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Abstract. To scale agent technologies for widespread use in open systems, agents must
have an understanding of the organizational context in which they operate. Our current
focus is on the expansion of agent knowledge structures to support modeling of organiza-
tional information and on a corresponding expansion of agent control techniques to use
the information. In this paper we focus on the issue of task valuation and action selection
in such socially situated agents. Specifically on the issue of quantifying agent relation-
ships and relating work motivated by different sources. For example, the comparison of
work done for self-interested reasons to work motivated by cooperative strategies.

1 Introduction

We believe that in order to scale-up agent technology [14] for use in open application
domains, e.g., electronic commerce on the web, agents must model their organizational
relationships with other agents and reason about the value or utility of interacting and
coordinating with particular agents over particular actions. For example, a database
management agent owned and operated by IBM1 might have an extremely cooperative
relationship with an information gathering agent owned by Lotus (Lotus is a subsidiary
of IBM), but an entirely different type of relationship with a Microsoft information
gathering agent – the IBM agent might prefer to service requests for the Lotus agent
over the Microsoft agent or it might be willing to cooperate with the Microsoft agent
if a higher fee is paid for its services. The agents might even coordinate via different
protocols; the IBM agent might haggle with the Microsoft agent over delivery time
and price whereas it might simply satisfy the Lotus request in short order and with a
nominal or zero profit margin. Representing situations such as these is one aspect of our
current research agenda. The overall objective is to expand the contextual information
used by agents to make control decisions. Space limitations preclude a full description
of the modeling or knowledge structures under consideration, however, the structures
specify, or partially specify factors such as: the (multiple) organizations to which an
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agent belongs, the different organizational roles an agent is likely to perform for the
organization (in a task-centered sense, akin to [12]), the relationships between agents
within the organization and without, the importance of a given role to an organization,
the importance of a role to the agent, the coordination protocols to use in different
circumstances, etc.

Broadening the scope of an agent’s understanding of the organizational context in
which it operates affects the agent control equation in two primary ways. Structural in-
formation affects the scope of the agent control process. For example, information that
specifies with which agents a given agent is likely to interact, with respect to a partic-
ular goal, affects the scope of the agent’s coordination dialogue. Structural information
is particularly important in large MAS because it helps control the combinatorics – it
may constrain the distributed search space for any coordination episode. In contrast,
value information pertains mainly to representing, and reasoning about, complex agent
relationships. Value information affects the way in which a given agent evaluates its
candidate tasks and actions; information that describes the objective function [22] of an
organization, and thus the relative importance of tasks performed for the organization,
falls into this category. This characterization may appear over-simplified as interactions
between coordination actions and problem solving actions may result in scope issues
affecting value and vice versa. We differentiate between the types of information in
this fashion because structural information pertains mainly to coordination activities
whereas value information pertains mainly to the value or utility associated with partic-
ular problem solving options (including coordination actions). In this paper, we focus
on the value side of the problem, i.e., on the agent’s in context task valuation and selec-
tion process.

To ground the discussion, consider a simple example. Figure 1 shows an organized
network of financial information agents in the WARREN [9] style. The network is a
subset of a larger organization of agents that is populated by three types of agents.
Database Manager (DBM ) agents are experts in data maintenance and organization.
These agents maintain repositories of information, e.g., D&B reports, Value Line re-
ports, financial news, etc., and act as the interface between a repository or digital li-
brary and the rest of the network. The repositories may be simple databases, collec-
tions of databases, or even entail lower-level database management agents with which
the primary database manager interacts. Thus the manager’s functions are not simply
to query a single existing database, instead they conform to the properties of agency,
having multiple goals, multiple ways to achieve the goals, and so forth. Information
Gathering (IG) agents are experts in particular domains. They know about databases
(and database managers) pertaining to their area of expertise, or know how to locate
such databases. Their task is to plan, gather information, assimilate it, and produce a
report, possibly accompanied by a recommendation to the client about a particular ac-
tion to take based on the gathered information. The IG agents pictured in the figure are
both experts at collecting and assimilating financial news to build investment profiles
of different companies. Personal Agents (PA) interface directly with the human client,
perhaps modeling the client’s needs. These agents also decide with which information
specialists to interact to solve a client’s information need. PAs for a given company
may interact with specialists outside of the company, however, interaction styles may
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Fig. 1. A Network of Organized Information Agents

differ, i.e., different protocols may be used, different fee structures may apply, etc. The
edges in the figure denote interactions between agents. We will focus on the interactions
and relationships between the IG expert for Merrill Lynch, denoted IGML, and the IG
expert for Schwab, and the multiple pictured PAs.

