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Abstract

Scheduling complex problem solving tasks, where tasks are
interrelated and there are multiple different ways to go about
achieving a particular task, is an imprecise science and the
justification for this lies soundly in the combinatorics of
the scheduling problem. Intractable problems require ap-
proximate solutions. We have developed a new domain-
independent approach to task scheduling called Design-to-
Criteria that controls the combinatorics via a satisficing
methodology and custom designs schedules to meet a par-
ticular client’s goal criteria. In Design-to-Criteria, criteria-
directed focusing, approximation, and heuristics, in con-
junction with soft client goal criteria are used to make the
scheduling problem tractable.

Introduction
With the advent of open computing environments adapt-
ability in software applications is critical. Since open en-
vironments are less predictable, applications must be able
to adapt their processing to the available resources and the
different goal criteria set by different clients. An interesting
and difficult scheduling problem arises in adaptive systems
when there are multiple different ways to achieve tasks and
the tasks are interdependent, i.e., the result of one subtask
affects the performance, characteristics, or outcome of an-
other subtask in quantifiable ways. The combinatorics pos-
sible from even simple interrelated tasks of this type are
significant and the problem of scheduling a sequence of ac-
tions, given complex goal criteria and limited time, is in-
tractable.

�This material is based upon work supported by the National
Science Foundation under Grant No. IRI-9523419, the Depart-
ment of the Navy, Office of the Chief of Naval Research, under
Grant No. N00014-95-1-1198, and via a subcontract from Boeing
Helicopter which is being supported by DARPA under the RaDEO
program (contract number 70NANB6H0074). The content of the
information does not necessarily reflect the position or the pol-
icy of the Government, National Science Foundation, or Boeing
Helicopter and no official endorsement should be inferred.

yA version of this paper appears in the Working Notes of the
AAAI-97 Workshop on Building Resource-Bounded Reasoning
Systems, July 1997.

We have developed a new domain independent flexible
computation approach to task scheduling called Design-to-
Criteria. The most distinguishing features of Design-to-
Criteria scheduling are the ability to reason about the utility
attribute trade-offs of different solutions based on different
goal criteria, the ability to use these utility attribute trade-
offs to focus every step of the scheduling process, and the
ability to do these activities from a satisficing perspective.
Satisficing with respect to the scheduling process itself en-
ables the scheduler to produce results when computational
combinatorics prevent an optimal solution. Satisficing with
respect to meeting the goal criteria enables the scheduler to
produce a result that adheres to the spirit of the goal when
the criteria cannot be satisfied perfectly due to environmen-
tal and resource constraints.

Our research focuses on a class of computational task
structures where there are typically multiple different ac-
tions for performing a particular task, each action has differ-
ent statistical performance characteristics, and uncertainty
about the outcomes of actions is ubiquitous. The input to
the scheduling system is a model describing such task struc-
tures in the TÆMS (Decker 1995b) domain-independent
hierarchical task modeling framework. In TÆMS primi-
tive actions, called methods, are modeled statistically via
discrete probability distributions in three dimensions, qual-
ity, cost, and duration. Quality is a deliberately abstract
domain-independentconcept that describes the contribution
of a particular action to the overall problem solving objec-
tive. Duration describes the amount of time that a method
will take to execute. Cost describes the financial or op-
portunity cost inherent in performing the action modeled
by the method. As with most hierarchical representations
the high-level task is achieved by achieving some combina-
tion of its subtasks. Accordingly, since different methods
have different quality, cost, duration, and certainty trade-
offs, different solutions and partial solutions also have dif-
ferent characteristics and different trade-offs. Hard and soft
interactions between tasks, called NLEs (non-local effects),
are also represented in TÆMS and the effects of the inter-
actions are reasoned about statistically during scheduling.



Find-Invoice-Price-Data

AutoSite

Gather-Reviews

Gather-Purchase-Data-on-Nissan-Maxima

Intelichoice

Edmund's-Price-Guide

Edmund's-Reviews Heraud's-Test-Drives

Get-URL

sum_and()

sum()

Issue-Request

max()

max()

enables

Q (2% 0)(98% 10)
C (100% 0)
D (50% 120)(25% 130)

(25% 140)

Q (20% 0)(80% 17)
C (100% 0)
D (40% 240)(60% 300)

Q = Quality
C = Cost
D = Duration

Subtask Relation

Enables NLE Method

Task

Q (5% 0)(95% .0001)
C (100% 0)
D (50% 30)(50% 60)

Q (100% 24)
C (100% $9.95)
D (50% 240)(50% 260)

