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Abstract— Managing and participating in complex, dynamic
business processes is difficult due to their inherent uncertainty,
which undermines the predictability necessary for efficient plan-
ning and execution. Effective management of these processes
hinges on the ability of the manager to recognize unantici-
pated difficulties in the process execution, determine the causes
of the anomalies, and implement remedies. Current process-
management approaches respond reactively to process dynamics,
if they deal with them at all.

In this paper, we present the ProME process-management
environment, focusing on how human process managers and
participants interact with a dynamic, on-line model of executing
dynamic processes to proactively manage and operate in dynamic
business processes. We show how having the best information
available about a process and its future can provide managers
with the time needed to detect and understand impending process
anomalies and to develop and implement effective interventions.
Furthermore, we show how enabling managers to update the
model of executing processes and having the effects of those
modifications be pushed to the relevant participants reduces
the time it takes to implement remedies. ProME was used in
a commercial product for managing design processes in the
automotive and aerospace industries.
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I. INTRODUCTION

Effective management and execution of business processes are
playing an increasingly important role as economic pressures
force businesses and government to work faster and with
fewer resources. As operations are streamlined, difficulties in
managing the details of important business processes become
critical limits to increased performance and cost savings.

Managing complex business processes has always been dif-
ficult, but the increased interaction among processes (through
shared resources and results) and increased concurrency of
activities within processes (to complete processes sooner) now
leave process managers with less time to make decisions
and significantly expands the ramifications of those decisions.
Sometimes, the process itself cannot be fully elaborated until it
is underway. Today’s managers must routinely investigate and
evaluate process status, estimate progress in relation to dead-
lines, handle exceptions and resource problems, worry about

potential downstream issues, and change the process structure
and details accordingly. For example, key resources may need
to be reassigned or may become unavailable, information and
results may not arrive when expected, tasks may take more (or
less) time than expected, results may be surprising and suggest
other activities, and so on.

Due to process dynamics and uncertainty, these events
cannot be anticipated nor can contingencies be established
for them beforehand. Therefore, a significant contributor to
the effectiveness of business-process execution is the ability of
managers to make appropriate and timely process assessment,
guidance, and adjustment decisions. These adjustments include
adapting and modifying previously defined process definitions
to fit the current situation and the creation of new process
definitions on the fly. Information technologies have addressed
pieces of the process-management problem [1]. For example,
project-planning and process-modeling tools can be used to
engineer business processes off-line, with workflow systems
automating their execution. Project management and reporting
tools document how execution has progressed. These technolo-
gies work well enough with routine, steady-state processes, but
they fail to address the problems of managing complex, dy-
namic processes that are present in many real-world situations.
What is needed are decision-support technologies that keep
process-management activities ahead of the rate of change in
the processes.

Recently, business activity monitoring (BAM) [2] tech-
nologies have been developed that provide near real-time
access to critical process-status indicators. Although these
technologies improve decisionmakers’ understanding of the
state of processes, they do not provide knowledgeable esti-
mates of downstream process activities and potential problems
that are required in order to make proactive management
decisions. To break this time barrier, we have developed a live-
representation process-management approach [3] that main-
tains a real-time view of past, present, and anticipated process
activities and resourcing. Changes resulting from process
dynamics are directly reflected in the live representation so
that, at any point in time, the latest information about process
status and downstream expectations is available. Managers can
directly manipulate the representation to change process struc-
ture and execution behavior. These changes are immediately
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Fig. 1. An Executing Transmission-Design Process

propagated throughout the environment, keeping managers
and process participants in sync with process changes and
downstream expectations.

II. PROME: PROCESS MANAGEMENT AND EXECUTION

ProME is an advanced process-management decision-support
environment that implements the live-representation approach.
It has been used commercially in a product for managing
complex automotive and aerospace design processes [4]. Au-
tomotive and aerospace design involves dynamic processes
that use limited and highly expensive physical and personnel
resources and require the careful coordination of diverse
organizational units.