Agent IGML is organizationally situated. The agent belongs to multiple different
organizations and it has different relationships with the other agents, stemming from
the different organizations, different organizational objectives within and without the
organizations [3], and from different relationships within the organizations. Figure 2(a)
shows IGML’s organizational relationships. It is part of the Merrill Lynch corporate
structure and thus shares this organization with PAML� and PAML�. It is also part of
the set of IG agents that specialize in financial information gathering and shares this
in common with IGS . IGML also belongs to the organization of financial informa-
tion agents and shares this in common with PAOther . Note, we view organizations as
hierarchical structures that can be specialized (i.e., subclassed). In this figure, the or-
ganization shared by IGML and PAOther may have the same root as the organization
shared by IGML and IGS , however, the specializations differ (in fact, all the agents
are members of a root organization pertaining to financial information agents). In ad-
dition to its organizational positioning, IGML also has different relationships within
these organizations. Figure 2(b) shows the agent’s different relationships. This figure
differs from Figure 2(a) in that IGML has a different relationship with PAML� and
PAML�. While PAML� and PAML� are both members of the Merrill Lynch organi-
zation, PAML� represents a mutual fund manager from the funds division and PAML�

represets an individual broker associated with the retail division.
One of the issues that arises when examining a scenario like this is the need to relate

the different motivational factors that influence agent decision making. For example,
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(a) IGML’s Organizational Memberships
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(b) IGML’s Inter-agent Relationships

Fig. 2. Different Relationships Complicate Action Choice



IGML interacts with PAML� and PAML� for cooperative reasons. In contrast, IGML

interacts with PAOther for self-interested reasons, namely profit for itself, its division,
or Merrill Lynch. Agents situated in open, social, environments interact with different
agents, and different organizations of agents, for different reasons. The ability to relate
these different motivations is a requisite for the agents to act rationally, or approximately
so, given their social context. Without this ability, how can IGML determine which
requests to service, and in what order? Assuming a model in which agents are rationally
bounded, tasks/requests arrive dynamically, and deadlines or service times on requests
are present, the agent cannot simply perform all the tasks, but must instead select a
subset of the tasks to perform and then determine an appropriate sequence in which
to perform them. It is important to note that the agent decision process is contextual.
Since the environment is dynamic, and the state of problem solving changes over time,
given a set of tasks from which to choose, the choice of which tasks are appropriate is
dependent on the current situation. For instance, if IGML has spent the last n units of
time problem solving for PAML�, and new requests from PAML� and PAML� arrive,
even if PAML� requests generally take precedence over PAML� requests (as specified
by the organizational structure), it may be appropriate for IGML to service the PAML�

request before servicing the PAML� request.

Figure 3 shows IGML’s candidate actions at some point time, t. The tasks are struc-
ture in a TÆMS [10] network, though the sum() function simply specifies that any num-
ber of the tasks may be performed in any order. IGML’s candidate tasks include servic-
ing requests from PAML�, PAML�, and PAOther, as well as doing a local-only task
(updating its source models). It also has the option of contracting out its update sources
task to IGS . In order to compare these actions the agent requires a framework that
quantifies and relates the different motivational reasons for performing particular tasks,
as well as relating the costs/benefits of doing tasks for others, and doing local work, to
the costs/benefits associated with contracting out the local update task. The complexity
of the relationships that the agent has with other agents requires this complex approach
to evaluation. The rationale for keeping the different motivational concerns separate is
that they represent quantities that are not interchangeable, e.g., progress toward differ-
ent problem solving objectives, akin to [18]. They are not reducible at all agents to some
uniform currency and not all quantities have value to all other agents. For example, do-
ing a favor for someone cannot in turn be used to purchase something at the local store.
Another intuitive example: work done on one’s yard has no intrinsic value to a profes-
sional peer, unless said peer is your neighbor. With respect to computational agents,
partitioning of concerns like these maps to the balancing of local work with non-local
work, but also to the balancing of work done to satisfy some joint goal JG� in con-
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Fig. 3. IGML’s Abstracted Task Structure