Q (5% 0)(95% 12)
C (100% 0)
D (50% 120)(25% 130)

(25% 14)

Q (100% 17)
C (100% $4.95)
D (50% 480)(50% 560)

Figure 1: TÆMS Task Structure for Gathering Auto Purchase Information

Schedule C: Good Quality, Moderate Cost, Slow
Edmund's-Reviews Heraud's-Test-Drives Intelichoice
Q (~0% 17)(20% 27)(2% 34)(78% 44)
C (100% $4.95)
D (20% 840)(19% 900)(31% 920)(19% 980)(11% 1000)
Expected Q: 40 Q Certainty: 78%
Expected C: $4.95 C Certainty: 100%
Expected D: 920 seconds D Certainty: 70%

Get-AutoSite-URL Issue-AutoSite-RequestHeraud's-Test-DrivesEdmund's-Reviews
Schedule D: High Quality, High Cost, Moderate Duration

Q (1% 0)(4% 27)(19% 34)(2% 41)(74% 51)
C (100% $9.95)
D (20% 630)(31% 690)(24% 720)(19% 740)(6% 760)
Expected Q: 46 Q Certainty: 74%
Expected C: $9.95 C Certainty: 100%
Expected D: 698 seconds D Certainty: 51%

Q (~0% 0)(5% 10)(2% 12)(93% 22)
C (100% 0)
D (25% 240)(25% 250)(31% 260)(12% 270)(6% 280)
Expected Q: 21 Q Certainty: 93%
Expected C: 0 C Certainty: 100%
Expected D: 255 seconds D Certainty: 50%

Schedule A: Fast and Free
Edmund's-Reviews Edmund's-Price-Guide

Q (2% 17)(98% 27)
C (100% $4.95)
D (25% 600)(12% 620)(31% 680)(19% 700)
Expected Q: 26 Q Certainty: 98%
Expected C: $4.95 C Certainty: 100%
Expected D: 647 seconds D Certainty: 50%

Schedule B: High Quality Certainty, Moderate Cost
Edmund's-Reviews Intelichoice

Figure 2: Four Satisficing Schedules

A simplified example of a TÆMS task structure for gath-
ering auto purchase information via the Web is shown in
Figure 1. The oval nodes are tasks and the square nodes
are methods. The top-level task is to Gather-Purchase-
Data-on-Nissan-Maxima and it has two subtasks Gather-
Reviews and Find-Invoice-Price-Data. The top-level task
accumulates quality according to the sum all() quality ac-
cumulation function (qaf)� so both of its subtasks must be
performed to satisfy the objective. The Gather-Reviews
task has two methods, query Edmund’s-Reviews and query
Heraud’s-Test-Drives. These methods are governed by a
sum() qaf thus the power-set of the methods minus the
empty set may be performed to achieve the tasks, i.e., Ed-
mund’s may be queried, Heraud’s may be queried, or both
may be queried. The Find-Invoice-Price-Data task has three
subtasks, two of type method and one of type task, governed
by the max() qaf which is analogous to an OR relationship.
Note the decomposition of the obtain invoice via AutoSite
task into two methods, one that locates the URL and one
that issues the query. The enables NLE between the URL
finding method and the query method, in conjunction with
the low quality associated with the URL finding method,
indicate that finding the URL is necessary for task achieve-
ment but that it contributes very little to achieving the task
relative to the method that actually obtains the pricing re-
port.

The central objective in Design-to-Criteria scheduling is

�Qafs define how a given task is achieved through its subtasks
or methods. The sum all() qaf means that all of the subtasks must
be performed and that the task’s quality is a sum of the qualities
achieved by its subtasks.

to cope with the combinatorial explosion of possibilities
while reasoning about a particular set of client goal crite-
ria and the trade-offs presented by different solutions and
partial solutions. In other words, scheduler client applica-
tions or users specify the design criteria and the scheduler
designs a schedule to best meet the criteria, if possible given
the task model. A set of satisficing schedules produced by
the Design-to-Criteria scheduler, for the sample task struc-
ture, using four different sets of criteria is shown in Fig-
ure 2. Schedule A is constructed for a client interested in
a fast, free, solution with any non-zero quality. Schedule B
suits a conservative client who is interested primarily in cer-
tainty about quality achievement. Schedule C is designed
for a client who wants high quality information, is willing
to wait a long time for an answer, and is only willing to
spend $5 on the search. Schedule D is meets the criteria of
a client who wants the highest possible quality, is willing
to spend $10, and wants the gathered data in 15 minutes or
less.

