
Autonomous Agents and Multi-Agent Systems, 12, 35–91, 2006
© 2005 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10458-005-3998-9

The Soft Real-Time Agent Control Architecture1

BRYAN HORLING bhorling@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

VICTOR LESSER2 lesser@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
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Abstract. Real-time control has become increasingly important as technologies are moved from the
lab into real world situations. The complexity associated with these systems increases as control and
autonomy are distributed, due to such issues as temporal and ordering constraints, shared resources,
and the lack of a complete and consistent world view. In this paper we describe a soft real-time
architecture designed to address these requirements, motivated by challenges encountered in a real-
time distributed sensor allocation environment. The system features the ability to generate sched-
ules respecting temporal, structural and resource constraints, to merge new goals with existing ones,
and to detect and handle unexpected results from activities. We will cover a suite of technologies
being employed, including quantitative task representation, alternative plan selection, partial-order
scheduling, schedule consolidation and execution and conflict resolution in an uncertain environ-
ment. Technologies which facilitate on-line real-time control, including meta-level accounting, sched-
ule caching and variable time granularities are also discussed.

Keywords: agent control, scheduling, soft real-time, resource management.

1. Overview

In the field of multi-agent systems, much of the research and most of the discus-
sion focuses on the dynamics and interactions between agents and agent groups.
Just as important, however, is the design and behavior of the individual agents
themselves. The efficiency of an agent’s internal mechanics contributes to the
foundation of the system as a whole, and the degree of flexibility these mechan-
ics offer affects the agent’s achievable level of real-time planning and scheduling
of activities, particularly in its interactions with other agents [24, 30]. We believe
that a general control architecture, responsible for both the planning for the
achievement of temporally constrained goals of varying worth and the sequenc-
ing of actions local to the agent that have resource requirements, can provide
a robust and reusable platform on which to build high level reasoning compo-
nents. In this article, we will discuss the design and implementation of the Soft



36 BRYAN HORLING ET AL.

Real Time Architecture (SRTA), a generic planning, scheduling and execution
subsystem designed to address these needs [41]. The SRTA architecture provides
several key features:

1. The ability to quickly generate plans and schedules for goals that are appro-
priate for the available resources and applicable constraints, such as deadlines
and earliest start times.

2. The ability to merge new goals with existing ones, and multiplex their solu-
tion schedules.

3. The ability to use explicit representations of uncertainty and efficiently han-
dle deviations in expected plan behavior that arise out of variations in
resource usage patterns and unexpected action characteristics.

While the immediate motivation for this work is the domain described
in Section 2, we are more generally interested in demonstrating that agents
employing complex modeling and decision making techniques can address prob-
lems posed by real-world scenarios. The architecture presented in this paper
uses such techniques, enabling it to operate effectively in open, unpredictable
environments by using online planning and scheduling algorithms that explic-
itly reason about uncertainty and have the ability to explore alternative ways
to satisfy goals, temporal constraints and resource requirements. At the same
time, it is also efficient enough to work in soft real-time, manage interdependen-
cies between tasks and resources, and satisfy commitments that may be formed
between entities. In particular, this work is differentiated from others [1, 32,
33] in its explicit use of uncertainty, soft interrelationships, probabilistic action
expectations, and a range of commitment types. We will show how this type of
framework can provide many capabilities needed for sophisticated multi-agent
applications.

Abstractly, SRTA operates as a single functional unit within an agent, which
itself is running on a conventional (i.e. not real-time) operating system. The
SRTA controller is designed to be used in a layered architecture, occupying a
position below the high-level reasoning component in an agent [2, 51]. In this
role, it will accept new goals, report the results of the activities used to satisfy
those goals, and also serve as a knowledge source about the potential ability to
schedule future activities by answering what-if style queries.

The system has evolved and been constructed over several research projects
into a set of interacting components and representations, as shown in Figure 1.
We first assume that goals can arrive at any time, in response to environmental
change, local planning, or because of requests from other agents. A domain-
independent, hierarchical task network description language called TÆMS is
used to describe goals, which supports quantitative, probabilistic models of
activities, including non-local effects of actions and resources and a variety of
ways to define how tasks decompose into subtasks (for example, Figure 4) [6,
15]. In particular, the uncertainty associated with activities can be directly mod-
eled through the use of quantitative distributions describing the different out-
comes a given action may produce. Commitments and constraints can be used
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to define relationships and interactions formed with other agents, as well as
internally generated limits and deadlines. A planner process, called DTC, uses
the information encoded in the TÆMS structure to generate a number of differ-
ent plans for achieving the desired goals, each with different characteristics,
and ranked by their predicted utility within the current operating context. This
permits the system to adjust which goals it will achieve, and how well it will
achieve these chosen goals based on the dynamics of the current situation. A
viable plan is then selected and used by a scheduling component (POS) to pro-
duce a partially ordered sequence of activities addressing the goal. A resource
modeling component is also used to identify and schedule any resource accesses
that the activities perform. This schedule is then combined with schedules from
existing goals to form a coherent, potentially parallel sequence of activities,
which are partially ordered based on their interactions with resources and one
another. This sequence is used to perform the actions in time, using the iden-
tified preconditions to verify if actions can be performed, and invoking light-
weight rescheduling if necessary. Finally, if conflicts arise or if a viable schedule
cannot be produced, SRTA can make use of an extensible series of resolution
techniques to correct the situation, or generate an event to elevate the problem
to higher level components which may be able to make a more informed deci-
sion. The components that comprise SRTA can assume responsibility for the
majority of the goal-satisfaction process, which allows the high-level reasoning
system to focus on goal selection, determining goal objectives and other poten-
tially domain-dependent issues.

To demonstrate SRTA’s capabilities and behaviors we will use a running
example throughout the paper, taken from the distributed sensor network
domain. We can make the sequence of actions described above more concrete
by using a synopsis of this example. The goals of the sensor in question are
described using the task structures shown in Figures 4 and 5. These goals
may have several different ways to be satisfied, can interact with one another,
and are identified dynamically at runtime. SRTA’s responsibility is to select an
appropriate set of actions and monitor the progress of those actions such that
the goals are achieved. Task1 arrives first, which requires the sensor to ini-
tialize itself and send a notification message to its manager. This goal is first
retrieved from the local task library, after which the scheduling and resource
modeling components are used to select a sequence of actions and generate a
parallel schedule. An execution component then uses this schedule to drive the
sensor’s actions. Task2, which has the sensor take measurements by a certain
deadline to help track a target, arrives before Task1 has completed. It also is
represented as a structure and used to produce a partially ordered sequence of
actions, which must then be merged with the current working schedule. In this
case, both goals make use of the RF resource, so using the resource modeling
component the scheduler merges the two such that this constraint is satisfied.
This is accomplished by representing that constraint, along with other intra-
schedule conditions, as part a precedence graph that is used to determine which
actions may be run in parallel or must be run in series. This graph can then
be used to quickly select appropriate execution times for the different actions,
respecting the ordering constraints within the goals, the resource constraints
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Figure 1. High-level agent control architecture.

over RF and the deadline assigned to Task2. A Task3, which also uses RF, is
added later in a similar manner. During execution, however, one of Task3’s
actions takes longer than expected, which in turn affects start times later in the
schedule. Resolving this problem is not simply a matter of shifting those tasks,
because in this case it would cause a conflict with Task2’s use of RF. To
resolve this, the scheduler uses the existing precedence graph to determine where
actions may be shifted. It first recognizes that Task2’s deadline prevents its
RF-using action from being delayed, but that the remaining Task3 actions are
unconstrained. The necessary changes are made to the schedule and all three
goals are eventually satisfied.

An important aspect of most real-world systems is their ability to han-
dle real-time constraints. This is not to say that they must be fast or agile
(although it helps), but that they should be aware of deadlines which exist
in their environment, and how to operate such that those deadlines are rea-
soned about and respected as much as possible. This notion of real-time is
weaker than its relative, hard real-time, which attempts to rigorously quan-
tify and formally bound execution characteristics. Instead, systems working in
soft real-time operate on tasks which may still have value for some period
after their deadlines have passed [38], and missing the deadline of a task does
not lead to disastrous external consequences. Our research addresses a deriva-
tive of this concept, where systems are expected to be statistically fast enough
to achieve their objectives, without providing formal performance guarantees.
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This allows it to successfully address domains with highly uncertain execution
characteristics and the potential for unexpected events, neither of which are
well suited for a hard real-time approach. As its name implies, SRTA operates
in soft real-time, using time constraints specified during the goal formula-
tion, coordination and scheduling processes, and acting to meet those dead-
lines whenever necessary. In this system, we have sacrificed the ability to provide
formal performance guarantees in order to address more complex and uncertain
problem domains. As will be shown, this technology has been used to success-
fully operate in a real-time distributed sensor network environment.

To operate in soft real-time, an agent must know when actions should be per-
formed, how to schedule its activities and commitments such that they can be
performed or satisfied, and have the necessary resources on hand to complete
them. SRTA addresses this on two fronts. The first is to implement the tech-
nologies needed to directly reason about real-time, while the second is to per-
form this reasoning efficiently enough to meet deadlines. As mentioned above,
SRTA models the quantitative and relational characteristics of goals, activi-
ties and commitments in TÆMS, which can be done a priori and accessed as
plan library, or dynamically through a runtime learning process [21] or gen-
eration by a domain-specific problem solver. This detailed description of the
mechanisms used to satisfy a particular goal provides an important foundation
upon which later decisions are made. A planning component, Design-to-Crite-
ria (DTC) [43, 48], uses these TÆMS task structures, along with the quanti-
tative knowledge of action interdependence and deadlines, to select the most
appropriate set of actions given current environmental conditions. This abstract
plan is used by the partial order scheduler (POS) and probabilistic resource
modeling (PRM) components to determine when individual actions should be
performed, either sequentially or in parallel, within the given precedence and
runtime resource constraints, again using the descriptions provided by the task
structures. Finally, the execution subsystem reasons about the fine-grained exe-
cution times of individual actions, ensuring that preconditions and deadlines
are respected as actions are performed. These components address the real time
requirements of the domain by operating at different granularities and speed
and through the use of different satisficing (approximate) behaviors.

The second part of our solution attempts to optimize the running time of
our technologies, to make it easier to meet deadlines. The POS provides an
inherently flexible representation. As resources and time permit, elements in the
schedule can be quickly delayed, reordered or parallelized. New goals can also
be incorporated piecemeal, rather than requiring a computationally expensive
process involving re-analysis of the entire schedule, which enables agents to bet-
ter manage tasks as they arrive at runtime. Together, these characteristics reduce
the need for constant re-planning, in addition to making the scheduling pro-
cess itself less resource-intensive. Learning can play an important role in the
long-term viability of an agent running in real time, taking advantage of the
repetitive nature of its activities. Schedules may be learned and cached, elimi-
nating the need to re-invoke the DTC process when similar task structures are
produced, and the execution history of individual actions may be used to more
accurately predict their future performance. Because the planning and execution



40 BRYAN HORLING ET AL.

processes are distinct, a feedback loop was added to provide the planner with
information describing which actions may potentially run in parallel in a given
environmental or resource context. This effectively reduces the time it takes to
perform a sequence of actions, which permits the planner to explore and sug-
gest more sophisticated plans.

This article will proceed by discussing the problem domain which moti-
vated much of this system. Functional details of the architecture will be cov-
ered, along with further discussion of the various optimizations that have
been added. Experimental traces demonstrating some of the features that are
described are included, and we demonstrate how SRTA is used to enable agents
to exhibit complex behaviors. We will conclude with an overview of related
research and a discussion of overall conclusions, including future directions.

2. Motivation

The design we present assumes large, sophisticated agents are best equipped to
operate and address goals within a resource-bound, interdependent, mixed-task
environment. In such a system, individual agents are responsible for effectively
balancing the resources they choose to allocate to their multiple time and resource
sensitive activities, which motivates a need for the type of agent control SRTA
provides. A different approach addresses these issues through use of groups of
simpler agents, which do not require complex control because they individually
act in response to single goals and only as a team address large-grained issues.
In such an architecture, either the host operating system or increased communi-
cation must be used to resolve temporal or resource constraints, and yet more
communication is required for the agents to effectively deliberate over potential
alternative plans in context. Decomposing the problem space completely to “sim-
ple” agents does not address the problem or remove the information and decision
requirements. If these smaller agents share limited local resources (for instance,
processor time or network bandwidth), the additional overhead needed to coor-
dinate their activities can exacerbate these restrictions.

Components of the SRTA architecture have been used successfully in several
domains, such as intelligent information gathering [28], intelligent home control
[25], and supply chain management [12]. The primary motivation for this work
is a distributed sensor network problem [17], which will be used in this paper to
ground and provide examples of the topics which are discussed. In this domain,
which will be discussed in more depth below, we have exploited SRTA to cre-
ate an organization of agent roles which are instantiated within a smaller collec-
tion of real agents. Each role represents a particular goal or service that needs
to be fulfilled, which is created as needed and dynamically assigned to a spe-
cific individual agent based on information approximating the current usage and
availability of resources and skills. Individuals may be assigned multiple roles,
such as tracking, sensing or managing, which motivates the need for detailed
planning and scheduling based on local resource availability and the priority of
the different responsibilities associated with the roles. More abstractly, each of
these roles is in some sense a distinct entity based on the actions it performs



THE SOFT REAL-TIME AGENT CONTROL ARCHITECTURE 41

Figure 2. High-level distributed sensor allocation architecture. (a) shows the initial sensor layout,
decomposition and allocation of sector managers. (b) shows the dissemination of scanning tasks.
The new track manager in (c) can be seen coordinating with sensors to track a target, while the
resulting data is propagated in (d) for processing.

and the interactions it is involved with. SRTA is used to allow a combination
of roles to coexist within a single agent in the environment.

The distributed sensor environment consists of several sensor nodes arranged
in a region of finite area, as can be seen in Figure 2a. Each sensor node is
autonomous, capable of communication, computation and observation through
the attached sensor. We assume a one-to-one correspondence between each sen-
sor node and an agent, which serves locally as the operator of that sensor.
The high level goal of a given scenario in this domain is to track one or more
target objects moving through the environment. This is achieved by having mul-
tiple sensors triangulate the positions of the targets in such a way that the cal-
culated points can be used to form estimated movement tracks. The sensors
themselves have limited data acquisition capabilities, in terms of where they can
focus their attention, how quickly that focus can be switched and the qual-
ity/duration trade-off of its various measurement techniques. The attention of
a sensor, or more specifically the allocation of a sensor’s time to a particular
tracking task, therefore forms an important, constrained resource which must
be managed effectively to succeed.

The real-time requirement of this environment is derived from the triangula-
tion process. Under ideal conditions, three or more sensors will perform mea-
surements at the same instant in time on the same target.3 Individually, each
sensor can only determine the target’s distance and velocity relative to itself.
Because each node will have seen the target at the same position, however, these
gathered data can then be fused to triangulate the target’s actual location. In
practice, exact synchronization to an arbitrarily high resolution of time is not
possible, due to the uncertainty in sensor performance and clock synchroniza-
tion. A reasonable strategy then is to have the sensors perform measurements
within some relatively small window of time, which will yield positive results as



42 BRYAN HORLING ET AL.

long as the target is near the same location for each measurement. Thus, the
viable length of this window is inversely proportional to the speed of the target
(in our scenarios we use a window length of one second for a target moving
roughly one foot per second).