trast to work done to satisfy joint goal JG� . The idea of this research is not wholly to
partition different activities, and the evaluation of their worth to the agent, but rather to
support ranges of representations, e.g., tasks and actions that have both self-interested
and cooperative motivations, or work relating to multiple different joint goals held by
multiple agents related, at least partially, through different organizations.

In the sections that follow we present a model for relating different motivational
factors, and different measures of progress, that enables agents to compare different
types of actions, and the costs and benefits of particular courses of action. We then
discuss the issue of interfacing this model with our existing agent control technologies
and present ideas about how agents will make decisions based on this model.

2 Quantifying and Comparing Motivations
There are three different classes of tasks that a socially situated agent, such as IGML,
must reason about: 1) tasks that are of local concern only and do not have direct value
or repercussions in any non-local context; 2) tasks that other agents wish the local agent
to perform; and 3) tasks that other agents may perform for the local agent. Obviously,
there are graduations or tasks that pertain to more than one of these classes. For ex-
ample, a task may produce a result that is valuable locally as well as having value to
another agent. Additionally, each task may be performed for cooperative reasons, self-
interested reasons, or ranges of these. For example, performing a task for an associate
for a nominal fee may pertain to both cooperative concerns and self-interested motiva-
tions. It is important to note that even actions performed for cooperative reasons actu-
ally have different motivations. For example, doing a favor for one’s superior at work
is evaluated differently than doing a favor for a peer, which is treated differently than
doing a favor for persons unknown, and so forth. In order to address these concerns, we
have developed a model for agent activities that quantifies these different motivational
factors and enables the local agent to compare the factors via a multi-attributed utility
function. Definitions:

Agents are autonomous, persistent, computing entities that have the ability to choose
which tasks on which to operate, and when to perform them. Agents:

– Can perform tasks locally if they have sufficient resources.
– Interact with other agents to perform tasks. This entails the local agent asking other

agents to perform tasks, or the local agent performing tasks for other agents.2

– Agents interact via multiple different mediums of exchange known as motivational
quantities (MQs) that are produced by performing tasks, i.e., a given agent has
a set of MQs that it accumulates and exchanges with other agents, as shown in
Figure 4(a).3

2 This model subsumes results sharing and coordination through side effects. If an agent has
already produced a result that another agent needs, then the other agent’s task has already been
performed. The existence of the result at hand may affect the “price” charged for the results,
but, it does not affect the abstract modeling approach described here.

3 If agents are allowed to contract with other agents via a proxy agent, and the proxy agent
translates MQs of one type to another, it is possible for the agents to be viewed as sharing a
common MQ. However, this is limited by the availability of MQs of the proper type. If we
ignore the issue of MQ quantity, the general issue of reducibility of MQs via proxy can be
viewed as a graph connectivity problem.
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(b) Utility is Based on MQ State

Fig. 4. Role of MQ in Agent Control

– Not all agents have the same MQ set. However, for two agents to interact, they
must have at least one MQ in common (or have the means for forming an MQ

dynamically).
– For each MQi belonging to an agent, it has a preference function or utility curve4,
Ufi , that describes its preference for a particular quantity of theMQ, i.e., �MQi� �Ufi��
such that Ufi�MQi� �� Ui where Ui is not directly interchangeable with Uj un-
less i � j. Different agents may have different preferences for the same MQi.

– An agent’s overall utility at any given moment in time is a function of its differ-
ent utilities: Uagent � ��Ui� Uj � Uk� ���, as shown in Figure 4(b). We make no
assumptions about the properties of ���, only that it enables agents to determine
preference or dominance between two different agent states with respect to MQs.

