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Strategic Agents for Multi-Resource Negotiation

Bo An · Victor Lesser · Kwang Mong Sim

Abstract In electronic commerce markets where selfish agents behave individually, agents
often have to acquire multiple resources in order to accomplish a high level task with each
resource acquisition requiring negotiations with multiple resource providers. Thus, it is cru-
cial to efficiently coordinate these interrelated negotiations. This paper presents the design
and implementation of agents that concurrently negotiate with other entities for acquiring
multiple resources. Negotiation agents in this paper are designed to adjust 1) the number
of tentative agreements for each resource and 2) the amount of concession they are will-
ing to make in response to changing market conditions and negotiation situations. In our
approach, agents utilize a time-dependent negotiation strategy in which the reserve price
of each resource is dynamically determined by 1) the likelihood that negotiation will not
be successfully completed (conflict probability), 2) the expected agreement price of the re-
source, and 3) the expected number of final agreements. The negotiation deadline of each
resource is determined by its relative scarcity. Agents are permitted to decommit from agree-
ments by paying a time-dependent penalty, and a buyer can make more than one tentative
agreement for each resource. The maximum number of tentative agreements for each re-
source made by an agent is constrained by the market situation. Experimental results show
that our negotiation strategy achieved significantly more utilities than simpler strategies.
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1 Introduction

This paper investigates automated negotiation in resource allocation among resource providers
(sellers) and consumers (buyers), where consumer agents may require multiple resources to
successfully complete their tasks. Therefore, consumer agents may need to engage in multi-
ple negotiations. If the multiple negotiations are not all successful, consumers gain nothing.
This is a simple form of multi-linked negotiation where the resources are interrelated in the
sense that, from the perspective of the overall negotiation, resources are dependent as an
agent’s utility from the overall negotiation depends on obtaining overall agreements on all
the resources. Such scenarios widely exist in practical applications. For example, a complex
task may need several robots to work together and the absence of any robot results in the
failure of the task. This is a simple form of multi-linked negotiation where the resources
are independent but are interrelated. Resources are independent in the sense that there is no
dependence between different resources, i.e., solving one resource doesn’t constrain how
the other resources are solved. However, from the perspective of the overall negotiation,
resources are dependent as an agent’s utility from the overall negotiation depends on obtain-
ing overall agreements on all the resources. The negotiation problem in this paper has the
following three features:

1. When acquiring multiple resources, a consumer agent only knows the reserve price
available for the entire set of resources, i.e., the highest price the agent can pay for
all the resources, rather than the reserve price of each separate resource. In practice,
given a plan and its resource requirements, an agent can easily decide the reserve price
for all the resources in that plan based on the overall worth of the task. However, it is
difficult (even impossible) for a resource consumer to understand how to set the reserve
price for each separate resource. In fact, we show experimentally that it is undesirable
to set a fixed reserve price for an individual resource prior to beginning negotiations.

2. Agents can decommit from tentative agreements at the cost of paying a penalty. Decom-
mitment allows agents to profitably accommodate new tasks arriving or new negotiation
events. If these events make some existing contracts less profitable or infeasible for an
agent, that agent can decommit from those contracts [38].

3. Negotiation agents are assumed to have incomplete information about other agents, for
example, a buyer agent knows the distribution of the reserve price of a seller agent and
the number of trading competitors. However, an agent’s negotiation status (the set of pro-
posals it has received) and negotiation strategy are its private information. For strategic
reasons, a negotiation agent won’t disclose such information during negotiation. During
negotiation, negotiation agents can quit negotiation at any time, even without notifying
their trading partners. When a buyer acquires multiple resources, it concurrently negoti-
ates with sellers to reach agreements for all the resources.

The negotiation problem considered in this paper can be motivated from various con-
texts. As an example, consider the negotiation management component [1] for Collaborat-
ing, Autonomous Stream Processing systems (CLASP) [5], which has been designed and
prototyped in the context of System S project [17] within IBM Research to enable sophisti-
cated stream processing. There are multiple sites running the System S software, each with
their own administration and goals. Each site may only have limited processing capabilities,
so cooperation among these sites can frequently be of mutual benefit. Considering that a site
receives a job. After planning [34], the site finds that using only its local resources, it cannot
satisfy all resource requirements of the plan. Then, the site negotiates with other sites to ac-
quire resources needed using its negotiation management component [1]. For each resource,
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there can be multiple providers and the site concurrently negotiates with different resource
providers to construct agreements for these resources. The plan can be executed if and only
if all resource requirements are satisfied. Therefore, while making a proposal to a trading
partner for one resource, the site needs to consider the dynamically changing negotiation
environments (e.g., the number of sites requiring the same resource) and the negotiation
situation of other negotiations for the same resource and for other resources.

Currently, there are limited techniques based on auctions or independent negotiations
over single resources for performing the assembly of multiple resources required by a task.
A centralized approach such as reverse combinatorial auctions [7,30] requires a controlling
agent (the auctioneer) for determining which agents receive which resources based on the
bids submitted by individual agents. However, the auctioneer may face significant compu-
tational overload due to a large number of bids with complex structure. Assume that each
buyer runs a reverse combinatorial auction, each seller may participate in multiple auctions
as there are multiple buyers requiring its resource. It’s difficult for each seller to derive
its optimal bids for all the concurrent auctions. An alternative approach is that each buyer
(seller) submits its resource requirement (supply) to a super agent and the super agent runs
auctions for all the buyers (sellers). However, it may be difficult to find such an auctioneer
agent that selfish agents can trust and can comply with the decisions made by the auctioneer.
Moreover, in dynamic environments that resource supply and demand arrive randomly, it is
very difficult for the auctioneer to decide when to run auctions. In our distributed approach,
allocations emerge as the result of a sequence of distributed negotiations and each selfish
agent acts on behalf of itself. An agent can negotiate with other agents when needed. The
distributed model is also more suitable for the situation when the needed resources are from
multiple electronic marketplaces, and more natural in cases where resources belong to dif-
ferent selfish agents and finding optimal allocations may be (computationally) infeasible.
We feel it is key that the acquisition of multiple resources necessary is seen as an integrated
process in which the results/status of any one negotiation affects all other negotiations.

Because resource providers and consumers may have different goals, preferences, in-
terests, and policies, the problem of negotiating an optimal allocation of resources within a
group of agents has been found to be intractable both in computation [9] and communica-
tion [10]. The multi-resource negotiation studied in this paper is even more complex due to
decommitment. An agent’s bargaining position in each round is determined by many fac-
tors like market competition, negotiation deadlines, current agreement set, trading partners’
proposals, and market dynamics. During each round of negotiation, an agent has to make de-
cisions on how to proceed with each negotiation thread and there are many possible choices
for each decision based on a variety of factors. Thus, it is difficult to construct an inte-
grated framework in which all these factors are optimized concurrently. Rather than explic-
itly model those inter-dependent factors and then determining each agent’s best decisions
by an intractable combined optimization, this work tries to connect those inter-dependent
factors indirectly and develops a set of heuristics to approximate agents’ decision making
during negotiation. The distinguishing feature of negotiation agents in this paper is that they
are designed with the flexibility to adjust 1) the number of tentative agreements for each re-
source and 2) the amount of concession by reacting to i) changing market conditions, and ii)
the current negotiation status of all concurrently negotiating threads. In our approach, agents
utilize a time-dependent negotiation strategy in which the reserve price of each resource is
dynamically determined by 1) the likelihood that negotiation will not be successful (conflict
probability), 2) the expected agreement price of the resource, and 3) the expected number
of final agreements given the set of tentative agreements made so far. The negotiation dead-
line of each resource is determined by its scarcity. A buyer agent can make more than one
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tentative agreement for each resource and the maximum number of tentative agreements is
constrained by the market situation in order to avoid the agent’s making agreements more
than necessary.

Our work here is connected to several lines of research in agent-mediated negotiation
including multi-issue negotiation (e.g., [23,45,12,24,22,14,13,43]), one-to-many negotia-
tion [33,27,28,3,2,6], negotiation strategies (e.g., [20,11,42,39,40]), and decommitment
(e.g., [38,1,29]) (please see Section 5 for details). This paper presents the first design of ne-
gotiation agents in dynamic and uncertain environments in which 1) a consumer negotiates
for multiple resources and its negotiation fails if it fails to get some resources, and 2) agents
can choose to decommit from existing agreements within a fixed period. This research is
intellectually challenging because of both the complex interactions among concurrent ne-
gotiations for multiple resources and the uncertainty associated with the outcome of these
negotiations. This research provides a deep understanding of the influence of sophisticated
negotiation mechanisms on individual agents’ performance in dynamic environments, and
hence contribute to the construction of effective problem-solving approaches in open en-
vironments. The proposed approach can be used for designing negotiation agents in many
practical applications like service composition [32], Grid resource management [41], and
supply chain [47].

The remainder of this paper is organized as follows. Section 2 introduces the multi-
resource negotiation problem. Section 3 presents agents’ negotiation strategies. Section 4
reports experimental results and presents an analysis of the properties of our model. Sec-
tion 5 summarizes related work, and Section 6 concludes this paper.

2 Negotiation mechanism

2.1 Assumptions

We make the following assumptions before specifying the negotiation model:
1) Agents have incomplete information about others. The assumption of incomplete

information is intuitive because in practice, agents have private information, and for strate-
gic reasons, they do not reveal their strategies, constraints, or preferences. In [35, p.54], it
was noted that the strategy of a trading agent corresponds to its internal program, and ex-
tracting the true internal decision process would be difficult. Moreover, when selfish agents
have competing interests, they may have incentive to deviate from protocols or to lie to
other agents about their preferences. This paper assumes that agents know the number of
trading partners and competitors and the distributions of trading partners’ reserve price.
This assumption is not more restrictive than most related work (e.g., [13,25,27–29]). In the
streaming processing system CLASP [5], each resource provider (consumer) always posts
its resource supply (requirement). We explored the sensitivity of this assumption in the ex-
periment section.