Part of the resource allocation task revolves around how each node’s sensor
capabilities are assigned to various objectives. A trade-off exists, for instance,
between scanning for new targets in the environment by sensing in the great-
est possible area, and the directed tracking of existing ones. The potential
for multiple targets means that a given sensor may be able to obtain data
from different sources, but because the sensor measurements cannot distinguish
between targets, the sensor itself can be used to gather data from only one at
a time. This means both that the sensor array as a whole must be allocated
appropriately to maximize their usefulness, and that individual measurements
must be handled and interpreted carefully to avoid fusing data from disparate
targets, which would lead to a highly inaccurate result.

Competing with the sensor measurement activity are a number of other local
goals, including sector management (Figure 2a), target discovery scanning (2b),
track management and measurement tasks for other targets (2c), and data
processing (2d). Briefly, sector managers are responsible for storing local sen-
sor information and arranging target detection scans, among other things. Track
managers coordinate collection activities and fuse measurement data. Individ-
ual sensors perform measurements for both scanning and tracking tasks. These
responsibilities, as well as a more complete description of the solution’s orga-
nization, are covered in much more detail in [16]. We do not see these roles
as separate agents or threads, but rather as a set of potentially interdependent
tasks and goals that a single agent is fulfilling concurrently. For example, in
2c the agent performing the track negotiation is one that previously received
a scanning task, and it theoretically could also be performing sector mana-
gerial duties (although it generally won’t, as this would be poor load-balanc-
ing). Meta-level functionality such as negotiation, planning and scheduling also
contend for local resources. To operate effectively, while still meeting the dead-
lines posed above, the agent must be capable of reasoning about and acting
upon the importance of each of these activities.

In summary, the real-time needs for this application require us to synchro-
nize several measurements on distributed sensors with a granularity of one sec-
ond. A missed deadline may prevent the data from being fused, or the resulting
triangulation may be inaccurate, but no catastrophic failure will occur. This
provides individual agents with some minimal leeway to occasionally decommit
from deadlines, or to miss them by small amounts of time, without failing to
achieve the overall goal. At the same time, there is a great deal of uncertainty
in when new tasks will arrive, and how long individual actions will take, so a
strict timing policy is too restrictive. Thus, our notion of real-time here is rel-
atively soft, enabling the agents to operate effectively despite uncertainty over
the behavioral characteristics of computations and their resource requirements.
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3. Soft real-time control architecture

Our previous work in agent control architectures was tested almost exclusively
in controlled-time simulation environments [5, 14, 25, 40] (one exception is [27]),
and were also fairly large grained in their view of planning and scheduling. As
goals were addressed by the problem solving component, they would be used
to generate task structures to be analyzed by the DTC planner/scheduler. The
resulting linear schedule would then be directly used for execution by the agent.
Task structures created to address new goals would be merged with existing
task structures, creating a single, monolithic structure containing all the agent’s
goals. This combined view would then be passed again to DTC for a complete
re-planning and re-scheduling. Execution failure would also lead to a complete
re-planning and re-scheduling.

This technique leads to “optimal” plans and schedules at each point if meta-
level overheads are not included. As will be discussed in Section 3.3, however,
the combinatorics associated with such large structures can get quite high. This
made agents ponderous when working with frequent goal insertion or handling
exceptions, because of the need to constantly perform the relatively expensive
DTC process. In a real-time environment, characterized by a lot of uncertainty
in the timing of actions and the arrival of new tasks, where the agent must con-
stantly reevaluate their execution schedule in the face of varied action charac-
teristics, this sort of control architecture was impractical. As will be shown, the
scheduling and planning process in SRTA is more incremental and compart-
mentalized, enabling goals to be added piecemeal to the execution schedule as
they are generated, without the need to re-plan all the agent’s activities.

We will begin with a high level trace of the system’s behavior, before contin-
uing with more detailed explanations of each component. Activity begins as new
incoming goals are used by the problem solving component to generate a TÆMS
task structure, which can be produced in a variety of ways; in our case we use a
TÆMS “template” library, which we use to dynamically instantiate and charac-
terize structures to meet current conditions. Other options include generating the
structure directly in code [28], or making use of an approximate base structure
and then employing learning techniques to refine it over time [21]. This task struc-
ture provides the system with a quantitative description of how the goal might be
satisfied. A single structure can define many alternative solutions with differing
characteristics.

The task structure must then be analyzed, to determine which alternative
most appropriately satisfies the goal in question. The DTC component, used
in our earlier work on control architecture, retains a critical role in SRTA by
addressing this need. Where before it was responsible for both selecting an
appropriate plan of activities from the task structure and producing a sched-
ule of actions for a monolithic structure describing all the agent’s current goals,
SRTA instead exploits its planning capabilities for discrete, individual goals.
Using the TÆMS structure, along with criteria such as potential deadlines, min-
imum quality, and external commitments, DTC selects an appropriate plan.

The resulting plan is used to build a partially ordered schedule, using the
TÆMS structure to determine precedence constraints and search for actions
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which can be performed in parallel. Several components operate during this
final scheduling phase. A resource modeling component is first used to ensure
that resource constraints are respected. A conflict resolution module reasons
about tasks and commitments that are found to be mutually exclusive, deter-
mining the best way to handle conflicts. Finally, a schedule merging module
allows the POS to incorporate the actions derived from the new goal with exist-
ing schedules. Failures in this process are reported to the problem solver, which
could relax constraints to resolve the problem. For example, it could alter the
goal completion criteria or delay its deadline, complete a substitute goal with
different characteristics, or decommit from a lower priority goal or the goal
causing the failure.

Once the schedule has been created, an execution module is responsible for
initiating the various actions in the schedule. It also keeps track of execution
performance and the state of actions’ preconditions in the originating TÆMS
structure, and potentially re-invokes the POS when failed expectations require
it. As will be shown later, the POS can use a fast action shifting mechanism to
resolve such failures with minimal overhead where possible. A learning compo-
nent also monitors execution performance, which is able to update the TÆMS
template library when new trends are observed.

Except where noted, the system described in this paper is a functional, exist-
ing, research-grade artifact. It is written in Java, with the exception of DTC
which was implemented in C++ and is accessed through a Java native inter-
face. As alluded to above, SRTA is a collection of interconnected components,
where each component represents an encapsulated technique with a well-defined
boundary and purpose. They are currently written and distributed as part of
the JAF agent framework [13]. These 10 or so components and their support-
ing classes comprise roughly 50,000 lines of Java code, while the DTC plan-
ner consists of around 40,000 lines of C++. The execution characteristics of the
engine as a whole depend on the frequency and complexity of goals it is asked
to achieve. On average, we observe cycle times of between 50 and 100 millisec-
onds on 400 MHz x86-based systems, where a cycle represents a pass through
the SRTA engine analyzing current goals and executing methods, although this
can jump to a half-second or more if a particularly complex situation must be
analyzed. Because the system runs on conventional operating systems with no
level of service guarantee, competing external processes may add an additional
level of performance uncertainty.

A few specific aspects of the JAF agent architecture are relevant to under-
standing how SRTA functions and will help understand the design and behav-
ior of SRTA presented later. JAF agents are implemented as a collection of
loosely coupled components, and a number of generic components are avail-
able for common tasks such as logging, communication, low-level agent control.
SRTA conforms to this design principle by implementing the services shown
in Figure 1 as individual components. A general information storage compo-
nent also exists in JAF, which provides an agent-global repository for data. This
is used to facilitate indirect knowledge sharing; for example, the schedule pro-
duced by the POS can be stored there and easily used by the execution com-
ponent. JAF also provides an event system, which allows a more dynamic flow
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Figure 3. The timeline of events for the running scenario in the paper. Shown are the arrival times
in milliseconds for the goals shown in Figures 4 and 5, along with the negotiated deadline for
Task 2.

of information through the agent. Events produced by individual components
are automatically propagated to other components which have registered their
interest in those events. We will see later how this is used to support the dis-
semination of method execution results and the handling of scheduling excep-
tions. The implementation details of these underlying support mechanisms are
beyond the scope of this article, it is sufficient to know that they exist. More
information on JAF can be found in [13].

To better explain our architecture’s functionality, we will work through an
example in the next several sections, using simplified versions of task structures
in the actual sensor network application. The initial timeline for this example
can be seen in Figure 3. At time 0 the agent recognizes its first goal – to initial-
ize itself. After starting the execution of the first schedule it will receive another
goal near time 300 to track a target and sent the results before time 2500. Later,
a third goal, to negotiate for delegating tracking responsibility, is received near
time 800. We will show how these different goals may be achieved, and their
constraints and interdependencies respected.

3.1. TÆMS

Before progressing, we must provide some background on our task description
language, TÆMS, although space limitations preclude a complete definition of
the language, which can be found in [15]. TÆMS, the Task Analysis, Environ-
mental Modeling and Simulation language, is used to quantitatively describe the
alternative ways a goal can be achieved [6]. A TÆMS task structure is essen-
tially an annotated task decomposition tree. The highest level nodes in the tree,
called task groups, represent goals that an agent may try to achieve. The goal
of the structure shown in Figure 4 is Task2. Below a task group there will be
a set of tasks and methods which describe how that task group may be per-
formed, including sequencing information over subtasks, data flow relationships
and mandatory vs. optional tasks. Tasks represent sub-goals, which can be fur-
ther decomposed in the same manner. Task2, for instance, can be performed
by completing subtasks Set-Parameters, Track, and Send-Results.

Methods, on the other hand, are terminal, and represent the primitive actions
an agent can perform. Methods are quantitatively described, with probabilistic
distributions of their expected quality, cost and duration as shown below the
leaf nodes in Figure 4. These quantitative descriptions are themselves grouped
together as outcomes, which abstractly represent the different ways in which an
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Task2
q_min

SetParameters
enables2

MustUpdateParameters (80.0%)
Q: [6.0, 1.0]
C: [0.0, 1.0]
D: [500.0, 1.0]

AlreadySetCorrectly (20.0%)
Q: [6.0, 1.0]
C: [0.0, 1.0]
D: [250.0, 0.1]

Track
q_max

TrackLow
Outcome (100.0%)
Q: [5.0, 0.5, 1.0, 0.5]
C: [0.0, 1.0]
D: [750.0, 1.0]

TrackMedium
Outcome (100.0%)
Q: [10.0, 0.7, 5.0, 0.3]
C: [0.0, 1.0]
D: [1350.0, 1.0]

TrackHigh
Outcome (100.0%)
Q: [20.0, 0.9, 10.0, 0.1]
C: [0.0, 1.0]
D: [2100.0, 1.0]

enables3 SendResult

lock2

release2

Outcome (100.0%)
Q: [6.0, 1.0]
C: [0.0, 1.0]
D: [500.0, 1.0]

RF

0.0 / 1000.0 / 1000.0

limits2

Figure 4. An example TÆMS task structure for tracking. The expected execution characteristics are
shown below each method, and the Send-Results method in this figure has a deadline of 2500.

(a) (b)

Figure 5. Two TÆMS task structures, abstractions of those used in our agents.

action can conclude. For example, Track-Low is shown to have a 50% chance
of getting quality 5, a 50% change of getting quality 10, and a 100% chance of
costing 0 and having a duration of 750. We will use such distributions at many
locations in the structure to model uncertainty.

If there is a connection between multiple characteristics of a particular
method or if we desire a more explicit representation of method behavior, a
slightly different representation that groups related performance expectations
into outcomes can be used. For example, Set-Parameters is described with
two potential outcomes, Must-Update-Parameters and Already-Set-
Correctly, each with its relative probability and description of expected
duration. The quality of the two outcomes are the same, but the former out-
come, which will happen 80% of the time, has a duration twice as long as the
latter, which only occurs 20% of the time according to the model. At runtime,
it is the responsibility of the code executing the primitive action corresponding
to the method to indicate the relevant outcome that was experienced, the qual-
ity it produced and the cost incurred. Section 3.6 describes in more detail how
methods are used to cause agent behavior.

The quality accumulation functions (QAF) below a task describes how the
quality of its subtasks is combined to calculate the task’s quality. For exam-
ple, the min QAF below Task2 specifies that the quality of Task2 will be the
minimum quality of all its subtasks – so all the subtasks must be successfully
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performed for the Task2 task to succeed. On the other hand, the max below
Track says that its quality will be the maximum of any of its subtasks – the
agent has a choice of one or more alternatives to complete Track. Conceptu-
ally, these two QAFs are analogous to the behavior of standard and/or deci-
sion trees. Other accumulation functions such as sum (quality is the sum of
completed subtasks’s qualities), last (quality is that of the last completed sub-
task), and exactly one (only one subtask may be performed) also exist. Com-
plete descriptions of these and other QAFs can be seen in [15].

Interactions between methods, tasks, and affected resources are also quan-
titatively described as interrelationships. The effect of an interrelationship is
controlled by its source node, and its effects are imparted on its target. For
example, the enables interrelationships in Figure 4 represent precedence order-
ings, which in this case say that Send-Results is enabled only when Track
has successfully completed (i.e. has non-zero quality), which can only hap-
pen after Set-Parameters has successfully completed. This ensures that
Set-Parameters, Track, and Send-Results are performed in-order. An
analogous disables interrelationship exists, as well as the softer relations facili-
tates and hinders. When such a soft interrelationship is active, it affects one or
more of its target node’s quality, cost and duration characteristics as indicated
by fields in the interrelationship’s definition. For instance, one could facilitate
a method by reducing its expected duration by 20%, or hinder it by increasing
its cost by 50%. Soft interrelationships are particularly interesting because they
permit the further modeling of choice. The agent might choose to perform a
facilitating method prior to its target to obtain an increase in the latter’s qual-
ity, or ignore the method to save time.
lock2 and release2 are examples of resource interrelationships describing,

in this case, the consumes and produces effects that method Send-Results has
on the resource RF. These indicate that when the method is activated, it will
consume or produce some quantity of that resource as defined in the interre-
lationship. The resource effect is further quantified through the limits interrela-
tionship, which defines the changes in its target method’s execution characteristics
when that resource is over-consumed or over-produced. It is similar to the hinders
interrelationship, in that it will typically change its target’s expected performance
in a negative way. The resource itself is also modeled, including its bounds and
current value (as shown below the RF triangle), and whether it is consumable or
not (e.g. printer paper is consumable, where the printer itself is not). In the model
shown in Figure 4, these resource interrelationships are being used to implement
a simple locking system or semaphore, where when a method has “consumed”
the RF resource, it has obtained an exclusive lock on it such that other RF-using
activities cannot operate concurrently.

