
Toward Ubiquitous Satisficing Agent Control �

Thomas Wagner
Computer Science Department

University of Massachusetts
Amherst, MA 01003

Email: wagner@cs.umass.edu

Victor Lesser
Computer Science Department

University of Massachusetts
Amherst, MA 01003

Email: lesser@cs.umass.edu

October 24, 1997

Abstract

The dynamics and unpredictability of open environ-
ments pose a challenge to agent development. Agents
operating in these environments must be able to adapt
processing to the available resources and the current
problem solving context. The ability to satisfice ubiq-
uitously, in all aspects of agent problem solving, is the
key to existing in these environments.

1 Introduction
With the advent of open computing environments adapt-
ability in software applications is critical. Since open en-
vironments are less predictable, applications must be able
to adapt their processing to the available resources (hard-
ware, software, time, money, databases, etc.) and the dif-
ferent goal criteria set by different clients. In agent based
systems, where software applications are persistent, au-
tonomous, goal oriented, and function in real-time, this re-
quirement is doubly important. In this context agents must
be able to reason about their local problem solving activities,
interact with other agents, plan a course of action, and carry
out the actions in the face of limited resources and uncer-
tainty about action outcomes and the actions of other agents,
all in real-time and within real resource and cost constraints.
Furthermore, in dynamic open environments new tasks can
be generated by existing or new agents at any time, thus
an agent’s deliberation must be interleaved with execution
– rescheduling, replanning, and recoordination with other
agents is the norm, not the exception. To make matters even
more difficult the planning and scheduling tasks are gen-
erally non-trivial, requiring either exponential work or, in
practice, a sophisticated solution scheme that controls the
algorithmic complexity and makes agent control a tractable
problem.

Our most recent work in agent control, namely Design-
to-Criteria [11, 9] scheduling and GPGP [2, 6] multi-agent
coordination is directed at addressing such agent control is-
sues. We believe that the key to operating in these open envi-

� This material is based upon work supported by the National Science
Foundation under Grant No. IRI-9523419 and the Department of the Navy
and Office of the Chief of Naval Research, under Grant No. N00014-95-
1-1198. The content of the information does not necessarily reflect the po-
sition or the policy of the Government or the National Science Foundation
and no official endorsement should be inferred.

ronments is the ability to satisfice ubiquitously, and dynami-
cally, to adjust problem solving to the changing environment
and problem solving context. One view of this idea, that
also appears in our work, is the notion of resource-bounded-
reasoning, i.e., solving a problem in different amounts of
time or with different allotments of computational resources,
perhaps trading-off solution quality and resource consump-
tion. This is classically illustrated by an anytime [12] curve
and typically translates into parameterizing the size of the
solution space that is searched during problem solving (or
the level of abstraction at which problem solving occurs).
However, this view is only part of the picture. Satisficing,
and the ability to satisfice, is intertwined with the ability to
approach problem solving from a flexible perspective, to at-
tack problems using different techniques or using different
problem solving parameter settings, or consuming different
resources or quantities of resources. Flexibility enables sat-
isficing behavior. The existence of choices or alternatives
begets the ability to perform differently in different circum-
stances – this is why the ability to satisfice is important. In
different circumstances, different problem solving behaviors
are appropriate. The choice of which satisficing behavior
to employ is situation specific, i.e., dependent on the prob-
lem solving context at hand. These three concepts, satis-
ficing, flexibility, and situation specificity are all interrelated
and the boundary between these concepts blur when they
are examined closely. Through our work, we have come to
see and partially understand the relationships between these
concepts and the importance of addressing all of these no-
tions when building agent control systems. Understanding
the full ramifications of these concepts is taking the problem
one step further. We will return to this issue in Section 4,
but clearly satisficing on one aspect of problem solving nor-
mally has direct consequences to other aspects of problem
solving, or problem solving that occurs downstream tempo-
rally.