2) A consumer agent negotiates over multiple resources in parallel and, for each re-
source, the agent concurrently negotiates with its trading partners. Given that the buyer
doesn’t know how to appropriately set the reserve price of each of its resources, one ap-
proach that requires no prior knowledge of the marketplace is for a consumer to negoti-
ate over all the resources in parallel. For each resource, there are multiple trading partners
and the agent concurrently negotiates with all the trading partners. Therefore, each negoti-
ation thread of one resource has multiple concurrently existing outside options. Generally,
a buyer obtains more desirable negotiation outcomes when it negotiates concurrently with
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Fig. 1 Buyer a’s multi-resource negotiation problem.

all the sellers in competitive situations in which there is information uncertainty and there
is a deadline for the negotiation to complete [27,28]. Additionally, inefficiency may arise in
sequential negotiation when considering time cost [14].

2.2 The Negotiation Problem

All the analysis in this paper is from the perspective of a randomly selected buyer a (see
Fig. 1). Let I = {I1, I2, . . . , Il} be the set of resources of a and τ be a’s negotiation deadline.
Let a negotiation period of a be denoted by t, t ∈ {0, 1, . . . , τ − 1}. For resource Ij , a has a
set T Pt

j of trading partners (sellers) at round t. Also, a has a set CPt
j of trading competitors

(buyers) for resource Ij at round t. φt
a→s is the proposal of a to its trading partner s ∈ T Pt

j

at round t. φt
s→a is the proposal of seller agent s to a at round t. RP and IP are the

reserve price (maximum amount of money a can spend) and the desirable price of a before
negotiation begins, respectively. IPj is a’s initial proposal for resource Ij , i.e., φ0

a→s, and
it follows that

∑
j IPj = IP . RP t is a’s reserve price for all negotiating resources It at

round t. Once a tentative agreement for Ij becomes a final agreement, a doesn’t need further
negotiation about Ij . Therefore, It ⊆ It−1 ⊆ I.

An agent can decommit from an agreement within λ rounds after the agreement has
been made. Assume a makes an agreement Ag about resource Ij with agent s at round
Tm(Ag) = t and the agreement price is Prc(Ag). Assume a decommits from the agreement
Ag at round t′ where t′ − Tm(Ag) ≤ λ. The penalty of the decommitment is defined by
ρ(Prc(Ag), t, t′, λ). This paper assumes that 1) penalty functions are nonnegative, continu-
ous, and nondecreasing with time and agreement price, and 2) the maximum penalty is less
than the agreement price. Therefore, if an agent makes unnecessary agreements for a re-
source, it will decommit from these unnecessary agreements. An example of such a penalty
function is 0.1× Prc(Ag)× (

(t′ − t)/λ
)ς where ς > 0.

Penalties could be different from one resource to another resource. If the two parties de-
commit at the same time, they don’t need to pay a penalty to each other. An agreement made
in the bargaining process is called a tentative agreement and it becomes a final agreement if
neither party decommits from the agreement in the λ rounds after the agreement was made.
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Agent a needs to fulfil all its final agreements, i.e., a needs to pay for all final agreements,
even if it only needs one resource.

From the perspective of the overall negotiation, all the resources of a are dependent in
the sense that a’s utility from the overall negotiation depends on the agreements on all the
resources. a tries to make agreements for all its resources and a gains nothing if it fails to
make an agreement on one resource, no matter how many and how good the agreements for
other resources are. In other words, a requires a set of resources and only receives a positive
utility if it acquires all of them, and zero otherwise. This assumption makes sense in some
practical domains like some supply chain or Grid applications where the failure of one step
(or one sub-task) will result in the failure of the whole task. The utility function of a when
a makes at least one final agreement for each resource is defined as:

ua = RP −
∑

Ij∈I

∑

Ag∈FAGτ+λ
j

Prc(Ag) +

τ+λ∑

t=0

(
ρt

in − ρt
out

)

where τ + λ is the maximum period that a is involved in negotiation and decommitment,
FAGτ+λ

j is the set of final agreements for resource Ij at τ + λ, ρt
out is the penalty a pays

to other agents at t, and ρt
in is the payment of penalty a receives from other agents at t.

If a fails to make a final agreement for at least one resource, a gains nothing and its
utility is defined as:

ua = −
∑

Ij∈I

∑

Ag∈FAGτ+λ
j

Prc(Ag) +

τ+λ∑

t=0

(
ρt

in − ρt
out

)

2.3 The Negotiation Protocol

As agents can choose to decommit from agreements, negotiation consists of a bargaining
stage and a decommitment stage for each negotiation thread. This work adopts the well
known alternating offers protocol (see [36, p.100]) so that a pair of buyer and seller agents
bargain by making proposals to each other. At each round, one agent makes a proposal first,
then the other agent has three choices in the bargaining stage: 1) accept the proposal, 2) re-
ject the proposal, or 3) make a counter proposal. For ease of analysis, this work assume that
buyers always propose first to sellers at each round of negotiation. Many buyer-seller pairs
can bargain simultaneously. If the seller accepts the proposal of the buyer, negotiation ter-
minates with a tentative agreement. If the seller rejects the proposal of the buyer, negotiation
terminates with no agreement. If the seller makes a counter proposal, bargaining proceeds to
another round and the buyer can accept the proposal, reject the proposal, or make a counter
proposal. Bargaining between two agents terminates 1) when an agreement is reached or 2)
with a conflict (i.e., no agreement is made) when one of the two agents’ deadline is reached
or one agent quits the negotiation. After a tentative agreement is made, an agent has the
opportunity to decommit from the agreement and the decommiting agent pays the penalty
to the other party involved in the decommited agreement.

2.4 The Negotiation Strategy

An agent’s negotiation strategy is a function from the negotiation history to its actions at each
negotiation round [35]. An agent a’s negotiation strategy can be represented as a sequence of
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functions fa = {f t
a}∞t=0, where f t

a is a’s strategy at round t. As the agent is negotiating for
multiple resources and there are multiple negotiation threads for each resource, the agent’s
negotiation strategy f t

a specifies for the agent what to do at round t. For each trading partner
s, the agent a has four choices: 1) accept the proposal by s, 2) reject the proposal by s, 3)
make a counter proposal to s in the bargaining stage, or 4) decommit from the agreement
between a and s in the decommitment stage.

A strategy profile F = (fa, fT P , fCP ) is a collection of strategies, one for each agent,
where fT P and fCP are the strategies for a’s trading partners and trading competitors, re-
spectively. Let = : F → O be a social choice function which determines the negotiation
result given the negotiation strategies F of all the agents. Given the strategy profile of all
the agents, game theory has been widely applied in analyzing the equilibria of bargaining
models (e.g., Nash equilibria, Sub-game perfect equilibria, Sequential equilibria) [31]. The
analytic complexity of equilibrium analysis increases rapidly when more elements (e.g.,
deadline, outside options, bargaining costs, market competition) and more agents are in-
cluded in the models. As a result, in most models, only one or two elements were considered.
For example, Rubinstein [36] studies a two-player sequential bargaining game in which bar-
gaining cost is considered. The latest advance in computing sequential equilibrium strategies
only considers a bilateral bargaining model in which one agent has incomplete information
about the deadline of the other agent [16]. We take a set of elements into account, for exam-
ple, deadline, outside option, market competition, multiple resources, and decommitment.
In addition, we are not assuming that agents have complete information about the factors
considered in our framework, which makes agents’ reasoning more difficult. Therefore, we
feel that it is impractical to model in the framework the complex interaction that occurs
between the bargaining and decommitment nor the interaction among multiple resources.

If we assume that each agent has information, which could be incomplete, about other
agents’s strategies (i.e., fT P and fCP ), the optimization problem of agent a is to find the
optimal negotiation strategy f∗a from the set Fa of possible negotiation strategies:

f∗a = argmaxfa∈Fa
ua

(=(fa, fT P , fCP )
)

where ua(=(fa, fT P , fCP )) is a’s utility of the negotiation result =(fa, fT P , fCP ). Agent
a’s optimization problem at each negotiation round t can be formulated as a Markov Deci-
sion Process (MDP) < S, A, P, R > where the state set S can be characterized by the market
situation (e.g., the number of buyers or sellers, the agreement set of each buyer or seller),
action set A consists of all the actions each agent can choose (e.g., a counter-proposal in-
cluding the price, or decommitment decision), transition function P is determined by agents’
negotiation strategies and the change of market with time, reward function R is based on the
utility each agent can gain from a specific state. As the action space A is infinite, solving the
MDP problem could be computationally intractable [4]. Moreover, as stated before, it’s im-
practical to assume that agents have information about other agents’ negotiation strategies.
For strategy or privacy reasons, an agent is unwilling to broadcast its decisions.

Given that 1) it’s hard (even impossible) to compute agents’ equilibrium strategies, and
2) it’s not appropriate to assume that a knows other agents’ negotiation strategies, this pa-
per presents a set of heuristics for agents to make negotiation decisions at each negotiation
round. The set of heuristics consider many relevant issues such as the risk that their negotia-
tion partners may decommit (and therefore the fact that ideally a buyer needs to secure more
than one agreement on any given resource), the competition that buyers face from other buy-
ers, uncertainty about the reserve prices of their trading partners, multiple opportunities of
reaching an agreement, the set of available tentative agreements, deadline, and negotiation
history.
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Table 1 Symbols used in this paper

τ deadline of agent a

Ij resource j

IPj initial proposal for resource Ij

τ t
j deadline of agent a for resource Ij at round t

It the set of resources at round t

T Pt
j the set of partners (sellers) about Ij at round t

CPt
j the set of competitors (buyers) about Ij at round t

φt
a→s a’s proposal to s at round t

Pt
j a’s trading partners’ proposals about Ij at round t

RP t a’s reserve price for all negotiating resources at round t

RP t
j a’s reserve price for resource Ij at round t

T AGt
j a’s set of tentative agreements for resource Ij at round t

FAGt
j a’s set of final agreements for resource Ij at round t

Prc(Ag) price of the agreement Ag

Tm(Ag) time when the agreement Ag was made
ρt

out the penalty a pays to other agents at round t

ρt
in the payment of penalty a receives at round t

Ct
j the scarcity of resource Ij at t

RCt
j the relative scarcity of resource Ij at t

δt
j the concession rate with respect to resource Ij at round t

χt
j the conflict probability of the negotiation for Ij at t

$t
j the expected agreement price of resource Ij at t

ωt
s(Ag) the probability of s’s decommiting from Ag at t

3 Heuristics based Strategies

Agent a has l resources to negotiate, and for each resource, a conducts multi-threaded ne-
gotiation with a set of trading partners. For each thread of a resource, a needs to decide 1)
what is its proposal during the bargaining stage and 2) when and whether to decommit from
an agreement in the decommitment stage.