Although not strictly part of a goal’s decomposition, the TÆMS structure
can also include descriptions of commitments associated with the goal. For
example, if Agent A has asked Agent B to Track for it, this concept can be
quantified and represented along with the goal that commitment relates to. This
information can be represented in a pair of ways. First, methods or tasks can
have deadlines associated with them, which would directly represent the notion
that those activities have to be completed by some predetermined time. Second,
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Figure 6. The pre-TÆMS template specification for a portion of the tracking task, and the result-
ing structure generated after values have been specified. When the template was instantiated, the
variables AGENT, EST, DEADLINE, COMMITID and TOAGENT were specified, while TM DUR and
MINQ were left undefined.

a more complete description of the commitment can be bundled with the struc-
ture, including the source and target of the commitment, the type of com-
mitment, how important it is, the desired minimum quality and any bounding
start or finish times. The former specification is simple to use, while the details
included in the latter definition permit more sophisticated reasoning because the
merits and flexibility of the commitment can be evaluated if needed. We will see
examples of both these specifications in Figure 6 in the next section, and exam-
ples of their use in Section 5.2. The agent can coordinate and negotiate with
other agents, and use these features to instantiate the results of that communi-
cation so the commitments can be respected by other components.

As will be seen throughout this paper, probability and uncertainty play a
large role in SRTA’s technologies. Much of that information is derived from the
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quantitative distributions associated with the various elements in TÆMS. This
feature, which is used to accurately model real-world situations where effects
are not deterministic, allows the agent to effectively reason about the trade-off
between reliability and performance under such circumstances. For example, in
our distributed sensor network domain, the quality of the results produced by
a tracking task is not always known. Some measurement techniques are reliable
but of low quality, while others offer the potential of higher quality with pos-
sibility of failure – think of a wide area scan vs. a focused beam which would
need to hit a particular target. In situations where any knowledge is much bet-
ter than none, such as when an agent is attempting to reacquire a lost target,
the more reliable method would be preferred despite its reduced precision (rep-
resented here as lower quality). In other circumstances, such as when redundant
sensors are also tracking a target, increased uncertainty is a reasonable cost for
potentially higher quality data. One can also use TÆMS to model the prob-
ability that a remote agent will successfully meet its commitments, that suffi-
cient resources will be available for a task, or that one action will help another
complete. Using this type of information, SRTA’s planning and scheduling com-
ponents can select and enact a course of action which has a level of certainty
appropriate to the current situation.

In later sections we will cover more technique-specific components of TÆMS,
including schedules, criteria and preconditions that can be associated with a
structure.

Together, these descriptions provide the foundation for the scheduling and
planning processes to reason about the effects of selecting this method for exe-
cution, so a planner can choose correctly when the agent is willing to trade off
uncertainty against quality or some other metric. Furthermore, the structure is
maintained while the goal is in progress, and by updating it with the results of
activities as they are performed it also serves as a valuable source of runtime
information.

3.2. TÆMS library

The problem solver is responsible for translating its high-level goals into
TÆMS, which serves as a more detailed representation usable by other parts
of the agent. This could be done by building TÆMS structures directly in the
source code using planning techniques, but this tends to be impractical if the
agent must define multiple complex or heterogeneous structures and deadlines
are relatively tight. On the other hand, the problem solver could read static
structures from a plan library, selecting the one designed to address the partic-
ular goal in question. This works well, except it lacks the flexibility to easily
handle the minor variations in structure needed when environmental conditions
shift. We have developed a hybrid scheme, which uses a library of TÆMS tem-
plates that allow particular aspects of the structure to remain undefined until it
is instantiated. Template are then dynamically instantiated at runtime by pass-
ing in parameters allowing the structure to better represent the agent’s current
working conditions. In this way it is easy to handle such things as varying
execution performance, negotiation partners and commitment details without
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the need to hard-code the entire structure or plan it entirely from first princi-
ples.

The template itself is defined using a relatively simple one-pass language. It
was intentionally designed to be similar to the lightweight macro facilities avail-
able in C compilers, as this is a familiar paradigm to most developers that
strikes a reasonable balance between static structures and ones completely spec-
ified in code. Unlike a traditional macro language, it includes support for cre-
ation and manipulation of individual numeric and string variables, as well as
composite lists of these elements. if-then-else and while control struc-
tures are available, as are the standard boolean and inequality operators. The
template language also includes a number of built-in functions, which can per-
form simple arithmetic and string operations, generate random numbers and
select random elements from lists. The latter two are useful when one needs
to create a range of structures with similar characteristics for testing purposes.
More details on the textual specification of TÆMS structures can be found in
[15].

A small example of a template structure is shown in Figure 6, which com-
pares the template specification to a sample of the TÆMS code it might
produce. In Figure 4, the Track-Medium method must include timing and
commitment information if it is being performed in response to a negotiated
commitment. Similarly, if the learning component determined that Track-
Medium was taking longer than expected, this information can be fed into the
template to reflect that change. The template shown in Figure 6 shows how
such information can be used to dynamically specify a task structure. The com-
mitment in the figure accepts information describing the remote agent and its
desired start time, deadline and minimum quality. The Track-Medium defi-
nition includes similar fields, and also allows the duration to be modified (in
which case the default at the top will be overridden).

At time 0 the agent will use its template library to generate the initializa-
tion structure seen in Figure 5a. This is done by selecting the template asso-
ciated with the goal Task1. In this structure, the agent must first Init and
Calibrate its sensor. Properties passed into the template specify the particu-
lar values used in Init, such as the sensor’s desired gain settings or commu-
nications channel assignment, as well the number of measurements to be used
during Calibrate. As specified by the enables interrelationship, Init must
successfully complete before the agent can Send-Message, reporting its capa-
bilities to its local manager. Send-Message also uses resource interrelation-
ships to obtain an exclusive lock on the RF communication resource. Only one
action at a time can use RF to send message, so all messaging methods have
similar locking interrelationships. As we will see later, this indirect interaction
between messaging methods creates interesting scheduling problems.

Although it is not a requirement, each goal will typically be represented by a
single task structure, distinct from other structures currently in execution. Once
parsed and instantiated, this structure is then added to the collection of cur-
rent working tasks. This incremental addition of new structures from the library
facilitates the task structure generation process by allowing it to focus on only
one goal at a time. The alternative, to keep a single working task structure
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which is regenerated and augmented as new goals arrive becomes expensive
to produce when multiple goals are being pursued concurrently. Task2 and
Task3, shown in Figures 4 and 5B, respectively, are generated later in our sce-
nario. They are produced and remain structurally distinct from the currently
running Task1, although the three goals are not necessarily independent from
one another. In this case, the tasks will eventually interact through their use of
a shared resource, although they might also interact in other ways. For example,
it is possible to define non-local nodes within one structure that refer to tasks
in another structure, providing a different mechanism to specify inter-task struc-
ture interactions.

3.3. DTC planner/initial scheduler

The DTC [26, 36, 43–45, 48] component is responsible for evaluating differ-
ent possible courses of action that can be used to solve an agent’s goal, and
then choosing one or more solutions that best fit the agent’s current circum-
stances. For example, in a situation where the RF resource is under a great deal
of concurrent usage, the agent may be unable to send data using the traditional
quick communications protocol and thus be forced to spend more time on a
more reliable, but slower method to produce the same quality result (analogous
to selecting between a UDP or TCP session). Or, in a different situation when
both time and cost are constrained, the agent may have to sacrifice some degree
of quality to meet its deadline or cost limitations. DTC is about evaluating an
agent’s problem solving options from an end-to-end, start-to-finish view of goal
satisfaction, and determining which tasks the agent should perform, when to
perform them, and how to go about performing them. Having this end-to-end
view is crucial for evaluating the relative performance of alternative plans able
to satisfy the goal.

As TÆMS task structures model a family of plans, the techniques used by
the DTC component have certain characteristics in common with both plan-
ning and more traditional scheduling problems, and it suffers from pronounced
combinatorics on both fronts. DTC’s function is to read as input a TÆMS task
structure (or a set of task structures) provided by the problem solver and to (1)
decide which set of tasks to perform, (2) decide how to go about performing
each task (there are generally several alternative ways to go about performing
a task), (3) decide sequencing constraints among the tasks and their subtasks,
taking advantage of soft relationships where possible, (4) to perform these func-
tions so as to address hard constraints, e.g., deadlines on tasks, and to balance
the soft design/goal criteria specified by the designer, to do this computation in
soft real-time so that it can be used online. The result of this process is a set
of candidate plans, which are ranked by how well their characteristics satisfy the
provided criteria.

DTC’s planning / scheduling problem differs from more conventional prob-
lem spaces in several ways. At the root of the differences lies the TÆMS task
modeling framework and the problem space richness it is designed to model.
In TÆMS any task may affect any other task and these interactions are not
limited to binary effects – all interactions in TÆMS are quantified in terms of
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Figure 7. The “slider” model for specifying and interpreting the range of criteria DTC uses to
weight its plan generation and selection process.

their impact on the recipient node’s quality, cost, and duration distributions.
The implications of this are that tasks can directly and indirectly affect one
another’s quality, cost, and duration distributions, and that these effects must
be evaluated in context. The planning/scheduling problem faced by DTC is thus
not one where constraints are independent or where the effects of constraint
violation are fixed. Instead, one might view the process as one in which each
time a step along a particular course of action is considered, a new set of con-
straints (and their effects) must be propagated through the remaining network
and their effects considered. In addition to this inherently complex reasoning
process, DTC can take as input a specification of the agent’s dynamic objec-
tive function or design criteria. Said criteria describe for DTC the types of
solutions that are desirable for the agent at this point in time. In English, one
might describe a situation as needing agent plans that are “highly certain but
where overall duration is less important,” or where “fast solutions are desired
as long as the cost stays under limit X and the quality is over threshold Y.”
From a human user’s perspective, these characteristics can be modeled with a
set of sliders, as shown in Figure 7, each of which define a particular attri-
bute of the criteria [42]. This criteria bundle or objective function is dynamic
and specified at run time. Thus DTC must work toward the objective function
while reasoning about the hard constraints present in the TÆMS task structure,
e.g., deadlines or earliest-start-times on tasks, and while considering interactions
that span tasks (and their effects), considering commitments or deals made with
other agents (another form of both hard and soft constraints), and considering
a course of action from an end-to-end view to meet overall real-time deadlines
– and it must perform these operations online. Table 2 in the later Section 5.3
shows an example of how the planning process produces different results given
different objectives.

Solving this hybrid planning/scheduling problem is non-trivial. In general, the
upper-bound on the number of possible schedules for a TÆMS task struc-
ture containing n actions is given in Equation (1). Clearly, for any significant
task structure the brute-strength approach of generating all possible schedules
is infeasible – offline or online. This expression contains complexity from two
main sources. On the “planning” side, DTC must consider the (unordered)
O(2n) alternative ways to go about achieving the top level task (for a task
structure with n actions). On the “scheduling” side, DTC must consider the
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m! different possible orderings of each alternative, where m is the number of
actions in the alternative. Despite the fact that DTC is not used to produce the
final schedule of activities in SRTA, this scheduling analysis is still necessary
when quantitatively comparing candidate plans because an end-to-end view is
required to calculate the properties of a proposed plan as a whole. An incom-
plete view might allow a plan to be selected which has undesirable characteris-
tics past the horizon bounding the analysis.

n∑

i=0

(
n

i

)
i !. (1)

The types of constraints that may be present in TÆMS, and the exis-
tence of interactions between tasks (and the different QAFs that define how to
achieve tasks), prevent a simple, optimal solution approach. DTC copes with
the high-order combinatorics using a battery of techniques. Space precludes
detailed discussion of these, however, they are documented in [26, 36, 43-45, 48].
From a very high level, DTC uses goal directed focusing, approximation, sched-
uling heuristics, and schedule improvement/repair heuristics [37, 55] to reduce
the combinatorics to polynomial levels in the worst case.

The DTC scheduling process falls into the general area of flexible computa-
tion [18], but differs from most flexible computation approaches in its use of
multiple actions to achieve flexibility (one exception is [19]) in contrast to any-
time algorithms [4, 54]. We have found the lack of restriction on the properties
of primitive actions to be an important feature for application in large numbers
of domains. Another major difference is that in DTC we not only propagate
uncertainty [52], but we can work to reduce it when in the criteria for achiev-
ing a goal designates this characteristic as important.

For many applications, DTC supplies online scheduling and planning services
to other components by being “fast enough” for the activities being scheduled.
For example, in the BIG information gathering agent [28], scheduling/plan-
ning accounted for less than 1% of the agent’s execution time. Other examples
include dynamic supply chain management [45], aircraft service team coordi-
nation [44], and crisis response management [46]. However, in these applica-
tions the time available to control problem solving ranges from ten seconds
upwards to minutes. In tighter real-time situations, being fast enough may not
be sufficient if the execution time is not strictly predictable or bounded, as dis-
cussed in [48]. With the previous generations of DTC it was possible for DTC
to generally take on the order of a few seconds (being “fast enough”) for most
input sets but to occasionally take much longer to generate a solution deemed
good by the criteria bundle and DTC’s termination control. While the possibil-
ity of this can be predetermined by evaluating the problem instances (or classes
thereof) and the elements that are dynamic in each problem episode, in some
domains the possibility of an over-run is unacceptable. This sensor application
is one such domain. To address the problem, the current generation of DTC
supports real-time deadlines governing its execution time at the grainsize affor-
ded by the underlying operating system, i.e., a means to specify a hard bounds
on the amount of time allocated to DTC to force it to return by a given time.
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Figure 8. Real-time control for DTC.

The control algorithm that is used is shown in Figure 8. To meet hard dead-
lines on the amount of time DTC can take to plan/schedule, it first relaxes con-
straints that are likely to produce worst-case behavior and schedules. It then
records the most highly rated schedule, restores a portion of the constraints,
and schedules again. This schedule is also recorded. DTC then lessens its degree
of focusing, enabling it to explore a larger percentage of the schedule solution
space, and reschedules. The resulting schedule is recorded, the degree of focus-
ing is decreased again, and rescheduling starts again. This process continues
until the hard-deadline is met or DTC explores the entire scheduling space. If
the hard deadline occurs before DTC is able to produce a single viable schedule,
no schedule is returned to the client. For a specific application, we can thus set
a time limit for DTC to operate within. However, this capability also allows for
the more interesting possibility of a meta-level control component which adapts
scheduling duration over time [34, 35].

As with most hard real-time applications, there is a minimum temporal
grainsize below which no solutions will be produced. With TÆMS scheduling,
the minimum temporal floor is defined by the characteristics of the problem
instance, e.g., number and types of interdependencies, constraint tightness, exis-
tence of alternative solution methods, classes of QAFs, etc. Predictability [38] in
a hard real-time sense is thus still lacking. In general, the issue returns to the
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grainsize of the problem. For some applications, a hard scheduling deadline of
one second is reasonable, whereas for others, 20 seconds may be required to pro-
duce a viable result. In the distributed sensor application, the scheduler grain-
size is too great, particularly when rescheduling occurs frequently, as discussed
below. Thus, additional, secondary measures were needed to decrease the fre-
quency and duration of DTC’s scheduling sessions. These tactics included using
a caching system (see Section 4.2) and reducing complexity by planning over
individual goals whose schedules are later merged, rather than directly over a
single aggregate goal.

