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ABSTRACTIn this paper we des
ribe a 
ooperative negotiation proto
olthat solves a distributed resour
e allo
ation problem while
onforming to soft-real time 
onstraints in a dynami
 en-vironment. By framing the allo
ation problem in terms ofoptimization, we have been able to develop a number ofte
hniques to address an ever 
hanging problem lands
ape.Amongst these te
hniques are the ability to resolve 
on
i
tin the allo
ation of resour
es on multiple levels, temporar-ily binding and, given time 
onstraints, in
rementally im-proving the quality of the solution (a form of distributedhill 
limbing), and restri
ting the 
ontext of negotiations toonly use lo
al information with extended meta-level data togenerate and propose possible solutions to the problem. Wedes
ribe the implementation of a simulator for the proto
ol,the more pragmati
 experien
es of implementing it in a realsystem, and present experimental results.
1. INTRODUCTIONResour
e allo
ation is a 
lassi
al problem that has beenstudied for years by Multi-agent Systems resear
hers [4℄.The reasons for this is that resour
e allo
ation is diÆ
ultand time 
onsuming to do in a 
entralized manner when theenvironment is dynami
 and the time or 
ost of 
entraliz-ing the information needed to generate a solution is 
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siderable. Negotiation, a form of distributed sear
h [3℄, hasbeen viewed as a viable alternative to handling this 
omplexsear
h through a solution spa
e that in
ludes multi-linkedintera
ting subproblems.[1℄ Resear
hers in this domain havefo
used primarily on resour
e allo
ation problems formu-lated as distributed 
onstraint satisfa
tion problems[6℄. Inthis work, we extend this 
lassi
 formulation in two ways.First, we introdu
e dynami
 soft-real time 
onstraints whi
hrequires the negotiation proto
ol to adapt to the availabletime left. This estimation is determined dynami
ally as aresult of emerging environmental 
onditions. Se
ond, we re-formulate the resour
e allo
ation problem as an optimizationproblem in whi
h there are a range of a

eptable solutionswith varying preferen
es.In this paper, we present a negotiation proto
ol that ex-ploits the fa
t that the agents within the system are 
ooper-ative and have the ability to resolve 
on
i
ts internally. Thismeans that some level of 
on
i
t 
an be left unresolved asa result of negotiation, but the agent fa
ed with the 
on
i
tmust resolve it based on its lo
al perspe
tive. We are notmaking the assumption that these internally based solutionsobtain the best possible results, but that they are 
apableof providing some measure of utility while a better solutionis obtained. The ability to 
reate temporary solutions andin
rementally improve them both lo
ally and globally formsa distributed hill 
limbing sear
h through the solution spa
ethat optimizes based on the demands of the soft real-timeenvironment. In this 
ontext, soft real time should be inter-preted as soft deadline, whi
h means that �nishing a task abit early or late does not result in detrimental e�e
ts.Our negotiation proto
ol is based on three major prin-
iples whi
h allow it to operate under soft-real time 
on-straints in a dynami
 environment. First, we limit the 
on-text of the negotiation su
h that allo
ation problems arealways resolved lo
ally with only limited information aboutintera
ting subproblems being 
onsidered. After lo
al nego-tiation is �nished, ea
h of the agents 
an 
hoose to propa-gate the negotiation in an attempt to resolve 
on
i
t thatmay have been 
reated as a result of the originating nego-tiation. Viewing this a
tivity from the perspe
tive of theglobal problem, ea
h of the agents that propagates the ne-gotiation is in essen
e lo
ally optimizing in an attempt torea
h a global optimum, whi
h is form of distributed hill
limbing. Se
ond, lo
al negotiations are 
ondu
ted at mul-tiple levels of abstra
tion. Agents 
an 
hoose to resolve the
on
i
t at di�erent granularities and if they are unable toresolve it at one level, be
ause of limited time, 
an leave
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Figure 1: The three level of abstra
tion used to negotiate when tra
king a target. The top level shows tra
k manager T1'ssensor level abstra
tion wanting to use sensors S1, S2, S3, and S4. All 
on
i
t 
ould not be resolved at a higher level sosensors S2 and S4 are left to resolve the 
on
i
t between T1 and T2 at the next lower level. Sensor S4 
hooses to resolve its
on
i
t at the resour
e level by squeezing in two tra
k tasks from T1 followed by two from T2.it to be handled at lower levels. Lastly, we have designedthe negotiation proto
ol to exploit the previously mentionedte
hniques to have an anytime 
avor. By having the abil-ity to take solutions that may have unresolved 
on
i
t andstill obtain some quality, we 
an a
tually bind temporarysolutions while attempting to resolve the 
on
i
ts at a lowerlevel. Clearly in a dynami
 domain this has the ability to\buy some time" so that a good solution 
an be obtainedwhile not 
ompletely abandoning pro
essing that has somevalue in the mean time.In the remaining se
tions of this paper, we introdu
e adistributed monitoring and tra
king appli
ation whi
h mo-tivated the development of our proto
ol. Next, we des
ribethe S
alable Proto
ol for Anytime Multi-level negotiation(SPAM). In se
tion 4, we will des
ribe an abstra
t modelof the task environment that was used to develop and testSPAM in addition to some of the early results we have ob-tained. In se
tion 5, we will dis
uss some of the details anddiÆ
ulties of implementing a proto
ol of this type in a realsystem. The last se
tion of the paper will present 
on
lu-sions and future dire
tions for this work.
2. DOMAINThe problem that we are exploring is that of allo
atingsensor time to the task of tra
king targets. In this prob-lem, multiple sensors platforms are distributed with vary-ing orientations throughout a real time environment [2℄.These platforms have three radar based sensors ea
h witha viewable 120 degree ar
, whi
h are 
apable of taking am-plitude (measuring distan
e from the platform) and/or fre-quen
y (measuring the relative velo
ity of the target) mea-surements. In order to tra
k a target, and therefore obtainutility, at least three of the sensor platforms must take a
oordinated measurement of the target whi
h is then fusedto triangulate the target's position. Having more sensorheads, taking measurements more often, or having tighterrelative syn
hronization of the measurements yields betteroverall quality in estimating the targets lo
ation and a moreoptimal result. The sensor platforms are restri
ted to onlytaking measurements from one sensor head at a time withea
h measurement taking about 500 millise
ond. These keyrestri
tions form the basis of the resour
e allo
ation prob-lem.Ea
h of the sensor platforms is 
ontrolled by a single agentwhi
h may take on multiple organizational roles in additionto managing its lo
al sensor resour
es. Ea
h of the agentsin the system maintain a high degree of lo
al autonomy,being able to make trade-o� de
isions about 
ompeting tasksusing our Soft Real Time Ar
hite
ture (SRTA pronoun
ed