– For simplicity of presentation, let us assume that ��� is not a multi-variate util-
ity function and instead that for that for each Ui there is an associated function
�i��

5 that translates MQ specific utility into the agent’s general utility type, i.e.,
�Ui� ��i�� such that �i�Ui� �� Uagent. Thus Uagent may take the form of Equa-
tion 1.6

Uagent �

nX

i��

�i�Ui� and �Uagent � j

nX

i��

�i�U
�

i�� �i�Ui�j (1)

Tasks are abstractions of the primitive actions that the agent may carry out. We return
to the issue of abstraction in Section 4. Tasks:

– Require some time or duration to execute, denoted di.
– May have deadlines, deadlinei, for task performance beyond which performance

of said task yields no useful results. (This could also be defined via a function that
describes a gradual decrease in utility.)

– Produce some quantity of one or moreMQs, called an MQ production set (MQPS),
and denoted: MQPSi�j�k � fqi� qj � qk� ��g, where �i� qi � �. These quantities

4 We currently view these as continuous functions but are exploring the possible need for step-
wise utility functions that describe “saving-up” for a potential future event.

5 Astute readers will note that �i�� could be combined with Ufi��. We partition these concerns
to provide separate places for mapping different organizational and relationship-centered in-
fluences.

6 This simple model assumes that all utilities associated with different motivational quantities
can be mapped to some common denominator at the agent. This does not mean that the same
mapping is possible at all agents, nor do we feel this property is necessary for the model. It is
intended to simplify presentation and model manipulation at this time.



are positive and reflect the benefit of derived from performing the task. They may
be the direct outcome of performing the task, i.e., some result produced by doing
the actual work, or they may be quantities that another agent is paying for the work
to be performed. In this model, the two are equivalent.

– Tasks may have multipleMQ production sets; that is a given task may produce dif-
ferent groups of MQs. This models the idea that agents may interact with multiple
different mediums-of-exchange. For instance, agent IGML may service a request
for agent IGS in return for some financial compensation, or by IGS “calling-in”
a favor, or for some combination of these. The multiple MQ production sets are
represented: fMQPSi�j� MQPSl�m� ��g � f fqi� qjg� fql� qmg� ��g. Note that
MQx � MQy may �� � as differentMQPS sets may have common members. To
simplify presentation, we concentrate on tasks that have a single MQPS, though
we return to the issue of different MQPS in Section 3.7

– Akin to the MQPS, tasks may also consume quantities of MQs. The specification
of the MQs consumed by a task is called an MQ consumption set and denoted
MQCSi�j�k � fqi� qj � qk� ��g, where �i� qi � �. As with MQPSs, a task may
have multiple MQCS sets. Consumption sets model the idea of tasks consuming
resources and agents contracting work out to other agents, e.g., paying another
agent to produce some desired result or another agent accumulating favors or good
will as the result of task performance. In contrast to production sets, consumption
sets are the negative side of performing a particular task.

– All quantities, e.g., di, MQPS,MQCS, are viewed from an expected value stand-
point. We return to the issue of uncertainty in Section 5.
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Fig. 5. Motivational Quantities and Utility

To illustrate, Figure 5 shows a single utility curve for a single MQ. Assume some
task, T , produces X amount of MQi. The agent reasons about task performance,
and the utility thereof, by comparing the change in Ui associated with the change
in MQi that performing T will produce. If this is the only task being considered,
�Uagent � �Ui.

Figure 6 illustrates the model’s application to the task structure of IGML pictured in
Figure 3. The different problem solving options available to IGML are: 1) performing
task TPAML�

for PAML�; 2) performing task TPAOther for PAOther; 3) performing its

7 The issue of which MQPS from the candidate sets will pertain to a given transaction can be
viewed as an issue for explicit negotiation between agents [13], or as a dynamic agent choice
problem [23].



local update task, TLocal; 4) contracting its local update task out to IGS , represented as
TIGS