Returning to our example, DTC is used to select the most appropriate set of
actions from the initialization task structure. In this case, it has only one valid
plan: Init, Calibrate, and Send-Message. A more interesting task struc-
ture is seen in Task2 from Figure 4, which has a set of alternative methods
under the task Track. A deadline is associated with Send-Result, corre-
sponding to the desired synchronization time specified by the agent manag-
ing the tracking process. In this case, DTC must determine which set of meth-
ods is likely to obtain the most quality, while still respecting that deadline.
Because TÆMS models duration uncertainty, the issue of whether or not a task
will miss its deadline involves probabilities rather than simple discrete points.
The techniques used to reason about the probability of missing a hard dead-
line are presented in [48]. It selects for execution the plan Set-Parameters,
Track-Medium, and Send-Results. After they are selected, the plans will
be used by the POS to evaluate precedence and resource constraints, which
determine when individual methods will be performed.

3.4. Partial order scheduler

DTC is used in this architecture to reason about tradeoffs between alternative
plans, respect ordering relationships in the structure, evaluate the feasibility of
soft interactions, and ensure that hard duration, quality and cost constraints
are met. With respect to a single goal, these plans are complete and appro-
priate. However, within the larger context of other activities and goals being
addressed by the agent, the DTC scheduling process has a limited view, and
produces plans that may require additional analysis before they are used. For
efficiency purposes, and because DTC had a different focus during much of its
development history, it does not directly consider potentially conflicting actions
or resource usage caused by competing goals or remote agents. The set of can-
didate plans it produces is instead used as part of a broader scheduling process
performed by a pair of control components. These components expand upon
these plans by recognizing constraints based on an understanding of method
interactions and resource usage. The first component, the partially ordered
scheduler (POS), performs a more detailed analysis of the structures produced
by DTC to determine interdependencies and interactions, which are then used
to determine appropriate execution times. The second, a PRM component, is
discussed in the next section.

Despite the fact that they are separate components, some overlap exists
between DTC and POS, particularly in the area of sequencing activities. This
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separation both helps and hinders SRTA’s scheduling process. On one hand,
some of the effort expended by DTC is either replicated or not needed by the
POS process. On the other hand, this separation does help to bound the already
complex task of reasoning effectively about TÆMS structures. In addition, this
section will show that the aspects not handled by DTC, particularly resource
and parallel activity scheduling, are effectively handled by other components.

A deeper question is whether the candidate set of plans produced by DTC
is appropriate given that these additional characteristics are not represented,
because the final schedule is generated from a member of that set. Because
SRTA operates in a satisficing manner, rather than optimal, it is generally the
case that this set will be sufficient and appropriate. Clearly there can exist path-
ological conditions which exploit this condition, but in our experience in the
domains we have worked with, this is a rare occurrence. Thus, the complexity
of DTC, coupled with the seemingly minimal gains that would result from a
tighter integration, provides insufficient motivation for merging these two tech-
nologies. However, new systems not affected by this issue would likely benefit
from a tighter coupling.

Figure 9 shows the flow of actions performed by the partial ordered sched-
uler. It first provides DTC with the incoming task so it can produce a linear
plan, or it retrieves an appropriate cached plan if it is available (more details
about schedule caching are given in a later section). The linear plan is capa-
ble of meeting specified commitments, including hard deadlines generated by
commitments to other agents and overall goal deadlines. Internally, the POS
maintains a combined view of all the tasks the agent is currently working on,
so it has ready access to existing task interactions. Before proceeding, the POS
removes any task structures from this combined view that have been completed
or canceled by the problem solver, after which it will add the new task. The
POS will then use this combined view, building on the results from previous
analyses to delinearize the schedule by generating the appropriate preconditions
for the newly added task. These preconditions include descriptions of the inter-
relationships between the scheduled actions in addition to their desired execu-
tion times. The heart of this partially ordered schedule is a precedence graph,
which explicitly represents the relationships between methods, constraints and
deadlines. Assuming there are no constraint violations, the scheduler will then
try to bind resources to the schedule with the help of the PRM. If the POS
cannot resolve all the constraints and resource requirements, it will generate a
schedule or resource exception, so that other components (such as the conflict
resolution module or problem solver) can attempt to eliminate the conflict.

The basis for the precedence graph is a set of preconditions and time con-
straints associated with each method that are derived from the original TÆMS
structure and any related context (e.g., commitments). A precondition is not a
specific single structural element of TÆMS per se; they represent any one of
a group of TÆMS elements and characteristics which control when a method
may be successfully performed. For instance, preconditions are used to indi-
cate that a method has an enables interrelationship targeting it. They are gener-
ally not added by the structure designer (although nothing precludes this), but
instead are produced as part of the scheduling and analysis process performed
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Figure 9. Control flow employed by the partial ordered scheduler.

by the POS. It looks at each method present in the highest rated plan provided
by DTC, and evaluates its context in its associated structure. If the POS finds a
characteristic that imposes an ordering constraint, an appropriate precondition
is created and attached to the method to represent that fact. Examples of such
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characteristics are given below, and we will show how the resulting precondi-
tions are used during method execution in Section 3.6.

We will describe the two categories of constraints that are of interest in this
process: those which are statically defined by the structure, and those that are
dynamically imposed by the environment. The static components in the struc-
ture are relatively easy to find, while dynamic relations, which are deduced from
the execution context, typically require further analysis to discover.

3.4.1. Interrelationships. We first saw interrelationships in Section 3.1. enables,
facilitates, disables and hinders interrelationships each define a particular effect
which the completion of one task can have on another. When one is found tar-
geting a method in the schedule, an appropriate precondition is generated which
specifies which action should be performed before the other. The set of precon-
ditions generated for a given methods is the union of all the direct precondi-
tions and all the “inherited” preconditions.

3.4.2. Sequenced QAFs. Sequential QAFs (e.g. seq sum, seq min, etc.) are just
like regular QAFs except they also enforce task ordering constraints. They are
generally used for convenience, to represent the common situation where all of
a task’s subtasks would otherwise need a chain of enablements. They are han-
dled as if such a chain of interrelationships existed.

3.4.3. Predefined Time Constraints. Deadline and earliest start time con-
straints can be specified directly by tasks, methods and commitments. When
found, appropriate preconditions are set which force such actions to run within
these proscribed time bounds.

3.4.4. Dynamic Time Constraints. Like their predefined cousins, dynamic time
constraints also bound the start and finish times of actions. Their origins are
different, however, as they are discovered from the effects of other constraints,
rather than directly observed. For example, if a series of methods are ordered
by a set of enables interrelationships, and the last method has a deadline asso-
ciated with it, then a dynamically computed deadline constraint will be created,
propagating back through preceding methods. Each new deadline will take into
account the deadline of the method coming after it, along with the expected
duration of that method. By computing the difference of these two values,
one can determine the appropriate deadline for the preceding method. Because
durations are uncertain, and defined with a distribution, while deadlines and
earliest start times are single values, we use the maximum duration in these
computations.

3.4.5. Resource Use. Resource constraints, which are based on the amount of
resources consumed or produced by a method, are discovered with the assis-
tance of the resource modeler discussed in the next section. When a valid point
in time has been found for a method, the resources it requires are bound to
it, which is accomplished by providing the resource modeler with a description
of that requirement. From the POS point of view, the resource model itself is
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Figure 10. A partially ordered precedence graph modeling the running example on the task struc-
tures shown in Figures 4 and 5. Both static (i.e. those derived from interrelationships, QAFs, etc.)
and dynamic (from resources, deadlines, etc.) constraints are shown.

used to detect and cache resource relationships, which can be used to facilitate
the scheduling process just like any other ordering relationship. These require-
ments are also stored as preconditions associated with the methods, facilitating
the checks which must be performed before the method is executed.

The POS searches the task structure for the elements listed above to generate
the preconditions needed for the precedence graph. Consider the tracking task
structure shown in Figure 4. Enables interrelationships between the tasks and
methods indicate a strict ordering is necessary for the three activities to suc-
ceed. In addition (although not shown in the figure), a deadline constraint exists
for Send-Result, which must be completed by time 2500. Next look at the
initialization structure in Figure 5a. While an enables interrelationship orders
Init and Send-Message, it does not affect the Calibrate method. In this
example, the graph will first be used to determine that Calibrate may be
run in parallel with the other two methods in its structure. Later, when Task2
arrives, the updated graph can be used to find an appropriate starting time for
Set-Parameters which still respects the deadline of Send-Result, which
relies upon it. This information is used to construct the static portions of the
graph shown in Figure 10.

Precondition creation is an iterative process because of the dynamic nature
of some of the conditions. The complete precedence graph is generated as these
constraints propagate, and is updated when attempts to schedule methods reveal
new conditions. This is particularly true of resource constraints, which are not
discovered until an active search in the space defined by the resource model is
made to bind a method’s resource needs.

The precedence graph and shifting functionality allow the scheduler to
quickly reassess scheduled actions in context, so that some forms of reschedul-
ing can be performed with very low overhead when unexpected events require
it. For example, we will see in Section 3.6 that the execution component needs
the ability to make minor adjustments to the schedule to keep the existing
schedule in agreement with the reality of the agent’s actions. Using the prece-
dence graph, the POS can quickly see if a shifted method remains satisfiable in
the schedule by analyzing its preconditions and time constraints. In addition, if
the movement of that method in turn affects the timing of other actions, they
too can be quickly reevaluated. If their new positions occur within previously
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computed bounds, no further action is necessary. If their predefined bounds are
passed, the precedence graph can be used to search for a new location if one
exists.

Once the graph has been produced, it can then be used both to determine
which activities may potentially be run concurrently, because they have no pre-
cedence relation between them,4 and where particular actions may be placed in
the execution timeline. Wherever possible, actions are parallelized to maximize
the flexibility of the agent. In such cases, methods running concurrently require
less overall time for completion, and thus offer more time to satisfy existing
deadlines or take on new commitments. Once the desired schedule ordering is
determined, the new schedule must be integrated with the existing set of actions.

The specific mechanism used to merge the schedules is identical to that used
to determine order of execution within an individual plan, and in fact the
majority of the information it uses to accomplish this is previously produced
by the POS. Interdependencies between this combined set of methods, either
direct or indirect, are used to determine which actions can be performed rela-
tive to one another along with time and resource preconditions to determine the
final desired order and timing of actions. The resulting merged schedule is again
stored as a precedence graph, so that preconditions can be quickly checked and
actions shifted in time as needed.

Figure 10 models the complete set of our running activities, including
the dynamic constraints which have been discovered through the iterative
analysis mentioned earlier. For instance, the deadline (2500) constraint on
Send-Result, which causes other, dynamic deadline constraints to be prop-
agated and recognized for Track-Medium and Set-Parameters. The RF
resource usage, shown abstractly at the bottom of the graph, is generated later
using the resource modeler. The mutual relationships between those methods
demonstrates the idea that regardless of their actual ordering, the methods still
maintain a resource precondition with one another. In this example, the con-
straint over the RF resource between Send-Message and Send-Result has
not been found because no attempt was made to schedule them concurrently.

While schedules are being combined, the scheduler must be mindful that any
shifting of tasks which takes place does not break any existing preconditions.
Importance values are used to determine how best to handle unschedulable con-
flicts, given the information at hand. Most time-constrained tasks in the agent
are added through negotiation with other agents, which will have assigned an
importance value to their particular commitment. This value remains associated
with the task structure and scheduled methods as they are created. All tasks
have estimated quality values which can further discriminate among compet-
ing actions. Thus, when scheduling conflicts arise, it can compare the relative
importance of the conflicting actions, and remove the one of lesser priority. This
does presume that these values are assigned using the same scale, or are normal-
ized in some way. Since the agent itself is assigning these values, however, this is
a reasonable condition. If a decommittal is made, or if no valid resolution can
be found, a scheduling exception event is generated which enables other com-
ponents, such as domain problem solver or the conflict resolution component
described in Section 3.7, to take appropriate action.
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The results currently produced by the POS are sensitive to the order in which
the TÆMS task structures are inserted, because previously scheduled and exe-
cuted methods will take precedence in the final schedule. If the POS cannot find
a schedule accepting a new task, it does not backtrack and try another inser-
tion order. This feature could be added, but in most of our application domains
the combinatorics of such a search preclude SRTA from performing it.

In the future, we hope to add the ability to produce schedules which pos-
ses more general characteristics. For example, a forward-looking problem solver
might want to produce schedules which retain a certain level of flexibilty. By leav-
ing excess or slack time in the schedule, the agent would have greater flexibility
in scheduling future actions, at the expense of an immediate schedule with poten-
tially lower utility. Similar preferences could be modeled for controlling resource
flexibility. In some sense, this would be an enhancement of the critera specifi-
cation currently used by DTC to control schedule preferences for cost, quality,
uncertainty, and the like.

3.5. Probabilistic resource modeler

The responsibility of binding (conceptually allocating) resources to specific
activities belongs to a separate component called the Probabilistic Resource
Modeler. It maintains a structure which tracks the expected use of resources
over time. This is done by creating a model for each resource containing
descriptions of the usage events that are currently known, which are used to
estimate aggregate demand over time. This approach is similar to the resource
allocation task in the factory scheduling domain from [39], with an additional
probabilistic component that adds uncertainty to resource consumption lev-
els, start times and durations. As new activities are scheduled, the timeline is
searched to ensure that their resource requirements can be met, and the model
is updated with these new usages once a valid spot has been found.

All resources have a current level associated with them. This might indicate
how many sheets of paper are left in a printer, how much bandwidth is available
in a network, or what the current noise level is in a room. They can be consum-
able, as with the paper, or non-consumable, as with the network. These two dif-
fer in that non-consumable resources will automatically resume their previous
state when usage stops, while a consumable one must be explicitly produced.
The RF resource in our running example is like the network case. It indicates
how much of the RF resource, which corresponds to the radio-frequency based
wireless communication medium, is available for the agents to use. In our envi-
ronment, two messages sent at the same time will collide and be corrupted, so
whenever a method uses RF, the model should indicate that it is completely
consumed. So, if our resource starts with a level of 1000, a single agent sending
a message will consume all 1000 available units and bring it down to 0. If two
agents send a message, they will both consume 1000, and the level will drop to
−1000. At this point the resource will be over-consumed, and the affected meth-
ods will fail.

The timeline for a resource is initialized when that resource is seen for the
first time in a TÆMS structure. As structures are produced by the problem
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solving component, they are quickly scanned by the resource modeler for
resources. If a resource is found which does not yet have a model, one is cre-
ated from the data in that task structure. For instance, we first saw the RF
resource in Figure 4. Associated with that node is a current level, as well as
minimum and maximum values. In this case, the RF node indicates that its level
is currently at its maximum value of 1000, and that it has a minimum value of
0. These values would be used to initialize the RF timeline maintained by the
resource modeler.