ProME addresses the reality of dynamic process man-
agement by facilitating continual proactive process guidance
and adjustment as well as on-the-fly process definition and
elaboration. Consider the following simplified excerpt from
an automotive transmission design process (Figure 1). This
excerpt shows a portion of the initial design loop in which
high-level design parameters are determined by a set of
analysis tasks performed in parallel during each iteration.
Some of the possible analyses are torque converter analysis,
pumps analysis, gear systems analysis, electrical analysis,
preliminary manufacturability analysis, and preliminary cost
analysis. Depending on the state of the high-level design,
only the relevant analyses are performed. Any of the executed
analysis tasks can invalidate the current design, requiring that
it be modified and that the new design be submitted to the
relevant analyses for verification in the next iteration of the
loop. This design, test, and modify loop is repeated until a
feasible high-level design is produced.

When the process is first scheduled, ProME must estimate
how many iterations of the loop are likely to be executed.
Using knowledge specified in the process definition, assume
that two iterations of the loop are needed and that, at this
level of design, only the torque converter, gear systems, and
the electrical analyses are likely to be performed. ProME uses
these expectations to generate a process plan of the tasks

that are expected to execute. In this case, the process plan
includes the task for obtaining the new vehicle specifications,
two instantiations of the tasks needed by each of the analyses
expected to execute (one for each expected iteration), and the
tasks needed to refine the design.

Once the process plan is constructed, an initial schedule is
generated with resource reservations. As the process executes,
the initial tasks for the analyses begin to execute. When the
review analysis task for the torque converter analysis executes,
it returns a failed analysis. At this point, the current design
is not feasible and must be modified. In addition, the other
analyses tasks for this iteration are no longer necessary, and
ProME aborts the tasks that are executing and cancels those
that are scheduled. The resources associated with the tasks are
released and the remaining downstream tasks in the process
are rescheduled. By integrating process representation, execu-
tion, and scheduling, ProME is able to capture the process
designer’s intent to abandon all other analyses if one fails,
detect when that state arises, reconcile the process plan and
schedule to the changes, and keep both the manager and the
process participants apprised of the current and expected state
of the executing process.

Continuing with the example execution of the process,
the second iteration of the design-test-modify loop begins.
In determining which analyses are needed, it turns out that
a previously unexpected analysis, pumps analysis, is now
required. Through the execution model, ProME automatically
detects this new requirement and inserts the tasks that com-
prise the pumps analysis activity into the appropriate places
in the process plan. In scheduling those tasks, a special
test compressor is needed. However, it turns out that this
compressor is being used by another process at the desired
time, introducing delay into the schedule. The delay causes
the schedule to extend beyond a specified deadline, and the
manager is notified. Because the manager is informed of the
deadline violation at the point of adding the new analysis,
she is able to search for alternatives prior to the actual
occurrence of the problem. In this example, she is able to
borrow a similar compressor from another division. When this
temporary availability of a new compressor resource is added
to the system, its availability triggers the rescheduling of the
delayed tasks that can use that resource. Once rescheduled,
the tasks are no longer delayed, and the deadline is no
longer violated. This type of proactive decision cannot be
made without detailed downstream forecasting. Furthermore,
an automated managerial intervention cannot be made unless
the system supports on-the-fly modification of processes and
resources.

The following five capabilities are pivotal in ProME:
1) Complete process representation—The approach be-

gins with a knowledge-intensive definition of the dy-
namic process, with sufficient detail to allow automated
execution and to make reasonable expectations of down-
stream activities.

2) Direct execution–The process definition is instantiated
and executed for each process so that the representation
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matches exactly what is happening as the process is
executed. Direct execution is important for validation of
the process representation and to ensure that on-the-fly
modifications to the representation will be reflected in
the executing process.

3) Integrated downstream forecasting—Dynamic
scheduling of downstream activities and resources
are needed to allow time for proactive intervention.
The scheduling must be tightly integrated with the
direct execution of process representations and must
balance the need for process flexibility with the need
to maintain process stability whenever possible. It must
be able to make timing and resourcing decisions across
multiple processes using criteria provided by process
designers and execution managers.