3.1 An overview of negotiation strategies

Algorithm 1 gives an overview of a’s strategy during the bargaining stage and the decom-
mitment stage.

At round t = 0, a needs to make an initial proposal IPj to each trading partner s.
During each later round (t > 0), a will always first update its information structures (see Al-
gorithm 2). First, if another agent decommits from an agreement, then remove the agreement
from the tentative agreement set. Second, if another agent sends a rejection proposal, then
the corresponding negotiation thread terminates. If another agent accepts a proposal, then
add the agreement into the tentative agreement set. If one tentative agreement becomes a fi-
nal agreement (no decommitment allowed) for the resource Ij as the negotiation moves to a
new round, then a will decommit from all tentative agreements about Ij , stop all negotiation
threads for Ij , and remove Ij from It.
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Algorithm 1 Negotiation Strategy of Agent a

Data Structure: Tentative agreement set T AGt
j , final agreement set FAGt

j , sellers’ proposal set for each
resource Ij at round t.
Output: Final agreement set FAGt

j for each Ij

1: Initial proposing: Let t = 0 and propose IPj to every trading partner s about Ij .
2: repeat
3: t + +;
4: It = It−1;
5: T AGt

j = T AGt−1
j , FAGt

j = FAGt−1
j for Ij ∈ It;

6: Step 1: initialization (Algorithm 2)
7: Step 2: deadline calculation (Section 3.2)
8: Step 3: proposal generation (Section 3.3)
9: Step 4: meet the agreement number constraint (Section 3.4)

10: Step 5: send left proposals
11: until 1) t ≥ τ + λ, or 2) |FAGt

j | > 0 for each Ij , or 3)|T AGt
j | = 0 for some Ij at t ≥ τ t

j

Next a computes the negotiation deadline τ t
j for each resource Ij ∈ It (Section 3.2)

and generates a proposal φt
a→s to each trading partner s ∈ T Pt

j (Section 3.3). If φt
a→s <

φt−1
s→a (i.e., s’s last proposal is not acceptable), then a sends the proposal φt

a→s to s directly.
Otherwise, it adds < φt−1

s→a, t > into tentative agreement set T AGt
j .

For resource Ij , a checks whether the current set of agreements are more than necessary.
If the current set of agreements is more than needed, a recursively removes agreements
from the tentative agreement set (Section 3.4). Assume that Ag needs to be removed and the
trading partner in the agreement Ag is seller s. If Ag ∈ T AGt−1

j , then a decommits from the
agreement. If Ag is not in T AGt−1

j , the agreement Ag is added to T AGt
j by a at time t but

the seller involved in the agreement hasn’t received the “accept” message from a. Although
a doesn’t intend to make the agreement Ag and a can quit the negotiation with s, it’s better
for a to continue the negotiation with s and get better agreements than an agreement in the
current tentative agreement set T AGt

j . Therefore, a sends s a proposal with lower price than
the price in the agreement Ag.

Finally, if an agreement Ag is contained in T AGt
j but is not in T AGt−1

j , then a sends
an accept proposal to the corresponding seller involved in the agreement Ag.

The overall negotiation process will terminate if 1) the deadline is reached, or 2) a makes
a final agreement for each resource Ij , or 3) |T AGt

j | = 0 for some Ij at t ≥ τ t
j , which means

it no longer makes any sense for a to make any other agreements.

3.2 Different deadlines for different resources

The intuition behind using different negotiation deadlines for different resources is based on
the following scenario: a makes an agreement about a scarce resource Ij before the deadline
approaches. However, the other party to the agreement later decommits from the agreement.
Then, the overall negotiation fails as it’s difficult for agent a to get another agreement for
the scarce resource Ij and thus a needs to pay the penalty for its other agreements. To avoid
the situation happening, we can reduce the deadlines of scarce resources to increase the
likelihood that we have a final agreement for those resources in place before the negotiation
deadline. On one hand, by decreasing one resource’s deadline, a is inclined to make larger
concessions to its trading partners and thus its probability of making a final agreement for the
resource increases. On the other hand, if it’s really difficult for a to make a final agreement
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Algorithm 2 Initialization
1: for each Ij ∈ It do
2: for each s ∈ T Pt−1

j do
3: if φt

s→a=“decommit from Ag” then
4: remove Ag from T AGt

j
5: else
6: if φt

s→a=“reject” then
7: remove s from T Pt

j
8: end if
9: else

10: if φt
s→a=“accept” then

11: add < φt−1
s→a, t > into T AGt

j
12: end if
13: end if
14: end for

15: for each Ag ∈ T AGt
j do

16: if t− Tm(Ag) > λ then
17: remove Ag from T AGt

j and add it to FAGt
j

18: end if
19: end for
20: if |FAGt

j | > 0 then
21: decommit from all agreements in T AGt

j , stop all negotiation threads for Ij , and remove Ij from
It.

22: end if
23: end for

for one resource, a can know this earlier. Thus a can pay less decommitment penalties by
decommiting from agreements earlier as penalty increases with time.

The scarcity of a resource is evaluated based on the competition situation of the nego-
tiation over resource Ij . A negotiator’s bargaining “power” is affected by the number of
competitors and trading alternatives. Multiple options give a negotiator more “power” since
the negotiating party needs not pursue the negotiation with any sense of urgency. The com-
petition situation of an agent is determined by the probability that it is being (not being)
considered as the most preferred trading partner [42]. An agent’s preferred trading partner
refers to the one who makes the best proposal to the agent. a has CPt

j competitors and T Pt
j

partners. While it’s impossible for a to compute exactly the probability that it is being (not
being) considered as the most preferred trading partner as a doesn’t know other agents’ ne-
gotiation strategies, the probability is approximated in the following way. The probability
that a is not the most preferred trading partner of any trading partner is CPt

j/(CPt
j + 1).

The probability of the agent a not being the most preferred trading partner of all the trading
partners is

Ct
j =

( CPt
j

CPt
j + 1

)T Pt
j

Ct
j measures the scarcity of resource Ij at t. With more trading partners, the resource

will become less scarce and Ct
j will decrease. With more trading competitors, the resource

will become scarcer and Ct
j will increase.

If resource Ij is scarce and the other resources are sufficient, it’s reasonable to decrease
Ij’s deadline in order to decrease the probability that the overall negotiation fails due to the
failure of the negotiation about resource Ij . However, if all the desired resources are scarce,
it may not be necessary to decrease the deadline of all the resources. In other words, whether
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to decrease the deadline of the resource Ij may not depend on the absolute scarcity of the
resource, but rather its “relative scarcity”. The relative scarcity of the resource Ij is defined
as the ratio of the Ij’s scarcity measure to the harmonic mean of the scarcity measure of all
the resources:

RCt
j =

Ct
j

|It|∑
Ik∈It

1
Ct

k

=
Ct

j

∑
Ik∈It

1
Ct

k

|It|

Using harmonic mean, the scarcer resource dominates the deadline calculation, which
is close to the practice. Given the relative scarcity of each resource Ij ∈ It, the deadline of
resource Ij at time t is given as follows

τ t
j =

{
τ if RCt

j < 1

(RCt
j)

%τ if RCt
j ≥ 1

where % < 0. If the resource Ij is not scarce as compared with most resources, the deadline
for resource Ij will be the deadline of the overall negotiation. Otherwise, i.e., RCt

j ≥ 1, its
deadline τ t

j is smaller than τ as (RCt
j)

% < 1, and it can be found that τ t
j will decrease with

the increase of RCt
j . That is, a relatively scarcer resource will have a shorter deadline.

3.3 Generating proposals

Since a bargaining is fundamentally time-dependent [20,11], agents utilize a time-dependent
strategy when making concessions. Assume that a is negotiating with s about resource Ij .
Then, a’s proposal to s at round t is given by:

φt
a→s = IPj + (RP t

j − IPj)δ
t
j

where RP t
j is agent a’s current reserve price of resource Ij at round t and δt

j is agent a’s
concession rate with respect to resource Ij at round t, which is given by

δt
j = T (t, τ t

j , ε) = (t/τ t
j )ε

With infinitely many values of ε, there are infinitely many possible strategies in mak-
ing concessions with respect to the remaining time. However, they can be classified into:
1) Linear: ε = 1, 2) Conciliatory: 0 < ε < 1, and 3) Conservative: ε > 1 [42]. ε reflects
an agent’s mental state about its eagerness of finishing negotiation earlier [20,11]. Before
making proposals, a needs to decide its reserve price RP t

j . To calculate RP t
j , we consider

three factors: 1) the conflict probability χt
j which measures the “hopeness” of the current

negotiation for resource Ij , 2) expected agreement price $t
j of resource Ij , and 3) the ex-

pected number ϕ(T AGt
j) of final agreements based on the estimation of the decommitment

probabilities of the current tentative agreement set.
RP t

j is defined as:

RP t
j = RP t χt

j$
t
jγ(T AGt

j)∑l
j=1 χt

j$
t
jγ(T AGt

j)

where RP t = RP −∑
Ij∈I

∑
Ag∈FAGt

j
Prc(Ag) +

∑t−1
t=0(ρt

in − ρt
out) is agent a’s reserve

price for all resources at round t, i.e., the maximum amount of money that it can spend to
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acquire all the remaining resources. We can see that the reserve price RP t
j increases with

the increase of the conflict probability χt
j and expected agreement price $t

j . If the current
negotiation for resource Ij seems difficult, a needs to set a higher reserve price for resource
Ij . Similarly, a needs to set a higher reserve price for resource Ij if the expected agreement
price for resource Ij is high. Later we will show that γ(T AGt

j) decrease with the increase of
ϕ(T AGt

j). Thus, the reserve price RP t
j decreases with the increase of the expected number

