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ABSTRACTIn this paper we desribe a ooperative negotiation protoolthat solves a distributed resoure alloation problem whileonforming to soft-real time onstraints in a dynami en-vironment. By framing the alloation problem in terms ofoptimization, we have been able to develop a number oftehniques to address an ever hanging problem landsape.Amongst these tehniques are the ability to resolve onitin the alloation of resoures on multiple levels, temporar-ily binding and, given time onstraints, inrementally im-proving the quality of the solution (a form of distributedhill limbing), and restriting the ontext of negotiations toonly use loal information with extended meta-level data togenerate and propose possible solutions to the problem. Wedesribe the implementation of a simulator for the protool,the more pragmati experienes of implementing it in a realsystem, and present experimental results.
1. INTRODUCTIONResoure alloation is a lassial problem that has beenstudied for years by Multi-agent Systems researhers [4℄.The reasons for this is that resoure alloation is diÆultand time onsuming to do in a entralized manner when theenvironment is dynami and the time or ost of entraliz-ing the information needed to generate a solution is on-�The e�ort represented in this paper has been sponsored bythe Defense Advaned Researh Projets Ageny (DARPA)and Air Fore Researh Laboratory, Air Fore MaterielCommand, USAF, under agreement number F30602-99-2-0525 and the National Siene Foundation under grantnumber IIS-9812755. The views and onlusions ontainedherein are those of the authors and should not be inter-preted as neessarily representing the oÆial poliies or en-dorsements, either expressed or implied, of the Defense Ad-vaned Researh Projets Ageny (DARPA), Air Fore Re-searh Laboratory, or the U.S. Government. The U.S. Gov-ernment is authorized to reprodue and distribute reprintsfor Governmental purposes notwithstanding any opyrightannotation thereon.
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siderable. Negotiation, a form of distributed searh [3℄, hasbeen viewed as a viable alternative to handling this omplexsearh through a solution spae that inludes multi-linkedinterating subproblems.[1℄ Researhers in this domain havefoused primarily on resoure alloation problems formu-lated as distributed onstraint satisfation problems[6℄. Inthis work, we extend this lassi formulation in two ways.First, we introdue dynami soft-real time onstraints whihrequires the negotiation protool to adapt to the availabletime left. This estimation is determined dynamially as aresult of emerging environmental onditions. Seond, we re-formulate the resoure alloation problem as an optimizationproblem in whih there are a range of aeptable solutionswith varying preferenes.In this paper, we present a negotiation protool that ex-ploits the fat that the agents within the system are ooper-ative and have the ability to resolve onits internally. Thismeans that some level of onit an be left unresolved asa result of negotiation, but the agent faed with the onitmust resolve it based on its loal perspetive. We are notmaking the assumption that these internally based solutionsobtain the best possible results, but that they are apableof providing some measure of utility while a better solutionis obtained. The ability to reate temporary solutions andinrementally improve them both loally and globally formsa distributed hill limbing searh through the solution spaethat optimizes based on the demands of the soft real-timeenvironment. In this ontext, soft real time should be inter-preted as soft deadline, whih means that �nishing a task abit early or late does not result in detrimental e�ets.Our negotiation protool is based on three major prin-iples whih allow it to operate under soft-real time on-straints in a dynami environment. First, we limit the on-text of the negotiation suh that alloation problems arealways resolved loally with only limited information aboutinterating subproblems being onsidered. After loal nego-tiation is �nished, eah of the agents an hoose to propa-gate the negotiation in an attempt to resolve onit thatmay have been reated as a result of the originating nego-tiation. Viewing this ativity from the perspetive of theglobal problem, eah of the agents that propagates the ne-gotiation is in essene loally optimizing in an attempt toreah a global optimum, whih is form of distributed hilllimbing. Seond, loal negotiations are onduted at mul-tiple levels of abstration. Agents an hoose to resolve theonit at di�erent granularities and if they are unable toresolve it at one level, beause of limited time, an leave
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Figure 1: The three level of abstration used to negotiate when traking a target. The top level shows trak manager T1'ssensor level abstration wanting to use sensors S1, S2, S3, and S4. All onit ould not be resolved at a higher level sosensors S2 and S4 are left to resolve the onit between T1 and T2 at the next lower level. Sensor S4 hooses to resolve itsonit at the resoure level by squeezing in two trak tasks from T1 followed by two from T2.it to be handled at lower levels. Lastly, we have designedthe negotiation protool to exploit the previously mentionedtehniques to have an anytime avor. By having the abil-ity to take solutions that may have unresolved onit andstill obtain some quality, we an atually bind temporarysolutions while attempting to resolve the onits at a lowerlevel. Clearly in a dynami domain this has the ability to\buy some time" so that a good solution an be obtainedwhile not ompletely abandoning proessing that has somevalue in the mean time.In the remaining setions of this paper, we introdue adistributed monitoring and traking appliation whih mo-tivated the development of our protool. Next, we desribethe Salable Protool for Anytime Multi-level negotiation(SPAM). In setion 4, we will desribe an abstrat modelof the task environment that was used to develop and testSPAM in addition to some of the early results we have ob-tained. In setion 5, we will disuss some of the details anddiÆulties of implementing a protool of this type in a realsystem. The last setion of the paper will present onlu-sions and future diretions for this work.
2. DOMAINThe problem that we are exploring is that of alloatingsensor time to the task of traking targets. In this prob-lem, multiple sensors platforms are distributed with vary-ing orientations throughout a real time environment [2℄.These platforms have three radar based sensors eah witha viewable 120 degree ar, whih are apable of taking am-plitude (measuring distane from the platform) and/or fre-queny (measuring the relative veloity of the target) mea-surements. In order to trak a target, and therefore obtainutility, at least three of the sensor platforms must take aoordinated measurement of the target whih is then fusedto triangulate the target's position. Having more sensorheads, taking measurements more often, or having tighterrelative synhronization of the measurements yields betteroverall quality in estimating the targets loation and a moreoptimal result. The sensor platforms are restrited to onlytaking measurements from one sensor head at a time witheah measurement taking about 500 milliseond. These keyrestritions form the basis of the resoure alloation prob-lem.Eah of the sensor platforms is ontrolled by a single agentwhih may take on multiple organizational roles in additionto managing its loal sensor resoures. Eah of the agentsin the system maintain a high degree of loal autonomy,being able to make trade-o� deisions about ompeting tasksusing our Soft Real Time Arhiteture (SRTA pronouned