4) Presentation of execution status, history, and ex-
pectations—The latest details of process state and
downstream expectations must be presented, tailored for
understandability, and relating directly to the process
representations, to focus attention on problem areas.

5) On-the-fly process modification—Managers must be
able to change the process structure and execution details
of executing processes in response to unanticipated
situations and problems.

In concert, these capabilities allow managers to quickly com-
prehend current process status and potential downstream prob-
lems, make proactive interventions, and have those interven-
tions immediately reflected in the executing processes.

III. PROCESS REPRESENTATION

ProME’s capabilities place a diverse set of requirements on
its process representation. First, the representation must be
fully executable. Everything that needs to be known for
process execution must be represented: software, resources,
data, interfaces, etc. Second, the representation must include
the knowledge needed to perform downstream scheduling.
This knowledge includes contextual expectations of each task’s
duration and resource requirements, likely conditional and
looping choices, and so on. Third, the representation must be
expressive and intuitive to process managers and participants.
The representation should enable rapid understanding of what
is happening and will happen and support both abstract
and detailed presentation. Fourth, the representation must
be amenable to in-process structural modification, including
moving entire process subtrees within the process definition.

A variety of process representations have been devel-
oped [5, 6, 7, 8, 9, 10]. While each represents a variety of
constraints and semantics of processes, none of them captures
the control knowledge necessary for predictive, downstream
scheduling. For example, scheduling processes with loops and
conditionals requires estimating the number of iterations a
loop may take and the specific branches to be taken. Although
workflow management systems track the progress of process
execution and facilitate the passing of data among tasks and
the invocation of automated tasks [11], they do not schedule
downstream activities and resource allocations [12]. The recent

BPML specification for describing business processes within
Web services [13] has been augmented with richer control
semantics, but it is designed for execution and modeling,
not dynamic scheduling. Lastly, these representations are not
designed to quickly present process status and information
to non-technical users—an important criteria in the live-
representation approach.

ProME’s process definition represents a family of potential
process plans that are specified as a hierarchy of container
and non-container tasks (Figure 1) [14]. Non-container tasks
can be thought of as the detailed activities in a process, while
container tasks form the control structure in which the ac-
tivities are embedded. Container tasks have control semantics
that are used when generating the process plan, but they are
not explicitly part of the process plan. The container task
types are: task structure, serial, parallel, branching, parallel-
branching, looping, and quantified (a runtime replication of
process substructure executed in parallel). Non-container tasks
do not have child tasks and become part of the process plan.
Examples of non-container task types are: executable (an
arbitrary computation performed by the process manager), user
assistant (a browser based interface to a human participant),
task valet (a program launched by a fully automated desktop
service), placeholder (reserves resources and time for a yet-
unspecified detailed process-definition fragment), component
(invokes another process definition as a subprocess), and return
(provides non-local termination/aborting of a process subtree).

Each task in a process definition includes behavioral knowl-
edge that is used in process scheduling and rescheduling.
For container tasks, this behavioral knowledge controls the
structure of the generated process plan. For example, when
a process plan is generated for a parallel-branching task
during initial scheduling, a set of scheduling-time functions
corresponding to the task’s children is evaluated to determine
which children should be expanded and included in the process
plan. Only data values that are available in advance of task
execution can be used in these schedule-time predicates.
When the parallel-branching task executes, a separate set of
execution-time predicate functions corresponding to the task’s
children is evaluated to determine which children are actually
executed. Non-container tasks include behavioral knowledge
that determines the expected duration of the task and the
possible sets of resources that can accomplish that task. The
process definition is atemporal. It does not have separate
objects for tasks that might be executed more than once, such
as the tasks within a looping task. When the definition is first
scheduled for execution, an explicit process plan with objects
for all scheduled tasks is generated from the process definition.