ϕ(T AGt
j) of final agreements, which is intuitive as buyers don’t need to set a higher reserve

price for a resource Ij when a has already made enough tentative agreements for Ij .
Conflict probability χt

j : Suppose that at round t, a’s last proposal φt−1
a→s generates a

utility of va for itself and vs for s, and its trading partner s’s proposal φt−1
s→a generates a

utility of ws for itself and wa for a. Since a and s are utility maximizing agents, va > wa

and vs < ws. If a accepts s’s last proposal, then it will obtain wa with certainty. If a insists
on its last proposal and 1) s accepts it, a obtains va and 2) s does not accept it, a may be
subjected to a conflict utility ca. ca is the worst possible utility for a (i.e., a’s utility in the
absence of an agreement with s). If s does not accept a’s last proposal, a may ultimately
have to settle with lower utilities (the lowest possible being the conflict utility), if there
are changes in the market situation in subsequent cycles. For instance, a may face more
competitions in the next or subsequent cycles and may have to ultimately accept a utility
that is lower than wa (even ca). If the subjective probability of obtaining ca is pc (conflict
probability) and the probability that a achieving va is 1 − pc, and if a insists on holding
its last proposal, a will obtain a utility of (1 − pc)va + pcca. Hence, a will find that it is
advantageous to insist on its last proposal only if

(1− pc)va + pcca ≥ wa

i.e., pc ≤ (va−wa)/(va−ca) [42,39,40]. The maximum value of pc = (va−wa)/(va−ca)

is the highest probability of a conflict that a may encounter in which va = RP t
j − φt−1

a→s

and wa = RP t
j − φt−1

s→a. pc is a ratio of two utility differences. While va−wa measures the
cost of accepting the trading agent’s last proposal, va − ca measures the cost of provoking
a conflict. va − ca represents the range of possible values of utilities between the best case
utility and the worst case (conflict) utility.

If there is no tentative agreement for resource Ij , i.e., |T AGt
j | = 0, the worst case utility

ca is 0. If |T AGt
j | > 0, a can use one of its tentative agreements as the finally agreement

and ca is defined as

max
Ag∈T AGt

j

(
RP t

j − Prc(Ag)− Pnt(T AGt
j −Ag, t, λ)

)

where Pnt(T AG, t, λ) is an estimation of the penalty a needs to pay while decommiting
from the set of agreements T AG. Pnt(T AG, t, λ) is defined as

∑

Ag∈T AG

∑Tm(Ag)+λ
t′=t ρ(Prc(Ag), Tm(Ag), t′, λ)

Tm(Ag) + λ− t + 1

in which any agreement Ag ∈ T AG can be decommited at any time before the decommit-
ment stage expires.

Aggregated Probability of Conflict: Let pi
c be the conflict probability of a with any of its

trading partner s and wi
a be a’s utility by accepting s’s proposal, then the aggregated conflict

probability of a with all of its trading partners about Ij is given as follows [42,39,40]:
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χt
j =

|T Pt
j |∏

i=1

pi
c =

|T Pt
j |∏

i=1

va − wi
a

va − ca
=

∏|T Pt
j |

i=1 (va − wi
a)

(va − ca)|T P
t
j |

Expected agreement price $t
j : Different resources have different ranges of agreement

prices. For example, you may need to spend $20,000 for a car but only need $500 for a
bike. Therefore, it’s necessary to consider a resource’s expected agreement price $t

j while
determining the reserve price of the resource. $t

j is computed based on agent a’s estimation
of the reservation price of a trading partner. The estimation is characterized by a probability
distribution Fs(.), where Fs(y) denotes the probability that the reservation price of a trading
partner s is no greater than y. Fs(y) is identical and independent across all sellers.1 This
probability distribution is the prior belief of the buyer. For simplicity, let Fj(y) = Fs(y)

denote the probability that the reservation price of any trading partner s ∈ T Pt
j is no greater

than y. The probability density function of Fj(y) is denoted by fj(y).
Let F k

j (y) be the probability distributions of the kth highest maximum reserve price.
The probability density function of F k

j (y) is denoted by fk
j (y). F 1

j (y) is equal to the product
of the probabilities that the maximum reserve price is less than or equal to y in each thread.
F 2

j (y) is equal to F 1
j (y) plus the probability that the highest maximum reserve price is

greater than y, and the second highest maximum reserve price is less than or equal to y.
These probabilities can be calculated by the following formulas:

F 1
j (y) =

(
Fj(y)

)|T Pt
j |

F 2
j (y) = F 1

j (y) + C1
|T Pt

j |
(
1− Fj(y)

)2−1(
Fj(y)

)|T Pt
j |−1

F k
j (y) = F k−1

j (y) + Ck−1
|T Pt

j |
(
1− Fj(y)

)k−1(
Fj(y)

)|T Pt
j |−k+1

The corresponding probability density functions are:

f1
j (y) = |T Pt

j |
(
Fj(y)

)|T Pt
j |−1

f2
j (y) = f1

j (y)− C1
|T Pt

j |fj(y)
(
Fj(y)

)|T Pt
j |−1

+ C1
|T Pt

j |

(|T Pt
j | − 1)fj(y)

(
1− Fj(y)

)2−1(
Fj(y)

)|T Pt
j |−2

fk
j (y) = fk−1

j (y)− Ck−1
|T Pt

j |(k − 1)fj(y)

(
1− Fj(y)

)k−2(
Fj(x)

)|T Pt
j |−k+1

+ Ck−1
|T Pt

j |fj(y)
(
1− Fj(y)

)k−1(
Fj(y)

)|T Pt
j |−k+1

We provide a heuristic approach to estimate the expected agreement price for resource
Ij . When the number of trading partners is less than the number of trading competitors,
the agreement price follows the highest maximum reserve price distribution. Otherwise, the
agreement price follows a lower reserve price distribution. $t

j is given as follows:

$t
j =

{ ∫ ȳ
0 f

|T Pt
j |−|CPt

j |
j (y)ydy if |T Pt

j | > |CPt
j |∫ ȳ

0 f1
j (y)ydy if |T Pt

j | ≤ |CPt
j |

1 Our model can also be extended to allow Fs(y) to be different for different trading partners.
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where ȳ is the upper bound of the possible reserve price for resource Ij . The above estima-
tion is “conservative” in the sense that we assume that agent a is less competitive than its
trading competitors.

γ(T AGt
j): γ(T AGt

j) models how the current set T AGt
j of agreements will affect its

reserve price about resource Ij at round t. a will set lower reserve price if it has made more
agreements. As current agreements may be decommited in the future. Rather than consid-
ering the number |T AGt

j | of agreements having already made, it’s more prudent to use
the expected number of final agreements, which can be computed based on the decommit-
ment probabilities of agreement set T AGt

j . The decommitment probability of an agreement
Ag ∈ T AGt

j between a and s is approximated by considering the competition situation of
negotiation over resource Ij and s’s satisfaction about the agreement Ag.

The competition situation of negotiation over resource Ij is evaluated by the probabil-
ity of the agent s not being the most preferred trading partner is [(T Pt

j − 1)/T Pt
j ]
CPt

j+1

[42,39,40]. s’s satisfaction about the agreement Ag is estimated by the probability that the
agreement is no worse than the trading partner’s reserve price. The price of the agreement
Ag ∈ T AGt

j is Prc(Ag), s’s satisfaction about the agreement Ag is Fj(Prc(Ag)).
Hence, the approximation of the probability of s’s decommiting from agreement Ag ∈

T AGt
j is defined as:

ωt
s(Ag) = ϑ× (

1− (T Pt
j − 1

T Pt
j

)CPt
j+1)(

1− Fj(Prc(Ag))
)

For the tentative agreement set T AGt
j , the expected number of final agreements is

ϕ(T AGt
j) =

∑
Ag∈T AGt

j
(1 − ωt

s(Ag)). Given ϕ(T AGt
j), buyer a can determine how it

will affect the reserve price about resource Ij at round t. γ(T AGt
j) decreases with the in-

crease of ϕ(T AGt
j) and can be defined as:

γ(T AGt
j) =

1(
1 + ϕ(T AGt

j)
)2

3.4 Maximum number of final agreements

As trading partners may decommit from agreements, a may need to make more than one
tentative agreement for resource Ij . Then, how many agreements are enough for the resource
Ij? For an agreement Ag between a and a trading partner s, s may be inclined to decommit
if there are many buyers requesting the resource. On the other hand, s may be inclined to
decommit if the agreement price is not favorable from s’s perspective. Here we provide
an approach to decide the maximum number of agreements a can make on resource Ij

at round t based on the expected number of final agreements. Given the expected number
ϕ(T AGt

j) of final agreements about resource Ij at t, a needs to decide whether the tentative
agreements is enough or insufficient. If T AGt

j is more than needed, a may decommit from
some agreements. If the agreement set is insufficient, a will make more agreements if the
negotiation deadline hasn’t approached. This work assumes that a only needs to make one
final agreement for each resource. Therefore, by intuition, the most favorable result for agent
a is that a makes exactly one final agreement for each resource.

As a only needs one final agreement about resource Ij , if ϕ(T AGt
j) À 1, only part

of the final agreements will be used by a, which corresponds to the tentative agreement set
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T AG ⊂ T AGt
j . Maintaining the tentative agreement set T AG is better than maintaining

the tentative agreement set T AGt
j as in the later case, a needs to pay more for redundant

agreements. Therefore, it’s better for a to decommit from some agreements in T AGt
j .

Let ϕt
j be the satisfactory number of final agreements about resource Ij at t which

represents the upper bound of the number of final agreements needed. Before the deadline is
reached, a has the opportunity to make more agreements and thus reach one final agreement.
Thus, the satisfactory number of final agreements about resource Ij at t < τ is 1, ϕt

j = 1.
After the negotiation deadline, a will determine whether to decommit from any agreement
T AGt

j for resource Ij at round τ ≤ t < t+λ. Is it the best option for a to set the satisfactory
number of final agreements about resource Ij at t be 1? Consider the following scenario, at
t, the expected number of final agreements for resource Ij is 1 and the expected number of
final agreements about any other resource is close to 0, which implies that the negotiation
about other resources has a very high failure probability. If a sets ϕt

j to be 1, it’s with very
high probability that a would need to decommit from all its agreements. Therefore, a will
not set a high ϕt

j value if ϕ(T AGt
k) is small for another resource Ik. On the other hand,

a will try to increase the probability of making one final agreement for each resource as
it’s desirable for a to make one final agreement for each resource. Concerning above, ϕt

j is
defined as:

ϕt
j =

{
1 if t < τ

minIk∈It ϕ(T AGt
k) if τ ≤ t < t + λ

If
∑

Ag∈T AGt
j
(1 − ωt

s(Ag)) < ϕt
j , a needs to make more agreements as the expected

number of agreements is less than ϕt
j . If

∑
Ag∈T AGt

j
(1−ωt

s(Ag)) > ϕt
j , a needs to decom-

mit from some agreements. Let the set of tentative agreement set after removing redundant
agreements be T AG. The optimization problem of computing T AG is given by

min
T AG

∑

Ag∈T AGt
j−T AG

ρ(Prc(Ag), Tm(Ag), t, λ)

where T AG satisfies
∑

Ag∈T AG(1− ωt
s(Ag)) ≤ ϕt

j .

