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ABSTRACT

In this paper we describe a cooperative negotiation protocol
that solves a distributed resource allocation problem while
conforming to soft-real time constraints in a dynamic en-
vironment. By framing the allocation problem in terms of
optimization, we have been able to develop a number of
techniques to address an ever changing problem landscape.
Amongst these techniques are the ability to resolve conflict
in the allocation of resources on multiple levels, temporar-
ily binding and, given time constraints, incrementally im-
proving the quality of the solution (a form of distributed
hill climbing), and restricting the context of negotiations to
only use local information with extended meta-level data to
generate and propose possible solutions to the problem. We
describe the implementation of a simulator for the protocol,
the more pragmatic experiences of implementing it in a real
system, and present experimental results.

1. INTRODUCTION

Resource allocation is a classical problem that has been
studied for years by Multi-agent Systems researchers [4].
The reasons for this is that resource allocation is difficult
and time consuming to do in a centralized manner when the
environment is dynamic and the time or cost of centraliz-
ing the information needed to generate a solution is con-
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siderable. Negotiation, a form of distributed search [3], has
been viewed as a viable alternative to handling this complex
search through a solution space that includes multi-linked
interacting subproblems.[1] Researchers in this domain have
focused primarily on resource allocation problems formu-
lated as distributed constraint satisfaction problems[6]. In
this work, we extend this classic formulation in two ways.
First, we introduce dynamic soft-real time constraints which
requires the negotiation protocol to adapt to the available
time left. This estimation is determined dynamically as a
result of emerging environmental conditions. Second, we re-
formulate the resource allocation problem as an optimization
problem in which there are a range of acceptable solutions
with varying preferences.

In this paper, we present a negotiation protocol that ex-
ploits the fact that the agents within the system are cooper-
ative and have the ability to resolve conflicts internally. This
means that some level of conflict can be left unresolved as
a result of negotiation, but the agent faced with the conflict
must resolve it based on its local perspective. We are not
making the assumption that these internally based solutions
obtain the best possible results, but that they are capable
of providing some measure of utility while a better solution
is obtained. The ability to create temporary solutions and
incrementally improve them both locally and globally forms
a distributed hill climbing search through the solution space
that optimizes based on the demands of the soft real-time
environment. In this context, soft real time should be inter-
preted as soft deadline, which means that finishing a task a
bit early or late does not result in detrimental effects.

Our negotiation protocol is based on three major prin-
ciples which allow it to operate under soft-real time con-
straints in a dynamic environment. First, we limit the con-
text of the negotiation such that allocation problems are
always resolved locally with only limited information about
interacting subproblems being considered. After local nego-
tiation is finished, each of the agents can choose to propa-
gate the negotiation in an attempt to resolve conflict that
may have been created as a result of the originating nego-
tiation. Viewing this activity from the perspective of the
global problem, each of the agents that propagates the ne-
gotiation is in essence locally optimizing in an attempt to
reach a global optimum, which is form of distributed hill
climbing. Second, local negotiations are conducted at mul-
tiple levels of abstraction. Agents can choose to resolve the
conflict at different granularities and if they are unable to
resolve it at one level, because of limited time, can leave
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Figure 1: The three level of abstraction used to negotiate when tracking a target. The top level shows track manager T1’s
sensor level abstraction wanting to use sensors S1, §2, S8, and S4. All conflict could not be resolved at a higher level so
sensors S2 and S/ are left to resolve the conflict between T1 and T2 at the next lower level. Sensor S/ chooses to resolve its
conflict at the resource level by squeezing in two track tasks from T1 followed by two from T2.

it to be handled at lower levels. Lastly, we have designed
the negotiation protocol to exploit the previously mentioned
techniques to have an anytime flavor. By having the abil-
ity to take solutions that may have unresolved conflict and
still obtain some quality, we can actually bind temporary
solutions while attempting to resolve the conflicts at a lower
level. Clearly in a dynamic domain this has the ability to
“buy some time” so that a good solution can be obtained
while not completely abandoning processing that has some
value in the mean time.

In the remaining sections of this paper, we introduce a
distributed monitoring and tracking application which mo-
tivated the development of our protocol. Next, we describe
the Scalable Protocol for Anytime Multi-level negotiation
(SPAM). In section 4, we will describe an abstract model
of the task environment that was used to develop and test
SPAM in addition to some of the early results we have ob-
tained. In section 5, we will discuss some of the details and
difficulties of implementing a protocol of this type in a real
system. The last section of the paper will present conclu-
sions and future directions for this work.