Before delving into the details of our satisficing agent
control work, let us ground further discussion in a high-level
overview of the modeling framework used in these research
projects. Our research focuses on a class of computational
task structures where there are typically multiple goals and
multiple different actions for performing a particular task,
where each action has different statistical performance char-
acteristics, and the outcomes of actions are highly uncer-

Find-Invoice-Price-Data

AutoSite

Gather-Reviews

Gather-Purchase-Data-on-Nissan-Maxima

Intelichoice

Edmund's-Price-Guide

Edmund's-Reviews Heraud's-Test-Drives

Get-URL

sum_all()

sum()

Issue-Request

max()

max()

enables

Q (2% 0)(98% 10)
C (100% 0)
D (50% 120)(25% 130)

(25% 140)

Q (20% 0)(80% 17)
C (100% 0)
D (40% 240)(60% 300)

Q = Quality
C = Cost
D = Duration

Subtask Relation

Enables NLE Method

Task

Q (5% 0)(95% .0001)
C (100% 0)
D (50% 30)(50% 60)

Q (100% 24)
C (100% $9.95)
D (50% 240)(50% 260)

Q (5% 0)(95% 12)
C (100% 0)
D (50% 120)(25% 130)

(25% 14)

Q (100% 17)
C (100% $4.95)
D (50% 480)(50% 560)

Figure 1: TÆMS Task Structure for Gathering Auto Purchase Information

tain. We model these problem solving activities using the
TÆMS [2] domain-independent hierarchical task modeling
framework. In TÆMS, primitive actions, called methods,
are modeled statistically via discrete probability distribu-
tions in three dimensions, quality, cost, and duration. Qual-
ity is a deliberately abstract domain-independent concept
that describes the contribution of a particular action to the
overall problem solving objective. Duration describes the
amount of time that a method will take to execute. Cost de-
scribes the financial or opportunity cost inherent in perform-
ing the action modeled by the method. It is no accident that
problem solving activities are modeled in these four (uncer-
tainty via the probability distributions) dimensions. Satisfic-
ing systems must operate in multiple dimensions to address
the multi-dimensionality of the environments in which they
exist. Problem solving issues are not typically limited to
time, other items are also important, e.g., resources, finan-
cial costs, robustness, and precision. The ability to adapt
problem solving for different multi-dimensional sets of goal
criteria, amenable to future extension, is critical.

Returning to TÆMS, as with most hierarchical represen-
tations the high-level task is achieved by achieving some
combination of its subtasks. Accordingly, since different
methods have different quality, cost, duration, and certainty
trade-offs, different solutions and partial solutions also have
different characteristics and different trade-offs. Hard and
soft interactions between tasks, called NLEs (non-local ef-
fects), are also represented in TÆMS and the effects of the
interactions are reasoned about statistically during schedul-
ing and coordination. TÆMS models are the grounding ele-
ment and medium of exchange for Design-to-Criteria [9, 10]
and Design-to-Time [4] scheduling, and and multi-agent [2]
coordination research, and are being used in Cooperative-
Information-Gathering [5], collaborative distributed design
[3], distributed situation assessment [1], and surviveable
systems [8] research projects.

A simplified example of a TÆMS task structure for gath-
ering auto purchase information via the Web is shown in
Figure 1. The oval nodes are tasks and the square nodes
are methods. The top-level task is to Gather-Purchase-Data-
on-Nissan-Maxima and it has two subtasks Gather-Reviews
and Find-Invoice-Price-Data. The top-level task accumu-
lates quality according to the sum all() quality accumulation

function (qaf)� so both of its subtasks must be performed
to satisfy the objective. The Gather-Reviews task has two
methods, query Edmund’s-Reviews and query Heraud’s-
Test-Drives. These methods are governed by a sum() qaf
thus the power-set of the methods minus the empty set may
be performed to achieve the tasks, i.e., Edmund’s may be
queried, Heraud’s may be queried, or both may be queried.
The Find-Invoice-Price-Data task has three subtasks, two of
type method and one of type task, governed by the max()
qaf which is analogous to an OR relationship. Note the de-
composition of the obtain invoice via AutoSite task into two
methods, one that locates the URL and one that issues the
query. The enables NLE between the URL finding method
and the query method, in conjunction with the low quality
associated with the URL finding method, indicate that find-
ing the URL is necessary for task achievement but that it
contributes very little to achieving the task relative to the
method that actually obtains the pricing report.