Although it is a distinct component, the resource modeler is generally used
as a tool by the POS process. During its analysis, the POS produces a descrip-
tion of how a prospective schedule is expected to use resources, if at all. This
is created using the TÆMS structure, by searching for the produces and con-
sumes interrelationships mentioned in Section 3.1. This description specifies the
resource in question, the duration of the usage, what quantity will be con-
sumed or produced, and whether or not the usage will be done throughout
the method’s execution or just at its start or completion, all of which can be
obtained from those interrelationships. If multiple resources are affected by a
method, then an equal number of usage descriptions are created, all of which
must be satisfied. The scheduler then gives these description to the resource
modeler, along with constraints on the method’s start and finish time, and asks
it to find a point in time when the necessary resources are available.

As with most elements in TÆMS the resource usage has some amount of
uncertainty associated with it. The start time, duration and quantity of the
usage are all probabilistically described, so the scheduler must also provide a
minimum desired chance of success to the modeler. In this case, a usage is a
success when it can be performed without violating the minimum and maxi-
mum values of the resource. While searching for an available point on the time-
line, the cumulative effects of these uncertain usages must be computed for an
accurate assessment to take place. Therefore, at any potential insertion point,
the modeler computes the aggregate effects of the new resource usage, along
with all prior usages up to the last known actual value of the resource. This is
done by first computing the joint probability table for the discrete usage distri-
butions in each time slot and then using these to compute the aggregate proba-
bility of the resource’s level, using the algorithm presented in Figure 11 in both
cases. Usage events are considered independent. For consumable resources, this
aggregate consolidates all the data from the most recent measured level of the
resource. Because a non-consumable resource will automatically replenish itself,
the current level can be assumed to be the base (original) level, and we can
compute its aggregate using only this level and the usages from the time slot in
question. These joint distributions are cached where possible. If the probability
of success for this aggregate usage lies above the level specified by the sched-
uler, then the resource modeler assumes the usage is viable at that point. Since
a given usage may actually take place over a range of time, this check must then
be performed for all other points in that range as well. If all points meet the
success requirement, the resource modeler will return the valid point in time.

The RF resource starts out with a level of 1000. Assume that a single usage
of RF exists with a 0.5 probability of consuming 1000, and an equal chance of
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Figure 11. Computing the joint probability from a set of discrete distributions. d̄ is the vector of
input distributions, while vc and pc represent the current value and probability being generated,
respectively.

consuming 0. A method is being added which has a 0.2 probability of consum-
ing 1000, and a 0.8 probability of consuming 0, and we wish to determine if it
can be added to the end of the timeline. The resulting effects of these usages
leads to a 10% chance RF will be left at level −1000, 50% chance at level 0,
and 40% chance at level 1000. The resource’s bounds are exceeded if it reaches
−1000, so this usage may be performed at that time with 90% certainty that it
will succeed. If the scheduler requires greater than 90% certainty, then this par-
ticular insertion point is not viable.

If a particular point in time is not free, and the finish time bound has not yet
been reached, the resource modeler will continue its search. Rather than look-
ing at every sequential point in time, the modeler instead progresses by look-
ing at the next “interesting” point on its timeline – the next point at which a
resource modification event occurs. The search process becomes much more effi-
cient by moving directly from one interesting time point to the next, by mak-
ing the search-time scale with the number of usage events rather than the span
of time which they cover. Caching of prior results, especially the results of the
expensive aggregate usage computation, is also used to speed up the search
process.

Consider our running example involving the three tasks shown in Figures 4
and 5. Task1 arrives first, followed by Task2 around time 260, and Task3 is
recognized at time 750. Each of these tasks includes methods which make use
of the RF resource, using the pseudo-locking scheme described earlier, and as
such their respective execution times will interact with one another. We will con-
sider first the simple case where each affected method will consume all of the
RF resource when it starts, and produce that same amount when it completes,
with a probability of 1.0. The start times and finish times will be determinis-
tic single values. In this case, the first scheduled method, Send-Message, will
consume the RF resource at time 260, the Send-Tracking-Info will con-
sume it at 1375, and Send-Result will continue that same level of consump-
tion starting from 2000 until 2500. The combined resource model for this usage
pattern can be seen in Figure 12a. This graph shows what the probability of
a given resource level will be at a given time. Each graph depicts the change
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in probability over time for three different resource levels (−1000, 0, +1000).
So, looking at the +1000 line in the foreground shows the probability that the
resource will be unused at any given time, while the −1000 line in the back
shows the probability the resource will be overconsumed. For instance, at time
2000 in graph a, there is a probability of 100% that the resource will be at level
0, while a 0% probability it will be at either +1000 or −1000. This is consis-
tent with our description, which stated that while the method is running, the
resource should be completely consumed.

Our running example provided a fairly straightforward usage pattern – a
more interesting pattern occurs when uncertainty is introduced into the sched-
ule (although our example is not normally uncertain). Consider the same set
of three methods, with the same level of RF consumption. The difference in
this case is that each method will have both an uncertain start time and uncer-
tain duration, so that where the start time for Send-Message was [260, 1.0],
it will now be [210, 0.25, 260, 0.5, 310, 0.5]; a 25% chance it will start early
at time 210, a 50% chance of starting at the correct start time of 260, and a
25% chance it will start late at 310. Their durations are modified similarly. Fig-
ure 12b shows what the complete RF resource model would look like after this
modified Send-Message usage is added. Note how the expected resource lev-
els at the beginning are less precise, ranging from time 210 to 310, and how this
uncertainty in combination with the modified duration produces an even less
certain finish time, ranging from 660 to 860. A similar pattern is seen later in
the time line when the usage from Send-Result is added in Figure 12c. When
the usage from Send-Tracking-Info is added, however, something differ-
ent occurs. The interaction between the uncertain finish time of Send-Track-
ing-Info and the start time of Send-Result results in a non-zero probabil-
ity that the resource level might exceed its lower bound. Specifically, Figure 12d
shows that around time 2000 there is a 24% chance that the level of RF resource
might reach −1000, which is below its lower bound of 0, and would cause one
of the methods to fail. If this success probability is too low, the search will
continue past this point until a better time slot is found, allowing a trade-off
between success probability and the timeliness of the activities.

After a viable point is found by the resource modeler, the scheduler will insert
the method’s usage description into the model, which will then be taken into
account by subsequent scheduling. Since not all resource usage knowledge is nec-
essarily derived locally, the modeler also supports the addition of non-local usage
information. For instance, if the agent has communicated with a third party and
subsequently gains knowledge of that entity’s resource use, that can be added to
the model in a similar manner as above and used during scheduling. This feature
allows the scheduling process to easily recognize and avoid resource conflicts with
other agents, provided the information can be obtained in the first place. If the
resource itself supports instrumentation, the resource modeler will also periodi-
cally check each resource’s current level. This information is used to update the
models over time, so that subsequent scheduling is based on current information.

By this point in our running example, the agent has been asked to work
towards three different goals, each with slightly different execution needs.
Task1 allows some measure of parallelism within itself, as Init and
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Figure 12. 3D graphs depicting resource model states after various usage patterns have been added.
Each of the three series of values in each graph represents the probability of a particular RF resource
level occurring (labeled 1000, 0, and −1000 on the right side axis) over time. (a) shows the model
after all the resource uses from the simple, certain schedule are added. (b–d) show the model after
uses from each of the three methods in the uncertain schedule are added.

Calibrate can run concurrently because no ordering constraints exist between
them. Task2, received some time later, must be run sequentially, and its
method Send-Result must be completed by time 2500. Task3 is received
later still, and also must be run sequentially. All three, however, require the use
of the RF resource, for communication needs, and are thus indirectly depen-
dent on one another. The POS produces the schedule seen in Figure 13a,
where all the known constraints are met. Some measure of parallelism can be
achieved, seen with Set-Parameters and Send-Message, and also between
Track-Medium and the methods in Task3. Note that the resource modeler
detected the incompatibility between the methods using RF (shaded gray), how-
ever, and therefore those action do not overlap.

The resource modeling component has also been used to help detect and
diagnose failures in agent activity. In [12] we describe a causal-model based
diagnostic engine, used to monitor an agent’s activity and determine potential
sources of failures. The resource modeler was used to first model expectations,



66 BRYAN HORLING ET AL.

Calibrate

Set-Parameters

Init

Track-Medium

Send-Message

Send-Result

Negotiate-Tracking Send-Tracking-Info

Calibrate

Set-Parameters

Init

Track-Medium

Send-Message

0 500 1000 1500 2000 2500

Send-Result

Negotiate-Tracking Send-Tracking-Info

3000

0 500 1000 1500 2000 2500 3000

Calibrate

Set-Parameters

Init

Track-Medium

Send-Message

0 500 1000 1500 2000 2500

Send-Result

Negotiate-Tracking

3000

Send-Tracking-Info

(a)

(b)

(c)

Figure 13. (a) Initial schedule produced after all the goals have been received, with a Send-Result
deadline of 2500, (b) the invalid schedule showing that constraint broken by the unexpected long
duration of Negotiate-Tracking, and (c) the corrected schedule respecting the deadline.

and then determine if those expectations were met as methods were performed.
A failed expectation could then provide evidence for a more detailed diagno-
sis, such as a method’s usage being incorrectly modeled, other agents using the
resource without local knowledge, or a malfunctioning resource.

3.6. Method execution

Method execution is managed by the execute component, using the schedules
produced earlier in SRTA. How particular methods are actually implemented
and carried out will vary from one environment to the next, but in all cases
they are initiated and monitored by the execution component. The execution
component accomplishes this by periodically analyzing the current schedules to
find a group of candidate actions which have scheduled start times equal to the
current time.

Before being started, each member of the candidate group is checked to see
if its preconditions have been satisfied. These are the same preconditions gener-
ated by the POS while building its precedence graph. By convention, we assume
that failed preconditions will lead to method failure, so agent resources are not
wasted running methods unless they are known to be satisfied. In this context,
preconditions are used to abstractly and uniformly represent the notion that
some characteristic must be true for a particular scheduled method, to simplify
the task of checking them that the execute component must perform. Then,
instead of needing to analyze the TÆMS structure for any of the various things
which could prevent method execution, the search is limited to only the set of
easily verified preconditions associated with method in the schedule. Methods
which fail one of their preconditions are delayed, using the scheduler’s shifting
mechanism described earlier in Section 3.4 to postpone the method’s scheduled
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start time. Methods which have missed their start times, because the execute
component was unable or not given the opportunity to check the schedule at
that time, are also shifted using this method, providing another opportunity to
run if possible.

Methods which meet their preconditions can be started. In subsequent cycles,
the execution component will continue its operation by comparing the observed
performance of the actions against their expectations as modeled in the sched-
ule. Any differences indicate a place where the schedule is no longer accurate,
so the schedule must be maintained as time progresses to reflect these changes.
A common problem is that an action may take longer than expected, in these
cases the execution component will use the POS to update the schedule to
reflect the new duration, by shifting dependent methods as necessary. This pro-
cess will be covered in more detail in the next section. Finally, when a method
completes, the execution characteristics are recorded in the TÆMS structure,
and also propagated as an event to the rest of the agent using structures pro-
vided by the JAF architecture. A more domain specific component in the agent
could use this data to support other actions, such as notifying collaborating
agents, performing learning or data analysis, or looking for new goals.

How methods are actually performed is a relatively domain-dependent issue.
They might be performed in name only, modeled or simulated based on their
given characteristics, or performed for real by the agent in question. The execu-
tion component simply assumes that methods are asynchronous (i.e. that con-
trol returns immediately after the action is initiated) and can potentially be run
in parallel. As shown above, resource interrelationships can be used to model
situations where this assumption is not true. The execute component itself is
responsible only for determining when the action should start and tracking its
progress.

In other respects, however, the specific form the physical action takes is up to
the agent designer. For example, when using SRTA with the MASS simulation
environment [40], actions are forwarded to a simulator which uses the quanti-
tative characteristics of the TÆMS structure itself (or some global, objective
variant of it) to determine what the appropriate execution characteristics are,
and later returns that information to the agent. In real-world systems, meth-
ods are performed by some component or object within the agent. The pro-
cess begins when the execution component fires an event indicating that an
action has started. Elsewhere in the agent, domain-specific code would respond
to that event by actually performing the action. This might be accomplished
by spawning a new thread, creating a separate process, or operating intermit-
tently in response to the agent’s own execution cycle. Recall that in their barest
form, the method specifications used to spawn these actions are limited to just
the name of the action and a quantitative description of how it is expected to
behave. While these are all the necessary details for scheduling and planning,
additional information may also be added which specifies how the action is to
be performed in a more concrete sense. Consider the Send-Results method.
When performed, the problem solving component could implicitly know that
it should send measurement data to its track manager. One could also reduce
the need for such domain specific code, by using the attributes field available
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in all TÆMS nodes to specify the message data and destination. In this case,
a more general Send-Message method could include this information, allow-
ing the communication component to perform the action with no additional
domain knowledge. A third mechanism allows an arbitrary Java object to be
specified by the method, so that the execution subsystem can dynamically create
the action code as needed.

In practice, we use a combination of these techniques. In the resource alloca-
tion domain we have been using, sensor actions (e.g. measurements, changes to
various settings) are relayed to the sensor itself, which performs the operation
asynchronously. The parameters used to control the behavior of the measure-
ment are encoded as attributes in the method. Other actions, such as message
sending or data fusion, are performed directly by the agent.

It is important to note that the mechanism employed, and how it interacts
with the underlying operating system and competing tasks on the local proces-
sor can ultimately affect the execution characteristics of the action itself. Like
any other aspect which can affect performance, the design and qualitative ele-
ments of the TÆMS model should reflect the variance created by these interac-
tions.

Once a method has been started, the TÆMS structure is updated to reflect
that fact by filling in its start time field. As the method is performed, the exe-
cute component monitors its progress by keeping track of how much time has
elapsed in comparison to the scheduled completion time. If the method fails to
meet its completion time, the execute component will again use the capabilities
of the POS to keep the schedule up to date by revising the method’s finish time.
This may in turn require other methods to be shifted, which can result in the
undesirable consequences discussed in the next section.

When the method completes, its finish time field is also updated. The
specific mechanism employed to perform the task is also responsible for
recording the quality and cost of the action. These values are in turn prop-
agated through the graph as needed, correctly taking into account struc-
tural details such as task QAFs and interrelationships. For example, the cur-
rent quality of task with a sum QAF will be correctly updated with the
sum of its subtasks’ qualities. Methods which fail are assigned zero qual-
ity. In this way the TÆMS structure is used not only during the planning
process, but serves as a record of how the goal is carried out. This quan-
titative view of the agent’s runtime performance is of particular use if re-
scheduling or conflict resolution is necessary, as we will see in the next
section.

3.7. Conflict resolution

Suppose that the Negotiate-Tracking method in Figure 13 is taking longer
than expected, forcing the agent to extend its estimated finish time in the sched-
ule. Because the method Send-Tracking-Info cannot start before the com-
pletion of Negotiate-Tracking due to the enables interrelationship shown
in Figure 5b, the POS must delay the start of Send-Tracking-Info. A naive
approach would simply delay Send-Tracking-Info by a corresponding
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amount. This has the undesirable consequence of also delaying Send-Result,
because of the contention over the RF resource. This will cause Send-Result
to miss its deadline of 2500, as shown in the invalid schedule seen in
Figure 13b.