Serta)[5℄.One notable role that an agent may take on is that oftrak manager. As a trak manager, the agent beomes re-sponsible for determining whih sensor platforms and whihsensor heads are needed now and in the future for trakinga single target. Trak managers also at to fuse the mea-surements taken from the individual sensor platforms into asingle loation. Beause of this, trak managers at as thefoal point of negotiation that take plae as part of solvingany resoure ontention that may arise while traking thetarget.To lend to the dynami harateristis of this problem,targets ontinuously moves through the environment as asenario unfolds. This means that during the ourse of arun, targets move from the viewable range of some sensorsto others. This, of ourse, means the atual alloation prob-lem hanges in struture during the ourse of a run as thetrak managers alter their resoure requirements due to thedisovery of new targets and the movement of existing ones.In addition, the dynamis drive the need for real-time ne-gotiation beause a partiular problem struture is valid foronly a limited amount of time.Contention is introdued when more than one target en-ters the viewable range of a single sensor platform. Beauseof the time it takes to perform a measurement and the onemeasurement at a time restrition, trak managers have toome to some sort of agreement about how to split the re-soure while still being able to trak their target. This loalagreement an have profound global impliations. For exam-ple, what if as part of the loal agreement one trak man-ager ompletely relinquished ontrol of a sensor platformand takes another instead? This may introdue ontentionwith another trak manager whih ould propagate throughthe entire environment.
2.1 AbstractionThe atual resoure alloation problem that is reated bythis environment an be view at di�erent levels of abstra-tion (see �gure 1). At the highest level is the sensor level.This level is maintained by the individual trak managersand stritly fouses on whih sensors are needed and desiredto trak the target. Solutions reated at this level ignore thedetails of the individual sensors' shedules in making hoiesof how to alloate resoures and simply hoose based onthe trak managers internal requirements. Of ourse, sinethese solutions are reated without information about whatthe sensors are atually doing, they are almost never free ofonit.The next level of abstration is the shedule abstrat level.At this level, tasks an be viewed as periodi (whih trak-
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SensorsFigure 2: Utility of taking a single measurement from Tasensors.ing is) and resoure shedules an be viewed at a oarse slotbased granularity (all measurements take approximately thesame amount of time). Within the sensors platforms, ouragents maintain the shedule abstration level by using thePeriodi Task Controller(PTC). The PTC is a slot based,periodi sheduler that feeds SRTA with tasks at times thatare appropriate to its shedule. The PTC is apable of re-solving onit by using one of several tehniques inludingshifting slot boundaries, seleting tasks to exeute based onimportane level, or temporarily shifting a task to emptyslots in its shedule. It is easy to see that if a negotiationends in unresolved onit, whih we all a o-binding, thatthe PTC has some apability to resolve the onit. Forinstane, if two trak managers T1 and T2 are in onitover sensors S4, they may, due to time onstraints, be un-able to resolve the issue and may leave one of the slots of S4o-bound. This means that when the PTC in S4 attemptsto shedule that slot, it is fored to make the loal determi-nation as to whih of the trak managers gets the slot forthat period.At the lowest level, the resoure level, all of the minutedetails of task exeution and resoure usage within the sen-sors are sheduled using SRTA. If sheduling onits reahthis level of abstration the Partial Order Sheduler(POS),a omponent of SRTA, an shift the task exeution to try toeliminate any remaining onit. Conits at this level anbe reated beause the sensor is working on a non-trakingtask that is not expliitly reasoned about at the sheduleabstration level.During the ourse of negotiation, due to time onstraints,the trak manager an hoose to operate at either the sensoror shedule abstration level of negotiation. Leaving unre-solved onit at these levels of abstration, though, intro-dues a great deal of unertainty about the exat nature ofthe �nal solution. The deeper the trak manager is able togo and resolve onit, the greater the guarantee about thesolution quality obtained in the end.
2.2 UtilityTo help larify what our protool is attempting to ahieveit helps to see how utility is measured in the traking do-main. As mentioned previously, traking involves oordi-nating measurements from three or more sensors whih arethen fused together to form an estimated position of the tar-get. Inreasing the number of sensors improves the qualityof the estimate by the funtion given in �gure 2. Inreasingthe measurements taken in a given period of time yields alinear inrease in the overall quality of the trak.If we say that Ta is the number of sensors that took mea-surements leading to the positional estimate and Ts is thenumber of times they are taken in a given period of theabstrat periodi shedule, then we an quantify this rela-
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3. PROTOCOLTo meet the objetives of the environment and to in-orporate the tehniques that were disussed in the previ-ous setions, the Salable Protool for Anytime Multi-level(SPAM) negotiation is divided into three stages. As the pro-tool transitions from stage to stage, the agent ating as thetrak manager gains more ontext information and therefore