TÆMS models several important task features that fa-
cilitate a satisficing approach to problem solving. The ex-
istence of alternative ways to perform tasks gives TÆMS
based problem solvers (schedulers, coordination algorithms)
options about how to achieve tasks. Another feature of the
model that supports satisficing is the statistical characteriza-
tions of primitive actions. The different statistical character-
istics of alternative ways to achieve tasks gives us the ability
to explore different possible solution paths, and consider the
different trade-offs of each path, to find one that best satis-
fices to meet the current problem solving context. This is the
TÆMS scheduling problem. For a given task structure and
a given problem solving context, find a way (in real-time) to
achieve the high level task that is in keeping with the context
and the client’s resource constraints. We will discuss our
Design-to-Criteria satisficing scheduling work in Section 2.
Modeling task interactions or non-local-effects is also an im-
portant feature of TÆMS. Explicit representation of both the
quality of interactions and the quantified ramifications of
interactions provides TÆMS clients with information that
can be used to determine the relative importance of working
to resolve interactions. From a scheduling perspective, this
means reasoning about the benefits of leveraging task inter-

�Qafs define how a given task is achieved through its subtasks or meth-
ods. The sum all() qaf means that all of the subtasks must be performed
and that the task’s quality is a sum of the qualities achieved by its subtasks.

2

Schedule C: Good Quality, Moderate Cost, Slow
Edmund's-Reviews Heraud's-Test-Drives Intelichoice
Q (~0% 17)(20% 27)(2% 34)(78% 44)
C (100% $4.95)
D (20% 840)(19% 900)(31% 920)(19% 980)(11% 1000)
Expected Q: 40 Q Certainty: 78%
Expected C: $4.95 C Certainty: 100%
Expected D: 920 seconds D Certainty: 70%

Get-AutoSite-URL Issue-AutoSite-RequestHeraud's-Test-DrivesEdmund's-Reviews
Schedule D: High Quality, High Cost, Moderate Duration

Q (1% 0)(4% 27)(19% 34)(2% 41)(74% 51)
C (100% $9.95)
D (20% 630)(31% 690)(24% 720)(19% 740)(6% 760)
Expected Q: 46 Q Certainty: 74%
Expected C: $9.95 C Certainty: 100%
Expected D: 698 seconds D Certainty: 51%

Q (~0% 0)(5% 10)(2% 12)(93% 22)
C (100% 0)
D (25% 240)(25% 250)(31% 260)(12% 270)(6% 280)
Expected Q: 21 Q Certainty: 93%
Expected C: 0 C Certainty: 100%
Expected D: 255 seconds D Certainty: 50%

Schedule A: Fast and Free
Edmund's-Reviews Edmund's-Price-Guide

Q (2% 17)(98% 27)
C (100% $4.95)
D (25% 600)(12% 620)(31% 680)(19% 700)
Expected Q: 26 Q Certainty: 98%
Expected C: $4.95 C Certainty: 100%
Expected D: 647 seconds D Certainty: 50%

Schedule B: High Quality Certainty, Moderate Cost
Edmund's-Reviews Intelichoice

Figure 2: Four Satisficing Schedules

actions relative to other constraints and to alternative ways
of achieving the overall task. From a coordination perspec-
tive, agents can reason about the benefits of coordinating
interactions with other agents versus the costs of such coor-
dination. We will discuss coordination in Section 3. Learn-
ing is also implicit in TÆMS. The probability distributions
associated with primitive actions can be learned a priori or
be refined over time via learning. Domain independence is
also an important feature of TÆMS. The expense of custom
designing agent components is serving to inhibit widespread
agent development; moving toward a flexible and adaptable
domain independent agent control system is critical for the
future of agent systems. As we discuss in Section 4, in-
tegrating domain independent agent control components is
one of our primary near-term objectives.

Ramifications of Local
Control to Non-Local Context

* Satisfied Commitments
* Violated Commitments
* Schedule Selected for Execution

Scheduler
(Local Control)

Specification of Local Problem
Solving Actions Best Suited for the

Current Local Context Modulated by the
Non-Local Context

* Schedule Selected for Execution
* Envelopes Defining Ranges of Acceptable
 Action Outcomes

Problem Solver
(Domain Problem Solving)

Enumerates Domain Solving Options
and System Constraints

Domain Plans *
Resource Constraints *

Client Goal Criteria *

Modulates Local Control

Commitments to Other Agents *
Commitments from Other Agents *
Commitment Importance Criteria *

Coordination Module
(Non-Local Concerns)