Theorem 1 The optimization problem of removing redundant tentative agreements is NP-
complete.

Proof We show that the problem is NP-complete by formulating the problem as a 0-1
Knapsack problem, which is well known to be NP-complete.

Formal definition of 0-1 Knapsack problem: There is a knapsack of capacity c > 0 and
N items. Each item has value vi > 0 and weight wi > 0. Find the selection of items (δi = 1

if selected, 0 if not) that fit,
∑N

i=1 δiwi ≤ c, and the total value,
∑N

i=1 δivi, is maximized.
The set of tentative agreements T AGt

j = {Ag1, . . . , AgN} can be treated as items. The
value of each item Agi is defined as the penalty if a decommits from the agreement, i.e.,
vi = ρ(Prc(Agi), Tm(Agi), t, λ). The weight of each item Agi is defined as the probability
that Agi will not be decommited by a’s trading partner, i.e., wi = 1−ωt

s(Agi). The capacity
of the knapsack is defined as c = ϕt

j . δi = 1 implies that Agi will be not decommited by
agent a.
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Algorithm 3 Decommit from unnecessary agreements
Input: Tentative agreement set T AGt

j .
Output: Tentative agreement set T AGt

j satisfying the constraint of the maximum number of final agree-
ments.

1: Sort all the tentative agreements T AGt
j by decreasing ratio of ρ(Prc(Agi), Tm(Ag), t, λ) to 1 −

ωt
s(Ag).

2: Set T AG = ∅, i = 1, and Ag be the ith agreement in T AGt
j .

3: while
∑

Ag′∈(T AG+Ag)(1− ωt
s(Ag′)) ≤ ϕt

j do
4: Add Ag into T AG;
5: i + +, and let Ag be the ith agreement in T AGt

j ;
6: end while
7: return T AG

The constraint of the optimization problem can be rewritten as the exact constraint∑N
i=1 δiwi ≤ c of the 0-1 Knapsack problem. The optimization formula can be rewritten as

min

N∑

i=1

(1− δi)vi =

N∑

i=1

vi + min

N∑

i=1

−δivi

which is equivalent to

max

N∑

i=1

δivi

Thus, the optimization problem can be formulated as a 0-1 Knapsack problem and it’s
NP-complete.

A simple greedy approximation algorithm is used to compute the set of agreements
which will not be decommited by a (Algorithm 3): first sort all the tentative agreements
T AGt

j by decreasing ratio of penalty to probability that an agreement will not be decom-
mited by a’s trading partners, then greedily pick agreements in this order (starting from the
first agreement) until when adding a new agreement will violate the constraint of the maxi-
mum expected number of final agreements. If k is the maximum value of items that fit into
the sack in the 0-1 Knapsack problem, the greedy algorithm is guaranteed to achieve at least
a value of k/2 [8]. For a removed agreement Ag ∈ T AGt

j , a decommits from the agreement;
otherwise, a sends the agent a proposal worse than φt

s→a.

4 Empirical evaluation and analysis

In this section, we first detail the methodology for analyzing the performance of the devel-
oped negotiation strategies. We then proceed to the actual empirical study of the proposed
strategies. Finally, some properties of our negotiation strategies are analyzed.

4.1 The methodology

To evaluate the performance of negotiation agents, a simulation testbed consisting of a vir-
tual e-Marketplace, a society of trading agents and a controller was implemented using
JAVA. The controller generates agents, randomly determines their parameters (e.g., their
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roles as buyers or sellers, set of resources they provide or acquire, initial prices, reserve
prices, deadlines), simulates the entrance of agents to the virtual e-Marketplace, and han-
dles message passing and payment transfer.

4.1.1 Agent design

While there has been a lot of research in agent-mediated negotiation [18,23,26], most work
focuses either on bilateral multi-issue negotiation (e.g., [23,45,12,24,22,14,13]) or single
issue one-to-many negotiation (e.g., [33,27,28,3,2,6]). One exception is [43] which studies
concurrent one-to-many negotiations for multiple resources. But in [43], an agent is as-
sumed to know the reserve price of each resource. Given that there is no existing negotiation
agents dealing with our multi-resource negotiation problem, for comparison reason, we im-
plemented another three types of buyers which use existing techniques for single resource
negotiation and negotiation with decommitment: 1) TDAs using a time-dependent strategy to
make proposals, 2) MTDAs using a market based time-dependent strategy for proposal mak-
ing, and 3) ACMAs using an adaptive commitment management strategy detailed in [43].
Experiments were carried out to study and compare the performance of our buyer agents
(HBAs, heuristic-based buyer agents) with TDAs, MTDAs, and ACMAs.

TDAs, MTDAs and ACMAs adopt the strategy suggested by Nguyen and Jennings [29]
and make at most one tentative agreement for each resource. TDAs, MTDAs and ACMAs use
the same approach to determine the reserve price of each resource and use existing single
resource negotiation strategies for the negotiation for each resource. The reserve price of
resource Ij of each TDA (or MTDA and ACMA) is determined by considering the distri-
bution of the reserve price of resource Ij . Specifically, the reserve price of resource Ij is
proportional to its average reserve price. That is,

RP t
j = RP t

∫ ȳ
0 fj(y)

∑l
i=1

∫ ȳ
0 fi(y)

As HBAs, TDAs, MTDAs and ACMAs generate proposals using a time-dependent negoti-
ation decision function [11], which is widely used for designing negotiation agents (e.g.,[11,
28,29,3,2,43,14,42,39,40]). But TDAs, MTDAs and ACMAs adopts different concession
making strategies, i.e., they take different ε values. As HBAs, TDAs adopt the linear conces-
sion strategy, i.e., ε = 1. In contrast, MTDAs take market competition into account when
making proposals. An MTDA’s parameter ε for concession making is adjusted in the follow-
ing way: while the number of sellers are less than the number of buyers, an MTDA chooses
the conciliatory concession strategy by randomly setting ε < 1. Otherwise, an MTDA uses
the conservative or linear concession strategy by randomly setting ε ≥ 1. MTDAs’ adaptive
concession making strategy based on market competition has been shown to make minimally
sufficient concessions in single resource negotiation [40]. ACMAs use the adaptive commit-
ment management strategy in [43] for each single resource negotiation. ACMAs use a fuzzy
decision making approach for deriving adaptive commitment management strategy profiles
of buyers. The value of ε of a resource is determined dynamically at each round using fuzzy
rules.

Each seller agent in the market randomly chooses a negotiation strategy from the set of
alternations outlined in [11]: the time-dependent function (linear, conceder, conservative)
and the behavior-dependant function (e.g., tit-for-tat). Each seller agent can only make at
most one tentative agreement and it will decommit from an agreement if and only if it can
benefit from the decommitment.
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Table 2 Experimental settings

Input Data Possible Values
Market Type Favorable Balanced unfavorable

supply/demand 10:1, 5:1, 2:1 1:1 1:2, 1:5, 1:10

Market Density Sparse Moderate Dense

No. of agents 6− 35 36− 65 66− 95

Deadline Short Moderate Long

Tmax 10− 30 35− 55 60− 80

Resources/job Lower range Mid-range High range

l 1− 3 4− 6 7− 9

4.1.2 Experimental settings

In the experiments, agents were subjected to different market densities, market types, dead-
lines, number of resources to acquire or sell, and supply/demand ratio of each resource (see
Table 2). Both market density and market type depend on the probability of generating an
agent in each round and the probability of the agent being a buyer (or a seller). When the
number of agents are in the range of 6 − 35 (respectively, 36 − 65 and 66 − 95), the mar-
ket is sparse (respectively, moderate and dense). The lifespan of an agent in the e-market,
i.e., its deadline, is randomly selected from [10, 80]. The range of [10, 80] for deadline is
adopted based on experimental tuning and agents’ behaviors. In our experimental setting,
we found that: 1) for very short deadline (< 10), very few agents could complete deals,
and 2) for deadlines longer than 80, there was little or no difference in the performance of
agents. Hence, for the purpose of experimentation, a deadline between the range of 10− 30

(respectively, 35− 55 and 60− 80) is considered as short (respectively, moderate and long).
Each buyer may have different number of resources to acquire through negotiation. The
number of resources each job (or task) needs is randomly selected from 1 to 9, where 1− 3

(respectively, 4 − 6 and 7 − 9) is considered as lower range (respectively, mid-range and
upper range). The value of ε (eagerness) is randomly generated from [0.1, 8] as it was found
that when ε > 8 (respectively, ε < 0.1), there was little or no difference in performance of
agents.

Each resource’s demand (i.e., the number of buyers who want to buy the resource) may
not be equal to its supply (i.e., the number of sellers who want to sell the resource). If one
buyer is negotiating for multiple resources, there are two situations: 1) All the resources
have the same supply/demand ratio. From a buyer agent’s perspective, for a favorable (re-
spectively, an unfavorable) market, the supply is much higher (respectively, lower) than the
demand. 2) The resources have different supply/demand ratios. Then the range and vari-
ance of resources’ supply/demand ratios will affect agents’ performance. All our references
to supply/demand ratio implicitly assume that the supply/demand ratio of each resource is
randomly chosen.