This work falls into the general area of flexible com-
putation (Horvitz, Cooper, & Heckerman 1989), but dif-
fers from most flexible computation approaches in its use
of multiple actions for task achievement (one exception
is (Horvitz & Lengyel 1996)), in its first class treatment
of uncertainty, and in its ability to use uncertainty infor-
mation in the selection of methods for execution. Much
work in flexible computation makes use of anytime algo-
rithms (Dean & Boddy 1988; Russell & Zilberstein 1991;
Zilberstein & Russell 1995), algorithms that always have
an answer at hand and produce higher quality results as
they are given more time, up to a threshold. Our multiple



methods approach can model any activity, including any-
time algorithms, that can be characterized statistically and
we place no constraints on the statistical behavior of the
activities in question. In our work, uncertainty is a first
class concept that both appears in the statistical descriptions
of the available methods and is propagated and related as
schedules and schedule approximations are generated. Un-
like most work in anytime algorithms that focuses on the
propagation of uncertainty (Zilberstein 1996), we can also
include uncertainty and uncertainty reduction in the goal
criteria and focus work on reducing uncertainty when im-
portant to the client (Wagner, Garvey, & Lesser 1997b).
This ability stems from our task model’s representation of
alternative ways to perform various tasks. Because multiple
methods often exist to perform tasks, we can reason about
the quality, cost, duration, and uncertainty trade-offs of dif-
ferent actions when determining which actions to perform,
achieving the best possible overall results.

Design-to-Criteria Scheduling

The fundamental premise of our work is that the goodness
of a particular solution is entirely dependent on a partic-
ular client’s complex objectives and that different client’s
have varying objectives. Thus the scheduling process must
not only consider the attribute trade-offs of different solu-
tions, but must also do so dynamically. Furthermore, the
scheduling process must be efficient as the application do-
mains we study typically involve agents acting in the world
in real-time. Because of the inherent uncertainty in the do-
mains, where actions may fail or have unexpected results,
scheduling activities are typically interleaved with planning
and execution. Thus scheduler inefficiencies are multiplied
many times during a problem solving instance.

In general the upper-bound on the number of possi-
ble schedules for a task structure containing m meth-
ods is
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torics of our scheduling problem precludes using exhaustive
search techniques for finding optimal schedules. Design-to-
Criteria copes with these explosive combinatorics by satis-
ficing with respect to the goal criteria and with respect to
searching the solution space. This satisficing dualism trans-
lates into four different techniques that Design-to-Criteria
uses to reduce the search space and make the scheduling
problem tractable:

Criteria-Directed Focusing The client’s goal criteria is
not simply used to select the “best” schedule for execu-
tion, but is also leveraged to focus all processing activi-
ties on producing solutions and partial solutions that are
most likely to meet the trade-offs and limits/thresholds
defined by the criteria. This is achieved by creating and
identifying partial solutions that seem likely to meet the
criteria and concentrating further development on these

classes of partial solutions, pruning or ignoring other par-
tial solutions that are deemed least probable to lead to
“good” solutions.

Approximation Schedule approximations, called alterna-
tives, are used to provide an inexpensive, but coarse,
overview of the schedule solution space. Alternatives
contain a set of unordered actions that can be scheduled
(ordered) to achieve a particular task along with esti-
mates for the quality, cost, and duration distributions that
may result from scheduling the actions. Alternatives are
inexpensive to compute as the complex task interactions
are only partially considered and ordering, resource, and
other constraints are ignored. The alternative abstraction
space is used in conjunction with the criteria-directed fo-
cusing to build schedules from alternatives that are most
likely to lead to good schedules.

Heuristic Decision Making We mentioned the high order
complexity of our scheduling problem as a whole, but the
action ordering scheduling problem suffers from similar
combinatorics. Given a set of n actions to perform, i.e.,
an alternative with n methods to schedule, there are n�
orderings that must be considered and theO�n�� expense
precludes trying all possible orderings. We cope with this
complexity using a group of heuristics for action order-
ing. The heuristics take into consideration task interac-
tions, attempting to leverage positive interactions while
avoiding negative interactions. They also consider re-
source limits, individual action deadlines, task deadlines,
commitments made with other problem solving agents,
and other constraints. The heuristic algorithm reduces
the O�n�� action ordering problem to linear or low-order
polynomial levels in the worst case.