2. DOMAIN

The problem that we are exploring is that of allocating
sensor time to the task of tracking targets. In this prob-
lem, multiple sensors platforms are distributed with vary-
ing orientations throughout a real time environment [2].
These platforms have three radar based sensors each with
a viewable 120 degree arc, which are capable of taking am-
plitude (measuring distance from the platform) and/or fre-
quency (measuring the relative velocity of the target) mea-
surements. In order to track a target, and therefore obtain
utility, at least three of the sensor platforms must take a
coordinated measurement of the target which is then fused
to triangulate the target’s position. Having more sensor
heads, taking measurements more often, or having tighter
relative synchronization of the measurements yields better
overall quality in estimating the targets location and a more
optimal result. The sensor platforms are restricted to only
taking measurements from one sensor head at a time with
each measurement taking about 500 millisecond. These key
restrictions form the basis of the resource allocation prob-
lem.

Each of the sensor platforms is controlled by a single agent
which may take on multiple organizational roles in addition
to managing its local sensor resources. Each of the agents
in the system maintain a high degree of local autonomy,
being able to make trade-off decisions about competing tasks
using our Soft Real Time Architecture (SRTA pronounced

Serta)[5].

One notable role that an agent may take on is that of
track manager. As a track manager, the agent becomes re-
sponsible for determining which sensor platforms and which
sensor heads are needed now and in the future for tracking
a single target. Track managers also act to fuse the mea-
surements taken from the individual sensor platforms into a
single location. Because of this, track managers act as the
focal point of negotiation that take place as part of solving
any resource contention that may arise while tracking the
target.

To lend to the dynamic characteristics of this problem,
targets continuously moves through the environment as a
scenario unfolds. This means that during the course of a
run, targets move from the viewable range of some sensors
to others. This, of course, means the actual allocation prob-
lem changes in structure during the course of a run as the
track managers alter their resource requirements due to the
discovery of new targets and the movement of existing ones.
In addition, the dynamics drive the need for real-time ne-
gotiation because a particular problem structure is valid for
only a limited amount of time.

Contention is introduced when more than one target en-
ters the viewable range of a single sensor platform. Because
of the time it takes to perform a measurement and the one
measurement at a time restriction, track managers have to
come to some sort of agreement about how to split the re-
source while still being able to track their target. This local
agreement can have profound global implications. For exam-
ple, what if as part of the local agreement one track man-
ager completely relinquished control of a sensor platform
and takes another instead? This may introduce contention
with another track manager which could propagate through
the entire environment.

2.1 Abstraction

The actual resource allocation problem that is created by
this environment can be view at different levels of abstrac-
tion (see figure 1). At the highest level is the sensor level.
This level is maintained by the individual track managers
and strictly focuses on which sensors are needed and desired
to track the target. Solutions created at this level ignore the
details of the individual sensors’ schedules in making choices
of how to allocate resources and simply choose based on
the track managers internal requirements. Of course, since
these solutions are created without information about what
the sensors are actually doing, they are almost never free of
conflict.

The next level of abstraction is the schedule abstract level.
At this level, tasks can be viewed as periodic (which track-
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Figure 2: Utility of taking a single measurement from T,
sensors.

ing is) and resource schedules can be viewed at a coarse slot
based granularity (all measurements take approximately the
same amount of time). Within the sensors platforms, our
agents maintain the schedule abstraction level by using the
Periodic Task Controller(PTC). The PTC is a slot based,
periodic scheduler that feeds SRTA with tasks at times that
are appropriate to its schedule. The PTC is capable of re-
solving conflict by using one of several techniques including
shifting slot boundaries, selecting tasks to execute based on
importance level, or temporarily shifting a task to empty
slots in its schedule. It is easy to see that if a negotiation
ends in unresolved conflict, which we call a co-binding, that
the PTC has some capability to resolve the conflict. For
instance, if two track managers T1 and T2 are in conflict
over sensors 54, they may, due to time constraints, be un-
able to resolve the issue and may leave one of the slots of S4
co-bound. This means that when the PTC in S4 attempts
to schedule that slot, it is forced to make the local determi-
nation as to which of the track managers gets the slot for
that period.

At the lowest level, the resource level, all of the minute
details of task execution and resource usage within the sen-
sors are scheduled using SRTA. If scheduling conflicts reach
this level of abstraction the Partial Order Scheduler(POS),
a component of SRTA, can shift the task execution to try to
eliminate any remaining conflict. Conflicts at this level can
be created because the sensor is working on a non-tracking
task that is not explicitly reasoned about at the schedule
abstraction level.