There are four kinds of buyers (i.e., HBA, TDA, and MTDA, ACMA) and different kinds
of sellers. The number of buyers (or sellers) of each kind is decided in a random way.
Without loss of generality, we assume that, there is at least one agent for each kind of agent.
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Table 3 Performance Measure

Success Rate Rsuc = Nsuccess/Ntotal

Expected Utility Uexp = (
∑Ntotal

i=1 Ui)/Ntotal

Agreement per Resource AGaver =

∑Ntotal
i=1

∑ISi
j=1 A

j
i∑Ntotal

i=1 ISi

Rate of Recovery from De-
commitment

RRaver = SDtotal
Dtotal

Message per Resource Maver =

∑Ntotal
i=1

∑ISi
j=1 M

j
i∑Ntotal

i=1 ISi

Ntotal Total number of runs

Nsuccess No. of runs that reached consensus

Ui Utility of the ith run

ISi The number of resources in the ith run

Aj
i The number of tentative agreement for resource j in the ith run

Mj
i The number of messages for resource j in the ith run

Dtotal The number of runs in which one resource’s tentative agreements were all
decommited

SDtotal The number of runs in which negotiation is successful after one resource’s
tentative agreements were all decommited

4.1.3 Performance measure

We use a number of performance measures in the experiments (Table 3). Analyzing agents’
utility can provide insights into how effective a strategy is. Since negotiation outcomes of
each agent are uncertain (i.e., there are two possibilities: eventually reaching a consensus
or not reaching a consensus), it seems more prudent to use expected utility for all runs
(rather than expected utility for all successful runs) as a performance measure. For ease of
analysis, agent a’s utility ua (defined in Section 2.2) is normalized in each experiment in the
following way: u′a = ua/|RPa− IPa|, which implies that u′a ≤ 1 while not considering the
penalty a received from sellers. It was pointed out in [18,44] that in addition to optimizing
agents’ overall utility, enhancing the success rate is also an important evaluation criterion
for designing negotiation agents.

In addition to the expected utility and success rate, it’s necessary to compare the number
of messages sent and accepted by each buyer during negotiation. As the number of resources
each buyer is acquiring may be different at each time, it’s intuitive to compare the number of
messages sent or accepted for each resource. As an agent may make more than one tentative
agreement for each resource, measuring the average number of tentative agreements for each
resource is also important. During negotiation, it’s possible that all of one agent’s tentative
agreements are decommited by its trading partners and thus an agent’s ability to recover from
such situation is extremely important. Therefore, we also record and compare the number
of cases where an agent makes a final agreement after all its tentative agreements for one
resource are decommited by its trading partners.

4.1.4 Results

A “matched-pair” study was conducted to evaluate the performance of HBAs, as compared
with TDAs, MTDAs, and ACMAs. At the beginning of each run (experiment), the controller
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Table 4 Experimental results for 106 runs

Strategy Uexp Rsuc AGaver RRaver Maver

HBA 0.206 0.59 1.34 478
1356

= 0.35 86

HBA-1 0.153 0.58 1.27 597
2389

= 0.25 91

HBA-2 0.111 0.50 1.33 835
3134

= 0.27 89

HBA-3 0.144 0.43 0.63 3052
8945

= 0.34 88

HBA-12 0.135 0.47 1.23 2933
9578

= 0.31 92

HBA-13 0.144 0.42 0.63 2704
9362

= 0.29 88

HBA-23 0.087 0.35 0.59 3171
10489

= 0.30 84

ACMA 0.033 0.27 0.59 3737
13347

= 0.28 85

MTDA 0.021 0.25 0.57 4423
15584

= 0.28 84

TDA 0.019 0.25 0.72 9200
33459

= 0.27 86

of the testbed will generate all the agents and set the parameters of all the agents according
to the experimental setting, e.g., the number of agents, the supply/demand ratio of each
resource, etc. Among all the buyers, there are some target buyers, one for each negotiation
strategy we want to compare. All the target agents at each run have the same properties.
For example, when we want to compare the performance of HBAs with TDAs, MTDAs, and
ACMAs, we create one target HBA, one target TDA, one target MTDA and one target ACMA,
which have the same properties (e.g., the set of resources, reserve price) except that they use
different negotiation strategies. Then all the agents negotiate and compete with each other.
At the end of this experiment, the controller will record the experimental results for each
target agent, which will be averaged and analyzed on a large number of runs.

Extensive stochastic simulations were carried out for all the combinations of market
density, market type and other agents’ characterizations. All the values of different perfor-
mance measures were averaged based on more than 106 runs. In addition, we tried different
decommitment deadlines and penalties functions. Even though experiments were carried
out for all the situations, due to space limitations, only representative results are presented
in this section. For the empirical results presented in this section, the market is of mod-
erate density, λ = 4 is chosen as the decommitment period and the penalty function is
0.06× Prc(Ag)× ((t′ − t)/λ)1/2.

4.2 Observations

4.2.1 Observation 1

HBA agents use three heuristics: Heuristic 1 (Section 3.2) is used to decide the deadline
for each resource; Heuristic 2 (Section 3.3) is used to make a proposal for each resource
in which the reserve price of each resource is adaptive to market dynamics; Heuristic 3
(Section 3.4) is used to decide the number of tentative agreements to be made for each
resource. Is it possible that a buyer in fact can get better negotiation performance by just
using one or two heuristics? To verify that agents can get better negotiation performance
by using all three heuristics at the same time, we also compare the performance of HBAs
with a special kind of buyers (called HBA-s here) which only use part of the heuristics
used by HBAs. When a HBA doesn’t use heuristic 2, it will use MTDAs’ strategy to make
proposals. When a HBA doesn’t use heuristic 3, it makes at most one tentative agreement for
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each resource. HBA-1s are HBAs which don’t use heuristic 1 and HBA-12s are HBAs which
don’t use heuristic 1 and heuristic 2. HBA-123s are equivalent to MTDAs. Table 4 shows the
performance of TDAs, MTDAs, ACMAs, HBAs, and different types of HBA-s which only use
part of HBAs’s three heuristics.

From column 2 of Table 4, we can find that HBAs gain a higher expected utility Uexp

than agents using other strategies. We also found that HBA-s get higher utilities than ACMAs,
MTDAs, and TDAs. In addition, heuristic 2 seems more important than the other two heuris-
tics. HBA-2s’ expected utility is lower than that of HBA-1s and HBA-3s. The average utility
of HBA-s when HBA-s don’t use heuristic 2 is (0.111 + 0.135 + 0.087)/3 = 0.111. The
average utility of HBA-s when HBA-s don’t use heuristic 1 is (0.153 + 0.135 + 0.144)/3 =

0.144. The average utility of HBA-s when HBA-s don’t use heuristic 3 is (0.144 + 0.144 +

0.087)/3 = 0.125. Therefore, HBA-s will get lower utility when they don’t use heuristic 2,
as compared with not using either heuristic 1 or heuristic 3. In the same way, we can con-
clude that heuristic 3 is more important than heuristic 1. However, the above observations
are based on the averaged results in all scenarios and they don’t suggest that the heuris-
tic 1 is more important than the other two heuristics in every specific scenarios. When the
supply/demand ratio of all the resources has a large variance, the average utility of HBA-s
when HBA-s don’t use heuristic 1 (respectively, heuristic 2 and heuristic 3) is 0.101 (respec-
tively, 0.107 and 0.114 ), which implies that heuristic 1 is more important than the other two
heuristics.

Column 3 of Table 4 shows that HBAs gain higher success rates Rsuc than agents using
other strategies and HBA-s get higher success rates than ACMAs, MTDAs, and TDAs. In
addition, heuristic 3 is more important than the other two heuristics from the perspective of
getting higher success rate. This observation is intuitive as without using heuristic 3, each
buyer makes only one tentative agreement and its probability of making a final agreement
will be low if its trading partner decommits from the agreement. For the same reason, from
column 4 of Table 4, we can see that HBAs have the highest number AGaver of tentative
agreements for each resource. HBA-s using heuristic 3 gain more tentative agreements than
HBA-s not using heuristic 3 which make at most one tentative agreement for each resource.

HBAs’ number of runs in which all tentative agreements are decommited is lower than all
other kinds of buyers (see column 4 of Table 4). The recovery rate RRaver of HBAs is also
higher than the recovery rate of other kinds of buyers. This observation corresponds with the
intuition that HBAs are good at organizing and balancing the multi-resource negotiation. It’s
not surprising that HBAs will send more messages during negotiation as it may make more
than one tentative agreement for each resource, which is mainly due to the use of heuristic
3. However, HBAs’ average number Maver of messages transferred for each resource is less
than 10% higher than that of all other kinds of agents.

4.2.2 Observation 2

Our negotiation strategy uses the estimation of sellers’ probability of decommitment. The
decommitment probability is an approximation of the real probability, which is unknown to
the buyer. It’s impossible to justify our estimated “probabilities” with theory without making
strong assumptions such as knowing other agents’ private information. Moreover, a seller’s
probability of decommiting from a tentative agreement is determined by many factors, e.g.,
its deadline, reserve price, its negotiation situation, which is unknown to a buyer.

Here we use an empirical approach to verify the accuracy of HBAs’ estimation of de-
commitment probabilities. More specifically, HBAs’ estimation of decommitment probabil-
ities are compared with their trading partners’ real decommiting actions during negotia-
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tion. Assume HBAs made n predictions <ωt
s(Ag1), . . . , ω

t
s(Agn)> for tentative agreements

<Ag1, . . . , Agn > throughout all the experiments in which ωt
s(Agi) is a HBA’s predicted

probability that its trading partner s will decommit from the agreement Agi. Then HBAs’
accuracy of predicting decommiting probabilities is given by:

AP =

∑
1≤i≤n AP (ωt

s(Agi))

n

where

AP (ωt
s(Agi)) =

{
ωt

s(Agi) if s decommits from Agi

1− ωt
s(Agi) otherwise

The average prediction accuracy in more than 106 runs is 0.774. Fig. 2 shows the factors
affecting the prediction accuracy. First, the prediction accuracy increases with the increase
of HBAs’ deadlines (Fig. 2(a)). This result is intuitive as, with the increase of deadline,
negotiation agents have longer time to interact with other agents. Then agents have a better
understanding of the market and thus agents can make more precise predictions. Second, the
prediction accuracy decreases with the increase of supply/demand ratio when all resources
have the same supply/demand ratio (Fig. 2(b)). When the supply/demand ratio is low, HBAs
face high pressure of competition and decommitment is more likely going to happen for
each tentative agreement. As a consequence, it’s more difficult to make a precise prediction.
Finally, the prediction accuracy changes little with the change of the number of resources
(Fig. 2(c)). This observation is also intuitive as, a seller’s decommitment decision is only
affected by the agreement price, its reserve price and market competition. It has nothing to
do with the negotiation status of other resources.