Heuristic Error Correction The use of approximation
and heuristic decision making has a price – it is possi-
ble to create schedules that do not achieve the high-level
task, or, achieve the high-level task but do not live up
to quality, cost, duration, or certainty expectations set by
the estimates contained in the alternatives. This can be
caused by an overconstrained problem, but also by com-
plex task interactions that are glossed over by the alter-
native approximation and not considered by the action
ordering heuristics. A secondary set of improvement
(Zweben et al. 1994) heuristics act as a safety net to
catch the errors that are correctable. Again, this problem
is potentially computationally expensive as the required
fix may be achievable by any combination of the actions
in the task structure and it is impossible to ascertain if
a hypothetical fix will generate the desired result until
it is fully scheduled. Thus this aspect of the scheduling
algorithm is also heuristic and relies on abstraction and
criteria-directed focusing to reduce the complexity.

Algorithmically, the scheduling process applies the tech-
niques above as follows:



1. Recursively build alternatives for the top-level task node
by creating the alternatives for its subtasks and so forth.
At each task node, use criteria-directed focusing to deter-
mine what alternatives to propagate to the parent tasks.

2. Using criteria-directed focusing, select the most promis-
ing top-level alternative from the set of unscheduled al-
ternatives and heuristically construct a schedule for it.

3. Examine the schedule and suggest improvements by cre-
ating new alternatives that contain the improvements and
add them to the top-level alternative set.

4. Repeat steps 2 and 3 until the termination criteria is met.

Design-to-Criteria thus copes with computational com-
plexity by using the client goal criteria to focus processing,
reasoning with schedule approximations rather than com-
plete schedules, and using a heuristic, rather than exhaus-
tive, scheduling approach. This methodology is effective
because several aspects of the scheduling problem are soft
and amenable to a satisficing approach. For example, por-
tions of the client goal specification (Wagner, Garvey, &
Lesser 1997a) express soft client objectives or soft con-
straints. Solutions often do not need to meet absolute re-
quirements because clients cannot know a priori what types
of solutions are possible for a given task structure due to the
combinatorics. Similarly, soft task interactions also repre-
sent soft constraints that can be relaxed, i.e., they can be
leveraged or not depending on the situation. Finally, though
the TÆMS scheduling problem is more complex than many
traditional scheduling problems because of its representa-
tion of multiple approaches for task achievement, it is also
more flexible. If we view the scheduling activity as a search
process, typically there is a neighborhood of solutions that
will meet the client’s goal criteria and the lack of exhaustive
search, i.e., search by focused processing and approxima-
tion, does not necessitate scheduling failure.

To illustrate the neighborhood and focusing concepts,
consider a brief example. Say a hypothetical client is in-
terested in schedules, for a moderately complex task struc-
ture, that trade-off quality and duration and is more inter-
ested in keeping duration toward the lower end of the spec-
trum than achieving maximum quality (60% emphasis on
duration and a 40% emphasis on quality). Figure 3 dis-
plays the root-level alternatives (solution approximations)
that are produced using the criteria-directed focusing mech-
anism. For this problem instance, 656 intermediate alterna-
tives were constructed and 39 were initially generated at the
top-level, although the actual number of alternatives shown
in the graph is slightly larger as the heuristic improvement
mechanism creates new alternatives as the schedule process
iterates. In stark contrast to the economical alternative set
generated using the focusing mechanism, Figure 4 displays
the exhaustive root-level alternative set that results when
the focusing mechanism is not used. In this case, 9106

alternatives were explored during processing and 4444 al-
ternatives were generated at the root level. Note that the
top-rated alternatives in each case have similar quality and
duration characteristics and exhibit similar quality/duration
trade-offs – keeping duration under control while achieving
good/high quality. The exhaustive alternative generation
case produced a larger set of reasonable candidate alterna-
tives, but the focused case still found a significant number
of reasonable alternatives. The schedules produced from
the two different alternative set likewise have similar qual-
ity and duration characteristics.
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Figure 3: Top-Level Alternatives Produced by Focusing
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Figure 4: All Top-Level Alternatives

Research Applications
TÆMS and the Design-to-Criteria scheduler, and its pre-
decessor, Design-to-Time (Garvey & Lesser 1995), are be-
ing used in a wide range of research projects including co-
operative information gathering (Oates, Nagendra Prasad,
& Lesser 1994; Decker et al. 1995), distributed collab-
orative design (Decker & Lesser 1995), and distributed
situation assessment (Carver & Lesser 1995). The soft-
ware architectures for the various research projects are re-
lated and based on a generic architecture consisting of
scheduling, coordination, planning/problem solving, and
execution/monitoring modules. The scheduler, coordina-
tion, and problem solving components interact by exchang-
ing TÆMS task structures and the execution subsystem
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receives as input schedules augmented with TÆMS fea-
tures. In our work, the coordination module modulates
(Decker 1995a) the local scheduler-centric control mech-
anism rather than replacing it.

