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Abstract

A key component of a vehicle monitoring system is
uncertainty management� Bayesian networks �BN�
emerged as a normative and e�ective formalism for
uncertain reasoning in many AI tasks� Since a priori
modeling of the domain into a BN is impractical due
to the vast interpretation space� the BN formalism
has been considered inapplicable to this type of task�
We propose a framework in which the BN formalism
can be applied to vehicle monitoring� The frame�
work explores domain decomposition� model separa�
tion� model approximation� model compilation and
re�analysis� Experimental implementation demon�
strated good performance at near�realtime�

Keywords� Bayes net� sensor fusion� tracking�

� Introduction

Vehicle monitoring �also known as tracking
 takes as
input the measurements from a surveillance region
which is populated by a number of moving objects
�vehicles
� and estimates the number of vehicles as
well as their type and movement� Measurements en�
tering into a vehicle monitoring system are the out�
put of a signal processing system which directly pro�
cesses the sensor output� Uncertainty involved in
the task includes the unknown number and types of
vehicles� the unknown association of measurements
and vehicles� the inaccuracy of measurements� po�
tential missing measurements� environmental noise�
and �ghost� measurements�
Traditional engineering approach ��� �� applies

Kalman �ltering� which normally requires linearity
and Gaussian assumptions in modeling� Traditional
AI approach ��� is based on incremental vehicle track
construction and ad�hoc measures of uncertainty�
Bayesian probability theory has been applied to

uncertain reasoning in many AI problems in the form
of Bayesian networks �BNs
 ���� ��� The formalism
allows representation of uncertain dependence rela�
tions that go beyond linearity and Gaussian assump�
tions� For most problems tackled� a domain model in
the form of a BN is constructed before observations
are available and inference takes place� For vehicle
monitoring� due to the unknown number of vehicles
and the almost in�nite number of track patterns by
multiple vehicles� construction of a BN model a pri�
ori is impractical� This di�culty has led to the issue
whether the BN formalism is applicable to vehicle
monitoring type of problems ���� Recently� the for�
malismhas been applied to guide automated highway
vehicles ��� and to identify individual vehicles appear�
ing on highway surveillance cameras ���� although the
issues addressed are di�erent from those in our task�
which focuses on identifying vehicle tracks in open
regions�

We explore several general ideas	 decomposition of
the problem into quasi�independent subproblems� ap�
proximation in modeling to reduce complexity� model
compilation to speed up runtime computation� and
focused re�analysis for error reduction� We show that
by exploring these ideas� the BN formalism can be
applied to vehicle monitoring� and our experiment
with randomly simulated vehicle scenarios ��g �

showed good performance�

Figure �	 Top	 A scene of �� vehicles over � time
instants� Bottom	 Interpretation� Tracks di�er in
color with each labeled by a vehicle type code�

� Bayesian formulation

We consider the measurements obtained from an
open surveillance region at k discrete instants t �
�� ���� k� We assume k � � so that accelerations of ma�
neuvering vehicles can be extracted� Denote the set
of measurements at t � i by Di � fdijjj � �� ����mig�
The total set of measurements is then D � fDiji �
�� ���kg� which we refer to as a scene� Each measure�
ment is either produced by a vehicle of a particular
type or is due to noise� Noisy measurements may



be unrelated to any vehicles� or may correspond to
vehicle movement as in the case of a �ghost��

A full trajectory is a set of k measurements r �
fd�j�� ���� dkjkg� A partial trajectory is a proper subset
of a full trajectory� If all measurements in r are pro�
duced by the movement of a vehicle w and no other
measurement in D are also produced by w� then r
is the track of w� We assume� that there are no ve�
hicles entering and leaving the region between t � �
and t � k� Hence when there are no missingmeasure�
ments� each vehicle track is a unique full trajectory
from D� Otherwise� each track is a unique full or
partial trajectory from D� A ghost track is similarly
de�ned� Two vehicles may be very closely located at
time t so that they are perceived by the sensors as
a single measurement� Without losing generality� we
regard the measurement as being generated by one
of them and regard the measurement at t as missing
for the other vehicle�

An interpretation T of D is a partition of D into
a set Y of full or partial trajectories and a set N
of measurements� Each trajectory in Y represents
a believed track and measurements in N represent
believed noise unrelated to any tracks�

The task is then to �nd T such that P �T jD
 is
maximal among all interpretations� where P �T jD

reads �the probability of T being the interpretation
of D�� This task corresponds to the track forma�

tion in the tracking literature as opposed to track

maintenance where each new measurement is to be
associated with an already established track�

In the literature some researchers �e�g�� ���
 assume
multiple measurements for a vehicle at each time in�
stant while others �e�g�� ���
 assume a single measure�
ment� In this work� we assume a single measurement
for a vehicle at each time instant� Such restriction
does not compromise the generality as multiple mea�
surements can usually be grouped by their closeness
and summerized as a single measurement�

Figure � �top
 shows a simulated scene of �� vehi�
cles with k � �� The total number of measurements is
���� Some vehicles have missing measurements� e�g��
the track at the middle bottom of the scene� Envi�
ronmental noise is present in the scene� An easily
identi�able one is at about the center of the scene� A
less obvious one is near the lower end of the track at
the right edge of the scene� Figure � �bottom
 shows
the interpretation with the highest P �T jD
 �See Sec�
tion ��
� where each identi�ed track is drawn with a
di�erent color �shown at a di�erent gray level
 and
noise has been identi�ed and removed�

� Direct method

A direct method would be to compute P �T jD
 for
each T and then choose the one with the maximal
value� An interpretation T is feasible if for every pair
of trajectories r and s in T � r � s � �� Otherwise�
T is infeasible� If T is infeasible� then P �T jD
 � ��

�How to address the cases where the assumption does
not hold is discussed in Section ��

A feasibility test hence rules out interpretations with
certainty�
How do we go about computing P �T jD
 for a feasi�

ble interpretation T� We can model the problem in a
fashion of hypothesis�causes�features	 If T is the cor�
rect interpretation� then each trajectory in T must
behave like a track� Using Bayesian networks as a
representation of probabilistic causal models� it sug�
gests the following	 Create a binary hypothesis vari�
able T � ftrue� falseg with the semantics �T is the
correct interpretation of D�� For each trajectory r
in T � create a binary child variable r of T with the
semantics �r represents a track��

T
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Nsize
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r1 ...

...

Figure �	 Interpretation model as a Bayesian net�

Furthermore� the set N of measurements must be�
have like noise� How can this be represented in a
Bayesian network� We may think of N as ��
 not
supporting any trajectories that behave like tracks�
and ��
 occupying an expected portion of the total
measurements� The behavior ��
 can be represented
as a discrete child variableN size �cardinality of N 

conditioned on some parents� One obvious parent is
T� Other parents may include D size �cardinality
of D
 or other parameters that may a�ect the noise
model� The structure of a BN thus constructed is
shown in �g �� Note that the structure is interpre�
tation speci�c� The number of children of T varies
for each interpretation� The behavior ��
 does not
seem to lend itself to an explicit representation� We
claim that it has been encoded in the above struc�
ture implicitly� Consider interpretations T� and T��
which are identical except a trajectory r� in T� is
entirely contained in N� of T�� Suppose r� behaves
well like a track and N� has a well expected pro�
portion of D based on expected frequency of noisy
data� Using the above representation� T� will have
one less positive support �r�
 for being a correct in�
terpretation and one additional negative support �N�

out of portion
� Consequently� probabilistic infer�
ence using the two corresponding BNs will result in
P �T�jD
 � P �T�jD
�
To summerize� P �T jD
 can be computed using the

BN in �g �� which we refer to as the interpretation

model�

� Modeling trajectory

In the BN of �g �� variables ri are not directly ob�
servable� Hence each of these variables must be elab�
orated with a trajectory model� Each measurement
contains the measured location of a vehicle at a given
time� It may also contain the energy level of the mea�
surement� the frequency range �in the case of pas�
sive sensing of acoustic signals
� and other relevant
feature information� We refer to the corresponding
components of trajectory model as movement model�
frequency model� and so on�



First� we consider the location information in the
measurements �the movement model
� To simplify
discussion� we restrict it to �D locations� Denote the
location of a vehicle by �x� y
� Denote the magni�
tude and angle of velocity vector by v and �� and
the magnitude and angle of acceleration vector by
a and �� The movement of a vehicle can be repre�
sented as a dynamic Bayesian network in �g � �left
�
The upper layers of each slice models the acceleration
�a� �
� velocity �v� �
 and location �x�y
 of the vehi�
cle at a particular time instant� Arcs from a slice to
the next models how the state of the vehicle depend
on the previous state� The location of vehicle is not
directly observable but through the potentially inac�
curate measurements� This is modeled by the mea�
surements �x�� y�
 which are dependent on the true
location �x� y
 as well as the measurement error e� In
the model� measurement errors are assumed to be in�
dependent� but correlated errors can also be modeled
�with increased inference computation cost
�
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Figure �	 Vehicle model �left
 and trajectory move�
ment model �right
�

A trajectory may or may not correspond to a true
vehicle track� We convert the above vehicle model
into a trajectory movement model by adding the root
variable r� which models whether the trajectory be�
haves as a vehicle track� We make r the parent of
each variable a and variable v� The conditional prob�
ability distribution P �ajr � true
 models the accel�
eration of a vehicle� The distribution P �ajr � false

models an arbitrarily generated trajectory� We do
not model the angles � and � as the children of r
due to the the following assumptions	
We assume that each vehicle of a particular type

can only move in a given range of v values� It can
however move at any directions� Within the v range�
at any time it may freely choose acceleration value
a in another range with no restriction on the angle
�� Strictly speaking� the freedom on � is an approx�
imation as vehicles may have di�erent acceleration
ranges for tangential directions and lateral directions�
However� the approximation helps to simplify our
model and it seems to be quite reasonable	 A run�
ning car cannot make a very sharp turn� but neither
can it speed up or slow down abruptly� We allow to�
tal freedom in � values in our simulated vehicles �see
�g �
 and they do not seem unrealistic�
Given the assumptions� the values of � and � pro�

vide no di�erentiating power between a track and a
non�track� and hence are not dependent on r in our
model�
In addition to the movement� other information

contained in the measurements can also help eval�
uate if a trajectory behaves like a track� For exam�
ple� measurements corresponding to a true track may
have similar energy levels and closely related signal
frequencies� For each feature at each time instant� a
child variable of r can be created in the trajectory
model in �g � �right
 if these features are indepen�
dent when they are produced by the same vehicle�
In principle� given an interpretation of m trajec�

tories� we can complete the interpretation model in
�g � by extending each ri node with a trajectory
model� Then belief propagation can be used to com�
pute P �T jD
�

� Decomposition of scene into islands

The direct method discussed in Sections � and � re�
quire the explicit evaluation of all interpretations�
Unfortunately� it is intractable even for a scene of
a few tracks�
Consider a scene with k � � where � measurements

per time instant are obtained� The total number of
full trajectories is �� � ����� The total number of
partial trajectories with one missing measurement is
�� � � � ����� Hence the total number of trajecto�
ries with one possible missing measurement is ������
To �nd the most probable interpretation� a total of
������ interpretations need be evaluated� Note that
although many of these interpretations are infeasi�
ble� a feasibility test �Section �
 has to be explicitly
performed for each�
Our �rst basic idea for making the computation

tractable is to decompose the problem into indepen�
dent or semi�independent subproblems which are eas�
ier to solve� In particular� we decompose a scene into
smaller independent or semi�independent groups of
measurements� Only interpretations within a single
group are explicitly evaluated� while interpretations
across multiple groups are ignored as much as possi�
ble�
We apply two levels of decomposition� The �rst

level decomposes a scene into independent groups
which we refer to as islands de�ned below� The sec�
ond level is presented in Section �� Given two �loca�
tion
 measurements d and e� jd� ej denotes the dis�
tance between them� Let MAXD denote the max�
imum distance any vehicle may travel in one time
interval plus twice the maximum location error�

De�nition � An island in a scene is a subset L
of measurements such that for each l � L and each

d � D n L� jl � dj � MAXD�

The decomposition is only quadratic on jDj� but
the computational savings by using islands can be
tremendous� Consider the previous scene of �� mea�
surements� If the scene can be decomposed into two
islands with � measurements per time instant per
island as shown in �g �� then for each island the to�
tal number of full and partial trajectories with one



missing measurement is �� � ��� � ��� ���� for
the scene
� a signi�cant reduction from the previous
������

Figure �	 A scene of � tracks decomposed into two
islands �divided by the straight line
�

What will be the error introduced by island decom�
position� If there is no missing measurements in the
scene� then every trajectory corresponding to a true
track is contained in a unique island� Hence island
decomposition introduces no error at all� In fact�
use of islands introduces no error even when limited
missing measurements are present as formalized in
the following proposition�

Proposition � In a scene with at most missing

measurements at t � � or t � k� an exhaustive eval�

uation based on islands yields the identical result as

one without using islands�

Proof	

Since no measurements are missing at t �
f�� ���� k� �g� each true track is contained in one is�
land and will be evaluated�

On the other hand� without using islands� each in�
terpretation T containing trajectories crossing mul�
tiple islands will be evaluated� For each such
trajectory r� P �r is a trackjD
 will be very
low due to impossible velocity�acceleration values�
This in turn will produce very low P �T jD
� re�
sulting rejection of T as the �nal interpretation�
�

When measurements are missing at t � f�� ���� k�
�g� a track with one measurement missing may be
split into two islands and not be evaluated at all�
Let the probability of a missing measurement be q�
The probability that an isolated track is split in the
middle due to one missing measurement is �k � �
q�
Although its value increases with k� we assume that k
is a small integer in track formation� Measurements
obtained after k time instants will either be used one
instant at a time �as in track maintenance
 or pro�
cessed as additional k length scenes� For k � � and
q � ����� we have �k � �
q � �����

In fact� the above estimation is a very conservative
upper bound� The threshold MAXD is determined
by the fastest possible vehicles to be expected� For
a slower vehicle� the distance traveled in two time
intervals may still be less than MAXD and hence
the missing measurement does not cause the track
to be separated into two islands� Furthermore� when
multiple tracks are present� two sections of a broken
track may be included in an island if other tracks are
close enough to both� In Section �� we discuss how to
further reduce the error under island decomposition
due to missing measurements�

Assuming that each island can be independently
interpreted� we obtain

P �T jD� 	 P �T�� T�� � � � � TmjL�� L�� � � � � Lm�

	 P �T�jT�� � � � � Tm� L�� � � � � Lm� � � � P �TmjL�� � � � � Lm�

	 P �T�jL�� � � � P �TmjLm�

where each Li is an island and Ti is the interpretation
of Li� Hence� we only need to �nd interpretation Ti
for each island such that P �TijLi
 is maximal� We
will then have T � �iTi� Algorithm � outlines the
top level control of our scene interpretation system�

Algorithm � �Scene interpretation�
Input� A scene D�

decompose D into islands�

for each island Li containing at least one trajectory

process Li to get the island interpretation Ti�
add Ti to the scene interpretation T�

return T�

� Decomposing islands to peninsulas

Although islands are easier to deal with than the
original scene� due to possible track crossing� near�
parallel tracks� or other types of adjacency� a large
island may still contain measurements of several
tracks� When this is the case� the combination explo�
sion illustrated earlier occurs again at the island level�
We apply a second level of decomposition within each
large island to make the evaluation of large islands
more manageable	

De�nition � A peninsula is a subset S of mea�

surements in an island L such that the following con�

ditions hold�

�� For time t � �� S has exactly one measurement d�
called initiator�

�� For each t � �� S contains each dt � L such that

there exists dt�� � S and jdt � dt��j � MAXD�

Intuitively� if the initiator of a peninsula belongs
to a track� then the entire track is contained in the
peninsula� As an example� consider an island made
of two tracks that are nowhere close except at time
t � k �k � �
� Based on the previous calculation�
���� interpretations should be evaluated� The island
produces two peninsulas and each contains only k
measurements� Hence the total number of full trajec�
tories and partial trajectories with one missing mea�
surement in each peninsula is ��� � �� and the total
number of interpretations to be evaluated for the is�
land becomes ����
 � ���� Although this represents
the best scenario� in general� whenever the starting
segment �t is close to �
 of a track is �clear� �no
nearby measurements from other tracks at the same
time frames
� decomposition into peninsulas will re�
duce the number of interpretations to be evaluated�
We may extend the de�nition of peninsula to allow