is able to improve the quality of its overall deision. Aftereah stage or at anytime during stage 2, the trak manageran hoose to stop the protool and is ensured to have asolution albeit not neessarily a good one (not optimal andnot neessarily onit free). Figure 3 shows the amount ofinformation that the trak manager has at eah stage of theprotool. The �gure shows that as the amount of informa-tion obtained inreases, the trak manager is able to shift itsnegotiation abstration level. This means that if the trakmanager hooses to terminate the protool before stage 1,it ats at the sensor level of abstration (deiding on onlywhih sensors it desires) and leaves the deision of how tohandle the atual sheduling to the sensors themselves aswas disussed in the previous setions.
3.1 Stage 0On target detetion, stage 0 of the negotiation protoolis ativated. Stage 0 is primarily responsible for viewingthe problem at the sensor level of abstration. Beause ofthis, eah of the sensors that have the potential to trakthe target are evaluated and ordered. In this stage, thetrak manager also assigns an initial objetive level to thetrak. Objetive levels in general are derived from the trakmanagers objetive funtion. This funtion, whih may bedi�erent for every trak manager, de�nes the order of theobjetive levels, the initial objetive level for a trak, anda lower bound of the objetive level before giving up on anunonited solution. Changing these parameters an alterthe harateristis of the searh proess to make it faster(start at a lower objetive level) or better (start at the bestpossible objetive level).The atual ativity of hoosing a solution at this level ofabstration is primarily domain spei�. For example in thetraking domain, riteria for solution hoie might be therelative proximity of the target to the sensor, whether thetarget is moving toward or away from the sensor, et. Thesolution hoie, however, is based on internal informationonly.Stage 0 ends, either by determining that enough time isavailable to go to stage 1 or by �nishing the negotiation andbinding a solution at the urrent level of abstration. Inthe seond ase, the trak manager leaves the onit to beresolved by the agents residing in the sensors platforms.
3.2 Stage 1Stage 1 of the SPAM protool begins by obtaining ab-strat shedule information from the PTC in eah of thesensor agents. This information is used in two ways. First,if a solution at the urrent objetive level an be obtained,the trak manager an bind the solution and avoid a moreostly trak manager-to-trak manager negotiation proess.We disuss how possible solutions are generated in a latersetion. Seond, if a solution annot be found at the urrentobjetive level, the trak manager has enough informationto bind a good solution whih minimizes the amount of un-resolved onit and maximized the trak manager's loalobjetive level. Like stage 0, the negotiation session anbe terminated at the end of stage 1 if enough time is notavailable to ontinue.Solutions in stage 1 are only onsidered at the originalobjetive level set forth in stage 0. The reason for this isthat if the trak manager were to lower its objetive fun-tion without onsidering additional information then in all

Generate the legal
solutions given the
current objective
levels

Lower the objective
level of one track 
manager

Send partial solution
set to conflicting
track managers

of conflicts created
based on number
Evaluate the solution

Order the solutions
and send the ordering
back

Enact the solution
agreed upon

Finish

Yes

NoWas conflict conflict
created by this 
solution?