Data Flow

Figure 3: Key Agent Components

In our work, agents generally exist in a multi-agent en-
vironment and each agent consists of three primary compo-
nents: a domain problem solver, a scheduler that determines
which domain actions to perform and in what sequence,
and a coordination module that coordinates interactions with
other agents. A high-level view of these three components
is shown in Figure 3. In these systems, the domain prob-
lem solver describes domain problem solving options in the
TÆMS language and emits the generated task structures
along with goal criteria that specifies the desired quality,
cost, duration, and certainty of a path through the task struc-
ture that achieves the high-level task. The scheduler inputs
the task structures and goal criteria and constructs a sched-
ule custom designed to achieve the task while adhering to
the criteria specified by the problem solver. The coordi-
nation module works in conjunction with the scheduler to
handle interactions with other agents by giving and receiv-
ing commitments to perform work at certain times. The

importance of the non-local interactions is weighed against
local problem solving concerns during scheduling; the re-
sulting schedule is returned to the problem solver for execu-
tion. The schedule is annotated with performance envelopes
and monitoring points define when rescheduling is neces-
sary due to unexpected (or unprobable) execution results.
Note that each agent has its own local scheduler and local
coordination module – agents are autonomous and there is
no centralized locale where all scheduling or coordination
takes place. Agents can behave in a more aggregate fashion,
but this is through the use of organization rather than fixed
centralized control.

2 Design-to-Criteria Scheduling
The scheduler is the heart of satisficing agent control. An
agent equipped with a Design-to-Criteria scheduler is able
to adjust its problem solving activities to meet changes in
resource requirements and to reason about the trade-offs of
different courses of action. The central objective in Design-
to-Criteria scheduling is to cope with the combinatorial ex-
plosion of possibilities while reasoning about a particular set
of client goal criteria and the trade-offs presented by differ-
ent solutions and partial solutions. In other words, scheduler
client applications or users specify the design criteria and the
scheduler designs a schedule to best meet the criteria, if pos-
sible given the task model. Figure 2 shows a set of satisfic-
ing schedules produced by the Design-to-Criteria scheduler,
for the sample task structure (Figure 1), using four different
sets of design criteria. Schedule A is constructed for a client
interested in a fast, free, solution with any non-zero quality.
Schedule B suits a conservative client who is interested pri-
marily in certainty about quality achievement. Schedule C is
designed for a client who wants high quality information, is
willing to wait a long time for an answer, and is only willing
to spend $5 on the search. Schedule D is meets the criteria
of a client who wants the highest possible quality, is willing
to spend $10, and wants the gathered data in 15 minutes or
less.

The fundamental premise of our scheduling work is that
the goodness of a particular solution is entirely dependent
on a particular client’s complex objectives and that different
client’s have varying objectives. Thus the scheduling pro-
cess must not only consider the attribute trade-offs of differ-
ent solutions, but must also do so dynamically. Furthermore,

3

the scheduling process must be efficient – because of the in-
herent uncertainty in the domains, where actions may fail
or have unexpected results, scheduling activities are inter-
leaved with planning and execution. Thus scheduler ineffi-
ciencies are multiplied many times during a problem solving
instance.

In general the upper-bound on the number of possible
schedules for a task structure containing m methods isP

m

i��

�
m

i

�
i� and the ���m� and o�mm� combinatorics of

our scheduling problem precludes using exhaustive search
techniques for finding optimal schedules. Design-to-Criteria
copes with these explosive combinatorics by satisficing with
respect to the goal criteria and with respect to searching the
solution space. This satisficing dualism translates into four
different techniques that Design-to-Criteria uses to reduce
the search space and make the scheduling problem tractable:

Criteria-Directed Focusing The client’s goal criteria is not sim-
ply used to select the “best” schedule for execution, but is
also leveraged to focus all processing activities on producing
solutions and partial solutions that are most likely to meet the
trade-offs and limits/thresholds defined by the criteria.

Approximation Schedule approximations, called alternatives, are
used to provide an inexpensive, but coarse, overview of the
schedule solution space.

Heuristic Decision Making The action ordering scheduling prob-
lem also suffers from large combinatorics. We cope with this
complexity using a group of heuristics for action ordering.
The heuristics take into consideration task interactions, dead-
lines, resource constraints, commitments made with other
agents and so forth.

Heuristic Error Correction The use of approximation and
heuristic decision making has a price – it is possible to create
schedules that do not achieve the high-level task, or, achieve
it poorly. A secondary set of improvement heuristics act as a
safety net to catch the errors that may be correctable.