Serta)[5℄.One notable role that an agent may take on is that oftra
k manager. As a tra
k manager, the agent be
omes re-sponsible for determining whi
h sensor platforms and whi
hsensor heads are needed now and in the future for tra
kinga single target. Tra
k managers also a
t to fuse the mea-surements taken from the individual sensor platforms into asingle lo
ation. Be
ause of this, tra
k managers a
t as thefo
al point of negotiation that take pla
e as part of solvingany resour
e 
ontention that may arise while tra
king thetarget.To lend to the dynami
 
hara
teristi
s of this problem,targets 
ontinuously moves through the environment as as
enario unfolds. This means that during the 
ourse of arun, targets move from the viewable range of some sensorsto others. This, of 
ourse, means the a
tual allo
ation prob-lem 
hanges in stru
ture during the 
ourse of a run as thetra
k managers alter their resour
e requirements due to thedis
overy of new targets and the movement of existing ones.In addition, the dynami
s drive the need for real-time ne-gotiation be
ause a parti
ular problem stru
ture is valid foronly a limited amount of time.Contention is introdu
ed when more than one target en-ters the viewable range of a single sensor platform. Be
auseof the time it takes to perform a measurement and the onemeasurement at a time restri
tion, tra
k managers have to
ome to some sort of agreement about how to split the re-sour
e while still being able to tra
k their target. This lo
alagreement 
an have profound global impli
ations. For exam-ple, what if as part of the lo
al agreement one tra
k man-ager 
ompletely relinquished 
ontrol of a sensor platformand takes another instead? This may introdu
e 
ontentionwith another tra
k manager whi
h 
ould propagate throughthe entire environment.
2.1 AbstractionThe a
tual resour
e allo
ation problem that is 
reated bythis environment 
an be view at di�erent levels of abstra
-tion (see �gure 1). At the highest level is the sensor level.This level is maintained by the individual tra
k managersand stri
tly fo
uses on whi
h sensors are needed and desiredto tra
k the target. Solutions 
reated at this level ignore thedetails of the individual sensors' s
hedules in making 
hoi
esof how to allo
ate resour
es and simply 
hoose based onthe tra
k managers internal requirements. Of 
ourse, sin
ethese solutions are 
reated without information about whatthe sensors are a
tually doing, they are almost never free of
on
i
t.The next level of abstra
tion is the s
hedule abstra
t level.At this level, tasks 
an be viewed as periodi
 (whi
h tra
k-
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e s
hedules 
an be viewed at a 
oarse slotbased granularity (all measurements take approximately thesame amount of time). Within the sensors platforms, ouragents maintain the s
hedule abstra
tion level by using thePeriodi
 Task Controller(PTC). The PTC is a slot based,periodi
 s
heduler that feeds SRTA with tasks at times thatare appropriate to its s
hedule. The PTC is 
apable of re-solving 
on
i
t by using one of several te
hniques in
ludingshifting slot boundaries, sele
ting tasks to exe
ute based onimportan
e level, or temporarily shifting a task to emptyslots in its s
hedule. It is easy to see that if a negotiationends in unresolved 
on
i
t, whi
h we 
all a 
o-binding, thatthe PTC has some 
apability to resolve the 
on
i
t. Forinstan
e, if two tra
k managers T1 and T2 are in 
on
i
tover sensors S4, they may, due to time 
onstraints, be un-able to resolve the issue and may leave one of the slots of S4
o-bound. This means that when the PTC in S4 attemptsto s
hedule that slot, it is for
ed to make the lo
al determi-nation as to whi
h of the tra
k managers gets the slot forthat period.At the lowest level, the resour
e level, all of the minutedetails of task exe
ution and resour
e usage within the sen-sors are s
heduled using SRTA. If s
heduling 
on
i
ts rea
hthis level of abstra
tion the Partial Order S
heduler(POS),a 
omponent of SRTA, 
an shift the task exe
ution to try toeliminate any remaining 
on
i
t. Con
i
ts at this level 
anbe 
reated be
ause the sensor is working on a non-tra
kingtask that is not expli
itly reasoned about at the s
heduleabstra
tion level.During the 
ourse of negotiation, due to time 
onstraints,the tra
k manager 
an 
hoose to operate at either the sensoror s
hedule abstra
tion level of negotiation. Leaving unre-solved 
on
i
t at these levels of abstra
tion, though, intro-du
es a great deal of un
ertainty about the exa
t nature ofthe �nal solution. The deeper the tra
k manager is able togo and resolve 
on
i
t, the greater the guarantee about thesolution quality obtained in the end.
2.2 UtilityTo help 
larify what our proto
ol is attempting to a
hieveit helps to see how utility is measured in the tra
king do-main. As mentioned previously, tra
king involves 
oordi-nating measurements from three or more sensors whi
h arethen fused together to form an estimated position of the tar-get. In
reasing the number of sensors improves the qualityof the estimate by the fun
tion given in �gure 2. In
reasingthe measurements taken in a given period of time yields alinear in
rease in the overall quality of the tra
k.If we say that Ta is the number of sensors that took mea-surements leading to the positional estimate and Ts is thenumber of times they are taken in a given period of theabstra
t periodi
 s
hedule, then we 
an quantify this rela-
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Stage 2Figure 3: The three stages of SPAM showing the informa-tion that is available and the level of abstra
tion the tra
kmanager uses in generating possible solutions.tionship by the following formula:Util(Tra
k) = Util(Ta)� TsIn fa
t, tra
k managers within the system use this measure-ment as the basis for de
iding what obje
tive utility level totry to a
hieve for tra
king a spe
i�
 target. We will oftendenote the obje
tive level as Da �Ds denoting the numberfor agents desired for the number of slots in the s
heduleabstra
tion level. For example, a tra
k manager may wishto have three agents for two slots of the s
hedule abstra
tionlevel denoted 3 � 2. For this domain, we typi
ally set thenumber of slots at the s
hedule abstra
tion level to mat
hthe number of sensor heads on ea
h platform whi
h is three.Looking at this utility fun
tion it should be noted that 
o-binding 
an have a profound e�e
t on the quality of a tra
k.In fa
t, be
ause the sensors make the de
ision about whi
htra
k to satisfy on ea
h period of their periodi
 s
hedule,having more than one sensor bound for a parti
ular slot
auses a near random o