. Recall that IGML has different relationships with PAML�, PAOther , and IGS .
As shown in Figure 4(a), the agents’ different relationships translate into differentMQs
with which they interact. IGML services requests from PAML�for cooperative reasons
– it is part of IGML’s job description and it is recorded as an inter-company transaction
for reporting purposes. This motivation is expressed asMQML� in IGML’sMQPS. In
contrast, IGML has a very different relationship with IGS– per the two agents’MQPS

sets, they may interact via currency (MQ�) or via an MQ based on professional favors,
classified as MQS. IGML has still another relationship with PAOther and they interact
via currency only. To compare the different candidate tasks, IGML reasons about the
positive/negative changes in utility that result from carrying out the tasks. For example,
to compare TLocal, TPAML�

, and TPAOther (assuming the single valued utility mapping
shown in Equation 1):

1. For TPAML�
: 1) The task consumes a local resource UR�, e.g., monthly allotment

of ppp connection time. Therefore, compute the negative change in UR� that will
result from the performance of TPAML�

; 2) compute the positive change in UML�

that is produced by performing the task for PAML� (i.e., the increase in MQML�);
3) U �

agentscenario�ML�
� ��U �

R�� � ��U �

ML��.
2. For TPAOther : 1) compute the negative change in UR�, another (different) local

resource that is consumed by TPAOther ; 2) compute the positive change in U� that
is produced by performing the task for PAOther (i.e., the monetary payment from
PAOther to IGML); 3) U �

agentscenario�PAOther
� ��U �

R�� � ��U �

�
�.

3. For TLocal: 1) compute the positive change in UL produced by the performance of
task TLocal; 2) U �

agentscenario�Local
� ��U �

L�.
4. To select between the three, simply choose whichever has the highest gain in util-

ity for the agent. For example, if Uagentscenario�Local � Uagentscenario�PAOther and
Uagentscenario�Local � agentscenario�ML� then perform the local action. In other
words, if the gain in utility achieved by performing TLocal exceeds the utility pro-
duced by performingTPAML�

, even when considering the resource cost of TPAML�

(note that U �

R� is less than UR� in Figure 6), then it is preferable to perform TLocal.
Likewise with TPAOther .
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If the agent’s objective is to simply select which task to perform next, and tasks
do not have associated deadlines, and the present and future value of MQs are equiva-
lent, then it can reason using the maximum expected utility principle and select the task
at each point that maximizes immediate utility. However, this simple choose-between-
available-tasks model does not map well to situations in which tasks have deadlines, or
even situations with a temporal component. For example, consider choosing between
TLocal and TIGS

: if ��U �

L� � ��U �

S� � ��U �

L� then perform the task locally, oth-
erwise, contract it out. In this case, ��U �

S�, which is the cost of having IGS perform
the task for IGML, must be zero in order for IGML to consider allocating the task to
IGS . In order to properly assess the value of such an arrangement, the agents need to
use the model presented in this section for comparisons, but, to add components such
as opportunity cost or future value to the selection / decision process. We return to this
issue in Section 5.

In this section we have presented a model for comparing tasks that are motivated by
different factors. The model can support comparison between tasks that are performed
for other agents in return for financial gain to tasks that are performed for other agents
for cooperative reasons. Via the different preferences for the different quantities, agent
control can be modulated and agents can reason about mixtures of different task types
and different motivations. For example, a socially situated agent can reason about do-
ing work in exchange for money as well as the accumulation of goodwill, favors, and
other non-currency exchanges. The use of state in the model also facilitates contextually
dependent behaviors or adjustments to behaviors over time. Agent � performing coop-
erative work with a closely allied agent, 	, for instance, may need to balance this work
with cooperative work with others over time. As � accumulates goodwill (represented
as one MQ) with 	, its preference may shift to the accumulation of other MQs. The
use of utility for this application is flexible and very general, though to effectively use
the model we must address how to meaningfully plan and reason with the model and
how to integrate it into existing agent control technology. We return to these issues in
Sections 4 and 5.