IV. RESOURCE MANAGEMENT, SCHEDULING AND
EXECUTION

Fundamental to the live-representation approach is maintaining
the best estimate of how the execution of that process will
unfold. Major components of that estimate are a schedule
of what activities are expected to be executed, the resources
that are assigned for them, and their expected start and finish
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times. The schedule for a dynamic process is a highly fluid
entity that constantly changes in response to process execution,
new information, and a changing environment. To generate
and maintain this type of schedule, ProME uses PROTEUS, a
unique distributed, constraint-based scheduler that is tightly
integrated with process execution [14]. PROTEUS uses heuris-
tics to evaluate and trigger appropriate responses to execution-
time events, balancing the trade-offs among efficient resource
allocation, schedule volatility, and rescheduling costs. It pro-
vides mechanisms for automatically manipulating the process
plan in response to events, such as the execution of control
constructs and structural edits performed by a manager. Shared
resources for overlapping executions of processes require that
these heuristics have an enterprise-wide perspective; i.e., they
must assess the effect that individual process dynamics have
on all the other executing processes that interact or share
resources with that process.

For each resource (including human participants), ProME
maintains a model of that resource and a schedule of com-
mitments. These are managed by a distributed set of resource
managers. Human participants are modeled as complex mul-
tiplexing resources that are able to choose when to perform
activities within bounded assignment windows. PROTEUS en-
sures that there is sufficient time for participants to perform
their activities, but only a macro-level schedule of due dates
and estimated start times are provided to participants. Every
resource can be assigned an arbitrary number of roles which
it can perform. When a process activity specifies a particu-
lar set of resource-role specifications, resource managers are
contacted by PROTEUS to satisfy the resource request.

The interplay between process execution and scheduling is a
key aspect of the ProME architecture. Although there has been
significant work done on rescheduling in response to execution
dynamics—especially in the area of constraint-based sched-
ulers, such as ISIS [15, 16], MICROBOSS [17], OPIS [18],
and OZONE [19]—this work has not addressed dynamics that
involve changes to the structure of the executing processes.
There has also been scheduling work on selecting the best
process plan given the current state of execution. Whether a
Markov Decision Process is used, as in RTDP/ROUT [20],
or the aggregation of statistical distributions throughout the
process plan, as in design-to-criteria scheduling [21], this work
assumes that the process definition includes all the possible
paths that may be taken during execution. For the dynamic
processes supported by ProME, however, the closed-world
assumption cannot be made. Many decisions that affect the
process structure cannot be made until execution of the process
definition is underway. Furthermore, unexpected results or
events may lead to changes to the process plan that were never
anticipated. Since every execution may be radically different,
each new execution is effectively a first-time execution that
should be executed “first time best.” Performing well on
average is not good enough.

Fig. 2. To-Do List for Corkill

V. PROME AT WORK

To give a feel for how a process manager and participants
might use ProME, we present the following simple example.
Using the automotive-transmission design process shown in
Figure 1, we show how ProME alerts a manager of a down-
stream deadline problem, how the manager uses ProME to
modify the executing process, and how the participants in the
process are notified of the changes. In presenting the example,
we will refer to some of the major components in the ProME
environment:

• Server—Provides process definition and execution ser-
vices. Each Server maintains the on-line model of pro-
cesses assigned to it and can cooperate with other Servers
(within the same organization or with Servers in other
entities, such as suppliers) in coordinating interactions
and the use of common resources and information. Each
Server also provides resource-management services for
resources assigned to it.

• Developer—A graphical development client for creating,
editing, and maintaining process definitions and libraries.

• User Assistant—A browser-based graphical desktop
“agent” for people performing process tasks. The User
Assistant notifies the user of task requests, maintains a to-
do list of assigned tasks and tasks in process, allows users
to launch desktop applications, and provides facilities for
users to update and complete tasks. The User Assistant
also includes a live calendaring facility that allows a
participant to manage blocks of time that she is available
as a resource for performing tasks assigned by ProME.
These availability blocks can be changed on the fly and,
as with other dynamic events, these changes can trigger
rescheduling.