urren
e of syn
hronization. Forexample, if a tra
k manager T1 uses sensors S1, S2, S3, andS4 ea
h for one slot of their s
hedule and sensors S2 and S4are 
o-bound on that slot with one other tra
k manager, itis easy to see that T1 has a 25 per
ent 
han
e of gettingfour sensors for the slot and a 50 per
ent 
han
e of gettingthree sensors for that slot during any given period. Thisrelationship 
an be seen in the following formula. Here Sis the set of slots in the abstra
t s
hedule level and T si isthe number of a
tual measurements that are taken during agiven slot s .Util(Tra
k) =Xs2S 1Xa=3Prob(T si = a)Util(T si )Note that if the utility of a parti
ular tra
k is 0 by the aboveformula, we a
tually penalize ourselves for not tra
king thetarget by returning a value of -1 instead. In addition, thelower bound on the number of sensors needed to tra
k isthree. As the formula spe
i�es, tra
king with 0, 1 or 2 sen-sors does not add to the utility of the tra
k.Finally, the global utility 
an be 
al
ulate from the fol-lowing formula whi
h just says that the overall utility is thesum of the utilities for the individual tra
ks (one tra
k pertarget). Utility = XTra
k2TargetsUtil(Tra
k)
3. PROTOCOLTo meet the obje
tives of the environment and to in-
orporate the te
hniques that were dis
ussed in the previ-ous se
tions, the S
alable Proto
ol for Anytime Multi-level(SPAM) negotiation is divided into three stages. As the pro-to
ol transitions from stage to stage, the agent a
ting as thetra
k manager gains more 
ontext information and therefore