Cooperative information gathering is a multi-agent so-
lution to search, discovery, and assimilation of informa-
tion via the WWW. A typical information gathering task
is to gather information to support a decision of whether
to purchase WordPerfect, Microsoft Word, or WordPro, or
some yet unidentified word processor. The project utilizes
supporting technology from both the information retrieval
(Callan, Croft, & Harding 1992) and information extraction
(Fisher et al. 1996) disciplines to process retrieved docu-
ments. The inevitable advent of structured WWW data will
also assist with the data interpretation task.

The instantiation of the generic agent architecture for the
information gathering project is shown in Figure 5. In the
cooperative information gathering project, the high-level
information gathering task, the goal criteria, and a por-
tion of the resource constraints originate with the decision
maker module. The decision maker can be any high-level
problem solving entity or agent, e.g., humans or controllers
based on decision theoretic inference networks (Zilberstein
& Lesser 1996). In this project, the execution subsystem
and monitoring components are integrated with the problem
solver. The problem solving functionality is provided by a
RESUN (Carver & Lesser 1995) blackboard planner that
explicitly represents sources-of-uncertainty associated with
hypothesis and uses bottom-up and top-down processing to
achieve goals and resolve sources-of-uncertainty. The RE-
SUN planner is coupled with a with a task assessor com-
ponent that examines the state of the blackboard and de-
scribes a portion of the available problem solving actions
in the TÆMS language. The TÆMS task structure is then
passed to the scheduler and the coordination mechanism for
scheduling and coordination with other agents. The result-
ing schedule is passed back to the problem solver for ex-
ecution and monitoring. As execution progresses and new
evidence is found, or execution performance falls outside
of the tolerance envelopes generated by the scheduler, re-

planning, rescheduling, and coordination occurs.

Meta-Analysis and Future Work
Design-to-Criteria produces custom schedules in the face
of high-order complexity by satisficing with respect to the
client goal criteria and with respect to the scheduling ac-
tivity itself. Algorithmically, the satisficing methodology
takes the form of criteria-directed focusing, approximation,
heuristic decision making, and heuristic error correction.
These techniques are effective and efficient.

There are two different facets to coping with complexity
and resource constraints in soft real-time real-world prob-
lem solving systems. The first facet is constructing a course
of action for a given set of resource constraints and goal
criteria. In the TÆMS and Design-to-Criteria realm, this
translates into custom building schedules as described in
this paper. The second facet is determining the amount of
resources to spend constructing the solution path or sched-
ule versus the amount of resources to spend executing ac-
tions. Focused processing is central to our system and cur-
rently the focusing degree is static, predetermined by ei-
ther the client or by default scheduler settings. This means
that regardless of the complexity of the task structure or its
size, the scheduler focuses to the same degree unless other-
wise instructed by the client. While adequate, this approach
is weak because the scheduling versus execution trade-offs
are not reasoned about explicitly. In particular situations,
with particular classes of task structures and goal criteria, it
may be worthwhile to spend more resources building sched-
ules, exploring a larger percentage of the solution space at
the expense of execution because the schedules produced
are likely to have much greater utility. In other situations,
spending more resources scheduling may not yield higher
utility in which case the resources are better spent executing
actions. Future work will involve meta-analysis of prob-
lem instances, i.e., task structures, resource constraints, and
goal criteria, to determine the focusing degree dynamically.

An area of future work related to meta-analysis is the re-
finement of the interface between the scheduler and other
complex problem solving components and/or humans. In-



teractive negotiation (Garvey, Decker, & Lesser 1994) be-
tween the client and the scheduler could control and refine
satisficing activities as they happen. With the current model
of criteria specification followed by application, it is possi-
ble that none of the generated schedules satisfactorily meet
the client’s ideal needs (though the one that best satisfices
to meet the criteria will be returned). In this case, the client
may want to explore more of the search space or may pre-
fer an alternate set of criteria rather than taking a satisficing
view of the original criteria. Interactive negotiation during
the alternative generation and evaluation phases could re-
fine client expectations based on the estimates associated
with the alternatives. This would enable the scheduler to
adjust its intermediate processing to align with the client’s
refined criteria before any work is spent building schedules.
Negotiation during the scheduling phase could help refine
the criteria based on the features of schedules as they are
produced. The refined criteria would then alter the selec-
tion of alternatives and retarget the scheduling activity. Ne-
gotiation and meta-analysis are clearly the next steps in ex-
ploiting and leveraging the power of the Design-to-Criteria
paradigm.
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