During the course of negotiation, due to time constraints,
the track manager can choose to operate at either the sensor
or schedule abstraction level of negotiation. Leaving unre-
solved conflict at these levels of abstraction, though, intro-
duces a great deal of uncertainty about the exact nature of
the final solution. The deeper the track manager is able to
go and resolve conflict, the greater the guarantee about the
solution quality obtained in the end.

22 Utility

To help clarify what our protocol is attempting to achieve
it helps to see how utility is measured in the tracking do-
main. As mentioned previously, tracking involves coordi-
nating measurements from three or more sensors which are
then fused together to form an estimated position of the tar-
get. Increasing the number of sensors improves the quality
of the estimate by the function given in figure 2. Increasing
the measurements taken in a given period of time yields a
linear increase in the overall quality of the track.

If we say that 7, is the number of sensors that took mea-
surements leading to the positional estimate and T is the
number of times they are taken in a given period of the
abstract periodic schedule, then we can quantify this rela-
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Figure 3: The three stages of SPAM showing the informa-
tion that is available and the level of abstraction the track
manager uses in generating possible solutions.

tionship by the following formula:
Util(Track) = Util(Ta) x Ts

In fact, track managers within the system use this measure-
ment as the basis for deciding what objective utility level to
try to achieve for tracking a specific target. We will often
denote the objective level as D, x D, denoting the number
for agents desired for the number of slots in the schedule
abstraction level. For example, a track manager may wish
to have three agents for two slots of the schedule abstraction
level denoted 3 x 2. For this domain, we typically set the
number of slots at the schedule abstraction level to match
the number of sensor heads on each platform which is three.

Looking at this utility function it should be noted that co-
binding can have a profound effect on the quality of a track.
In fact, because the sensors make the decision about which
track to satisfy on each period of their periodic schedule,
having more than one sensor bound for a particular slot
causes a near random occurrence of synchronization. For
example, if a track manager T1 uses sensors S1, 52, S3, and
S4 each for one slot of their schedule and sensors S2 and S4
are co-bound on that slot with one other track manager, it
is easy to see that T1 has a 25 percent chance of getting
four sensors for the slot and a 50 percent chance of getting
three sensors for that slot during any given period. This
relationship can be seen in the following formula. Here S
is the set of slots in the abstract schedule level and T} is
the number of actual measurements that are taken during a
given slot s .

Util(Track) = » > Prob(T; = a)Util(Ty)

s€ESa=3

Note that if the utility of a particular track is 0 by the above
formula, we actually penalize ourselves for not tracking the
target by returning a value of -1 instead. In addition, the
lower bound on the number of sensors needed to track is
three. As the formula specifies, tracking with 0, 1 or 2 sen-
sors does not add to the utility of the track.

Finally, the global utility can be calculate from the fol-
lowing formula which just says that the overall utility is the
sum of the utilities for the individual tracks (one track per

target).
Utility = >

Track€Targets

3. PROTOCOL

To meet the objectives of the environment and to in-
corporate the techniques that were discussed in the previ-
ous sections, the Scalable Protocol for Anytime Multi-level
(SPAM) negotiation is divided into three stages. As the pro-
tocol transitions from stage to stage, the agent acting as the
track manager gains more context information and therefore

Util(Track)



is able to improve the quality of its overall decision. After
each stage or at anytime during stage 2, the track manager
can choose to stop the protocol and is ensured to have a
solution albeit not necessarily a good one (not optimal and
not necessarily conflict free). Figure 3 shows the amount of
information that the track manager has at each stage of the
protocol. The figure shows that as the amount of informa-
tion obtained increases, the track manager is able to shift its
negotiation abstraction level. This means that if the track
manager chooses to terminate the protocol before stage 1,
it acts at the sensor level of abstraction (deciding on only
which sensors it desires) and leaves the decision of how to
handle the actual scheduling to the sensors themselves as
was discussed in the previous sections.

3.1 StageO

On target detection, stage 0 of the negotiation protocol
is activated. Stage 0 is primarily responsible for viewing
the problem at the sensor level of abstraction. Because of
this, each of the sensors that have the potential to track
the target are evaluated and ordered. In this stage, the
track manager also assigns an initial objective level to the
track. Objective levels in general are derived from the track
managers objective function. This function, which may be
different for every track manager, defines the order of the
objective levels, the initial objective level for a track, and
a lower bound of the objective level before giving up on an
unconflicted solution. Changing these parameters can alter
the characteristics of the search process to make it faster
(start at a lower objective level) or better (start at the best
possible objective level).