The POS was able to detect this failure, because a simple shifting of the
tasks in its dependency graph pushed Send-Result past its latest start time
of 2000. This caused the POS to try other permutations of methods, which
resulted in the schedule shown in Figure 13c, which delays Send-Track-
ing-Info in favor of Send-Result. This allows the agent to proceed suc-
cessfully despite a failed expectation. The search process is accomplished by first
delaying the finish time of the offending method in the schedule to reflect the
current state of affairs, and then recursively delaying any other methods which
are dependent on that method until a valid solution is found or a recursive limit
is reached. At each step, the schedule generation is performed in the same way
the initial schedule was generated, i.e. through analysis of the precedence graph
and resource usage patterns. Note that this is a “saticificing” process, which will
not attempt to find the best solution, but only guarantees that the minimum set
of criteria are met.

This type of simple conflict resolution is performed automatically, through
the cooperation of the execution module, which detects the unexpected behav-
ior, and the scheduling component which attempts to repair the problem using
the quick shifting technique shown above. In some cases, in particular when
methods actually fail to achieve their goal, this sort of simple shifting is not
sufficient to repair the problem. One solution to this problem is to immediately
reschedule the task(s), by re-analyzing them from scratch with DTC and the
POS in the current context. While this would resolve the failure, this solution
can be costly, may not take advantage of other sources of existing information,
and be wasteful if the fault can be equally addressed by simpler techniques – as
in the previous example. At the same time, the expensive solution may be the
only viable one, so we cannot preclude using it. To handle these cases, we have
developed a conflict resolution module capable of analyzing a particular situa-
tion and efficiently suggesting appropriate solutions using a range of techniques.

Abstractly, the conflict resolution module is a customizable engine, which
applies different techniques to a particular situation. If the set of techniques
available is not appropriate for the agent designer, they are free to add or
remove techniques as needed. Each technique is associated with a discrete
numeric priority rating specified by the designer, which controls the ordering in
which the techniques are applied. When searching for a conflict resolution, the
engine will begin by applying all techniques marked with the highest priority.
If one or more solutions are suggested, then that set of solutions is returned
for the caller to select from. If no solutions are suggested, the engine will apply
the techniques at the second-to-highest level, and so on. If the designer orders
the techniques appropriately, for instance with quick or highly effective tech-
niques first followed by slower or less applicable ones, the engine should make
efficient use of its time. The type and ordering of these techniques, along with
the domain and environment it is used in, dictates the efficacy of the resolu-
tion module. While a completely domain independent configuration can lead to
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acceptable performance, the design of this system allows the designer’s knowl-
edge and experience to easily address the specific faults characteristic to their
domain.

Several different types of domain independent conflict resolution techniques
have been implemented in this engine. Each uses the existing TÆMS structure
and schedule, potentially along with technique-specific data of its own, to gener-
ate a new repaired schedule. These are presented below, in no particular order.

1. Prior scheduling results. As mentioned in Section 3.3, when DTC generates
plans for a task structure, it automatically produces a set of candidate plans,
from which the best rated is generally selected for use. A simple and effec-
tive resolution tactic is to save these results, and select the best-rated plan
not affected by the failure to use that in place of a failed one. This is deter-
mined by using the existing rating of the schedule along with the current exe-
cution results to ensure it contains no failed methods.

2. Contingency plans. A variant of the previous technique allows the modeler to
actually pre-specify an alternate plan, which is then read in and used simi-
larly. This is somewhat more costly, as it involves additional file access and
data parsing, so it would likely have a lower priority than the first. However,
if a particular class of failure occurs which is difficult for the scheduling pro-
cess to cope with, this can be an effective strategy.

3. Reschedule. If no viable alternate plans are available, the entire structure can
be sent back to DTC for re-planning. Because the structure would incorpo-
rate new information about the current context (in particular, the conflict or
failure would be modeled), the plans DTC would return would compensate
accordingly. For instance, in the example above where Negotiate-Track-
ing took too much time, this updated duration information would be incor-
porated into the structure, which would cause DTC to ignore a subset of
schedules which previously would have been valid.

4. Predefined alternatives. A more labor intensive version of the rescheduling
technique allows the TÆMS modeler to explicitly mark up methods such
that they trigger a particular structural change when they fail. This could,
for instance, swap a failed method A with alternate method or task A′ which
could achieve the same results using a different method or remove constrain-
ing aspects of the structure, such as hard interrelationships or deadlines. This
modified structure would be sent to DTC for re-scheduling.

5. Reduce expectations. Because DTC is somewhat detached from the global
planning process, in that it typically plans for a subset of the possible con-
current goals at a time, a different resolution technique might be to artifi-
cially restrict the desired level of quality, cost or duration exhibited by the
plans it produces. In this way, constraints imposed by goals that are unre-
lated, except that they are owned by the same agent, may be abstractly rep-
resented in the structure as a limited resource, restrictive criteria, or other
artificial bound. This may result in a different and hopefully more appli-
cable set of plans being generated. For instance, if all plans which DTC
generates for a particular goal are incompatible with the existing schedule
because they require more time than is available, one might limit the desired
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solution quality to cause DTC to return schedules which it otherwise would
have dropped. In another case, if one goal had a precedence constraint with
another that is currently running, an artificial deadline or earliest start time
could be added to the new goal to allow DTC to correctly reason about the
interaction without actually possessing direct knowledge of it.

6. Learn appropriate strategies. A particularly efficient resolution technique is
to use the knowledge gained from prior resolved conflicts and cache it for
later use. In this case, both the resolution strategies which are selected to
be applied, and the context in which they were chosen are monitored. Later,
when the same context is seen, the earlier solution can be immediately sug-
gested. If this technique is given a high priority, then a potentially expensive
search process may be avoided with no detrimental effects.

As an example, consider the TÆMS structure shown in Figure 4. We will
assume three different resolution techniques are in use by the agent, correspond-
ing to several of the techniques outlined above. At the highest priority level is
Learn-Strategy (technique 6), which searches for cached resolution techniques
which are applicable to the current problem. At the next level is Alternate-Plan
(1), which looks for compatible results from the previous scheduling activity. At
the lowest priority level is Regenerate-Plans (3), which uses DTC to generate
a completely new set of viable plans. The initial schedule generated from this
structure would be {Set-Parameters, Track-High, Send-Results}. In this
instance however, Track-High fails, forcing the conflict resolution subsystem to
find an appropriate solution. Learn-Strategy has never seen this problem and con-
text before, so it offers no solution. The prior planning activity, however, returned
three different plans, so two potentially viable plans remain for Alternate-Plan to
examine. In this case, the prior execution results in the TÆMS structure show that
the plan {Set-Parameters, Track-Low, Send-Results} avoids any failed
methods, and still fulfills related commitment criteria. In addition, the updated
TÆMS structure indicates this will take advantage of the previously completed
Set-Parameters. This schedule is offered as a solution. Since a solution was
offered at a lower level, Regenerate-Plans is not invoked. Because only one solu-
tion is provided, the execution subsystem will instantiate the Alternate-Plan solu-
tion. If multiple solutions were provided, they would be discriminated through
their respective expected qualities, which can also be obtained from the task struc-
ture.

Note that if this problem were seen again, Learn-Strategy would recognize
the context and provide this same solution, avoiding further search through the
available resolution strategies.

4. Working in soft real-time

The high-level technologies discussed above address the fundamental technolo-
gies SRTA employs to run in soft real-time. Unfortunately, even the best frame-
work will fail to work in practice if it does not obtain the processor time needed
to operate, or if activity expectations are repeatedly not met. A good example
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of this is the execution subsystem. It may be that planning and scheduling have
successfully completed, and determined that a particular method must run at
a particular time in order to meet its deadline. If, however, some other aspect
of the agent has control of the processor when the assigned start time arrives,
the method will not be started on time and may therefore fail to meet its dead-
line. In this section we will describe several techniques which aim to reduce or
account for the overhead of different aspects of the system, in an attempt to
avoid such situations.

4.1. Accounting for meta-level costs

There are several causes of such failures in an agent’s plans or expectations. Of
primary concern in this example is the fact that the agent is not accounting
for and scheduling all the activities the agent is performing. Many systems only
schedule for the low-level tasks they perform – the actions which directly and
tangibly affect the goal at hand. At the same time, however, there is an entirely
separate class of actions which the agent is performing, and therefore compete
for the same processing time, which are not accounted for. Such tasks include
many elements seen in Figure 1: communication, negotiation, problem solving,
planning, scheduling and the like. In most systems these so-called “meta-level”
activities can constitute a significant portion of the agent’s running time with-
out being explicitly accounted for during the scheduling process.

In this research we have added meta-level accounting of communication and
negotiation. Although not strictly a feature of the architecture itself, it is still
a sufficiently important issue to merit discussion in SRTA’s context. Reasoning
over meta-level costs was accomplished by first modeling these activities using
TÆMS task structures. From a planning and scheduling point of view, there is
no difference between low and meta-level actions, so to account for this time
we need just an accurate model and a component capable of performing these
actions in response to a method execution. Given this, we can use our exist-
ing TÆMS processing components to correctly account for this time. The task
structure from our running example, seen in Figure 5b, models both negotiation
and communication activities. The duration of a negotiation task is relatively
deterministic, or at least can be described within some bounds, so creating the
task structures was a matter of learning the characteristics of our negotiation
scheme. An additional benefit of describing these activities in TÆMS is that it
permits the planning component to reason about the selection of negotiation
schemes. Consider a system where one had several different ways to negotiate
over a particular commitment, each with different quality, cost and duration
expectations. By describing these in TÆMS, we can simply pass the structure to
the generic DTC planning component, which will determine the most appropri-
ate negotiation scheme for the current environmental conditions. Furthermore,
once a given scheme is selected, it may also be parallelized by the POS for
greater efficiency.

In future research we hope to model other meta-level activities, such as sched-
uling and planning. This has been accomplished in [34] with some of the ele-
ments of SRTA, but has not yet been extended to the entire architecture. These
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topics are more complicated due to their non-deterministic nature, i.e. the agent
does not necessarily know a priori how long it will take to select and sched-
ule an arbitrary set of interdependent actions nor precisely when this activity
will be needed. In addition, the need to quickly schedule and plan in the face
of unanticipated events, and the potential need to schedule the scheduling of
activities itself makes these processes particularly difficult to account for. We
currently handle the time for these activities implicitly by adding slack time to
each schedule. This is accomplished by reasoning with the maximum expected
duration time for a given schedule, rather than the average time. This simple
approach works when the variance of the schedule’s duration is not particularly
wide; different circumstances may require a more sophisticated approximation.

4.2. Plan caching

An issue affecting the agent’s soft real-time performance is the significant time
that meta-level tasks such as planning and scheduling can take themselves. In
systems which run outside of real-time, the duration performance of a particu-
lar component will generally not affect the success or failure of the system as a
whole, at worst it will make it slow. In real time, this slowdown can be critical,
for the reasons cited previously. Complicating this issue is the fact that these
meta-level activities may be randomly interspersed with method executions. New
goals, commitments and negotiation sessions may occur at any time during the
agent’s lifetime, and each of these will require some amount of meta-level atten-
tion from the agent in a timely manner. To address this, our control architecture
attempts to optimize the meta-level activities performed by the agent.

Planning is a particularly computationally expensive process for our agents,
because of the potentially large range of alternative plans which DTC evaluates
during the course of its analysis. We have noticed during our scenarios that a
large percentage of the task structures sent to DTC were similar, often differing
in only their start times and deadlines, which results in very similar plan selec-
tions. The frequency of this behavior is increased by the fact that DTC gen-
erally plans for only one goal at a time, because of the incremental nature of
goal addition to SRTA and the fact that other components are responsible for
plan merging. To avoid this potentially repeated work, a plan caching system
was implemented, shown as a bypass flow in Figure 1. Each task structure to
be sent to DTC is used to generate a key, incorporating several distinguishing
characteristics of the structure such as the method names, durations, start and
finish times, outcome characteristics and interrelationships. If this key does not
match one in the cache, the structure is sent to DTC, and the resulting plan
read in and added to the cache. If the key does match one seen before, the
plan is simply retrieved from the cache, updated to reflect any timing differ-
ences between the two structures (such as expected start times), and returned
back to the caller. This has resulted in a significant performance improvement
in our agents, which leaves more time for low-level activities, and thus increases
the likelihood that a given deadline or constraint will be satisfied.

Quantitative effects of the caching system can be seen in Table 1. To test the
caching subsystem, we performed 1000 runs using eight sensors and one target in
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Table 1. Results using plan caching over 1000 experimental runs in the DSN domain.

Component Average Average time per call
number of calls (millisecond)

DTC scheduler 72.14 300
DTC caching 31.12 74
Partial order scheduler 531.03 36

the RADSIM environment [29], which models the distributed sensor environment
discussed in this paper. As shown in the table, the caching system in these tests
was able to avoid calling DTC 30% of the time with only a third of the original
time cost. Related results from the POS scheduling are included for comparison
purposes.

4.3. Parallel activity recognition

The major disparity which exists between the DTC planning component and
the remainder of the SRTA architecture is its inability to plan for parallel activ-
ities.5 It assumes a sequential set of actions, and generates plans accordingly.
Under constrained conditions, this can lead DTC to eliminate potential candi-
date plans which would otherwise have functioned successfully if their innate
parallelism were recognized and exploited.

One way to solve this problem would be to update DTC’s logic to directly
reason about these types of interactions, although it is not clear that adding
this additional complexity would not result in a technique with unacceptably
high combinatorics. Additional changes would also need to be made to support
a more robust model of resource usage, to make use of the information pro-
vided by the resource modeling component. After consideration, it was deter-
mined that the amount of effort needed to do this would outweigh the benefits,
as described in Section 3.4. Instead, we have worked around this issue through
the use of a mapping function, which is able to translate some classes of paral-
lelism into an analogous form in TÆMS which DTC is able to correctly reason
about.

The process is best explained through an example. Consider the abstract task
structure shown in Figure 14a. This structure has two subtasks, Sub1 and
Sub2, which must both be performed successfully and in order, because of the
enables interrelationship between them and Task1’s min QAF. Note that Sub1
also has a min QAF, so that A and B must both be performed, while Sub2 has
a max, requiring either or both of C1 and C2. The method C2 both requires
more time to complete and has a higher expected quality than C1. Finally, the
entire structure has a deadline which must be respected.

The initial DTC plan is shown in 14a which will then be used by the POS to
generate the schedule below it. Note that because A and B could be performed
in parallel, the initial plan does not make efficient use of the available time. In
fact, the deadline caused DTC to select C1 over the higher quality C2, which
would otherwise have had sufficient time to complete in the final schedule. To
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Figure 14. The effects of parallel activity recognition. (a) shows the original task structure, which
leads to an inefficient final schedule, (b) shows the task structure with modifications, which results
in a higher quality schedule.

compensate for this, schedules are analyzed for these areas of parallelism. If any
are found, that information is used to annotate subsequent TÆMS structures
that are structurally identical before they are sent to DTC. Such a structure
is shown in 14b, where a pair of mutual facilitates relations have been added
between methods A and B. These interrelationships are quantified in such a
way that if either method is performed, the model indicates that the remain-
ing method will take zero time. This will be interpreted by DTC as meaning,
for instance, that B may be performed instantaneously once A has completed,
which has roughly the same characteristics as a true parallel schedule. Because
of this, more time will be available within the plan, and the higher quality C2
method will be selected as shown. This will result in the higher quality schedule
as shown.