Propagate the
negotiation

the track
information about 
Send meta-level

Conflicting Track ManagersMediating Track Manager

Is this an oscillation?

Yes

Lower my solution
quality to stop it.

Request meta-level
information from the
conflicting managers

No

No Solutions

Solutions

Choose a globally
consistent solution
from the orderings

Send the solution to
each track manager

FinishFigure 4: Stage 2 of the SPAM negotiation protool resolvesall loal onit at the shedule abstration level through ne-gotiation with oniting trak managers.likelihood it would end up with a utility that was lower thanit should have been. For example, onsider the onit be-tween the two traking tasks, T1 and T2, in �gure 5. Trakmanager T2 is assigned the role of traking a new targetand during stage 0 it determines that it wishes to have sen-sors S3, S4, S5, and S6 to trak the target. In addition, itassigns an initial objetive level of 4 � 3. After obtainingthe abstrat shedule of all four sensors the trak manager�nds that this solution is not possible beause manager T1has all three slots of sensor S3 assigned. As the protoolstands now, T2 binds a temporary solution and moves intostage 2 to begin negotiation with T1. Clearly, though, ifT2 had lowered its objetive funtion to 3 � 3 a solution(S4, S5, S6) with no onit ould have been obtained with-out expending time by going into stage 2. From a utilityperspetive, say that the other trak manager, T1, was a-tively using a 5� 3 objetive level in traking its target. IfT2 aepts a 3 � 3 then the global utility would be around8.2. If, however, T2 o-binds, while negotiating, then bothmanagers obtain a 4 � 3 on�guration with a global utilityof about 8.5. Although the di�erene seems minimal, ourbelief is that in order to maintain the hill limbing nature ofthe searh, agents must always try to loally maximize theirutility until suh a time where it is determined that to doso atually harms the global utility.
3.3 Stage 2Stage 2, the �nal stage of SPAM, is the heart of the nego-tiation protool (See �gure 4). Stage 2 attempts to resolveall loal onit that a trak manager has by elevating thenegotiation to the trak managers that are in diret on-it over the desired resoures. To do this, the originatingtrak manager takes the role of the negotiation mediator forthe loal onit (multiple negotiations an our in parallelin the environment). As the mediator, it beomes respon-sible for gathering all of the information needed to gener-
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S3, S4, S5, S6Figure 5: Example of a ommon ontention for resoures.Trak manager T2 has just been assigned a target and on-tention is reated for sensors S3, S4, S5 and S6.ate alternative solutions, generating possible solutions whihmay involve hanges to the objetive levels of the managersinvolved, and �nally hoosing a solution to apply to theproblem. Beause the solutions are generated without fullglobal information, however, the �nal solution may lead tonewly introdued non-loal onit. If this ours, eah ofthe trak managers an hoose to propagate the negotiationin order to resolve this onit if they have the time. So,what started out as a new target or resoure requirement,may lead to the negotiation propagating aross the problemlandsape.The best way to explain how stage 2 operates is throughan example. Again, onsider �gure 5. This �gure depitsa ommonly enountered form of ontention. Here, trakmanager T2 has just been assigned a target. The target isloated between two existing targets that are being trakedby trak managers T1 and T3. This reates ontention forsensors S3, S4, S5, and S6.Following the protool for the example in �gure 5, trakmanager T2, as the originator of the onit, takes on therole of negotiation mediator. After the mediator onludesthe osillation detetion phase (explained later in this se-tion), it begins the solution generation phase by requestingmeta-level information from all of the trak managers thatare involved in the resoure onit. The information that isreturned inludes the urrent objetive level that the trakmanager is using, the number of sensors whih ould pos-sibly trak the target, the names of the sensors that are indiret onit with the mediator, and any additional on-its that the manager has. To ontinue our example, T2sends a request for information to T1 and T3. T1 and T3both return that they have 4 sensors that an trak theirtargets, the list of sensors that are in diret onit (i.eT1(S3; S4), T3(S5; S6)) their objetive level (4� 3 for bothof them) and that they have no additional onits outsideof the immediate one being onsidered.Using this information, T2 begins to generate full solu-tions to resoure problem (see setion 3.4). Here, a fullsolution refers to a solution that inludes all of the trakmanagers for all of the sensors that the mediator is ableto diretly interat with (an example an be seen in �gure6). In addition, when a full solution is reated, it is unon-ited over those sensors. This is in omparison to a partialsolution whih refers to a solution for a spei� trak man-ager over the proper subset of sensors that the mediator hasdiret interation with. Note that eah full solutions is om-posed of a unique set of partial solutions. The reiproal isnot neessarily true in that a partial solution an belong toa number of full solutions.As you an see in �gure 4, T2 enters a loop that involvesattempting to generate full solutions followed by loweringone of the trak manager's objetive level, if no full solutionsare possible given the urrent objetive levels of eah of thetrak managers. One of the priniple questions that we areurrently investigating is how to hoose the trak manager