The actual activity of choosing a solution at this level of
abstraction is primarily domain specific. For example in the
tracking domain, criteria for solution choice might be the
relative proximity of the target to the sensor, whether the
target is moving toward or away from the sensor, etc. The
solution choice, however, is based on internal information
only.

Stage 0 ends, either by determining that enough time is
available to go to stage 1 or by finishing the negotiation and
binding a solution at the current level of abstraction. In
the second case, the track manager leaves the conflict to be
resolved by the agents residing in the sensors platforms.

3.2 Stagel

Stage 1 of the SPAM protocol begins by obtaining ab-
stract schedule information from the PTC in each of the
sensor agents. This information is used in two ways. First,
if a solution at the current objective level can be obtained,
the track manager can bind the solution and avoid a more
costly track manager-to-track manager negotiation process.
We discuss how possible solutions are generated in a later
section. Second, if a solution cannot be found at the current
objective level, the track manager has enough information
to bind a good solution which minimizes the amount of un-
resolved conflict and maximized the track manager’s local
objective level. Like stage 0, the negotiation session can
be terminated at the end of stage 1 if enough time is not
available to continue.

Solutions in stage 1 are only considered at the original
objective level set forth in stage 0. The reason for this is
that if the track manager were to lower its objective func-
tion without considering additional information then in all
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Figure 4: Stage 2 of the SPAM negotiation protocol resolves
all local conflict at the schedule abstraction level through ne-
gotiation with conflicting track managers.

likelihood it would end up with a utility that was lower than
it should have been. For example, consider the conflict be-
tween the two tracking tasks, T1 and T2, in figure 5. Track
manager T2 is assigned the role of tracking a new target
and during stage 0 it determines that it wishes to have sen-
sors S3, S4, Sb, and S6 to track the target. In addition, it
assigns an initial objective level of 4 x 3. After obtaining
the abstract schedule of all four sensors the track manager
finds that this solution is not possible because manager T1
has all three slots of sensor S3 assigned. As the protocol
stands now, T2 binds a temporary solution and moves into
stage 2 to begin negotiation with T1. Clearly, though, if
T2 had lowered its objective function to 3 x 3 a solution
(S4, S5, S6) with no conflict could have been obtained with-
out expending time by going into stage 2. From a utility
perspective, say that the other track manager, T1, was ac-
tively using a 5 x 3 objective level in tracking its target. If
T2 accepts a 3 x 3 then the global utility would be around
8.2. If, however, T2 co-binds, while negotiating, then both
managers obtain a 4 x 3 configuration with a global utility
of about 8.5. Although the difference seems minimal, our
belief is that in order to maintain the hill climbing nature of
the search, agents must always try to locally maximize their
utility until such a time where it is determined that to do
so actually harms the global utility.

3.3 Stage?

Stage 2, the final stage of SPAM, is the heart of the nego-
tiation protocol (See figure 4). Stage 2 attempts to resolve
all local conflict that a track manager has by elevating the
negotiation to the track managers that are in direct con-
flict over the desired resources. To do this, the originating
track manager takes the role of the negotiation mediator for
the local conflict (multiple negotiations can occur in parallel
in the environment). As the mediator, it becomes respon-
sible for gathering all of the information needed to gener-
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Figure 5: Ezample of a common contention for resources.
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tention is created for sensors S3, S4, S5 and S6.

ate alternative solutions, generating possible solutions which
may involve changes to the objective levels of the managers
involved, and finally choosing a solution to apply to the
problem. Because the solutions are generated without full
global information, however, the final solution may lead to
newly introduced non-local conflict. If this occurs, each of
the track managers can choose to propagate the negotiation
in order to resolve this conflict if they have the time. So,
what started out as a new target or resource requirement,
may lead to the negotiation propagating across the problem
landscape.

The best way to explain how stage 2 operates is through
an example. Again, consider figure 5. This figure depicts
a commonly encountered form of contention. Here, track
manager T2 has just been assigned a target. The target is
located between two existing targets that are being tracked
by track managers T1 and T3. This creates contention for
sensors S3, S4, S5, and S6.