Design-to-Criteria thus copes with computational com-
plexity by using the client goal criteria to focus processing,
reasoning with schedule approximations rather than com-
plete schedules, and using a heuristic, rather than exhaus-
tive, scheduling approach. This methodology is effective
because several aspects of the scheduling problem are soft
and amenable to a satisficing approach. For example, por-
tions of the client goal specification [9] express soft client
objectives or soft constraints. Solutions often do not need to
meet absolute requirements because clients cannot know a
priori what types of solutions are possible for a given task
structure due to the combinatorics. Similarly, soft task in-
teractions also represent soft constraints that can be relaxed,
i.e., they can be leveraged or not depending on the situa-
tion. Finally, though the TÆMS scheduling problem is more
complex than many traditional scheduling problems because
of its representation of multiple approaches for task achieve-
ment, it is also more flexible. If we view the scheduling ac-
tivity as a search process, typically there is a neighborhood
of solutions that will meet the client’s goal criteria and the

lack of exhaustive search, i.e., search by focused processing
and approximation, does not necessitate scheduling failure.
Several illustrations of Design-to-Criteria at work, and more
algorithmic details, can be found in [11].

3 GPGP Multi-Agent Coordination
Satisficing in the GPGP (generalized partial global plan-
ning) multi-agent coordination work to date takes a differ-
ent from than satisficing in Design-to-Criteria scheduling.
In coordination, flexibility with respect to computational
resources is derived from a modularized coordination ap-
proach that enables different modules, with different over-
head costs, to be applied independently from one another.
When resources are tight, only the most rudimentary coor-
dination is used. When resources are less scarce, or the ben-
efit of coordinating outweighs the cost of the coordination
overhead, agents coordinate over “optional” interactions like
soft interactions in TÆMS. The GPGP modularized coordi-
nation approach facilities a range of cost/benefit options for
any problem solving episode as different subsets of coordi-
nation modules may be applied.

All coordination modules in GPGP coordinate through
the use of commitments, that is inter-agent contracts to per-
form certain tasks by certain times. Commitments are made
through the coordination mechanisms and considered by the
scheduler when the local course of action is decided. GPGP
defines the following coordination mechanisms (for the for-
mal details see [2]):

Share Non-Local Views This most basic coordination mecha-
nism handles the exchange of local views between agents and
the detection of task interactions.

Communicate Results This coordination mechanism handles
communicating the results of method execution to other
agents, at various levels of detail and coverage as defined by
different communication policies.

Avoid Redundancy This mechanism deals with detected redun-
dancy by committing an agent at random to execute the re-
dundant method in question.

Handle Hard Task Relationships - The enables NLE pictured
in Figure 1 denotes a hard task relationship. This coordi-
nation mechanism deals with such hard, non-optional, task
interactions by committing the predecessors of the enables to
perform the task by a certain deadline.

Handle Soft Task Relationships Soft task interactions, unlike
hard interactions like enables, are optional. When employed,
this coordination mechanism attempts to form commitments
on the predecessors of the soft interactions to perform the
methods in question by a certain deadline.

As mentioned above, the GPGP coordination module
modulates local control by placing constraints, commit-
ments, on the local scheduler. The commitments generally
fall into three categories: 1) deadline commitments are con-
tracts to perform work by a certain deadline, 2) earliest start
time commitments are agreements to hold-off on performing
certain tasks until a certain time has passed, and 3) do com-

4

mitments are agreements to perform certain tasks without a
particular time constraint.

GPGP achieves flexibility through a modularized ap-
proach to coordination. The question then becomes which
combinations of mechanisms are most effective. Empirical
analysis [2] has shown that no single coordination mecha-
nism, or sets of mechanisms, is most effective for all situa-
tions. Instead, as shown in Prassad and Lesser [6], coordina-
tion is best viewed as a situation specific activity; which set
of mechanisms is most effective is dependent on the types
of tasks in question and the overhead costs of communica-
tions. In different environments, different mechanisms are
most effective.