the initiator to be a measurement at time t � k� The
corresponding peninsula is then a backward peninsula
�versus the forward peninsula as de�ned above
�
What error might be introduced by using penin�

sula� When there are no missingmeasurements� each



track is contained in at least one peninsula and will
be evaluated� Hence� evaluation using peninsula in�
troduces no error at all� However� error may occur
when missing measurements are present� Consider
the island shown in �g � �a
� It contains measure�
ments from two tracks� one of which is drawn in
squares and the other in ovals� The time of each
measurement is also shown� The upper track has
the measurement at t � � missing� The two forward
peninsulas found are shown in �a
 as rounded areas�
The two backward peninsulas are shown in �b
� None
of the peninsulas contains all measurements of the
upper track� Hence this track will not be evaluated�
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Figure �	 �a
 Forward peninsulas in an island� �b

Backward peninsulas in the island�

The following proposition identi�es an error�free
condition when using peninsulas�

Proposition � If an island only has missing mea�

surements at t � � or t � k� each track is either

contained in a forward peninsula or a backward one�

Proof	
Let r be a track with measurements fd�� ���� dkg n

fdig �i � � or i � k
� If i � �� all measurements are
contained in the backward peninsula with initiator
dk� If i � k� all measurements are contained in the
forward peninsula with initiator d�� �

Proposition � suggests that we may generate both
forward and backward peninsulas for all measure�
ments at t � � and t � k� Evaluation using these
peninsulas is resistant to at least a percentage of ��k
of errors due to one missing measurement in a track�
The value ��k is a lower bound because a track with
a missing measurement at t such that � � t � k may
still be contained in a peninsula due to the presence
of measurements from other tracks in the same is�
land�
Our decomposition using islands and peninsulas

can be equivalently formulated using an adjacency
graph where there is a link from a point to an�
other if the distance in between is less than MAXD�
Whether to maintain and search such a graph explic�
itly or implicitly is a design choice�

	 Model separation

After using peninsulas to generate trajectories for an
island� we can evaluate each interpretation T �we
overload the notation T here for the island
 using
a completed interpretation model �Sections � and �
�
Since a trajectory may participate in multiple inter�
pretations� this method will duplicate evaluation of
a given trajectory multiple times�

To reuse the evaluation of each trajectory� we eval�
uate T using a set of BNs	 a top level BN as in Sec�
tion � and one trajectory BN for each trajectory as
in Section �� The evaluation of each trajectory BN is
performed separately� After evaluation of each tra�
jectory in T is completed� the results are used in the
evaluation of the top level BN to produce P �T jD
�
The evaluation result of a trajectory r can then be
reused for the evaluation of each interpretation that
r participates�
Evaluation computation can be performed in sev�

eral ways� We brie�y describe the cluster tree
method ���� The method groups variables in a BN
into overlapping subsets called clusters� The clusters
are organized into a tree� Probabilistic inference is
performed by message passing �belief propagation

along the tree� With one round of inward propaga�
tion towards an arbitrary cluster followed by another
round of outward propagation away from the cluster�
the updated probability for each variable can then
be obtained in any cluster containing it� More de�
tails can be found in the above reference�
Since each trajectory BN shares a single variable

ri with the top level BN� if we convert each BN into
a cluster tree and join each trajectory tree with the
top level tree at the cluster containing ri� the resul�
tant cluster tree is equivalent to that created with�
out model separation ��g �
� Since we are only in�

T,r1 T,rm

cluster tree 
top level

...

...

cluster tree

rm,...r1,...

...

for trajectory r1
cluster tree

...

for trajectory rm

T,Nsize,Dsize, ...

Figure �	 Belief propagation in cluster trees� Each
oval represents a cluster� The tree on the top is con�
verted from Figure ��

terested in the posterior distribution on variable T
which is contained in the top level tree� belief propa�
gation consists of only inward propagation toward a
cluster containing T �as shown by arrows in �g �
�
Most trajectories in a scene are not due to actual

tracks and will receive very low evaluation� The sep�
aration of trajectory evaluation and interpretation
evaluation also allows those trajectories to be elim�
inated so that the interpretations they participate
in are e�ectively discarded without being explicitly
evaluated�
An additional advantage of model separation is

that it allows variables shared by di�erent models
to be represented at the right degree of coarseness
at each model� Each variable r is shared by the