Following the protocol for the example in figure 5, track
manager T2, as the originator of the conflict, takes on the
role of negotiation mediator. After the mediator concludes
the oscillation detection phase (explained later in this sec-
tion), it begins the solution generation phase by requesting
meta-level information from all of the track managers that
are involved in the resource conflict. The information that is
returned includes the current objective level that the track
manager is using, the number of sensors which could pos-
sibly track the target, the names of the sensors that are in
direct conflict with the mediator, and any additional con-
flicts that the manager has. To continue our example, T2
sends a request for information to T1 and T3. T1 and T3
both return that they have 4 sensors that can track their
targets, the list of sensors that are in direct conflict (i.e
T1(Ss3,S4), T3(Ss,Se)) their objective level (4 x 3 for both
of them) and that they have no additional conflicts outside
of the immediate one being considered.

Using this information, T2 begins to generate full solu-
tions to resource problem (see section 3.4). Here, a full
solution refers to a solution that includes all of the track
managers for all of the sensors that the mediator is able
to directly interact with (an example can be seen in figure
6). In addition, when a full solution is created, it is uncon-
flicted over those sensors. This is in comparison to a partial
solution which refers to a solution for a specific track man-
ager over the proper subset of sensors that the mediator has
direct interaction with. Note that each full solutions is com-
posed of a unique set of partial solutions. The reciprocal is
not necessarily true in that a partial solution can belong to
a number of full solutions.

As you can see in figure 4, T2 enters a loop that involves
attempting to generate full solutions followed by lowering
one of the track manager’s objective level, if no full solutions
are possible given the current objective levels of each of the
track managers. One of the principle questions that we are
currently investigating is how to choose the track manager

that gets its objective level lowered when full solutions are
unavailable. Right now, this is done by first choosing the
track manager with the highest current objective level and
lowering them. This has the overall effect of balancing the
objective levels of the track managers involved in the ne-
gotiation. Whenever two or more managers have the same
highest objective level, we choose to lower the objective level
of the manager with the least amount of external conflict.
By doing this, it is our belief, that track managers with more
external conflict will maintain higher objective levels, which
leaves them more leverage to use in subsequent negotiations
as a result of propagation.

The solution generation loop is terminated under one of
two conditions. First, if given the current objective levels
for each of the track mangers, a set of full solutions is avail-
able, the negotiation enters the solution evaluation phase.
Second, the objective levels of the track managers cannot
be lowered any further and no full solutions are available.
Under this condition, the negotiation session is terminated
and the mediator takes a partial solution at the lowest ob-
jective level that minimizes the resulting conflict, conceding
that it cannot find a full solution.

Continuing our example, T2 first lowers the objective level
of T1 (choosing T1 at random because they all have equal
external conflict). No full solutions are possible under the
new of set objective levels, so the loop continues. It contin-
ues, in fact, until each of the track managers has an objective
level of 3 x 2 at which time T2 is able generate a set of 216
full solutions to the problem.

During the solution evaluation phase, the mediator sends
each of the track managers their set of partial solutions that
are part of full solutions generated in the previous phase.
Each track manager, using this information and the pro-
posed objective level, can then determine what partial so-
lutions, if any, are acceptable. In our example, T2 sends
24 partial solutions to T1 for sensors S3 and S4, 24 par-
tial solutions to itself for sensors S3, S4, S5, and S6, and
24 partial solutions to T3 for sensors S5 and S6. In our
current implementation, each of the track managers orders
their partial solutions from best to worst based on the num-
ber of new conflicts that will be created and the number of
changes that will have to be made in order to implement the
new allocation. The ordering is then returned to the medi-
ator. Currently, we are looking at a number of alternative
techniques for providing local preference information to the
mediator including simply returning utility values for each
solution and assigning solutions to a finite set of equivalence
classes.

Once the mediator has the partial solution orderings from
the track managers, it is able choose the final full solution
to apply to the problem. Using the orderings, the mediator
prunes the full solution set generated in the solution gener-
ation phase by only keeping full solutions that contain the
highest ranked partial solution for the track manager with
the most external conflicts. This new reduced set of full so-
lutions is then pruned by the mediator to contain only full
solutions that have the highest ranked partial solution from
the second most externally conflicted track manager. This
process continues until only one solution remains in the full
solution set.

In our example, T2 collects the ordering from T1, T2,
and T3. Choosing based on the same ordering that was
used to reduce the objective levels, T3 is given first choice.
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Figure 6: A solution derived by SPAM to the problem in
figure 5. The table on the left is before track manager T2
negotiates with T1 and T3. The table on the left is the result
of stage 2 negotiation.

By its ordering it ranked its partial solution 0 the highest.
This restricts the choice for T2 to its partial solutions 0,
1, 2, and 3 because only these partial solutions continue to
provide a full solution. T2 ranked 0 ranked from this set,
leaving T'1 to choose between its Oth, 1st, and 2nd partial
solutions. It turns out that T1 likes its Oth solution the best
so the final full solution that is applied is composed of T3’s
partial solution 0, T2’s partial solution 0, and T1’s partial
solution 0.