4 The Future: A Holistic Satisficing
Agent Architecture

Both GPGP and Design-to-Criteria are able to adapt pro-
cessing to a given situation. GPGP uses a modularized ap-
proach to provide different degrees of coordination, each
with its own overhead costs and benefits to problem solving.
Design-to-Criteria uses a satisficing methodology to con-
trol the combinatorics and to produce schedules in real-time.
This illustrates an important point; satisficing can take many
forms, e.g., performing less search (Design-to-Criteria), or
using less context to make decisions (GPGP), or working
from default assumptions (situation specific GPGP). In fact,
the implementation of GPGP is itself an illustration of sat-
isficing by sacrificing context. GPGP forms commitments
between agents through a one-shot mechanism where two
agents form an agreement about task performance indepen-
dently of the other agents in the system. This mechanism re-
duces the overhead required for coordination at the expense
of making the commitments without understanding more of
the group context. In contrast, if the commitment forming
context is broadened to include a group of problem solving
agents, to support a multi-step negotiation process, the over-
head of commitment formulation will increase but so will
the amount of information used to make commitment deci-
sions.

In addition to meeting deadlines, Design-to-Criteria also
builds custom schedules to suit a particular client’s multi-
dimensional goal criteria. This latter Design-to-Criteria fea-
ture represents one next step in the evolution of GPGP
and our multi-agent coordination work. Currently, though
GPGP provides a modularized toolbox of coordination
mechanisms, it does not reason about which mechanisms
to use to meet a particular client’s needs (or goal criteria).
The work in learning which coordination algorithms to use
in particular situations is a step in the right direction, but
this work also does not address meeting dynamic multi-
dimensional goal criteria. Like Design-to-Criteria, GPGP
must be able to adapt its processing automatically to a given
problem solving context and resource constraints.

Despite Design-to-Criteria’s strengths, neither aspect of

our agent control work is complete. Neither system accounts
for the actual cost of the control problem solving activity.
In other words, though the scheduler copes with hard com-
binatorics to produce schedules in interactive time, it does
not account for the resource costs of the scheduling process
itself, i.e., Design-to-Criteria is fast, but it doesn’t reason
about the time required to find a good schedule and account
for this time, and adjust its activities accordingly. Through
the focusing mechanism it can adjust its own problem solv-
ing to different resource requirements, but right now, the fo-
cus is defined by the client or hardwired defaults.

The right approach for coordination and scheduling, and
overall agent control, is to account for the both the con-
trol and domain problem solving costs, to reason about re-
source allocations and the cost/benefits of such allocations,
and to control the agent accordingly. The benefits of spend-
ing time doing further coordination or more refined schedul-
ing versus time spent problem solving must all be com-
pared and reasoned about. This meta analysis [7] approach
to agent control in conjunction with the satisficing abilities
of Design-to-Criteria and GPGP, will result in agents being
able to satisfice all activities and adapt to a wide range of
dynamic problem solving environments.

However, this is an oversimplification of the problem. It is
important to note that the issue is not to simply determine a
resource allocation to control and domain problem solving,
but to grapple with the downstream ramifications of the al-
locations and satisficing behaviors employed or considered.
Control problem solving and domain problem solving are
interdependent activities. Consider a case where time is al-
located between a domain problem solver and a scheduler,
and the domain problem solver faithfully describes its prob-
lem solving options in a TÆMS task structure and then asks
the scheduler to determine a course of action. If the sched-
uler satisfices, to meet its time resource constraint, it will
do so by exploring a smaller part of the schedule solution
space. One possible outcome of this is that the scheduler
will fail to generate a very good solution and will instead
generate and return a mediocre solution. The domain prob-
lem solver will then execute the schedule and obtain lower
quality results than it might have if less time had been al-
located to domain problem solving and more time had been
allocated to scheduling. In this example, the downstream ef-
fect of control satisficing was not generating a good result in
the time alloted. In other cases, the ramifications range from
the introduction of additional uncertainty to being unable to
find any solution because one of the components was over
constrained.

The previous example is cast in terms of time allocations,
but as mentioned earlier, satisficing can be in many dimen-
sions like precision, robustness, and cost, and it can be in
terms of multiple dimensions simultaneously. This is what
motivated our recent work in multi-dimensional goal criteria
for Design-to-Criteria scheduling [9]. But even that work

5

needs to be pushed to another level – satisficing to meet a
particular set of multi-dimensional goal criteria is only part
of the problem. In most problem solving situations, there
are actually multiple sets of goal criteria, i.e., there is no
single evaluation function. Consider a case where a client
tells the scheduler to produce a schedule that will achieve
the task while minimizing time and incurring no cost. If,
for the given task structure, staying within these constraints
means generating a very poor result, the client may want to
modify the constraints and ask for another schedule, rather
than execute the schedule that was returned for the first set
of goal criteria. Agent control components, and the holistic
agent control mechanism, must reason about multiple sets of
goal criteria, or provide a means for negotiation or iterative
refinement to generate a set of criteria that is suited for the
problem solving context and the task at hand.