interpretation model and a trajectory model� In
the trajectory model� r can be given the domain
fnot track� type� track� type� track� ���g� The di�er�
entiation of vehicle types is not only an interesting
result� but also facilitates model building�
On the other hand� in the interpretation model� it

is su�cient for r to convey only whether the corre�
ponding trajectory is a track� The type of the vehi�
cle is not important� In fact� having to di�erentiate
vehicle types in the interpretation model will be an
unnecessary burden in model building� Separation of
model evaluation allows each r in the interpretation
model to be represented as a binary variable� During
inference� the trajectory model can sum its posterior
distribution �rst before feeding to the interpretation
model�
Based on island decomposition and model separa�

tion� the island level control of our scene interpreta�
tion system is outlined in Algorithm ��

Algorithm � �Island interpretation�
Input� An island L�

if L is not too large

evaluate each trajectory�

get interpretation T of L from highly evaluated trajectories�

else

decompose L into peninsulas�

for each peninsula S

evaluate each trajectory�

get interpretation T of L from highly evaluated trajectories�

return T �

The interpretation generation�evaluation is out�
lined in Algorithm ��

Algorithm � �Interpretation evaluation�
Input� A set R of trajectories�

for each interpretation T from R
perform feasibility test on T�

if T passed

construct interpretation BN model�

compute P �T jD	 using the BN�

if P �T 
 correctjD	 is the highest so far� store T�

return stored interpretation�


 Movement model reduction

Each feasible trajectory in each peninsula can be
evaluated using the trajectory model �Section �
�
P �rjD
 can be computed using any one of several
common inference algorithms �see ��� for a recent sur�
vey
� We consider the complexity using the cluster
tree method ���� For k � �� a good cluster tree has
about �� clusters� About one third of them each has
a size of � variables� If the domain size for acceler�
ation �a
� velocity �v
� location �x� y
 and measure�
ment �x�� y�
 is at least ��� then the belief state space
of many clusters will be huge� Even if the inference
computation is a�ordable� when it must be repeated
for each of hundreds or more of feasible trajectories�
it is very expensive and near real�timemonitoring be�
comes impossible� Although a query DAG ��� can be
used to speed up the inference� its complexity is com�
parable to the original algorithmused to generate the
query DAG� Hence� a query DAG does not provide
the magnitude of computational savings needed�
Instead� we explore the following alternative	 since

we are primarily interested in P �r
� we try to re�
duce the model such that only r and observables are

left� However� using x� and y� as observables will
end up with a model where every variable is strongly
dependent on every other� The cluster tree of the
model will have a cluster of huge state space� The
alternative is to use observed velocity�acceleration�
Each observed velocity is computed using two adja�
cent location measurements and each acceleration is
computed using three as follows �assuming unit time
interval
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Figure �	 �a
 Replacing location measurements
in movement model� �b
 Approximate movement
model� �c
 Clique chain for movement model eval�
uation�
Each observed velocity is dependent on two mea�

surement errors and each observed acceleration is de�
pendent on three measurement errors� Due to this
dependence� a� and a� are not independent given
r� ��� v�� a� �using d�separation to �a

� However� if
the value of velocity and acceleration �jvj and jaj

are large enough than the value of measurement er�
ror �jej
� this dependence is not strong� If we ignore
this dependence� then we obtain the Markov prop�
erty	 a� and a� are independent given r� ��� v�� a��
and v� and v� are independent given r� ��� v�� a�� By
approximating the true value of velocity�acceleration
with the observed value �e�ectively clumping v with
v� and a with a�
 and removing other unobservables�
we obtain the model in �g � �b
� From �b
� we ob�
tain the cluster chain �c
 which can be evaluated ef�
�ciently as derived below	
Conceptually� we follow the cluster tree method ����

After initialization� the cluster C� is associated with
the distribution table P �v��� a

�
�� v

�
�� r
� Other clusters

have its table similarly assigned� After observations
v�i � 	i� a�j � 
j �i� j � �� �� ���� k
 are obtained�
they are entered into the corresponding cluster be�
lief tables� For example� the table with C� becomes
P �r� v��� a