The last phase of the protocol is the solution implemen-
tation phase. Here, the mediator simply informs each of
the track managers of its final choice. Each of the track
managers then implements the final solution. At this point,
each of the track managers is free to propagate and mediate
a negotiation it chooses to. Currently, track managers will
propagate if new conflict has been created as a result of the
final solution choice. In future versions, it is our hope that
utility and not conflicts will form the basis for determining
when to propagate. Figure 6 shows the original configura-
tion of the sensors before T2 was introduced and after stage
two completes.

As mentioned earlier, stage 2 starts in the oscillation de-
tection phase. Oscillation occurs because conflicts are re-
solved locally without regard to the global context. Say
that from our previous example, track manager T1 origi-
nated a negotiation with track manager T2. In addition
let’s say that T2 had previously resolved a conflict with
manager T3, that terminated with neither T2 or T3 hav-
ing unresolved conflict. Now when T1 negotiates with T2,
T1 in the end gets a locally unconflicted solution, but in or-
der for that to occur, T2 ended up in conflict with T3. It is
possible that when T2 propagates the negotiation, that the
original conflict between T1 and T2 is reintroduced leading
to an oscillation.

To prevent this from happening, each track manager main-
tains a history of the sensor schedules that are being nego-
tiated over whenever a negotiation terminates. By doing
this, managers are able determine if they have previously
been in a state which caused them to propagate a negoti-
ation in the past. To stop the oscillation, the propagating
manager lowers its objective level to force itself to explore
different areas of the solution space. It should be noted that
in certain cases oscillation may be incorrectly detected using
this technique which can result in having the track manager
unnecessarily lower its objective level.

3.4 Generating Solutions

Generating full solutions for the domain described earlier
involves taking the limited information that was provided
through communications with the conflicting track man-
agers and assuming that the sensors which are not in direct
conflict, are freely available. In addition, because the track
manager that is generating full solutions only knows about
the sensors which are in direct conflict, it only creates and
poses solutions for those sensors. The formula below gives
the basic form for how partial solutions are generated for
each track manager. Here, A, is the number of slots that is
available in the schedule abstraction layer, D, is the num-
ber of slots that are desired based on the objective level for
the track manager, A, is the number of sensors available to
track the target (those that can see it), D, is the number
of sensors desired in the objective function, and finally C,
is the number of sensors under direct consideration because
they are conflicting.

A min(Cq,Dg) C
Solutions = < D. ) Z < i )

i=maz(0,Dq—Aqs+Cq)

D

As can be seen by this formula, every combination of slots
that meets the objective level is created and for each of the
slots, every combination of the conflicted sensors is gener-
ated such that the track manager has the capability of meet-
ing its objective level using the sensors that are available.
For instance, let’s say that a track manager has four sensors
S1, S2, S3, and S4 available to it. The track manager has
a current objective level of 3 x 2 and sensors S2 and S3 are
under conflict. The generation process would create the 3
combinations of slot possibilities and then for each possible
slot, it would generate the combination of sensors such that
three sensors could be obtained. The only possible sensor
combinations in this scenario would be that the track man-
ager gets either S2 or S3 (assuming that the manager will
take the other two available sensors) or it gets S2 and S3
(assuming it only takes one of the other two). Therefore, a
total of 27 possible solutions would be generated.

It is interesting to note that we use this same formula for
generating partial solutions in stage 0 and 1 of the proto-
col. This special case generation is actually done by simple
setting C, = A,. The formula above, in this case reduces to

. A, Al \7°
Solutions = ( D, ) < D, )

We can also generate partial solutions when there are num-
ber of pre-existing constraints on the use of certain slot/sensor
combinations. Simply by calculating the number of available
sensors for each of the slots and using this as a basis for de-
termining which slots can still be used we can reduce the
number of possible solutions considerably.

Using the ability to impose constraints on the partial so-
lutions generated for a given track manager allows us to
generate full solutions for the track managers in stage 2. By
ordering the track managers, we can generate partial solu-
tions for them one at a time using the results from higher
precedence track managers as constraints for lower prece-
dence ones. Continuing our example from figure 5, say that
T1 had one external conflict and T3 had two. When the
full solution set is generated, T2 generates partial solutions
for manager T3 first. T2 then uses the results from this as
constraints on the creation of partial solutions for T1. The
resulting full solutions (now with solutions for T1 and T3)



Figure 7: The environmental layout used for testing the
SPAM protocol. Track managers were defined by the sen-
sors they needed to track targets in their region. In this
figure, circles represent sensors, triangles represent targets
and squares represent track manager regions.

are used as constraints for generating the partial solutions
for T2 (which only has local conflict because it is the medi-
ator).