Our function of decommitment probability is based on our intuitions about which fac-
tors affect agents’ decision to decommitment. The parameter ϑ = 0.68 is a parameter of
the function for computing trading partners’ decommitment probabilities, which is based on
experimental tuning. With the experimental tuning, we were able to get 74% accuracy aver-
aged over all environments. However, it is unclear to us whether we can get a better result
considering that HBAs do not know other agents’ strategies nor their exact reserve prices.
On a more positive note, our heuristic function performs in ways that would be expected.
For instance, when a HBA’s uncertainty reduces (e.g., change the distribution of sellers’ re-
serve prices), it gains higher prediction accuracy. A reasonable prediction approach should
have the property that the prediction accuracy increases with the decrease of uncertainty. Al-
though we can reduce uncertainty in the market and thus get higher prediction accuracy, our
experiments will become less interesting. In addition, it’s impractical to assume that agents
have (almost) complete information about others.

Sim and Shi [43] also proposed a function for evaluating a trading partner’s decommit-
ing probability, which are used by ACMAs and achieved an average 38% accuracy in all
the scenarios. Although the function in [43] appears to be simpler as it only considers the
prices of the proposals it has received, it is noted that [43] did not make the assumption
that an agent has knowledge of the number of competitors. In contrast, our function takes
both market competition and the trading partner’s satisfaction of agreements based on each
agent’s knowledge about 1) the number of trading competitors and 2) the reserve price of
each trading partner.

4.2.3 Observation 3

The experimental results in Fig. 3 show that: 1) Negotiation results become more favorable
with the increase of the deadline for all kinds of buyers. With short (respectively, long)
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(c) Prediction accuracy and the num-
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Fig. 2 Prediction accuracy of HBAs
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Fig. 3 Deadline and expected utility
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(c) Favorable market

Fig. 4 Deadline and success rate

deadlines, different kinds of agents have equally insufficient (respectively, sufficient) time to
optimize their agreements. 2) Given the same deadline, HBAs achieved higher utilities than
ACMAs, MTDAs, and TDAs. 3) The advantages of HBAs over MTDAs and TDAs decreases
when the market becomes more favorable.

Experimental results in Fig. 4 suggest that the success rate of HBAs are always higher
than that of ACMAs, MTDAs, and TDAs. However, this advantage decreases when the mar-
ket become more favorable. In addition, with the increase of deadline, agents’ success rates
have a large increase at the beginning and slightly decrease when the deadline is large. When
agents have short deadlines, agents have more time to bargain with other agents and seek
good agreements with the increase of deadlines. However, buyers with longer deadlines are
inclined to make less concessions at each time as agents will prefer to propose their reserve
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(b) Moderate deadline
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Fig. 5 Number of resources and expected utility
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Fig. 6 Number of resources and success rate
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Fig. 7 Supply/demand ratio and expected utility

prices when their deadlines approach. Thus, buyers will become more patient and will not
accept proposals which are not favorable enough while considering their future opportunities
to make better agreements. Therefore, buyers with longer deadlines will fail to make agree-
ments with some sellers, especially sellers with shorter deadlines. Although buyers’ success
rates decrease with the increase of deadlines when deadlines are relatively long, buyers’
utilities increase with the increase of deadlines. This is because buyers will set higher ex-
pectation about the agreements with the increase of deadlines. Thus, the agreements made
by buyers with longer deadlines are more favorable as compared with agreements made by
buyers with shorter deadlines.
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Fig. 8 Supply/demand ratio and success rate

4.2.4 Observation 4

From Fig. 5 we can see that, as the number of resources to be acquired increases, the util-
ities of all kinds of agents decrease. That is because, with the increase of the number of
resources each agent acquires, it’s harder to manage all the negotiations and the probabil-
ity that the overall negotiation fails increases. HBAs always achieved higher utilities than
ACMAs, MTDAs, and TDAs.

Experimental results in Fig. 6 suggest that the success rate of HBAs are always higher
than that of ACMAs, MTDAs, and TDAs. However, this advantage decreases when agents
have longer deadlines as in this case, all agents have enough time to negotiate for agree-
ments. Agents’ success rate has a huge decrease at the beginning of the increase of the
number of resources. With more resources, it’s more difficult for buyers to manage and gain
agreements for multiple resources.

4.2.5 Observation 5

It can be observed from Fig. 7 and Fig. 8 that HBAs always get higher utilities (respec-
tively, success rates) than ACMAs, MTDAs, and TDAs when all resources have the same
supply/demand ratios. Additionally, when the supply/demand ratio is high (e.g., 10), the av-
erage utilities of the three types of agents are close since agents have many choices and can
easily switch from one agreement to another agreement, i.e., there is limited space to opti-
mize the agreements. The advantage of HBAs in success rate decreases when agents have
longer deadlines.

4.2.6 Sensitivity analysis

We also did many experiments to explore how sensitive are our experimental results to
changes of the parameters of our experimental environments or assumptions about our ne-
gotiation model.

1) With the increase of penalty, the average utility of agents including HBAs decreases.
For example, when we double the penalty fee, the average utility of HBAs is decreased by
7%. The main reason is that with a higher penalty, a buyer is more likely to commit to
an early agreement, which may have a low utility value. When the penalty fee is low, a
buyer will decommit from an early agreement and make a new agreement with a higher
utility value. Similarly, each seller is also more likely to stick to an early agreement when
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the penalty is high. HBAs always have better performance than other types of buyers while
using different penalty functions.

2) With the increase of decommitment period λ, the average utility of agents including
HBAs decreases. For instance, when we set a decommitment period λ = 6, the average
utility of HBAs is decreased by 8%. With a longer decommitment period, the probability
that an agreement will be decommited will increase, and thus the probability that a buyer
will get a final agreement decreases. However, the advantage of HBAs over other types of
buyers increases with the increase of the decommitment period λ as buyers like ACMAs,
MTDAs, and TDAs make at most one tentative agreement for each resource.

3) When agents have more accurate information about other agents, agents including
HBAs achieved better performance. This paper assume that a buyer knows the probabil-
ity distribution of sellers’ reserve prices and the number of competitors. We find that that
the accuracy of this information does have an effect on agents’ negotiation performance.
When a buyer’s knowledge becomes less accurate, its utility decreases. For example, when
the believed number of competitors is less than half of the actual number of competitors,
the average utility of HBAs is 7% lower than that of HBAs knowing the actual number of
competitors. But HBAs always achieved better performance than other types of agents with
different levels of inaccurate information.

4) While keeping the supply/demand ratio of each resource constant, market density has
little effect on agents’ performance. In a moderate market, agents’ average utilities are 2%

lower than that in a market of dense density and are 1% higher than that in a market of sparse
density.

4.3 Analysis of properties

Typically, agents use a monotonic concession protocol by insisting on their previous pro-
posals or raising/reducing their proposals monotonically until an agreement is reached. In a
dynamic negotiation environment, market competition and agents’ evaluation may change
over time, protocols that are not monotonic may achieve higher average utilities. Negotiation
agents in this paper make a proposal based on market situation and the negotiation situations
of other threads. Therefore, the proposed negotiation protocol is not monotonic.

In a favorable market, there are fewer competitors and more trading partners. Hence, an
agent has stronger bargaining power and doesn’t need to make large concessions. In an un-
favorable market, an agent experiences more competition, and it may attempt to make more
concessions. With respect to competition, an agent strives to avoid making large concessions
in favorable markets or making too large concessions in unfavorable markets. Additionally,
when the expected number of final agreements is high, an agent is inclined to make less
concession as it only needs one final agreement.

Proposition 1 Agents will make less concession with the increase of the expected number
of final agreements when the worst possible utility doesn’t increase.

Proof Take the resource Ij for example. The number of agreements has no effect on $t
j .

As the worst possible utility doesn’t increase, χt
j will not increase. γ(T AGt

j) will decrease
with the expected number of final agreements. Therefore, the reserve price of resource Ij

will decrease and thus agents will make less concession.

Proposition 2 Agents will make less (respectively, more) concession with the increase of
trading partners (respectively, competitors).
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Proof Take resource Ij for example. The number of trading partners has no effect on γ(T AGt
j).

With the increase of trading partners, χt
j will not increase and $t

j will also not increase.
Thus, the reserve price of resource Ij will not increase and thus agents make less conces-
sions. Similarly, with the increase of trading competitors, $t

j will decrease. Thus, the reserve
price of resource Ij will increase and thus agents will make more concession.

Proposition 3 When competition is high and penalty is very low, agents may make agree-
ments with all the trading partners.

Proof Take resource Ij for example. The decommitment probability increases with the in-
crease of competition. As the penalty is very low, an agent with more tentative agreements
won’t pay too much penalty when it has to decommit from some tentative agreements. An
extreme situation is that the agent can even make agreements with all the trading partners.

From Propositions 2 and 3 we can find that the market competition places an important
role on deciding the amount of concessions and the number of tentative agreements. With
respect to competition, a negotiation agent decides the maximum number of agreements.
In a favorable market, there are fewer competitors and more trading partners. Hence, an
agent doesn’t need to make many agreements (concessions, respectively). In an unfavorable
market, an agent’s bargaining power decreases as it experiences more competition, and it
may attempt to make more agreements (concessions, respectively) as its trading partners are
more likely to decommit from agreements.

5 RELATED WORK

Automated negotiation is an important research area encompassing economics, game the-
ory, computer science, and artificial intelligence, and has widely applied in many domains
like electronic commerce, grid computation, and service composition. The literature of auto-
mated negotiation and negotiation agents forms a very large collection and space limitations
preclude introducing all of them here. For a survey on negotiation agents, see [18], [23],
and [26], respectively. The rest of this section discusses related work on multi-issue ne-
gotiation, one-to-many and many-to-many negotiation, negotiation strategy, organizational
negotiation, and decommitment.