�
�� v

�
�j	�� 
�� 	�
� For each observation� in�

stead of entering it to one cluster as normally per�
formed ���� we enter into every cluster table that con�
tains the corresponding variable� For example� 	�
will be entered into tables in both C� and C��
To compute P �rj	�� ���� 	k��� 
�� ���� 
k��
� we per�

form belief propagation from cluster C� downwards�
The message from C� to C� is



X

v�
�
�a�
�

P �r� v
�

�� a
�

�� v
�

�j��� ��� ��	��P �r� v��	�



This is a distribution over r and v��� At C�� its local
table is updated into the product with the message
P

v�
�
�a�
�

P �r� v��� a
�

�� v
�

�j��� ��� ��	

P �r� v�
�
	

P �r� v��� a
�

�� v
�

�j��� ��� ��	�

Since 	� has been entered into C�� the message from
C� to C� could be just



X

v�
�
�a�
�
�v�
�

P �r� v��� a
�

�� v
�

�j��� ��� ��	��
X

v�
�

P �r� v��j��	�

which is a distribution over r only� That is� we have
P

v�
�
�a�
�

P �r� v�
�
� a�

�
� v�

�
j��� ��� ��	

P �r� v�
�
	

P �r� v
�

�� a
�

�� v
�

�j��� ��� ��	




P
v�
�
�a�
�
�v�
�

P �r� v�
�
� a�

�
� v�

�
j��� ��� ��	

P
v�
�

P �r� v�
�
j��	

P �r� v��� a
�

�� v
�

�j��� ��� ��	�

Note that if we had not entered 	� into C�� the above
equality would not hold� Second� since v�� has a large
domain size �we used �� in our experiments
 while
the new message is a distribution over r only� the size
of the message from C� to C� is reduced signi�cantly
and correspondingly the amount of computation as�
sociated with the message passing�
Finally� we observe that

X

v�
�
�a�
�
�v�
�

P �r� v��� a
�

�� v
�

�j��� ��� ��	 
 c P �rj��� ��� ��	

and
P

v�
�

P �r� v��j��	 
 d P �rj�i	�

where c and d are normalizing constants� Hence we
have the following e�cient algorithm for computing
P �rj	�� ���� 	k��� 
�� ���� 
k��
 	

Algorithm � �Trajectory evaluation by movement�
Input� ��� ���� �k��� ��� ���� �k�� of a full trajectory�

B�r	 
 P �rj��� ��� ��	
for i 
 � to k � �

B�r	 
 B�r	P �rj�i� �i� �i��	�P �rj�i	
normalize B�r	 to get P �rj��� ���� �k��� ��� ���� �k��	
return P �rj��� ���� �k��� ��� ���� �k��	

Using this algorithm� it is no longer necessary for
the on�line inference computation to actually main�
tain the cluster chain� This contributes signi�cantly
to realtime or near�realtime evaluation as a large
number of evaluations must be performed� To ob�
tain the parameters required by Algorithm �� we o��
line compute P �rjv�i� a

�
i� v

�
i��
 and P �rjv

�
i��
 using the

accurate model in �g � �a
� For our experiment �re�
ported in Section ��
� the o��line computation took
about �� hours using a SUN Ultra���
Note that Algorithm � can be easily extended to

include processing of other observations �e�g�� fre�
quency
� It can also be easily modi�ed to evaluate
partial trajectories� The extension and modi�cation
are straightforward and we omit the details�

� Re�analysis

In Algorithm �� the operation �evaluate each trajec�
tory� was performed for each small island and each
peninsula in a large island� The operation can be per�
formed to evaluate every full and partial trajectory�

Normally� there are more partial trajectories than full
ones �see examples in earlier sections
� When there
are no missing measurements� processing of partial
trajectories is completely wasted� Even when they
are infrequent� most of the processing on partial tra�
jectories is still wasted� To achieve near real�time
scene interpretation� it is desirable to reduce such
processing as much as possible�
To this end� we explore re�analysis in the follow�

ing way	 For each small island and each peninsula�
we only evaluate full trajectories initially� We then
select highly evaluated trajectories and get the best
possible interpretation T for the island L� If P �T jL

is not satisfactory measured by some predetermined
threshold� then the trajectory evaluation is consid�
ered inadequate and partial trajectories are evaluated
before a second round of interpretation evaluation is
performed�
As an example� consider Figure �� If we search