The notion of parallel activity recognition is one aspect of a more general
problem where there exists a class of conditions which a subsystem is unable to
detect or exploit due to its lack of context or functionality. In SRTA, because
DTC may be used to plan for structures without complete knowledge of poten-
tially competing local schedules, it can produce plans which are unacceptable.
To compensate for this, at runtime one can condition the task structures given
to the subsystem to compensate for this lack of information [12]. For example,
to model the effects of a concurrent process, DTC might be asked to gener-
ate plans with artificially limited durations by modifying the planning criteria
shown in Figure 7. Similarly, if it is known that a resource will be restricted in
the future, one might present DTC with a more tightly bounded view of that
resource to avoid possible conflicts. More generally, we can address this class
of issues by first learning or anticipating that such conditions will exist, and
then augmenting the information used by the subsystem to provide a suitable
abstraction of the otherwise unobservable constraint.
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4.4. Learning task characteristics

Much of the material discussed in previous sections assumes that the TÆMS
models describing our activities are faithful to real world performance. It should
be clear that without accurate models, it will be quite difficult for the agent to
correctly allocate its time. In prior research [21], some quantitative and struc-
tural elements of TÆMS structures have been shown to be learnable using off-
line analysis of a large corpus of results. While this technique would work to
a certain extent for our application, we are more interested in using a light-
weight runtime learning component to give the agent the capability to dynam-
ically adapt to changing conditions.

Our current learning system automatically monitors all method executions in
the agent, and maintains a set of the last n results. When queried, the com-
ponent uses these results to compute a duration distribution for the particu-
lar method in question. This is accomplished by binning the known duration
results, and associating a weight with each bin value based on the relative pro-
portion of actions that exhibited that duration. This data can then be used to
condition new task structures, improving both their predictive accuracy and the
agent’s scheduling success.

A more ambitious goal that we hope to address in future work is the abil-
ity to learn how much time and resources the meta-level activities associated
with a goal require, and how to better predict and account for interactions
between local activities. This metric could then be used to augment or anno-
tate the goal’s structure or modify the objective criteria in such a way that the
agent is able to reason about those requirements. Consider a situation where
the agent uses the resource modeler and the current schedule to compare the
availability of resources and time in the current context to the agent’s ability
to successfully complete a particular plan or schedule. If a correlation is able
to be drawn from such observations, future planning instances in similar con-
texts could implement a change the scheduling criteria to avoid potential pit-
falls. In such cases, by varying the desired quality, duration or cost in the cri-
teria provided to DTC, more appropriate plans can be produced. Examples of
such changes are covered in further detail in Section 5.3.

4.5. Time granularity

The standard time granularity of agents running in our example environment
is one millisecond, which dictates the scale of timestamps, execution statistics
and commitments. Because we run in a conventional (i.e. not real-time) oper-
ating system, in addition to our relatively unpredictable activity durations, it
becomes almost impossible to perform a given activity at precisely its scheduled
time. For instance, some action X may be scheduled for time 1200. When the
agent first checks its schedule for actions to perform, it is time 1185. In the sub-
sequent cycle, 24 milliseconds have passed, and it is now time 1205. To main-
tain schedule integrity (especially with respect to predicted resource usage), we
must shift or reschedule the method which missed its execution time before per-
forming it. Despite our existing optimizations, although each of these events are
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individually quite fast, combined in large numbers they can consume a signifi-
cant portion of the agents’ operating time.

To compensate for this, we scale the agents’ time granularity by some fixed
amount. This theoretically trades off prediction and scheduling accuracy for
responsiveness [8, 9], but in practice a suitably chosen value has few drawbacks,
because the agent is effectively already operating at a lower granularity due to
the real time missed between agent activity cycles. Using this scheme, if we say
that every agent tick corresponds to 20 milliseconds, the above action originally
scheduled for time 1200 would actually be mapped to run at the agent’s time
60(1200/20 = 60). The schedule is first checked at the real-world time of 1185
– in the agent’s time scale this would actually be time 59(1185/20 = 59), and
it will still be too early to run X. However, real-world time 1205 becomes the
agent’s time 60, the correct scheduled time for X, thus avoiding the need to shift
the action.

Clearly we can not eliminate the need for rescheduling, due to the inherent
uncertainty in action duration in this environment – the hope is to reduce the
frequency it is needed. Experimentation can find the most appropriate scaling
factor for an agent running on a particular system, by searching for the gran-
ularity which optimizes the number of actions which are able to be performed
against the number of rescheduling events which must take place. Our exper-
iments, the results of which can be seen in Figure 15, compared a range of
granularities from 0 millisecond (time is unchanged) to 90 milliseconds. These
tests showed a 35% reduction in the number of shifted or rescheduled activ-
ities by using a time granularity between 40 and 60 milliseconds. Ideally, the
system should have a large enough granularity so it can “see” each sequential
time click, while avoiding a timeline that is so coarse that the number of actions
which may take place is unnecessarily reduced.

5. SRTA in practice

This section will provide more examples of how the SRTA architecture is used
to solve problems in practice. We will begin by showing how SRTA can be
used to support the sort of sophisticated problem solving behavior which was
described in the introduction. We will then show how commitments and con-
straints can be used to control method execution at runtime. Finally, we will
show how alternative plans can be used to encode and support adaptive behav-
ior, dependent on the current runtime context.

5.1. Supporting high-level reasoning

SRTA supports the problem solving aspects of a sophisticated agent through its
capability of responding to “what-if” style queries, using the TÆMS language
as the descriptive medium. Consider the case where one agent is attempting
to coordinate with another. In this situation, the agent must first determine
the goals it is capable of achieving which will satisfy the coordination request.
Next, it must determine the constraints under which the coordination is being
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Figure 15. The effect of varying time granularity on agent behavior. A higher time ratio indicates
that a greater percentage of sequential time units are seen, which should reduce the need for resched-
uling. A higher action ratio indicates the available time was used more efficiently.
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Figure 16. A pair of abbreviated task structures for calibration and tracking.

requested, such as deadlines or earliest start times. These two features are pro-
vided to SRTA, which takes into account the current activity schedule, environ-
mental context and existing commitments during its analysis. SRTA will then
both determine if that goal may be achieved, and if so, what the resulting
execution schedule will look like if the needed activities were integrated with
the existing schedule. If no solution is found, the reasoning component may
decline the commitment or adjust the goal structure or constraints. If a solu-
tion is found, it may use the resulting schedule to provide the remote agent with
expected completion characteristics.

Using TÆMS, the agent will first model the goal and its subtasks, along
with any constraints that exist. Consider the schedule shown in Figure 17a. In
this scenario, the agent has previously scheduled two goals, Setup-Sensor
and Perform-Track, as modeled in Figure 16. The three Track methods in
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Figure 17. (a) The agent’s initial schedule, along with new actions which describe the what-if condi-
tion, been received, (b) The resulting consolidated schedule.

that model each have an expected level of quality which corresponds to their
duration (i.e. long duration → high quality). Because no competing methods
existed, Track-High was selected for the Perform-Track goal. No direct
interrelationships exist between the activities, but they do interact indirectly
through the shared resource Sensor. In this case, both Calibrate and the
three tracking methods use the Sensor resource to take measurements, and
thus cannot be performed at the same time. This would be modeled using a
similar locking mechanism to that used with the RF resource described earlier.
Next, the agent is asked by another if it can satisfy the goal Perform-Track
for it, within a deadline of 2500. To check this, the agent would pose a what-
if query to SRTA with the appropriate task structure and the existing sched-
ule, as shown in Figure 17a. Because of the deadline and the preexisting sched-
ule, SRTA selects Track-Low to satisfy that goal, as shown in 17b. This
result can then be used to support a commitment structure with the remote
agent.

Note that SRTA did not suggest changing the preexisting method Track-
High to a Track-Medium, which might have resulted in a more equitable
arrangement where the second commitment could have also been accomplished
with Track-Medium. SRTA is a satisficing architecture, to reduce both the
combinatorics of planning and scheduling and the potential need for re-nego-
tiation over existing commitments it does not optimize over all potential sched-
ules and thus will not necessarily find the “perfect” solution. If it were the case
that Track-Low was not a viable solution for this goal, it is expected that
the reasoning component would have removed the method through a process
of task structure conditioning prior to planning [12]. Alternately, it could also
validate the expected quality of the schedule after planning, and generate an
appropriately modified what-if query if the initial result did not meet minimum
criteria.
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Figure 18. The abstract global view and segregated runtime structures showing a potential point
where coordination would be needed.

5.2. Modeling and respecting commitments

Commitments are an important class of structures because they allow an agent
to formally define an agreement that it has with a remote party. These agree-
ments, which can come in many forms in both cooperative and competitive
systems, form a part of the foundation of multi-agent systems by adding struc-
ture to the actions that part of the system will take at the request of another.
Because of this, SRTA provides facilities for both defining potential points
where coordination may be necessary or fruitful, and mechanisms for defining
and respecting commitments as they are needed.

Abstractly, a commitment is usually formed when the actions (or their
results) of one agent may directly or indirectly affect the state of another. We
have previously shown in Section 3.1 how interrelationships between nodes in
a single structure can model the effects between them. These types of effects
may be simply extended to span nodes between structural elements belonging
to disparate agents to model inter-agent effects. Refer to Figure 18a, which rep-
resents how a particular goal might be represented at the global, organizational
level. In this case, Task1 and Task2 each belong to different agents, so that
the enables relationship between them represents a point of interaction between
them. More specifically, if the agent pursuing Task2 is to be successful, it must
ensure that the Task1 is successfully completed before it begins Task2.

At runtime, it is unusual that any one agent would possess a complete global
view as is shown in 18a. Instead, each agent would have its own local view of
the problem, as is seen in 18b and c. In this case, we assume that Task1 agent
has no knowledge of the interrelationship. Instead, that information is repre-
sented in Task2’s task structure, which indicates that a non-local method B
enables C. Thus, the agent working on Task2 will recognize that B must come
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before C, B will be performed by a remote agent, and it must ensure that this
condition is satisfied before proceeding. In a deliberative system, this would be
accomplished through coordination between the two agents, where the coor-
dination would result in a commitment specifying how and when B is to be
completed. Note also that while B is represented as a method in Task2, it is
actually just an abstraction which refers to a task subtree in Task1.

These interactions can occur at any point in the task structure where nodes
can both affect one another and are the responsibility of different agents. For
example, two nodes which are related through a common supertask might have
this characteristic. Shared resources also provide an indirect point of coordina-
tion, where agents may need to coordinate there activities to ensure the resource
is not over or under-loaded [25].

Once an agent has detected a point of remote interaction, it can then engage
in a process of coordination. The specifics of such a process are beyond the
scope of this article, more details can be found in [7, 23]. More germane is the
concept that the agent must both determine what sort of commitment is nec-
essary, and how that can be represented. The example in Figure 18 shows a
situation where the success of one action depended on the successful comple-
tion of another. Thus a commitment is needed which lets the dependent agent
know when that enabling activity will be completed. We refer to this as a do
commitment. Conversely, if we replace the enables with a disables relationship,
this would indicate that the dependent action would fail if the disabling action
were successfully completed. In this case, the dependent agent would require
a dont commitment, which indicated that the action would not be performed
within some window in time. The commitments themselves may be represented
directly in TÆMS. The structure allows one to define the commitment type,
participating agents, relevant methods, relative importance, deadlines, earliest
start times, and other relevant details. During planning and scheduling, these
commitments are included with the TÆMS structure itself, enabling those com-
ponents to use that data to influence their respective activities.

During commitment formation, the agent would use the what-if capability
described in the previous section to determine if the commitment could be sat-
isfied. Once it has been agreed upon, the commitment is added to the agent’s
local structure, where SRTA may use it do drive local behavior. For an exam-
ple, we return to the agents working on Task1 and Task2 above. In this
case, Task2 agent would initiate coordination with another agent capable of
completing B. That remote agent would use the requested execution characteris-
tics to create a commitment and pose a what-if query to SRTA seeking a candi-
date schedule. In this case, depending on the temporal constraints, the schedule
may include either or both of B1 and B2, which will affect the solution qual-
ity the agent can offer. We assume they both agree on the proposed commit-
ment, and Task1 will then instantiate a task structure containing B. Mean-
while, Task2 agent would also instantiate, plan and schedule its task structure.
Task2’s activities would start, but immediately be suspended because the en-
ablement from B is not active. This will continue until that enablement is acti-
vated (either by the local agent acting on the assumption B has completed, or
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Goal
q_seq_sum

Task1
q_sum

A

facil1

outcome (100.0%)
Q: [2.0, 1.0]
C: [0.0, 1.0]
D: [15.0, 1.0]

B facil2

outcome (100.0%)
Q: [1.0, 1.0]
C: [0.0, 1.0]
D: [15.0, 1.0]

C
outcome (100.0%)
Q: [10.0, 1.0]
C: [10.0, 1.0]
D: [25.0, 1.0]

D enables

outcome (100.0%)
Q: [10.0, 1.0]
C: [0.0, 1.0]
D: [20.0, 1.0]

Task2
q_sum

E

outcome (100.0%)
Q: [5.0, 1.0]
C: [0.0, 1.0]
D: [5.0, 1.0]

F
disables

outcome (100.0%)
Q: [10.0, 1.0]
C: [2.0, 1.0]
D: [10.0, 1.0]

Figure 19. A TÆMS task structure modeling several different ways to achieve the same goal.

from an explicit message from Task2), when that schedule will resume and
complete.

Many of the details of coordination are left intentionally unspecified, to avoid
restricting the designer to a particular class of interactions. SRTA instead tries
to provide a suitably general set of modeling, analysis and execution primitives
which can be used as a foundation for a range of different coordination alter-
natives.

5.3. Adapting to environmental conditions

An agent’s ability to adapt to changing conditions is essential in an unpre-
dictable environment. SRTA supports this notion with TÆMS, which provides
means to model alternative plans, and DTC and the POS, which can reason
about those alternatives. As discussed previously, this combination can also
make use of activity and resource constraints in addition to results of completed
actions, providing the necessary context for analysis and decision making.

Consider the model shown in Figure 19, where a variety of strict and flexi-
ble options are encoded. Because Goal has a seq sum QAF, it will succeed (e.g.
accrue quality) if all of its subtasks are completed in sequence. The quality it
does accrue will be the sum of the qualities of its subtasks. The structure indi-
cates that D must be performed for Task2 to succeed, and also that the agent
cannot execute E after F. Task1 and Task2 have slightly more flexible sat-
isfaction criteria. Their sum QAFs specify that they will obtain more quality
as more subtasks are successfully completed, without any ordering constraints.
Finally, the facilitates relationships between A, B and C model how the agent
can improve C’s performance through the successful prior completion of one
or more of A or B. Specifically, A will augment C’s quality by 25%, while B
will both increase C’s quality by 75% and reduce its cost by 50%.