that gets its objetive level lowered when full solutions areunavailable. Right now, this is done by �rst hoosing thetrak manager with the highest urrent objetive level andlowering them. This has the overall e�et of balaning theobjetive levels of the trak managers involved in the ne-gotiation. Whenever two or more managers have the samehighest objetive level, we hoose to lower the objetive levelof the manager with the least amount of external onit.By doing this, it is our belief, that trak managers with moreexternal onit will maintain higher objetive levels, whihleaves them more leverage to use in subsequent negotiationsas a result of propagation.The solution generation loop is terminated under one oftwo onditions. First, if given the urrent objetive levelsfor eah of the trak mangers, a set of full solutions is avail-able, the negotiation enters the solution evaluation phase.Seond, the objetive levels of the trak managers annotbe lowered any further and no full solutions are available.Under this ondition, the negotiation session is terminatedand the mediator takes a partial solution at the lowest ob-jetive level that minimizes the resulting onit, onedingthat it annot �nd a full solution.Continuing our example, T2 �rst lowers the objetive levelof T1 (hoosing T1 at random beause they all have equalexternal onit). No full solutions are possible under thenew of set objetive levels, so the loop ontinues. It ontin-ues, in fat, until eah of the trak managers has an objetivelevel of 3� 2 at whih time T2 is able generate a set of 216full solutions to the problem.During the solution evaluation phase, the mediator sendseah of the trak managers their set of partial solutions thatare part of full solutions generated in the previous phase.Eah trak manager, using this information and the pro-posed objetive level, an then determine what partial so-lutions, if any, are aeptable. In our example, T2 sends24 partial solutions to T1 for sensors S3 and S4, 24 par-tial solutions to itself for sensors S3, S4, S5, and S6, and24 partial solutions to T3 for sensors S5 and S6. In oururrent implementation, eah of the trak managers orderstheir partial solutions from best to worst based on the num-ber of new onits that will be reated and the number ofhanges that will have to be made in order to implement thenew alloation. The ordering is then returned to the medi-ator. Currently, we are looking at a number of alternativetehniques for providing loal preferene information to themediator inluding simply returning utility values for eahsolution and assigning solutions to a �nite set of equivalenelasses.One the mediator has the partial solution orderings fromthe trak managers, it is able hoose the �nal full solutionto apply to the problem. Using the orderings, the mediatorprunes the full solution set generated in the solution gener-ation phase by only keeping full solutions that ontain thehighest ranked partial solution for the trak manager withthe most external onits. This new redued set of full so-lutions is then pruned by the mediator to ontain only fullsolutions that have the highest ranked partial solution fromthe seond most externally onited trak manager. Thisproess ontinues until only one solution remains in the fullsolution set.In our example, T2 ollets the ordering from T1, T2,and T3. Choosing based on the same ordering that wasused to redue the objetive levels, T3 is given �rst hoie.
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Figure 6: A solution derived by SPAM to the problem in�gure 5. The table on the left is before trak manager T2negotiates with T1 and T3. The table on the left is the resultof stage 2 negotiation.By its ordering it ranked its partial solution 0 the highest.This restrits the hoie for T2 to its partial solutions 0,1, 2, and 3 beause only these partial solutions ontinue toprovide a full solution. T2 ranked 0 ranked from this set,leaving T1 to hoose between its 0th, 1st, and 2nd partialsolutions. It turns out that T1 likes its 0th solution the bestso the �nal full solution that is applied is omposed of T3'spartial solution 0, T2's partial solution 0, and T1's partialsolution 0.The last phase of the protool is the solution implemen-tation phase. Here, the mediator simply informs eah ofthe trak managers of its �nal hoie. Eah of the trakmanagers then implements the �nal solution. At this point,eah of the trak managers is free to propagate and mediatea negotiation it hooses to. Currently, trak managers willpropagate if new onit has been reated as a result of the�nal solution hoie. In future versions, it is our hope thatutility and not onits will form the basis for determiningwhen to propagate. Figure 6 shows the original on�gura-tion of the sensors before T2 was introdued and after stagetwo ompletes.As mentioned earlier, stage 2 starts in the osillation de-tetion phase. Osillation ours beause onits are re-solved loally without regard to the global ontext. Saythat from our previous example, trak manager T1 origi-nated a negotiation with trak manager T2. In additionlet's say that T2 had previously resolved a onit withmanager T3, that terminated with neither T2 or T3 hav-ing unresolved onit. Now when T1 negotiates with T2,T1 in the end gets a loally unonited solution, but in or-der for that to our, T2 ended up in onit with T3. It ispossible that when T2 propagates the negotiation, that theoriginal onit between T1 and T2 is reintrodued leadingto an osillation.To prevent this from happening, eah trak manager main-tains a history of the sensor shedules that are being nego-tiated over whenever a negotiation terminates. By doingthis, managers are able determine if they have previouslybeen in a state whih aused them to propagate a negoti-ation in the past. To stop the osillation, the propagatingmanager lowers its objetive level to fore itself to exploredi�erent areas of the solution spae. It should be noted thatin ertain ases osillation may be inorretly deteted usingthis tehnique whih an result in having the trak managerunneessarily lower its objetive level.
3.4 Generating Solutions