is able to improve the quality of its overall de
ision. Afterea
h stage or at anytime during stage 2, the tra
k manager
an 
hoose to stop the proto
ol and is ensured to have asolution albeit not ne
essarily a good one (not optimal andnot ne
essarily 
on
i
t free). Figure 3 shows the amount ofinformation that the tra
k manager has at ea
h stage of theproto
ol. The �gure shows that as the amount of informa-tion obtained in
reases, the tra
k manager is able to shift itsnegotiation abstra
tion level. This means that if the tra
kmanager 
hooses to terminate the proto
ol before stage 1,it a
ts at the sensor level of abstra
tion (de
iding on onlywhi
h sensors it desires) and leaves the de
ision of how tohandle the a
tual s
heduling to the sensors themselves aswas dis
ussed in the previous se
tions.
3.1 Stage 0On target dete
tion, stage 0 of the negotiation proto
olis a
tivated. Stage 0 is primarily responsible for viewingthe problem at the sensor level of abstra
tion. Be
ause ofthis, ea
h of the sensors that have the potential to tra
kthe target are evaluated and ordered. In this stage, thetra
k manager also assigns an initial obje
tive level to thetra
k. Obje
tive levels in general are derived from the tra
kmanagers obje
tive fun
tion. This fun
tion, whi
h may bedi�erent for every tra
k manager, de�nes the order of theobje
tive levels, the initial obje
tive level for a tra
k, anda lower bound of the obje
tive level before giving up on anun
on
i
ted solution. Changing these parameters 
an alterthe 
hara
teristi
s of the sear
h pro
ess to make it faster(start at a lower obje
tive level) or better (start at the bestpossible obje
tive level).The a
tual a
tivity of 
hoosing a solution at this level ofabstra
tion is primarily domain spe
i�
. For example in thetra
king domain, 
riteria for solution 
hoi
e might be therelative proximity of the target to the sensor, whether thetarget is moving toward or away from the sensor, et
. Thesolution 
hoi
e, however, is based on internal informationonly.Stage 0 ends, either by determining that enough time isavailable to go to stage 1 or by �nishing the negotiation andbinding a solution at the 
urrent level of abstra
tion. Inthe se
ond 
ase, the tra
k manager leaves the 
on
i
t to beresolved by the agents residing in the sensors platforms.
3.2 Stage 1Stage 1 of the SPAM proto
ol begins by obtaining ab-stra
t s
hedule information from the PTC in ea
h of thesensor agents. This information is used in two ways. First,if a solution at the 
urrent obje
tive level 
an be obtained,the tra
k manager 
an bind the solution and avoid a more
ostly tra
k manager-to-tra
k manager negotiation pro
ess.We dis
uss how possible solutions are generated in a laterse
tion. Se
ond, if a solution 
annot be found at the 
urrentobje
tive level, the tra
k manager has enough informationto bind a good solution whi
h minimizes the amount of un-resolved 
on
i
t and maximized the tra
k manager's lo
alobje
tive level. Like stage 0, the negotiation session 
anbe terminated at the end of stage 1 if enough time is notavailable to 
ontinue.Solutions in stage 1 are only 
onsidered at the originalobje
tive level set forth in stage 0. The reason for this isthat if the tra
k manager were to lower its obje
tive fun
-tion without 
onsidering additional information then in all
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ol resolvesall lo
al 
on
i
t at the s
hedule abstra
tion level through ne-gotiation with 
on
i
ting tra
k managers.likelihood it would end up with a utility that was lower thanit should have been. For example, 
onsider the 
on
i
t be-tween the two tra
king tasks, T1 and T2, in �gure 5. Tra
kmanager T2 is assigned the role of tra
king a new targetand during stage 0 it determines that it wishes to have sen-sors S3, S4, S5, and S6 to tra
k the target. In addition, itassigns an initial obje
tive level of 4 � 3. After obtainingthe abstra
t s
hedule of all four sensors the tra
k manager�nds that this solution is not possible be
ause manager T1has all three slots of sensor S3 assigned. As the proto
olstands now, T2 binds a temporary solution and moves intostage 2 to begin negotiation with T1. Clearly, though, ifT2 had lowered its obje
tive fun
tion to 3 � 3 a solution(S4, S5, S6) with no 
on
i
t 
ould have been obtained with-out expending time by going into stage 2. From a utilityperspe
tive, say that the other tra
k manager, T1, was a
-tively using a 5� 3 obje
tive level in tra
king its target. IfT2 a

epts a 3 � 3 then the global utility would be around8.2. If, however, T2 
o-binds, while negotiating, then bothmanagers obtain a 4 � 3 
on�guration with a global utilityof about 8.5. Although the di�eren
e seems minimal, ourbelief is that in order to maintain the hill 
limbing nature ofthe sear
h, agents must always try to lo
ally maximize theirutility until su
h a time where it is determined that to doso a
tually harms the global utility.
3.3 Stage 2Stage 2, the �nal stage of SPAM, is the heart of the nego-tiation proto
ol (See �gure 4). Stage 2 attempts to resolveall lo
al 
on
i
t that a tra
k manager has by elevating thenegotiation to the tra
k managers that are in dire
t 
on-
i
t over the desired resour
es. To do this, the originatingtra
k manager takes the role of the negotiation mediator forthe lo
al 
on
i
t (multiple negotiations 
an o

ur in parallelin the environment). As the mediator, it be
omes respon-sible for gathering all of the information needed to gener-
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es.Tra
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on-tention is 
reated for sensors S3, S4, S5 and S6.ate alternative solutions, generating possible solutions whi
hmay involve 
hanges to the obje
tive levels of the managersinvolved, and �nally 
hoosing a solution to apply to theproblem. Be
ause the solutions are generated without fullglobal information, however, the �nal solution may lead tonewly introdu
ed non-lo
al 
on
i
t. If this o