There are several other classes of alternatives which are not shown in the fig-
ure. Resource interrelationships, for example, may be used to model a variety
of effects on both the resources and the activities using them. The presence or
absence of non-local activities, as discussed in the previous section, can indicate
alternative means of accomplishing a task. Multiple outcomes on methods may
indicate alternative solutions which may arise from a method’s execution, so the
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Table 2. A variety of schedules, and their expected qualities, costs and durations, generated from the
TÆMS structure in Figure 19 under different conditions.

Conditions Schedule Q C D
1 Unconstrained A B C D E F 49.9 7.0 90.0
2 Deadline 40 A D E 17.0 0.0 40.0
3 Deadline 50 A D E F 27.0 2.0 50.0
4 Deadline 76 B C D E F 43.5 7.0 75.0
5 Cost 3 A B D E F 28.0 2.0 65.0
6 Balanced A D E F 27.0 2.0 50.0

probability densities associated with each outcome provide an additional source
of discriminating information which can help control the uncertainty of gen-
erated plans. The individual probability distributions for the quality, cost and
duration of each outcome serve in the same capacity, as do analogous proba-
bilities modeling the quantitative effects of interrelationships. The available time,
desired quality, and maximum cost, along with other execution constraints pro-
vide the context in which to generate and evaluate the alternative plans such a
structure may produce.

To demonstrate how the system adapts to varying conditions, several plans
derived from the task structure in Figure 19 are shown in Table 2. These plans
are produced for different environmental conditions that place different resource
constraints on the agent. As one would expect, when the agent is completely
unconstrained and has a goal to maximize quality, the plan shown in row one is
produced. Note that the selected plan has an expected quality of 49.9, expected
cost of 7.0, and an expected duration of 90.0. The quality in this case is not a
round integer even though the qualities shown in Figure 16 are integers because
methods A and B facilitate method C and increase C’s quality when they are
performed before method C.6

Row two shows the plan selected for the agent if it has a hard deadline of
40 seconds. This is the path through the network with the shortest duration that
enables the agent to perform each of the major subtasks. Note the difference in
quality, cost, and duration between rows one and two.

Row three shows the plan selected for the agent if it is given a slightly
more loose deadline of 50 seconds. This case illustrates an important property
of scheduling and planning with TÆMS – optimal decisions made locally to a
task do not combine to form decisions that are optimal across the task struc-
ture. In this case, the agent selected methods ADEF. If the agent were planning
by simply choosing the best method at each node, it would select method C
for the performance of Task1 because C has the highest quality. It would then
select D as there is no choice to be made with respect to method D. It would
then select method E because that is the only method that would fit in the time
remaining to the agent. The plan CDE has an expected quality of 25, cost of
10, and duration of 50. Scheduling and planning with TÆMS requires stron-
ger techniques than simple hill climbing or local decision making. This same
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function holds when tasks span agents and the agents work to coordinate their
activities, evaluate cross agent temporal constraints, and determine task value.

Row four shows the plan produced if the agent is given a hard deadline of
76 seconds. What is interesting about this choice is that DTC selected BCDEF
over ACDEF even though method B has a lower quality than method A and they
both require the same amount of time to perform. The reason for this is that
B’s facilitation effect (75% quality multiplier) on method C is stronger than
that of method A (which has a 25% quality multiplier). The net result is that
BCDEF has a resultant expected quality of 43.5 whereas ACDEF has a resultant
expected quality of 39.5.

Row five shows the plan produced by DTC if the agent has a soft prefer-
ence for schedules whose cost is under three units. In this case, schedule AB-
DEF was selected over schedules like ADEF because it produces the most quality
while staying under the cost threshold of three units. DTC does not, however,
deal only in specific constraints. The “criteria” aspect of DTC scheduling also
expresses relative preferences for quality, cost, duration, and quality certainty,
cost certainty, and duration certainty. Row six shows the plan produced if the
scheduler’s function is to balance quality, cost, and duration. Consider the solu-
tion space represented by the other plans shown in Table 2 and compare the
expected quality, cost, and duration attributes of the other rows to that of row
six. Even though the solution space represented by the table is not a complete
space, once can see where the solution in row six falls relative to the rest of the
possible solutions, it is a good balance between maximizing quality while min-
imizing cost and duration.

These examples do not illustrate DTC’s ability to trade-off certainty against
quality, cost, and duration. The examples also omit the quality, cost, and dura-
tion distributions associated with each item that is scheduled/planned for and
the distributions that represent the aggregate behavior of the schedule/plan. All
computation in TÆMS and DTC is performed via discrete probability distri-
butions. The role of uncertainty and its advantages are more completely docu-
mented in [49].

An additional example of adaptation taken from the distributed sensor
domain is shown in Figure 20. The architecture we have developed to address
this domain uses a notion of periodic commitments along a discrete timeline
to reduce negotiation complexity. Specifically, the timeline is conceptually bro-
ken into a number of repeating periods, each of which is comprised by a set
of equal-duration slots. Agents negotiate over these slots in such a way that a
given commitment (which in our case represents a sensor measurement action
which should take place) is satisfied by an action taken within one of these
slots. Thus, the length of the slot represents a limiting factor, which will directly
control the maximum duration of individual activities, and indirectly affect the
total number of activities which may take place over time.

Figure 20 shows how our system adapts to varying this slot length. The task
structure in Figure 4 is used, which provides the agent with three different
types of tracking measurements to perform, each with a quality proportional
to its duration. Thus, we would hope given these different alternatives, SRTA
would adapt to increasing slot length by choosing higher quality measurements,
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Figure 20. Monitoring track measurement quality under different temporal conditions.

offsetting the effect of a reduced number of total activities. The graph shows,
as we would expect, that the total number of activities performed by the agent
reduces as the slot length grows. It also shows that the aggregate quality of
the measured sensor data followed more of a saw-tooth pattern. In this case,
each jump in the pattern represents a slot length threshold which permitted the
use of a higher quality, higher duration measurement activity. Following these
jumps, the trend falls with a rate comparable to the number activities until it
is able to schedule the next best measurement type. We can infer that further
increasing the number of alternatives available to SRTA would lead to greater
quality stability, by allowing it to more frequently “jump” to a more appropri-
ate set of activities.

6. Related work

It is important to note that the architecture presented here falls into the
soft real-time computation class. In contrast to architectures like CIRCA [33],
we cannot make performance guarantees [38] about agent control. SRTA dif-
fers in that its action primitives are permitted to have unpredictable perfor-
mance results across several dimensions, and it uses a more complex model of
resources during the scheduling phase. We have also seen empirically that the
soft real-time model SRTA employs addresses the requirements of the applica-
tions it has been applied to, despite the lack of performance guarantees. In the
future, hard real-time approaches for multiple distributed agents may be possi-
ble, but, currently, the complexity of the distributed agent control problem, par-
ticularly when agents have complex activities and are situated in dynamic and
uncertain environments, prevents such approaches.

PRS [20] and the more recent work on UMPRS [22] both offer architectures
capable of operating effectively in unpredictable domains. Like SRTA, PRS can
use context to select from among alternative goal satisfaction plans, and its
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continuous reevaluation of these intentions allows it to be more responsive to
unexpected events. This reactive nature prevents it from forming a complete
end-to-end view of activity, so, unlike SRTA, future behavior cannot be pre-
dicted. PRS does offer blocking points, so synchronization messages can be
used to facilitate more reactive coordination among agents [3].

Like the Remote Agent (RA) architecture [32], SRTA uses a layered approach
to consolidate particular functionalities within discrete components. It employs
a planner/scheduler component, plan library, has resource models and an exe-
cution subsystem that performs monitoring and is capable of selecting alter-
natives in the case of failure. RA’s execution system allows planning to occur
concurrently, and supports multiple parallel actions as SRTA does, but it oper-
ates in a separate thread which likely allows for more fine grained control of
action initiation. Unlike RA, SRTA accomplishes this with a single modeling
language, TÆMS, which is shared by all components. RA’s successor, IDEA
[31] resolves this issue, thereby reducing the overlapping effort otherwise needed
to provide plans to the engine, although SRTA is still differentiated by the abil-
ity of TÆMS to model uncertainty, soft interrelationships, and a range of com-
mitment types. RA’s model identification and recovery system is analogous to
SRTA’s conflict resolution model, and also to work we have done separately
involving a true diagnosis module [12], although RA uses a model-based sys-
tem, as compared to SRTA’s more heuristic approach.

3T [1] also uses a layered architecture, including a planner and sequencer. In
addition to activities which are described with traditional plans, 3T’s domain,
primarily robotics, also contains a large suite of actions which, although they
may be complex, do not require active planning. To support this, 3T offers
RAPs, an additional reactive task description below what SRTA considers to be
primitive actions. SRTA differs from 3T model in its quantitative use of prob-
ability and uncertainty to describe the results and effects of activities during
planning and scheduling, although 3T’s planning language offers support for
more concrete preconditions and effects.

Our work also relates to [53], which provides a scheme for selecting control
policies in context through the use of progressive reasoning and opportunity
cost. This technique, operating in an environment consisting of a set of tasks
which may have uncertain qualities and duration, reactively chooses subsets of
modules from a progressive processing unit in response to newly arrived goals.
Each subset of modules is compared using a characterization of its expected
execution performance, and the most appropriate plan chosen based on oppor-
tunity cost. Although using opportunity cost to discriminate among plans does
implicitly consider their time-related interactions, SRTA is able to reason more
directly over temporal constraints, such as deadlines and earliest start times,
between both goals and the individual actions which are used to achieve a goal.
SRTA also differs in its use of satisfying techniques for plan selection, and
its ability to directly reason about task and method interactions, resource con-
sumption and the external constraints needed to coordinate with other agents.

The DECAF framework [11] and associated DRU scheduler [10] are closely
related to this work, the latter having been leveraged from SRTA’s DTC
scheduler. Like TÆMS, the DECAF language allows the designer to model
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tasks and actions, and includes notions similar to QAF and enablement. It
does not have support for the explicit modeling of resource interactions, and
also does not have a notion of soft interrelationships. In general, this frame-
work trades off the additional complexity seen in SRTA to achieve performance
improvements through reduced combinatorics. In addition, the DRU scheduler
uses a potentially more efficient, threaded execution process which can take
advantage of multiple processor environments.

The partially ordered schedule representation used by SRTA is also similar
to that used in [50], although that framework has a simpler model of resource
interactions. In comparison to SRTA’s satisficing technique, this framework also
employs a more formal search process which will lead to an optimal schedule if
one exists.

7. Conclusion and future directions

The SRTA architecture has been designed to facilitate the construction of flexi-
ble and efficient agents, working in soft-real time environments possessing com-
plex interactions and a variety of ways to accomplish any given task. With
TÆMS, it provides domain independent mechanisms to model and quantify
such interactions and alternatives. DTC and the partial ordered scheduler rea-
son about these models, using information from the resource modeler, current
execution characteristics, and the runtime context to generate, rank and select
from a range of candidate plans and schedules. An execution subsystem exe-
cutes these actions, tracking performance and rescheduling or resolving conflicts
where appropriate. The engine is capable of real-time responsiveness, allow-
ing these techniques to be used to analyze and integrate solutions to dynami-
cally occurring goals. We have successfully used SRTA to address the challenges
posed by the distributed sensor network domain, which exhibit such real-time,
dynamic characteristics.

SRTA’s objective is to provide domain independent functionality enabling the
construction of agents and multi-agent systems capable of exhibiting complex
and applicable behaviors. Its ability to adapt to different environments, respond
to unexpected events, and manage resource and activity-based interactions allow
it to operate successfully in a wide range of conditions. We feel this type of
system can form a reusable foundation for agents working in real-world envi-
ronments, allowing designers to focus their efforts on higher-level issues such as
organization, negotiation and domain dependent problems.

More generally, the significance of the work presented in this paper comes from
its demonstration that it is possible to perform the complex modeling, planning
and scheduling that has been described in our prior research, in soft real-time.
Previously, these techniques were analyzed only in theory or simulation, and it
was not clear that our heuristic approach would be sufficiently responsive and
flexible to address real-world problems. The SRTA architecture shows that engi-
neering can be used to combine and streamline these approaches to make a viable,
coherent solution.
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There are several technical directions that we think are important in devel-
oping this framework further. While the current architecture does work in soft
real-time in the domain described in this paper, that is no guarantee it will
do so in other domains with different problem characteristics and responsive-
ness constraints. Allowing individual components to operate in an anytime [52]
or time-bounded fashion would allow the system’s performance to be more
predictable. DTC already provides this capability to a certain degree. An effi-
cient meta-level reasoning component would allow the agent to directly decide
how much effort to allocate towards scheduling, conflict resolution, and exe-
cution, and then pass that information to the appropriate components so that
they can bound their computations appropriately. This type of direct account-
ing for meta-level activities would better equip the agent to meet strict dead-
lines. Recent work in this area in an architecture conceptually similar to SRTA
[35] has shown these techniques to be possible, and we hope to integrate this
functionality into SRTA.

SRTA also is currently unable to provide a meaningful description in case
of failure, which makes it unclear how to react in these situations. For exam-
ple, when a schedule or plan cannot be found within the provided context, no
feedback is available to help determine what aspects of the context were most
restrictive. It could be useful, to know if a resource is unavailable, a deadline
was too tight, or if the desired quality level was unachievable. Similarly, when
an action fails during execution, it is primarily the responsibility of the high-
level reasoning component to determine why it failed and how to recover if the
built-in conflict resolution system is unable to do so. Improving this capability,
particularly in a domain independent fashion, is an area of future work.

Notes

1. Effort sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory Air Force Materiel Command, USAF, under agreements num-
ber F30602-99-2-0525 and DOD DABT63-99-1-0004. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. This material is also based upon work supported by the National Science
Foundation under Grants No. IIS-9812755 and IIS-9988784. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation. Furthermore, the views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), Air Force Research Laboratory or the U.S. Government.

2. This work was performed while the author was affiliated with the University of Massachusetts.
3. If the tracking of the vehicle in previous time frames was very accurate relative to where the vehi-

cle actually was, only two sensors would be needed for triangulation (where uncertainty between
multiple candidate points is resolved by using the track information) However, the uncertainty of
the prior track, coupled with the potential for poor quality measurements leads us to use more
sensors where possible.

4. Note that a method’s expected duration does not imply use of a (bounded) CPU during that
time. Early implementations of TÆMS assumed that a method’s duration implied the complete
use of the local processor during that period. We now allow methods which are otherwise inde-
pendent to run concurrently. The original, single-processor behavior can be modeled through the
use of a shared processor resource, which is reasoned about like any other resource.
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5. To be more precise, DTC does support a particular kind of parallelism associated with a method’s
percentage of processor usage, but it is not sufficiently general for SRTA’s needs [47].

6. Recall that facilitation models one process having a positive impact on another, e.g., producing a
result that enables the other to do a better job or take less time to perform.
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