Generating full solutions for the domain desribed earlierinvolves taking the limited information that was providedthrough ommuniations with the oniting trak man-agers and assuming that the sensors whih are not in diretonit, are freely available. In addition, beause the trakmanager that is generating full solutions only knows aboutthe sensors whih are in diret onit, it only reates andposes solutions for those sensors. The formula below givesthe basi form for how partial solutions are generated foreah trak manager. Here, As is the number of slots that isavailable in the shedule abstration layer, Ds is the num-ber of slots that are desired based on the objetive level forthe trak manager, Aa is the number of sensors available totrak the target (those that an see it), Da is the numberof sensors desired in the objetive funtion, and �nally Cais the number of sensors under diret onsideration beausethey are oniting.Solutions = � AsDs �0� min(Ca;Da)Xi=max(0;Da�Aa+Ca)� Cai �1ADsAs an be seen by this formula, every ombination of slotsthat meets the objetive level is reated and for eah of theslots, every ombination of the onited sensors is gener-ated suh that the trak manager has the apability of meet-ing its objetive level using the sensors that are available.For instane, let's say that a trak manager has four sensorsS1, S2, S3, and S4 available to it. The trak manager hasa urrent objetive level of 3� 2 and sensors S2 and S3 areunder onit. The generation proess would reate the 3ombinations of slot possibilities and then for eah possibleslot, it would generate the ombination of sensors suh thatthree sensors ould be obtained. The only possible sensorombinations in this senario would be that the trak man-ager gets either S2 or S3 (assuming that the manager willtake the other two available sensors) or it gets S2 and S3(assuming it only takes one of the other two). Therefore, atotal of 27 possible solutions would be generated.It is interesting to note that we use this same formula forgenerating partial solutions in stage 0 and 1 of the proto-ol. This speial ase generation is atually done by simplesetting Ca = Aa. The formula above, in this ase redues toSolutions = � AsDs �� AaDa �DsWe an also generate partial solutions when there are num-ber of pre-existing onstraints on the use of ertain slot/sensorombinations. Simply by alulating the number of availablesensors for eah of the slots and using this as a basis for de-termining whih slots an still be used we an redue thenumber of possible solutions onsiderably.Using the ability to impose onstraints on the partial so-lutions generated for a given trak manager allows us togenerate full solutions for the trak managers in stage 2. Byordering the trak managers, we an generate partial solu-tions for them one at a time using the results from higherpreedene trak managers as onstraints for lower pree-dene ones. Continuing our example from �gure 5, say thatT1 had one external onit and T3 had two. When thefull solution set is generated, T2 generates partial solutionsfor manager T3 �rst. T2 then uses the results from this asonstraints on the reation of partial solutions for T1. Theresulting full solutions (now with solutions for T1 and T3)
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S15S14 S16S13Figure 7: The environmental layout used for testing theSPAM protool. Trak managers were de�ned by the sen-sors they needed to trak targets in their region. In this�gure, irles represent sensors, triangles represent targetsand squares represent trak manager regions.are used as onstraints for generating the partial solutionsfor T2 (whih only has loal onit beause it is the medi-ator).This proess forms the basis of a searh for full solutionsto the loal onit. You an view this as a tree based searhwhere the top level of the tree is the set of partial solutionsfor the most onstrained trak manager. Eah of the nodesat this level may or may not have a number of hildrenwhih are the partial solutions available to the seond mostonstrained trak manager and so on. Only branhes ofthe tree that have a depth equal to the number of trakmanagers - 1 are onsidered full. If there are no branhesthat meet this riteria, then the problem is onsidered overonstrained.In the end, we are left with a Direted Ayli Graph(DAG) where every path from the root nodes to the leafshas equals length (number of trak managers - 1) and rep-resents one unique full solution. The nodes at a partiularpath length represent the set of partial solutions that a trakmanager has to hoose from during the solution evaluationphase of stage 2.
4. SIMULATIONTo evaluate the SPAM protool, we developed a simulatorthat uses a model of the traking environment desribed ear-lier in the paper (see �gure 7). In this simulator, we onen-trated on evaluating primarily stage 1 and 2 of the protool.To do this, the simulation was onstruted using two majorpiees, the environmental simulator and the trak managersthemselves. The environmental simulator manages the stateof the sensors, spawns the trak managers, introdues newtargets, and manages propagation requests from the trakmanagers. The trak managers, whih are de�ned by a setof sensors that they desire one they are given a target,handle any inoming negotiation requests from other trakmanagers, spawn new negotiations when assigned a target,and request to be plaed on the propagation list when theyhave unresolved onit.Using the environment in �gure 7, we ran every possibleon�guration of targets and every possible order of target in-trodution in order to test the onvergene, ommuniationand, utility properties of the algorithm. In this environment,that equates to 9! = 362,880 tests.From the simulation tests we determined that the SPAMprotool, when going from 0 to 9 targets, onverges on a so-lution in an average of 18 disrete negotiation sessions whihinludes the 9 original loal negotiations that take plae dueto target introdution. In addition, on average eah trak