• Execution Manager—A graphical monitoring and con-
trol client for managing an executing process.

• Task Valet—A Java-based desktop proxy agent that
allows a user to specify what fully-automated activities
can be performed on her behalf, without user supervision.

The example begins with an executing process. As part of
initiating the execution of the process, a schedule is generated
for the tasks expected to execute. In this schedule, a process
participant, Corkill, has been assigned several tasks. He is
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Fig. 3. Calendar for Corkill

notified of these tasks through the To-Do List on his User
Assistant (Figure 2). Not only does Corkill’s To-Do List
contain assigned tasks that are currently active, but it also
shows scheduled future tasks and the time windows within
which they are expected to occur.

As a process participant, Corkill, has specified time blocks
that he is available to work on ProME assigned tasks using the
calendaring facility in the User Assistant. This facility keeps
ProME apprised of changes in a participant’s availability over
time. In our example, after the process has begun to execute,
Corkill decides he must take a personal day. He updates
ProME by going to the appropriate day in the calendaring
facility (Figure 3) and marks that day as a personal day. This
informs the Server maintaining Corkill’s availability of the
change, and it checks all the existing reservations for Corkill
during that day. The Server then notifies all Servers associ-
ated with those reservations, causing them to reschedule the
affected tasks. In our example, this change causes a deadline
constraint for the Review Analysis task to be violated in the
revised schedule due to no other resources being available
to complete the requisite tasks before the specified deadline.
The manager is alerted to the scheduled violation by a pop-up
notification in the Execution Manager (Figure 4).

In addition to the pop-up notification, the Execution Man-
ager helps the manager identify the tasks that contribute to the
delay due to resource contention by outlining them in purple,
signifying their bottleneck status. In our example, the Review
Analysis task itself is a bottleneck. The manager determines
from this information that changing the resourcing on the
Review Analysis task might remove the deadline violation and
decides to add Zack (borrowed from another division) as an
additional resource available for that task. The manager makes
this modification to the executing process using the edit facility
in the Execution Manager (Figure 5) and, indeed, Zack can
perform the Review Analysis task in time be beat the deadline.
Corkill is informed through his To-Do List that he no longer
needs to participate in the Review task, and Zack is informed
of the reassigned task through his To-Do List (Figure 6).

Fig. 4. Deadline Notification

Fig. 5. Resource Change

This simple example shows how a single availability change
can affect a tightly scheduled dynamic process. The man-
agerial intervention involved making an additional resource
available to a bottleneck task. If resource sharing among
divisions was routine, this possible remedy could be added
to the process definition, in which case ProME would address
the deadline violation without managerial intervention. In a
more complex situation, our manager could have performed
more substantial interventions, such as changing the structure
of the executing process, should that have been appropriate.
The Servers in ProME would handle such changes in a similar
fashion, determining what scheduled tasks and resources are
affected, rescheduling them, and notifiying process managers
and participants as appropriate.

VI. SUMMARY

In summary, ProME achieves the following goals:
• improves process coherence by keeping participants and

managers informed of the current state and downstream
expectations of processes

• enables proactive response to process and resource prob-
lems before they occur by providing a clear picture
of what the processes will do in the future without
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Fig. 6. To-Do List for Zack

intervention
• pushes appropriate information to participants when it is

needed
• allows customization of individual activities based on

process context
• supports resource allocations among processes
• supports cross-organizational collaboration processes via

inter-organizational process linking and resource alloca-
tion strategies

By keeping process managers and participants informed of a
process’s past, present, and expected behavior, ProME enables
them to make better decisions based on the most accurate
information available. Furthermore, with on-the-fly modifica-
tion, managers can directly and immediately implement the
inevitable changes necessitated by those decisions into the
model for the executing process, making the changes and the
new responsibilities visible to all of the relevant participants.
By providing for this critical cycle of informing participants of
the current state of an executing process and of empowering
them to make on-line changes, ProME reduces the time it takes
to recognize and adapt to execution-time dynamics, leading to
more effective process executions.
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