Multi-issue negotiation: There are two different definitions of a negotiation issue in the
literature. In papers like [24,22,12], an issue is an attribute (e.g., price, quality, delivery time)
of a resource. In this case, multi-issue negotiation is bilateral. An issue can also be treated as
a resource as in [14,43] and in this case, a buyer can negotiate with multiple sellers for each
resource. If a seller has multiple resources, such multi-resource negotiation could be bilat-
eral and each resource can be treated as an attribute. Multi-issue negotiation is more complex
and challenging than single-issue negotiation as the solution space is multi-dimensional and
it’s often difficult to reach a Pareto-efficient solution [23]. Almost all the work on multi-issue
negotiation focuses on bilateral negotiation and a variety of learning and searching methods
are used, e.g., case-based reasoning [45], similarity criteria based search [12], decentral-
ized search [24,22]. There usually exist different types of negotiation procedures [14] like
package deal, simultaneous negotiation, and sequential negotiation. For sequential negotia-
tion, agents need to decide a negotiation agenda (order of negotiation issues) [13]. Fatima
et al. [14] study different procedures for bilateral multi-issue negotiation and show that the
package deal is the optimal procedure. Different from related work on bilateral multi-issue
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negotiation, this paper studies multi-resource negotiation where resources are provided by
multiple agents and thus an agent is negotiating with multiple trading partners.

One-to-many and many-to-many negotiation: In many situations, an agent has an oppor-
tunity to make an agreement with more than one trading partners. An agent may also face
the competition from agents of the same type, e.g., a buyer in negotiation faces competition
from other buyers. Even if an agent interacts with many agents, an agent can pursue only
one negotiation at a time in some models. An agent has to terminate a current negotiation in
disagreement first, and then pursue a more attractive outside alternative. This kind of model
is called bilateral negotiation with outside options [31,25]. However, the presumption that
an agent can pursue only one negotiation at a time appears to be restrictive. In one-to-many
negotiation [33,27–29,3,2,6,43], an agent can concurrently negotiate with multiple trading
partners and an agent’s proposal to one trading partner is affected by the status of its ne-
gotiation with other trading partners. In this paper, each agent concurrently negotiates with
multiple trading partners for multiple resources and an agent’s proposals to each trading
partner depends on the negotiation with all the trading partners.

Concurrent negotiations: Sim and Shi [43] proposed a coordination strategy for multi-
resource negotiation where an agent can negotiate with multiple agents as in this paper.
Each buyer in [43] knows the reserve price of each resource in advance and the buyer just
needs to decide the concession strategy for each one-to-many negotiation for one resource.
However, it is noted since [43] focused on designing a concurrent mechanism for Grid re-
source co-allocation, the mechanism did not assume that consumer agents know the number
of competing consumers. In contrast, each buyer in this work is assumed to only know the
value of its high level task, i.e., the reserve price of all resources required for the high level
task. This paper proposes a set of heuristics for dynamically determining the reserve price
of each resource based on the status of all negotiations. Furthermore, a buyer in [43] only
makes one tentative agreement but in this paper, a buyer may make more than one tentative
agreement.

Negotiation strategy: There has been a long effort in game theory literature to find
Nash equilibria and its refinements, e.g. sequential equilibria [21]. However, due to the
high analytic complexity of equilibrium analysis, bounded rational agents instead are self-
constrained to play predefined tactics. Kraus et al. [20] proposed a strategic model in which
the passage of time was taken into account. It has been shown that if agents use sequential
equilibrium strategies, negotiation will end rapidly. To build more flexible and sophisticated
negotiation agents, Faratin et al. [11] devised a negotiation model that defines a range of
Negotiation Decision Functions (NDFs) for generating (counter-)proposals based on time,
resource, and behaviors of negotiators. Sim et al. [42,39] consider some other factors, such
as competition, trading alternatives, and differences of negotiators, and propose market-
driven agents (MDAs) which can make minimally sufficient concessions. Game theoretical
analysis [40] shows that the strategies of MDAs are in sequential equilibrium and market
equilibrium for bilateral and multilateral negotiations. Like MDAs, negotiation agents in
this paper make negotiation decisions taking into account market dynamics and negotiation
status of all negotiation threads for all resources.

Organizational negotiation: Zhang et al. have studied a number of sophisticated ne-
gotiation problems in organizational contexts [46,47]. Automated negotiation becomes in-
creasingly complex and difficult as 1) agents are large-grained and complex with multiple
goals and tasks, 2) agents often have more negotiation tasks and organizational relation-
ships among heterogeneous agents become more complex, 3) negotiation process is tightly
interleaved with agents’ controlling, scheduling and planning processes. Zhang et al. [46,
47] focus more on the coordination (a good “fit”) of multiple negotiation tasks in organi-
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zation context and they do not address agents’ bargaining strategy in complex negotiation
environments. In contrast, our work investigates how agents make concessions in dynamic
negotiation environments where agents have multiple resources to negotiate.

Leveled commitment contracts: Sandholm et al. propose leveled-commitment contracts [38]
in which the level of commitment is set by decommiting penalties. However, they only study
the two-player game and they don’t investigate agents’ bargaining strategies with decom-
mitment from agreements. In addition, the problem setting in [38] is far from the real-world
settings. In the negotiation management system for CLASP [1], resource consumers can de-
commit from agreements made before at the cost of paying a penalty. However, the focus in
[1] is only on the scheduling problem. This paper focuses on agents’ negotiation strategies
given that agents can decommit from agreements. Nguyen and Jennings [28,29] provide
and evaluate a commitment model for concurrent negotiation. However, the maximum num-
ber of tentative agreements is determined prior to negotiation. In our work, the maximum
number of tentative agreements is determined by market situation and will change dynami-
cally during negotiation. In addition, our work studies a multi-resource negotiation problem,
rather than single resource negotiation as in [28,29]. Furthermore, Nguyen and Jennings [28,
29] make very restrictive assumptions about agents’ available information, e.g., each agent
is assumed to have knowledge about 1) other agents’ negotiation strategies, 2) its negotiation
success rate when it adopts certain strategy, and 3) its payoff when it adopts certain strategy.
In this work, we assume that each agent has no knowledge about negotiation outcomes.

Combinatorial auctions: In combinatorial auctions [7,30], a large number of items are
auctioned concurrently and bidders are allowed to express preferences on bundles of items.
In contrast, in combinatorial reverse auctions, a buyer is to buy goods or services from many
competing sellers. Combinatorial reverse auction [37] has some similarities to the problem
studied in this paper. One difference is that we assume the agents negotiate over price of a
single resource in which the buyer also submits proposals to sellers, but in combinatorial
reverse auctions, only sellers submit bids to the buyer and the buyer determines the win-
ning bids. While there is two-sided competition, market mechanisms like double auction
can be used for resource allocation. The double auction is one of the most common ex-
change institutions where both sellers and buyers submit bids which are then ranked highest
to lowest to generate demand and supply profiles. Some double auction mechanisms (e.g.,
BBDA [15]) have been applied to trading in markets. As mentioned in Section 1, auction
mechanisms have some limitations (e.g., computational intractability, trustworthiness, sig-
nificant computational overload) and are not appropriate for our resource allocation problem.
Our distributed negotiation approach seems more natural, more robust, and can accommo-
date decommitment.

6 CONCLUSIONS

This paper presents the design and implementation of negotiation agents that negotiate for
multiple resources where agents don’t know the reserve price of each resource and are al-
lowed to decommit from existing agreements. The contributions of this paper include: 1)
To avoid the risk of the “collapse” of the overall negotiation due to failing to acquire some
scarce resources, negotiation agents have the flexibility to adjust the deadline for different
resources based on market competition, which allows agents to response to uncertainties
in resource planning. 2) Each agent utilizes a time-dependent strategy in which the reserve
price of each resource is dynamically determined by considering (conflict probability), ex-
pected agreement price, and expected number of final agreements. 3) As agents are permit-
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ted to decommit from agreements, an agent can make more than one agreement for each
resource and the maximum number of agreements is constrained by the market situation.
4) An extensive set of experiments were carried out and the experiments results show that
each of the proposed heuristics contributes to improve agents’ performance and our pro-
posed approach achieved better negotiation results than representative samples of existing
negotiation strategies.

The experimental results showed that HBAs achieved better negotiation results (higher
expected utilities and higher success rates) than ACMAs, MTDAs, and TDAs. Moreover, it’s
better for HBAs to use all the three heuristics together as each heuristic has different features.
The heuristic for proposal creation seems more important than the other two heuristics.
From our experimental results we can see that, when the negotiation environment is either
very “tough” (i.e., short deadline, high competition, and more resource to negotiate) or very
“favorable” (i.e., long deadline, less competition, and less resource to negotiate), HBAs did
not significantly outperform MTDAs and TDAs. That is because in a “tough” market, all the
agents have little opportunity for making individual agreements, and thus it’s very hard to
find a good set of agreements that satisfy all the resource requirements. In contrast, in a very
“favorable” market, agents can easily make good agreement set. It is in the middle ground
that you see the significant advantage of our approach.

Finally, a future agenda of this work includes: 1) This paper assumes that a buyer gains
nothing if it fails to make agreements for all the resources, which can be relaxed so that
the buyer gets some utility for the agreements for part of the resources. In addition, the
negotiation problem will become more complex we consider interdependencies between re-
sources [46,47]. 2) At the present stage, the decommitment penalty is determined prior
to negotiation. In the future work, we will treat penalty as a resource and thus agents can
negotiate over resources together with decommitment penalty. 3) While this paper assumes
that agents are selfish, it would be interesting to investigate agents’ negotiation strategies for
multi-resource negotiation in cooperative (or semi-cooperative) environments (e.g., coop-
erative sensor networks [19]) in which agents are optimizing some system-level objectives
(e.g., social welfare). 4) Another future research topic is to develop new complex negotiation
approaches for the formation of automated virtual agent enterprises (VAE), which is formed
to meet a specific objective or to provide a specific service. Achieving this objective or ser-
vice involves performing a series of tasks that require repeated negotiations among VAE
members. Thus, designing effective negotiation mechanisms is crucial to the formation and
operation of the VAE.
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