manager obtains a loal objetive level of better than 3� 1and reeives a utility of approximately 1.51. On average, theoverall solution has less than 1 unresolved onit. Commu-niation ost is dominated by trak manager to sensor om-muniations. On average to omplete a 9 target problem, ittakes 163 sensor shedule requests and 155 bind messages.These numbers may appear large, but onsidering that theativity is being done in parallel, the bind message ountsinlude the temporary bind messages sent out at the end ofstage 1, and that shedule requests our in several plaeduring the protool, these numbers seem very reasonable.In fat, in the atual implementation of the protool, sensorshedule requests are not atually made.
5. IMPLEMENTATIONImplementing and evaluating a protool like SPAM in thedomain desribed in setion 2 with multiple agents runningin parallel, an every hanging environment with unertaintyabout the exat resoure needs, slow, lossy ommuniations,and message length restritions turned out to be quite ahallenge. Prinipally, the amount of time needed to om-plete the entire protool, inluding gathering the needed in-formation to ompute alternative solutions turned out to befar too large. With message transit times as long as 500milliseonds, ompleting stage 1 of the protool took almosta full seond and ompleting stage 2 took over 3 seonds.In an environment where the resoure requirements hangealmost every seond (mostly due to unertainty about thetarget loation beause of the underlying traking ompo-nents), a protool that takes even a full seond to ompleteis not appropriate.To handle this, we hanged many of the pull-based om-muniations to push-based. For example, instead of a trakmanager asking for a shedule from a sensor agent, the sen-sor agent transmits hanges to its shedule to all trak man-agers that have slots bound by piggy-baking the informa-tion on top of measurement messages. This had three imme-diate impliations for the protool. First, stage 0 and stage1 ollapsed into a single stage. Sine there is essentially, noost for asking for sensor shedules, the trak managers isalways able to do stage 1 of the protool. Seond, the qual-ity of binding a stage 1 solution was drastially dereased.Sine trak managers only reeive shedule updates fromsensors that they are urrently using, whenever a new sensoris added to the alloation, the trak manager assumes thatthe sensor is urrently not in use by another trak manager.This has the e�et of ausing more onits to our. Thirdand most importantly, the protool was able to bind a tem-porary solution immediately (or as long as it takes the bindmessages to be sent). We also redue the amount of time ittook to omplete stage 2 by employing a similar tehniquefor gathering trak manager meta-level information.Even with this hange, we found that often during thenegotiation proess the environment hanged making thenegotiated solution inonsistent with the urrent state. Ini-tially, we onsidered a simple �x to the problem in whih thetarget monitoring Finite State Mahine(FSM) would be sus-pended until the negotiation session had terminated. Whenthe target monitoring FSM was restarted, it should imme-diately detet a misalloation and re-start the negotiationproess in order to retify the situation. We determined af-ter a very short period of time that this strategy, althoughsimple, was not able to keep up with rapid hanges in the