urs, ea
h ofthe tra
k managers 
an 
hoose to propagate the negotiationin order to resolve this 
on
i
t if they have the time. So,what started out as a new target or resour
e requirement,may lead to the negotiation propagating a
ross the problemlands
ape.The best way to explain how stage 2 operates is throughan example. Again, 
onsider �gure 5. This �gure depi
tsa 
ommonly en
ountered form of 
ontention. Here, tra
kmanager T2 has just been assigned a target. The target islo
ated between two existing targets that are being tra
kedby tra
k managers T1 and T3. This 
reates 
ontention forsensors S3, S4, S5, and S6.Following the proto
ol for the example in �gure 5, tra
kmanager T2, as the originator of the 
on
i
t, takes on therole of negotiation mediator. After the mediator 
on
ludesthe os
illation dete
tion phase (explained later in this se
-tion), it begins the solution generation phase by requestingmeta-level information from all of the tra
k managers thatare involved in the resour
e 
on
i
t. The information that isreturned in
ludes the 
urrent obje
tive level that the tra
kmanager is using, the number of sensors whi
h 
ould pos-sibly tra
k the target, the names of the sensors that are indire
t 
on
i
t with the mediator, and any additional 
on-
i
ts that the manager has. To 
ontinue our example, T2sends a request for information to T1 and T3. T1 and T3both return that they have 4 sensors that 
an tra
k theirtargets, the list of sensors that are in dire
t 
on
i
t (i.eT1(S3; S4), T3(S5; S6)) their obje
tive level (4� 3 for bothof them) and that they have no additional 
on
i
ts outsideof the immediate one being 
onsidered.Using this information, T2 begins to generate full solu-tions to resour
e problem (see se
tion 3.4). Here, a fullsolution refers to a solution that in
ludes all of the tra
kmanagers for all of the sensors that the mediator is ableto dire
tly intera
t with (an example 
an be seen in �gure6). In addition, when a full solution is 
reated, it is un
on-
i
ted over those sensors. This is in 
omparison to a partialsolution whi
h refers to a solution for a spe
i�
 tra
k man-ager over the proper subset of sensors that the mediator hasdire
t intera
tion with. Note that ea
h full solutions is 
om-posed of a unique set of partial solutions. The re
ipro
al isnot ne
essarily true in that a partial solution 
an belong toa number of full solutions.As you 
an see in �gure 4, T2 enters a loop that involvesattempting to generate full solutions followed by loweringone of the tra
k manager's obje
tive level, if no full solutionsare possible given the 
urrent obje
tive levels of ea
h of thetra
k managers. One of the prin
iple questions that we are
urrently investigating is how to 
hoose the tra
k manager

that gets its obje
tive level lowered when full solutions areunavailable. Right now, this is done by �rst 
hoosing thetra
k manager with the highest 
urrent obje
tive level andlowering them. This has the overall e�e
t of balan
ing theobje
tive levels of the tra
k managers involved in the ne-gotiation. Whenever two or more managers have the samehighest obje
tive level, we 
hoose to lower the obje
tive levelof the manager with the least amount of external 
on
i
t.By doing this, it is our belief, that tra
k managers with moreexternal 
on
i
t will maintain higher obje
tive levels, whi
hleaves them more leverage to use in subsequent negotiationsas a result of propagation.The solution generation loop is terminated under one oftwo 
onditions. First, if given the 
urrent obje
tive levelsfor ea
h of the tra
k mangers, a set of full solutions is avail-able, the negotiation enters the solution evaluation phase.Se
ond, the obje
tive levels of the tra
k managers 
annotbe lowered any further and no full solutions are available.Under this 
ondition, the negotiation session is terminatedand the mediator takes a partial solution at the lowest ob-je
tive level that minimizes the resulting 
on
i
t, 
on
edingthat it 
annot �nd a full solution.Continuing our example, T2 �rst lowers the obje
tive levelof T1 (
hoosing T1 at random be
ause they all have equalexternal 
on
i
t). No full solutions are possible under thenew of set obje
tive levels, so the loop 
ontinues. It 
ontin-ues, in fa
t, until ea
h of the tra
k managers has an obje
tivelevel of 3� 2 at whi
h time T2 is able generate a set of 216full solutions to the problem.During the solution evaluation phase, the mediator sendsea
h of the tra
k managers their set of partial solutions thatare part of full solutions generated in the previous phase.Ea
h tra
k manager, using this information and the pro-posed obje
tive level, 
an then determine what partial so-lutions, if any, are a

eptable. In our example, T2 sends24 partial solutions to T1 for sensors S3 and S4, 24 par-tial solutions to itself for sensors S3, S4, S5, and S6, and24 partial solutions to T3 for sensors S5 and S6. In our
urrent implementation, ea
h of the tra
k managers orderstheir partial solutions from best to worst based on the num-ber of new 
on
i
ts that will be 
reated and the number of
hanges that will have to be made in order to implement thenew allo
ation. The ordering is then returned to the medi-ator. Currently, we are looking at a number of alternativete
hniques for providing lo
al preferen
e information to themediator in
luding simply returning utility values for ea
hsolution and assigning solutions to a �nite set of equivalen
e
lasses.On
e the mediator has the partial solution orderings fromthe tra
k managers, it is able 
hoose the �nal full solutionto apply to the problem. Using the orderings, the mediatorprunes the full solution set generated in the solution gener-ation phase by only keeping full solutions that 
ontain thehighest ranked partial solution for the tra
k manager withthe most external 
on
i
ts. This new redu
ed set of full so-lutions is then pruned by the mediator to 
ontain only fullsolutions that have the highest ranked partial solution fromthe se
ond most externally 
on
i
ted tra
k manager. Thispro
ess 
ontinues until only one solution remains in the fullsolution set.In our example, T2 
olle
ts the ordering from T1, T2,and T3. Choosing based on the same ordering that wasused to redu
e the obje
tive levels, T3 is given �rst 
hoi
e.
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Figure 6: A solution derived by SPAM to the problem in�gure 5. The table on the left is before tra
k manager T2negotiates with T1 and T3. The table on the left is the resultof stage 2 negotiation.By its ordering it ranked its partial solution 0 the highest.This restri
ts the 
hoi
e for T2 to its partial solutions 0,1, 2, and 3 be
ause only these partial solutions 
ontinue toprovide a full solution. T2 ranked 0 ranked from this set,leaving T1 to 
hoose between its 0th, 1st, and 2nd partialsolutions. It turns out that T1 likes its 0th solution the bestso the �nal full solution that is applied is 
omposed of T3'spartial solution 0, T2's partial solution 0, and T1's partialsolution 0.The last phase of the proto
ol is the solution implemen-tation phase. Here, the mediator simply informs ea
h ofthe tra
k managers of its �nal 
hoi
e. Ea
h of the tra
kmanagers then implements the �nal solution. At this point,ea
h of the tra
k managers is free to propagate and mediatea negotiation it 
hooses to. Currently, tra
k managers willpropagate if new 
on
i
t has been 
reated as a result of the�nal solution 
hoi
e. In future versions, it is our hope thatutility and not 
on
i
ts will form the basis for determiningwhen to propagate. Figure 6 shows the original 
on�gura-tion of the sensors before T2 was introdu
ed and after stagetwo 
ompletes.As mentioned earlier, stage 2 starts in the os
illation de-te
tion phase. Os
illation o