This process forms the basis of a search for full solutions
to the local conflict. You can view this as a tree based search
where the top level of the tree is the set of partial solutions
for the most constrained track manager. Each of the nodes
at this level may or may not have a number of children
which are the partial solutions available to the second most
constrained track manager and so on. Only branches of
the tree that have a depth equal to the number of track
managers - 1 are considered full. If there are no branches
that meet this criteria, then the problem is considered over
constrained.

In the end, we are left with a Directed Acyclic Graph
(DAG) where every path from the root nodes to the leafs
has equals length (number of track managers - 1) and rep-
resents one unique full solution. The nodes at a particular
path length represent the set of partial solutions that a track
manager has to choose from during the solution evaluation
phase of stage 2.

4. SIMULATION

To evaluate the SPAM protocol, we developed a simulator
that uses a model of the tracking environment described ear-
lier in the paper (see figure 7). In this simulator, we concen-
trated on evaluating primarily stage 1 and 2 of the protocol.
To do this, the simulation was constructed using two major
pieces, the environmental simulator and the track managers
themselves. The environmental simulator manages the state
of the sensors, spawns the track managers, introduces new
targets, and manages propagation requests from the track
managers. The track managers, which are defined by a set
of sensors that they desire once they are given a target,
handle any incoming negotiation requests from other track
managers, spawn new negotiations when assigned a target,
and request to be placed on the propagation list when they
have unresolved conflict.

Using the environment in figure 7, we ran every possible
configuration of targets and every possible order of target in-
troduction in order to test the convergence, communication
and, utility properties of the algorithm. In this environment,
that equates to 9! = 362,880 tests.

From the simulation tests we determined that the SPAM
protocol, when going from 0 to 9 targets, converges on a so-
lution in an average of 18 discrete negotiation sessions which
includes the 9 original local negotiations that take place due
to target introduction. In addition, on average each track

manager obtains a local objective level of better than 3 x 1
and receives a utility of approximately 1.51. On average, the
overall solution has less than 1 unresolved conflict. Commu-
nication cost is dominated by track manager to sensor com-
munications. On average to complete a 9 target problem, it
takes 163 sensor schedule requests and 155 bind messages.
These numbers may appear large, but considering that the
activity is being done in parallel, the bind message counts
include the temporary bind messages sent out at the end of
stage 1, and that schedule requests occur in several place
during the protocol, these numbers seem very reasonable.
In fact, in the actual implementation of the protocol, sensor
schedule requests are not actually made.

5. IMPLEMENTATION

Implementing and evaluating a protocol like SPAM in the
domain described in section 2 with multiple agents running
in parallel, an every changing environment with uncertainty
about the exact resource needs, slow, lossy communications,
and message length restrictions turned out to be quite a
challenge. Principally, the amount of time needed to com-
plete the entire protocol, including gathering the needed in-
formation to compute alternative solutions turned out to be
far too large. With message transit times as long as 500
milliseconds, completing stage 1 of the protocol took almost
a full second and completing stage 2 took over 3 seconds.
In an environment where the resource requirements change
almost every second (mostly due to uncertainty about the
target location because of the underlying tracking compo-
nents), a protocol that takes even a full second to complete
is not appropriate.

To handle this, we changed many of the pull-based com-
munications to push-based. For example, instead of a track
manager asking for a schedule from a sensor agent, the sen-
sor agent transmits changes to its schedule to all track man-
agers that have slots bound by piggy-backing the informa-
tion on top of measurement messages. This had three imme-
diate implications for the protocol. First, stage 0 and stage
1 collapsed into a single stage. Since there is essentially, no
cost for asking for sensor schedules, the track managers is
always able to do stage 1 of the protocol. Second, the qual-
ity of binding a stage 1 solution was drastically decreased.
Since track managers only receive schedule updates from
sensors that they are currently using, whenever a new sensor
is added to the allocation, the track manager assumes that
the sensor is currently not in use by another track manager.
This has the effect of causing more conflicts to occur. Third
and most importantly, the protocol was able to bind a tem-
porary solution immediately (or as long as it takes the bind
messages to be sent). We also reduce the amount of time it
took to complete stage 2 by employing a similar technique
for gathering track manager meta-level information.