environment. In fat, on many oasions, the target was lostbeause the trak managers were onstantly re-negotiatingabout a resoure requirement that was no longer appliable.SPAM, it turns out, was easy to adapted to handle thispartiular problem beause the atual alloation deision isbeing done by eah of the trak managers based on theirloal view. If a shift in the resoure requirement oursduring the negotiation, trak managers an simple alter thealloation of the sensors not in diret onit to �x theiralloations. This allows the managers to adhere to theirommitments while atually �xing ontext shifts that ourduring the time it takes to negotiate quite graefully.The last problem we enountered was that of messagelength restritions. During stage two, it was often the asethat transmitting the potential solutions for a large num-ber of onited sensors (even after ompressing them), ex-eeded the 150 byte message length limit. One obvious, butbad, approah that we investigated for �xing this problemwas to send two or more messages full of solutions. With-out even implementing the solution, we determined that theamount of extra time needed to send additional messagemade the solution undesirable.In the end, we deided that the only option was to reduethe number of alternatives that were being sent. Choosingwhih alternative to send and whih not to send is atuallyan interesting problem in its own right. Reall from setion3.4 that the set of onsistent solutions an be viewed as aDAG were eah node is a partiular partial solution for apartiular trak manager and paths through the DAG rep-resent onsistent unonited solutions. Now, imagine thatthe number of nodes (partial solutions), j, at path length i(for trak manager i) is greater than the number, x, that an�t in a single message. The problem is to prune the \worst"j � x nodes from the DAG at level i. Note that if a nodeis removed from the DAG, that a path (or onsistent) solu-tion is removed. Also, beause the number of nodes on eahpath length must be equal to the number of trak managers,nodes at lengths less than and greater than i may also beremoved if they are not part of at least one omplete path.The key issue with this problem is to de�ne what is meantby \worst". We are urrently evaluating a number of dif-ferent pruning methods, whih inlude hoosing to prunenodes that do not remove or minimize the number of addi-tional nodes removed by them and hoosing to remove nodesthat have a high probability of not being part of the �nalsolution. The problem with the �rst is that a really goodsolution might be removed, the problem with the seond isthat it is hard or impossible to alulate the probabilities.As mentioned earlier, implementing is only half of the dif-�ulty of migrating a protool like SPAM to a real domain.The other half is in evaluating the quality of solutions thatthe protool obtains. Partiularly, we have not been ableto evaluate the protool as it relates to optimality. We havealso not been able to orretly evaluate the e�ets of hangesto the protool on the relationship between optimality andour solution. The problem lies in hoosing a metris for eval-uation beause eah of the metris we have ome up with isin part dependent on some other part of the system or hasthe potential to be inuened by omponents that ompetewith the protool for proessing or ommuniations. Simplyevaluating the protool without onsidering the e�ets thatvarious omponents have on the metri, in a system thatis non-deterministi, makes determining how good the pro-

tool is in pratie very unreliable. For example, using theerror of where the target was ompared to where we thoughtis was (referred to as RMS traking error), is inuened bythe quality of the underlying traker, the messages that werelost in the ommuniations system, the proessing load andthe proessor that the trak manager were running on, et.Most of the other metris that ould be used fall prey to sim-ilar diÆulties. We ontinue to strive for fair measurementtool and in the mean time use the simulator we presentedin the previous setion to evaluate new tehniques.
6. CONCLUSIONIn this paper, we have desribed the SPAM protool whihwas built to solve oordinated resoure alloation problemsin a soft-real time environment. The protool exploits thefat that agents within the environment are both oopera-tive and autonomous and employs a number of tehniquesto operate in highly dynami environments.Muh work remains to be done on this protool. We areurrently evaluating di�erent methods for assigning pree-dene between trak managers, pruning the onsistent solu-tion set, managing unertainty and dynamis, and makingthe protool more utility based. In addition, we are try-ing to �nd methods for evaluating the protool in the realsystem where the state spae is very large beause of the in-teration of di�erent omponents and the protool. Lastly,we are urrently trying to reate a more formal foundationfrom whih to talk about the protool and its suitability toa variety of domains.
7. ACKNOWLEDGMENTSThanks to Tim Middlekoop and Regis Vinent for helpingduring the initial phases of the protool development, toJiaying Shen for implementing the PTC that was used inthe �nal implementation and to Bryan Horling for his e�ortsin adapting SPAM to work in the real system.
8. REFERENCES[1℄ S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A.Meyer. Multistage negotiation for distributedonstraint satisfation. IEEE Transations on Systems,Man, and Cybernetis, 21(6), Nov. 1991.[2℄ B. Horling, R. Vinent, R. Mailler, J. Shen, R. Beker,K. Rawlins, and V. Lesser. Distributed sensor networkfor real time traking. In Proeedings of the FifthInternational Conferene on Autonomous Agents, pages417{424, 2001.[3℄ T. Moehlman, V. Lesser, and B. Buteau. Deentralizednegotiation: An approah to the distributed planningproblem. Group Deision and Negotiation,1(2):161{192, 1992.[4℄ R. G. Smith. The ontrat net protool: High-levelommuniation and ontrol in a distributed problemsolver. IEEE Transtions on Computers,29(12):1104{1113, 1980.[5℄ R. Vinent, B. Horling, V. Lesser, and T. Wagner.Implementing soft real-time agent ontrol. InProeedings of the Fifth International Conferene onAutonomous Agents, pages 355{362, 2001.[6℄ M. Yokoo. Distributed Constraint Satisfation. SpringerSeries on Agent Tehnology. Springer, 1998.