3 Incorporating Organizational Structure and Influence

The MQ model enables the direct comparison for work motivated by variety of dif-
ferent sources, and it supports ranges of these. However, the model also supports the
integration of certain classes of organizationally derived influence and structure. For in-
stance, organizational relationships can be associated with particular MQs, i.e., agents
belonging to a particular organization and interacting for a particular organizational
goal, can use an MQ explicitly for that purpose. Thus agents belonging to the orga-
nization can reason about their contributions to group problem solving and the contri-
butions of others. Additionally, the same agents may then belong to different organiza-
tions, each having its own MQ – the model enables each agent to compare and assess
its contributions to multiple different concerns.

The selection of different MQPS and MQCS is another place where organiza-
tional structure integrates with the model. Organizations may have relationships with
each other and this can be mapped into the selection ofMQs in particularMQPS/MQCS

sets. For instance, if organization � related to organization 	 in such a way that mem-



bers of � are willing to coordinate in a cooperative fashion, though to a limited extent,
with members of 	, agents belonging to � can exchange MQ� as well as MQ�� . The
notion of “limited extent” in the previous sentence points to another place where orga-
nizational structure maps into theMQ-centric model; the preference functions or utility
curves of the agent reflect the relative importance of particular types of problem solving
activities to the agent. For example, a type of problem solving that is very important to
the agent will have a steep utility curve relative to its other concerns. If the importance is
uniform, the utility curve will have a constant (linear) slope; this approach also pertains
to power relationships between agents. Organizational influences and relationships can
also be mapped to �, or to the � functions used in the utility mapping of Equation 1.

Organizational structure imposed on the computation also comes into play in the
initial assignment of qi’s (quantities of MQs) to agents. Note that since work is pro-
duced over time, the system is not a zero sum game, but instead is a growing economy.
However, the initial allocation of MQs to agents predisposes the system to initialize in
a particular way and biases the flow of the distributed computation, as in [18].

Agent communication and the use of default knowledge also have roles in this
model. Negotiation [13] between agents can be used to select which MQs, from a set
of candidate MQPS / MQCS, will be used for a given transaction. Negotiation can
also be used to determine the “price” (in MQs) or quantity that a particular transaction
will produce. Auctions or other market mechanisms [27, 6, 4] can be integrated with
the model through this avenue. Space limitations preclude meaningful discussion of the
organizational influences into the model, but we feel that the ability to support organi-
zational structure in an agent’s contextual decision / evaluation process is an important
asset of this approach.

4 Integration with Detailed Agent Control
The MQ model is deliberately abstract to simplify control reasoning at the meso-level
of agent control [19], i.e., the computational organizational level rather than the micro-
level. While it could be used directly at the micro-level of agent control, the agent would
be unable to reason about a wide class of issues that are important for socially situated,
resource bounded, agents. The model lacks features such as explicit representation and
quantification of interactions8 between tasks and a detailed view of the actions that
may be used to carry out the tasks. We generally subscribe to a model where agents
have alternative ways to perform tasks (or achieve goals), and that part of the agent
control problem is to evaluate the different possible ways to perform a task, taking into
consideration the different trade-offs or performance characteristics, and to select one
or more from the set of alternatives. Additionally, detailed and complex interactions
between agent activities, such as chains of interactions, motivate detailed coordination
between agents. This detailed, quantitative, temporal, constraint and interaction based
view of the world is embodied by research in TÆMS [11], Design-to-Criteria (DTC)
agent scheduling [25], and GPGP [10] agent coordination.

The existence of such sophisticated, quantitative, machinery for agent control begs
the question of why the MQ-centered model is necessary. The detailed technologies

8 However, we are considering certain classes of interaction modeling at this level; the issue is
expressiveness versus tractability.



are well suited to representation and control at a particular level of detail (micro-level).
However, the representational power of the TÆMS modeling language has a downside
– complexity. Both GPGP and DTC cope with the combinatorics in different ways,
however, expanding the TÆMS model further, both in terms of detail and in terms of
problem solving scope, is undesirable. Through the MQ-model we aim to support a
new class of reasoning about the agent’s social environment, its organizational context,
while not adding to the complexity of DTC, GPGP, or the TÆMS modeling language
itself.