urs be
ause 
on
i
ts are re-solved lo
ally without regard to the global 
ontext. Saythat from our previous example, tra
k manager T1 origi-nated a negotiation with tra
k manager T2. In additionlet's say that T2 had previously resolved a 
on
i
t withmanager T3, that terminated with neither T2 or T3 hav-ing unresolved 
on
i
t. Now when T1 negotiates with T2,T1 in the end gets a lo
ally un
on
i
ted solution, but in or-der for that to o

ur, T2 ended up in 
on
i
t with T3. It ispossible that when T2 propagates the negotiation, that theoriginal 
on
i
t between T1 and T2 is reintrodu
ed leadingto an os
illation.To prevent this from happening, ea
h tra
k manager main-tains a history of the sensor s
hedules that are being nego-tiated over whenever a negotiation terminates. By doingthis, managers are able determine if they have previouslybeen in a state whi
h 
aused them to propagate a negoti-ation in the past. To stop the os
illation, the propagatingmanager lowers its obje
tive level to for
e itself to exploredi�erent areas of the solution spa
e. It should be noted thatin 
ertain 
ases os
illation may be in
orre
tly dete
ted usingthis te
hnique whi
h 
an result in having the tra
k managerunne
essarily lower its obje
tive level.
3.4 Generating Solutions

Generating full solutions for the domain des
ribed earlierinvolves taking the limited information that was providedthrough 
ommuni
ations with the 
on
i
ting tra
k man-agers and assuming that the sensors whi
h are not in dire
t
on
i
t, are freely available. In addition, be
ause the tra
kmanager that is generating full solutions only knows aboutthe sensors whi
h are in dire
t 
on
i
t, it only 
reates andposes solutions for those sensors. The formula below givesthe basi
 form for how partial solutions are generated forea
h tra
k manager. Here, As is the number of slots that isavailable in the s
hedule abstra
tion layer, Ds is the num-ber of slots that are desired based on the obje
tive level forthe tra
k manager, Aa is the number of sensors available totra
k the target (those that 
an see it), Da is the numberof sensors desired in the obje
tive fun
tion, and �nally Cais the number of sensors under dire
t 
onsideration be
ausethey are 
on
i
ting.Solutions = � AsDs �0� min(Ca;Da)Xi=max(0;Da�Aa+Ca)� Cai �1ADsAs 
an be seen by this formula, every 
ombination of slotsthat meets the obje
tive level is 
reated and for ea
h of theslots, every 
ombination of the 
on
i
ted sensors is gener-ated su
h that the tra
k manager has the 
apability of meet-ing its obje
tive level using the sensors that are available.For instan
e, let's say that a tra
k manager has four sensorsS1, S2, S3, and S4 available to it. The tra
k manager hasa 
urrent obje
tive level of 3� 2 and sensors S2 and S3 areunder 
on
i
t. The generation pro
ess would 
reate the 3
ombinations of slot possibilities and then for ea
h possibleslot, it would generate the 
ombination of sensors su
h thatthree sensors 
ould be obtained. The only possible sensor
ombinations in this s
enario would be that the tra
k man-ager gets either S2 or S3 (assuming that the manager willtake the other two available sensors) or it gets S2 and S3(assuming it only takes one of the other two). Therefore, atotal of 27 possible solutions would be generated.It is interesting to note that we use this same formula forgenerating partial solutions in stage 0 and 1 of the proto-
ol. This spe
ial 
ase generation is a
tually done by simplesetting Ca = Aa. The formula above, in this 
ase redu
es toSolutions = � AsDs �� AaDa �DsWe 
an also generate partial solutions when there are num-ber of pre-existing 
onstraints on the use of 
ertain slot/sensor
ombinations. Simply by 
al
ulating the number of availablesensors for ea
h of the slots and using this as a basis for de-termining whi
h slots 
an still be used we 
an redu
e thenumber of possible solutions 
onsiderably.Using the ability to impose 
onstraints on the partial so-lutions generated for a given tra
k manager allows us togenerate full solutions for the tra
k managers in stage 2. Byordering the tra
k managers, we 
an generate partial solu-tions for them one at a time using the results from higherpre
eden
e tra
k managers as 
onstraints for lower pre
e-den
e ones. Continuing our example from �gure 5, say thatT1 had one external 
on
i
t and T3 had two. When thefull solution set is generated, T2 generates partial solutionsfor manager T3 �rst. T2 then uses the results from this as
onstraints on the 
reation of partial solutions for T1. Theresulting full solutions (now with solutions for T1 and T3)
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ol. Tra
k managers were de�ned by the sen-sors they needed to tra
k targets in their region. In this�gure, 
ir
les represent sensors, triangles represent targetsand squares represent tra
k manager regions.are used as 
onstraints for generating the partial solutionsfor T2 (whi
h only has lo
al 
on
i
t be
ause it is the medi-ator).This pro
ess forms the basis of a sear
h for full solutionsto the lo
al 
on
i
t. You 
an view this as a tree based sear
hwhere the top level of the tree is the set of partial solutionsfor the most 
onstrained tra
k manager. Ea
h of the nodesat this level may or may not have a number of 
hildrenwhi
h are the partial solutions available to the se
ond most
onstrained tra
k manager and so on. Only bran
hes ofthe tree that have a depth equal to the number of tra
kmanagers - 1 are 
onsidered full. If there are no bran
hesthat meet this 
riteria, then the problem is 
onsidered over
onstrained.In the end, we are left with a Dire
ted A
y
li
 Graph(DAG) where every path from the root nodes to the leafshas equals length (number of tra
k managers - 1) and rep-resents one unique full solution. The nodes at a parti
ularpath length represent the set of partial solutions that a tra
kmanager has to 
hoose from during the solution evaluationphase of stage 2.
4. SIMULATIONTo evaluate the SPAM proto
ol, we developed a simulatorthat uses a model of the tra
king environment des
ribed ear-lier in the paper (see �gure 7). In this simulator, we 
on
en-trated on evaluating primarily stage 1 and 2 of the proto
ol.To do this, the simulation was 
onstru
ted using two majorpie
es, the environmental simulator and the tra
k managersthemselves. The environmental simulator manages the stateof the sensors, spawns the tra
k managers, introdu
es newtargets, and manages propagation requests from the tra
kmanagers. The tra
k managers, whi
h are de�ned by a setof sensors that they desire on
e they are given a target,handle any in
oming negotiation requests from other tra
kmanagers, spawn new negotiations when assigned a target,and request to be pla
ed on the propagation list when theyhave unresolved 
on
i
t.Using the environment in �gure 7, we ran every possible
on�guration of targets and every possible order of target in-trodu
tion in order to test the 
onvergen
e, 
ommuni
ationand, utility properties of the algorithm. In this environment,that equates to 9! = 362,880 tests.From the simulation tests we determined that the SPAMproto
ol, when going from 0 to 9 targets, 
onverges on a so-lution in an average of 18 dis
rete negotiation sessions whi
hin
ludes the 9 original lo
al negotiations that take pla
e dueto target introdu
tion. In addition, on average ea
h tra
k