for peninsulas as de�ned in De�nition � �e�ectively
assuming no missing measurement at � � t � k
� a
mistake will be made since the four measurements in
the upper track will be considered as noise �as they
are not quali�ed as a partial track
� This will enlarge
the noise set N to an unexpected level� which in turn
lowers P �T jL
 for the best interpretation obtained�
The low P �T jL
 will trigger a re�analysis looking for
peninsulas with a missing measurement� which will
identify the partial trajectory�
The re�analysis can be applied to a more general

context	 Due to the intractability of an exhaustive
analysis� as we perform a bottom�up analysis �e�g��
from trajectory to island to scene
� we only ana�
lyze according to the most likely cases initially �e�g��
the full trajectories
 to make the analysis tractable�
As we move up the abstraction levels� we watch for
signs of failure of early analysis �e�g�� the low P �T jL

above
 since the reality may happen to be one of
those unlikely cases� When such signs are identi�ed�
we go back to a lower abstraction level� re�analyze
more thoroughly and go up the abstraction levels
again� Such re�analysis allows the initial analysis to
be performed e�ciently and allows mistakes made
to be corrected with limited and focused additional
computation�
In Section �� we assumed that no entering�leaving

vehicles between t � � and t � k� These vehicles
produce tracks that are partial trajectories� some of
which can already be interpreted correctly� However�
if such a trajectory is too much shorter than a full
one� it is likely to be interpreted as noise� Using
re�analysis� the corresponding measurements can be
combined with the previous or next scene to allow
correct interpretation�
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Figure �	 Two tracks across two scenes�

Consider the two tracks in �g � which span two



scenes	 s with t � �� ���� � and s� with t � �� ���� ���
The upper track corresponds to a vehicle stopping in
s� and the lower track corresponds to a vehicle start�
ing in s� The measurements from the upper track at
t � �� � are likely interpreted as noise for s�� Using
the upper track r in s �from t � � to �
 as expecta�
tion� these measurements can be re�analyzed with fo�
cused processing� The measurements from the lower
track at t � �� � in s can be similarly re�analyzed
using the lower track r� in s� as expectation�

�
 Experimental results

To test the framework� we implemented a scene sim�

ulator and a scene interpretor� The simulator gener�
ates randomly a scene on a ���x��� grid region� as
input to the interpretor� The interpretor is evaluated
by comparing its interpretation with the simulated
tracks� Each measurement contains a �D location
plus a signal frequency as would appear in passive
sensing� The simulator allows us to specify the size
of the region� the number of tracks in a scene� the
velocity�acceleration distribution of each type of ve�
hicles� the amount of measurements due to environ�
ment noise� and the chance of missing measurements�
A total of ��� scenes of di�erent di�culty were

simulated� The scenes were divided equally into ��
batches� Scenes in the same batch has identical size
�number of tracks
� The larger the size� the higher
the density of measurements and the more di�cult
to interpret the scene� Each track consists of at most
k � � measurements� Hence the total number of
measurements per scene ranges from about �� to ���
plus measurements due to noise �about � on av�
erage
 and minus missing measurements �each mea�
surement may be missing with a ���� probability
�
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Figure �	 Summary of experimental results�

The implementation is in Java and the experiment
was run using jdk����� in a Pentium II ��� under
Window��� No additional runtime optimization was
applied� For scenes up to �� tracks� the average CPU
time for each scene is less than � sec� Hence near�
realtime performance was obtained for a wide range
of scene sizes� For scenes with ��� �� and �� tracks�
the CPU time are ��� ��� �� sec� respectively� as very
larger islands are frequently detected in the scenes�
An interpreted track r� fully matches a simulated

track r �which may have missing measurements
 if
r� matches each measurement in r� An interpreted
track r� partially matches a simulated track r if r�

�Note that the size of the grid is insigni
cant to the
performance� but the density of the vehicles is�

matches each measurement in r except one� Fig�
ure �� shows the percentage of fully and partially
�stacked on the top
 matching tracks in each batch�
As the number of tracks per scene increases from �
to ��� the percentage decreases gradually from ��� 
to �� � The errors may be further reduced by com�
bining interpretations of successive scenes� which we
discuss in a longer paper�
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