. Newell, J. C. Shaw, and H. a. Simon. The process of creative thinking.
In Contemporary Approaches to Creative Thinking, pages 63–119. Atherton Press, New York,
1962.

[Newell et al., 1963] A. Newell, J. C. Shaw, and H. a. Simon. Empirical explorations with the
logic theory machine: A case history of heuristics. In E. A. Fiegenbaum and J. Feldman,
editors, Computers and Thought, pages 109–133. McGraw-Hill, 1963.

[Papadimitriou and Steiglitz, 1982] Christos H. Papadimitriou and Kenneth Steiglitz. Com-
binatorial Optimization: Algorithms and Complexity. Prentice Hall, 1982.

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, first edition, 1984.

[Samuel, 1963] A. L. Samuel. Some studies in machine learning using the game of checkers.
In E. A. Fiegenbaum and J. Feldman, editors, Computers and Thought, pages 71–105.
McGraw-Hill, 1963.

[Simon, 1969] Herbert A. Simon. The Sciences of the Artificial. MIT Press, 1969.

[Stefik, 1981] Mark Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial
Intelligence, 16:141–170, 1981.

313

[Stockman, 1979] G. C. Stockman. A minimax algorithm better than Alpha-Beta? Artificial
Intelligence, 12:179–196, 1979.

[V.R.Lesser et al., 1975] V.R.Lesser, R.D.Fennell, L.D.Erman, and D.R.Reddy. Organization
of the hearsay-ii speech understanding system. In IEEE Transactions on Acoustics, Speech,
and Signal Processing, ASSP-23, pages 11–23, January 1975.

[Whitehair and Lesser, 1993] Robert C. Whitehair and Victor R. Lesser. A Framework for
the Analysis of Sophisticated Control in Interpretation Systems. Technical Report 93–53,
Department of Computer and Information Science, University of Massachusetts, Amherst,
Massachusetts 01003, 1993.

[Wilensky, 1981] Robert Wilensky. Meta-planning: Representing and using knowledge
about planning in problem solving and natural language understanding. Cognitive Science,
5(3):197–233, July–September 1981.