manager obtains a lo
al obje
tive level of better than 3� 1and re
eives a utility of approximately 1.51. On average, theoverall solution has less than 1 unresolved 
on
i
t. Commu-ni
ation 
ost is dominated by tra
k manager to sensor 
om-muni
ations. On average to 
omplete a 9 target problem, ittakes 163 sensor s
hedule requests and 155 bind messages.These numbers may appear large, but 
onsidering that thea
tivity is being done in parallel, the bind message 
ountsin
lude the temporary bind messages sent out at the end ofstage 1, and that s
hedule requests o

ur in several pla
eduring the proto
ol, these numbers seem very reasonable.In fa
t, in the a
tual implementation of the proto
ol, sensors
hedule requests are not a
tually made.
5. IMPLEMENTATIONImplementing and evaluating a proto
ol like SPAM in thedomain des
ribed in se
tion 2 with multiple agents runningin parallel, an every 
hanging environment with un
ertaintyabout the exa
t resour
e needs, slow, lossy 
ommuni
ations,and message length restri
tions turned out to be quite a
hallenge. Prin
ipally, the amount of time needed to 
om-plete the entire proto
ol, in
luding gathering the needed in-formation to 
ompute alternative solutions turned out to befar too large. With message transit times as long as 500millise
onds, 
ompleting stage 1 of the proto
ol took almosta full se
ond and 
ompleting stage 2 took over 3 se
onds.In an environment where the resour
e requirements 
hangealmost every se
ond (mostly due to un
ertainty about thetarget lo
ation be
ause of the underlying tra
king 
ompo-nents), a proto
ol that takes even a full se
ond to 
ompleteis not appropriate.To handle this, we 
hanged many of the pull-based 
om-muni
ations to push-based. For example, instead of a tra
kmanager asking for a s
hedule from a sensor agent, the sen-sor agent transmits 
hanges to its s
hedule to all tra
k man-agers that have slots bound by piggy-ba
king the informa-tion on top of measurement messages. This had three imme-diate impli
ations for the proto
ol. First, stage 0 and stage1 
ollapsed into a single stage. Sin
e there is essentially, no
ost for asking for sensor s
hedules, the tra
k managers isalways able to do stage 1 of the proto
ol. Se
ond, the qual-ity of binding a stage 1 solution was drasti
ally de
reased.Sin
e tra
k managers only re
eive s
hedule updates fromsensors that they are 
urrently using, whenever a new sensoris added to the allo
ation, the tra
k manager assumes thatthe sensor is 
urrently not in use by another tra
k manager.This has the e�e
t of 
ausing more 
on
i
ts to o