Given the complex issues surrounding the issue of satis-
ficing, our goal of a satisficing domain-independent agent
control architecture seems quite ambitious. The satisficing
cohesion needed for this architecture will require that all
components have the ability to meta analyze their problem
solving activities and to estimate the local (as everything is
intertwined) costs/benefits of resource allocations. From the
scheduling and coordination perspective, this is an achiev-
able objective. For the domain problem solver, meeting this
requirement is application dependent. However, to the ex-
tent that the domain problem solver can enumerate its prob-
lem solving options as a TÆMS task structure, the scheduler
can then reason about the domain problem solver’s activities
explicitly. In fact, we may move toward representing all ma-
jor control and domain activities in TÆMS task structures,
and even estimating and modeling (via nles) the downstream
interactions of resource allocations, and analyzing it using
the Design-to-Criteria scheduler. If this approach is used,
we must then also account for the time required to perform
the meta-analysis. However, for certain classes of task struc-
tures the scheduling analysis time is highly predictable. For
large problem solving tasks, we also plan to explore chang-
ing the problem solving horizon, the distance between the
current point in time and a point at which allocations will be
reexamined.

Satisficing, flexibility, and multi-dimensional trade-off
behavior, are critical for agents in complex dynamic open
environments. Our future work is centered on a holistic,
domain independent, agent control architecture designed to
achieve these goals. It is our hope that with the architecture
agent developers will be able wrap or embed their domain
problem solvers and create satisficing and flexible multi-
agent systems.

5 Acknowledgments
We would like to thank Professor Keith Decker, Professor
Alan Garvey, Professor Norman Carver, and Dr. Nagendra
Prassad, for their contributions to this ongoing work.

References

[1] N. Carver and V. Lesser. The DRESUN testbed for
research in FA/C distributed situation assessment: Ex-
tensions to the model of external evidence. In Pro-
ceedings of the First International Conference on Mul-
tiagent Systems, June, 1995.

[2] Keith S. Decker. Environment Centered Analysis and
Design of Coordination Mechanisms. PhD thesis, Uni-
versity of Massachusetts, 1995.

[3] Keith S. Decker and Victor R. Lesser. Coordination
assistance for mixed human and computational agent
systems. In Proceedings of Concurrent Engineering
95, pages 337–348, McLean, VA, 1995.

[4] Alan Garvey and Victor Lesser. Representing and
scheduling satisficing tasks. In Swaminathan Natara-
jan, editor, Imprecise and Approximate Computation,
pages 23–34. Kluwer Academic Publishers, Norwell,
MA, 1995.

[5] Victor Lesser, Bryan Horling, Frank Klassner, Anita
Raja, Thomas Wagner, and Shelley XQ. Zhang. In-
formation Gathering as a Resource Bounded Interpre-
tation Task. UMASS CS Technical Report TR-97-34,
March, 1997.

[6] M.V. Nagendra Prasad and V.R. Lesser. Learning
situation-specific coordination in generalized partial
global planning. In AAAI Spring Symposium on Adap-
tation, Co-evolution and Learning in Multiagent Sys-
tems, Stanford, March 1996.

[7] Stuart Russell and Eric Wefald. Principles of metarea-
soning. Artificial Intelligence, 49, 1991.

[8] Regis Vincent, Bryan Horling, Thomas Wagner, and
Victor Lesser. Survivability simulator for multi-agent
adaptive coordination. In Proceedings of the First In-
ternational Conference on Web-Based Modeling and
Simulation, 1998. To appear.

[9] Thomas Wagner, Alan Garvey, and Victor Lesser.
Complex Goal Criteria and Its Application in Design-
to-Criteria Scheduling. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence,
July 1997.

[10] Thomas Wagner, Alan Garvey, and Victor Lesser.
Leveraging Uncertainty in Design-to-Criteria Schedul-
ing. UMASS CS Technical Report TR-97-11, January,
1997.

[11] Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. Interna-
tional Journal of Approximate Reasoning, Special Is-
sue on Scheduling, To appear 1998.

[12] Shlomo Zilberstein. Using anytime algorithms in in-
telligent systems. AI Magazine, 17(3):73–83, 1996.

6