The integration of the MQ world view with the detailed tools is akin to other re-
cent work in integrating process-program controllers [15, 28] and opening the detailed
tools for use with BDI problem solvers [5, 20] and others [26, 16]. The general view is
that other high-level agent control components, or even high-level agent coordinators,
are responsible for influencing the selection of candidate tasks for the agent. In other
words, the responsibilities are partitioned: at one level components like BDI problem
solvers or organizational context experts (using the MQ model) reason about high-
level task and goal selection, possibly by exchanging information with other agents. At
another level, GPGP/DTC/TÆMS is used to perform feasibility analysis, to evaluate
the detailed temporal and resource constraints of the different tasks (and the different
primitive actions), and to form commitments between agents to sequence activities over
interactions and so forth. On one hand, abstract reasoning about tasks where optimality
or domain specificity are ideas to consider, and on the other hand, satisficing, real-time,
detailed, temporal control or implementation of the selected tasks and goals. In terms
of the MQ model itself – a reasoner using the model can work with other high-level
components to select the set of candidate tasks and goals for the agent, as well as modu-
late the lower-level feasibility and “implementation” tools by mappingMQ preferences
into the quality, cost, and duration used by these tools to reason about candidate tasks.
Space precludes a detailed discussion, but, the integration takes place on multiple fronts
and also requires a two-way interface between the high-level and low-level controllers.
Intuitively, as the high-level controllers lack the detailed, temporal, view, it is possible
to select candidate tasks that are unachievable (unimplementable), or unachievable in
any desirable way (per goal criteria) [24].

5 Future Directions

The model presented here is currently under development and integration. However, the
model stands on its own merits as a way to quantify and relate hereto unrelated concerns
like cooperative and self-interested motivational factors. Using the model, agents can
reason about different concerns like self-interest, favors, altruism and social welfare
[8]9. The model also frames the problem of balancing these different motivations, as
well as balancing work between different organizational entities and balancing different
agent relationships. The model relates to other recent work in the multi-agent commu-
nity, such as agents interacting via obligations [2], or notions of social commitment [7],

9 All mapped to differentMQs or groups ofMQs. However, the issue of how to specify system-
wide goal criteria, or organizational-level goals, that characterize acceptable ranges of these
must also be addressed to employMQs to concepts like social welfare in a meaningful fashion.



but it differs in its quantification of different concerns and its dynamic, contextual, rela-
tive, evaluation of these. The model resembles MarCon [18] as the different degrees-of-
satisfaction afforded by the MQ model is related to MarCon’s constraint optimization
approach, and MarCon too deals with utilities/motivations that cannot always be com-
mingled. MarCon, however, views constraints as agents, assigning particular roles to
particular agents, and the issue of which tasks to perform do not enter into the problem
space.

With respect to the work presented here, many research questions remain. Aside
from the obvious (and deliberate) lack of prescriptive semantics for the model, the
questions that remain include how to best leverage the model from a decision mak-
ing standpoint, i.e., how to incorporate the model into a high-level decision process that
can then be integrated with the rest of our agent control technology as discussed in Sec-
tion 4. The decision processes currently being considered include facets that factor-in
the future value of MQs, durations and deadlines, and the opportunity cost of choosing
one task over another. The importance of the future value question is best illustrated
in the context of cooperative coordination research, e.g., tit-for-tat agent coordination
[21] and other cooperative games [17]. If a cooperative agent has reason to believe that
future requests sent to other cooperative agents will not be carried out, then it has little
or less incentive to service requests for the other agents at the current time (reciprocity).
In the MQ view of the world, this would entail applying a present value to the MQs
and their associated utility that reflects the belief in the situation that will arise down-
stream temporally, e.g., if all cooperation with another agent is likely to cease, it makes
little sense to accumulate MQs for use with said agent. Opportunity cost is important
for related reasons – the selection of one task may preclude performance of another as
tasks may have deadlines. Reasoning about decommitment penalties or costs [1] also
factors into the model at this level; if an agent commits and then decommits, the op-
portunity cost of the task it has chosen instead may include the penalty in MQs to the
agent for its decommitment. Other research questions pertain to the role of uncertainty
in the MQ model and the integration of MQ-based experts with other high-level agent
control components.
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