ur. Thirdand most importantly, the proto
ol was able to bind a tem-porary solution immediately (or as long as it takes the bindmessages to be sent). We also redu
e the amount of time ittook to 
omplete stage 2 by employing a similar te
hniquefor gathering tra
k manager meta-level information.Even with this 
hange, we found that often during thenegotiation pro
ess the environment 
hanged making thenegotiated solution in
onsistent with the 
urrent state. Ini-tially, we 
onsidered a simple �x to the problem in whi
h thetarget monitoring Finite State Ma
hine(FSM) would be sus-pended until the negotiation session had terminated. Whenthe target monitoring FSM was restarted, it should imme-diately dete
t a misallo
ation and re-start the negotiationpro
ess in order to re
tify the situation. We determined af-ter a very short period of time that this strategy, althoughsimple, was not able to keep up with rapid 
hanges in the



environment. In fa
t, on many o

asions, the target was lostbe
ause the tra
k managers were 
onstantly re-negotiatingabout a resour
e requirement that was no longer appli
able.SPAM, it turns out, was easy to adapted to handle thisparti
ular problem be
ause the a
tual allo
ation de
ision isbeing done by ea
h of the tra
k managers based on theirlo
al view. If a shift in the resour
e requirement o

ursduring the negotiation, tra
k managers 
an simple alter theallo
ation of the sensors not in dire
t 
on
i
t to �x theirallo
ations. This allows the managers to adhere to their
ommitments while a
tually �xing 
ontext shifts that o

urduring the time it takes to negotiate quite gra
efully.The last problem we en
ountered was that of messagelength restri
tions. During stage two, it was often the 
asethat transmitting the potential solutions for a large num-ber of 
on
i
ted sensors (even after 
ompressing them), ex-
eeded the 150 byte message length limit. One obvious, butbad, approa
h that we investigated for �xing this problemwas to send two or more messages full of solutions. With-out even implementing the solution, we determined that theamount of extra time needed to send additional messagemade the solution undesirable.In the end, we de
ided that the only option was to redu
ethe number of alternatives that were being sent. Choosingwhi
h alternative to send and whi
h not to send is a
tuallyan interesting problem in its own right. Re
all from se
tion3.4 that the set of 
onsistent solutions 
an be viewed as aDAG were ea
h node is a parti
ular partial solution for aparti
ular tra
k manager and paths through the DAG rep-resent 
onsistent un
on
i
ted solutions. Now, imagine thatthe number of nodes (partial solutions), j, at path length i(for tra
k manager i) is greater than the number, x, that 
an�t in a single message. The problem is to prune the \worst"j � x nodes from the DAG at level i. Note that if a nodeis removed from the DAG, that a path (or 
onsistent) solu-tion is removed. Also, be
ause the number of nodes on ea
hpath length must be equal to the number of tra
k managers,nodes at lengths less than and greater than i may also beremoved if they are not part of at least one 
omplete path.The key issue with this problem is to de�ne what is meantby \worst". We are 
urrently evaluating a number of dif-ferent pruning methods, whi
h in
lude 
hoosing to prunenodes that do not remove or minimize the number of addi-tional nodes removed by them and 
hoosing to remove nodesthat have a high probability of not being part of the �nalsolution. The problem with the �rst is that a really goodsolution might be removed, the problem with the se
ond isthat it is hard or impossible to 
al
ulate the probabilities.As mentioned earlier, implementing is only half of the dif-�
ulty of migrating a proto
ol like SPAM to a real domain.The other half is in evaluating the quality of solutions thatthe proto
ol obtains. Parti
ularly, we have not been ableto evaluate the proto
ol as it relates to optimality. We havealso not been able to 
orre
tly evaluate the e�e
ts of 
hangesto the proto
ol on the relationship between optimality andour solution. The problem lies in 
hoosing a metri
s for eval-uation be
ause ea
h of the metri
s we have 
ome up with isin part dependent on some other part of the system or hasthe potential to be in
uen
ed by 
omponents that 
ompetewith the proto
ol for pro
essing or 
ommuni
ations. Simplyevaluating the proto
ol without 
onsidering the e�e
ts thatvarious 
omponents have on the metri
, in a system thatis non-deterministi
, makes determining how good the pro-

to
ol is in pra
ti
e very unreliable. For example, using theerror of where the target was 
ompared to where we thoughtis was (referred to as RMS tra
king error), is in
uen
ed bythe quality of the underlying tra
ker, the messages that werelost in the 
ommuni
ations system, the pro
essing load andthe pro
essor that the tra
k manager were running on, et
.Most of the other metri
s that 
ould be used fall prey to sim-ilar diÆ
ulties. We 
ontinue to strive for fair measurementtool and in the mean time use the simulator we presentedin the previous se
tion to evaluate new te
hniques.
6. CONCLUSIONIn this paper, we have des
ribed the SPAM proto
ol whi
hwas built to solve 
oordinated resour
e allo
ation problemsin a soft-real time environment. The proto
ol exploits thefa
t that agents within the environment are both 
oopera-tive and autonomous and employs a number of te
hniquesto operate in highly dynami
 environments.Mu
h work remains to be done on this proto
ol. We are
urrently evaluating di�erent methods for assigning pre
e-den
e between tra
k managers, pruning the 
onsistent solu-tion set, managing un
ertainty and dynami
s, and makingthe proto
ol more utility based. In addition, we are try-ing to �nd methods for evaluating the proto
ol in the realsystem where the state spa
e is very large be
ause of the in-tera
tion of di�erent 
omponents and the proto
ol. Lastly,we are 
urrently trying to 
reate a more formal foundationfrom whi
h to talk about the proto
ol and its suitability toa variety of domains.
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