Even with this change, we found that often during the
negotiation process the environment changed making the
negotiated solution inconsistent with the current state. Ini-
tially, we considered a simple fix to the problem in which the
target monitoring Finite State Machine(FSM) would be sus-
pended until the negotiation session had terminated. When
the target monitoring FSM was restarted, it should imme-
diately detect a misallocation and re-start the negotiation
process in order to rectify the situation. We determined af-
ter a very short period of time that this strategy, although
simple, was not able to keep up with rapid changes in the



environment. In fact, on many occasions, the target was lost
because the track managers were constantly re-negotiating
about a resource requirement that was no longer applicable.

SPAM, it turns out, was easy to adapted to handle this
particular problem because the actual allocation decision is
being done by each of the track managers based on their
local view. If a shift in the resource requirement occurs
during the negotiation, track managers can simple alter the
allocation of the sensors not in direct conflict to fix their
allocations. This allows the managers to adhere to their
commitments while actually fixing context shifts that occur
during the time it takes to negotiate quite gracefully.

The last problem we encountered was that of message
length restrictions. During stage two, it was often the case
that transmitting the potential solutions for a large num-
ber of conflicted sensors (even after compressing them), ex-
ceeded the 150 byte message length limit. One obvious, but
bad, approach that we investigated for fixing this problem
was to send two or more messages full of solutions. With-
out even implementing the solution, we determined that the
amount of extra time needed to send additional message
made the solution undesirable.

In the end, we decided that the only option was to reduce
the number of alternatives that were being sent. Choosing
which alternative to send and which not to send is actually
an interesting problem in its own right. Recall from section
3.4 that the set of consistent solutions can be viewed as a
DAG were each node is a particular partial solution for a
particular track manager and paths through the DAG rep-
resent consistent unconflicted solutions. Now, imagine that
the number of nodes (partial solutions), j, at path length %
(for track manager i) is greater than the number, z, that can
fit in a single message. The problem is to prune the “worst”
j — x nodes from the DAG at level i. Note that if a node
is removed from the DAG, that a path (or consistent) solu-
tion is removed. Also, because the number of nodes on each
path length must be equal to the number of track managers,
nodes at lengths less than and greater than ¢ may also be
removed if they are not part of at least one complete path.

The key issue with this problem is to define what is meant
by “worst”. We are currently evaluating a number of dif-
ferent pruning methods, which include choosing to prune
nodes that do not remove or minimize the number of addi-
tional nodes removed by them and choosing to remove nodes
that have a high probability of not being part of the final
solution. The problem with the first is that a really good
solution might be removed, the problem with the second is
that it is hard or impossible to calculate the probabilities.

As mentioned earlier, implementing is only half of the dif-
ficulty of migrating a protocol like SPAM to a real domain.
The other half is in evaluating the quality of solutions that
the protocol obtains. Particularly, we have not been able
to evaluate the protocol as it relates to optimality. We have
also not been able to correctly evaluate the effects of changes
to the protocol on the relationship between optimality and
our solution. The problem lies in choosing a metrics for eval-
uation because each of the metrics we have come up with is
in part dependent on some other part of the system or has
the potential to be influenced by components that compete
with the protocol for processing or communications. Simply
evaluating the protocol without considering the effects that
various components have on the metric, in a system that
is non-deterministic, makes determining how good the pro-

tocol is in practice very unreliable. For example, using the
error of where the target was compared to where we thought
is was (referred to as RMS tracking error), is influenced by
the quality of the underlying tracker, the messages that were
lost in the communications system, the processing load and
the processor that the track manager were running on, etc.
Most of the other metrics that could be used fall prey to sim-
ilar difficulties. We continue to strive for fair measurement
tool and in the mean time use the simulator we presented
in the previous section to evaluate new techniques.

6. CONCLUSION

In this paper, we have described the SPAM protocol which
was built to solve coordinated resource allocation problems
in a soft-real time environment. The protocol exploits the
fact that agents within the environment are both coopera-
tive and autonomous and employs a number of techniques
to operate in highly dynamic environments.

Much work remains to be done on this protocol. We are
currently evaluating different methods for assigning prece-
dence between track managers, pruning the consistent solu-
tion set, managing uncertainty and dynamics, and making
the protocol more utility based. In addition, we are try-
ing to find methods for evaluating the protocol in the real
system where the state space is very large because of the in-
teraction of different components and the protocol. Lastly,
we are currently trying to create a more formal foundation
from which to talk about the protocol and its suitability to
a variety of domains.
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