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Abstract

Classifier induction algorithms differ on what induc-
tive hypotheses they can represent, and on how they
search their space of hypotheses. No classifier is bet-
ter than another for all problems: they have selective
superiority. This paper empirically compares six clas-
sifier induction algorithms on the diagnosis of equine
colic and the prediction of its mortality. The classi-
fication is based on simultaneously analyzing sixteen
features measured from a patient. The relative mer-
its of the algorithms (linear regression, decision trees,
nearest neighbor classifiers, the Model Class Selection
system, logistic regression (with and without feature
selection), and neural nets) are qualitatively discussed,
and the generalization accuracies quantitatively ana-
lyzed.

1 Introduction

Equine colic—a painful acute abdominal crisis—
attributable to gastrointestinal tract disease is the
leading cause of death in adult horses. Colic horses
require immediate clinical decision making as they of-
ten need surgery to open up mechanical obstructions
and to remove necrotic parts of the intestine. Endo-
toxaemia is a typical characteristic of colic. Survival
largely depends on host responses. The patients actu-
ally die due to a hyperbolic inflammatory response that
involves numerous biological pathways. It is not known
why some horses (non-survivors) hyperreact and fur-
ther, which particular regulation mechanism within the
inflammatory cascade goes wrong. The process of in-
testinal colic is dynamic and currently there is no safe
indicator to tell the point at which the horse is ”over
the edge” and cannot be saved. The disease culminates
in fluid- and acid-base disturbance, diffuse coagulopa-
thy, multiple organ dysfunctions, and finally death.
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Due to the high mortality rate in the surgery and
the high cost of the operation (about US$ 10,000), one
would like to only operate on horses that A) actually
have the disease, and B) will survive the operation.
This gives rise to two classification problems: morbid-
ity diagnosis (sick or healthy), and mortality prediction
(survives or dies).

The data consisted of 105 horses with severe gas-
trointestinal colic; 42 colic horses died within three
days and 63 survived the colic episode. Another 52
healthy horses served a a control set in the morbid-
ity diagnosis problem. The predictor data, collected
at admission to the clinic, included sixteen features:
pulse rate, breath rate and the following laboratory
measurements: PCV, HCOj, base excess, anion gap,
plasma Na*t, Kt, Cl~, fibrinogen, D-dimer, endotoxin,
the enzymes SDH, GLDH, PLA,, and a D-dimer to fib-
rinogen ratio.

Several studies have analyzed the diagnostic and
prognostic value of individual features and feature
combinations in equine colic; for a review, see Sand-
holm et al. (1995). High pulse rate associated with
high packed cell volume, dull color of mucus mem-
branes, delayed oral mucus capillary refill time, dis-
turbances in acid-base parameters—such as increased
lactate or anion gap—and a hypercoagulative condi-
tion have been used as predictors for poor progno-
sis. In other words, pathophysiological knowledge has
guided decision making. Multiple logistic regression
has been used to combine various predictors for most
accurate prediction so far (Reevers et al. 1992). Re-
cently Sandholm et al. (1995) reported that increasing
heart rate and plasma D-dimer together with decreas-
ing chloride was a typical risk factor for non-survival,
and that these three features could be used to enhance



the accuracy of the logistic regression.

This paper discusses the application of symbolic in-
duction algorithms, neural networks, and statistical
techniques to morbidity diagnosis and mortality pre-
diction in equine colic. There were three objectives to
this research. The first was to find the method that
results in the most accurate classification of morbidity
and mortality by intelligently using different measured
features of a patient simultaneously. The second was to
gain further insight into the strengths and weaknesses
of the available classifier construction algorithms. The
third objective was to determine which features are ac-
tually useful in the prediction and should therefore be
measured from horses in clinics.

The remainder of this paper is organized as follows.
Section 2 describes how the the different classifiers were
evaluated. Section 3 discusses the different classifier in-
duction methods, and presents qualitative comparisons
and quantitative evaluation results. Section 4 discusses
the pruning of features that are not relevant. Section 5
concludes and presents directions for future work.

2 Experimental classifier evaluation

To allow for fair comparison, each of the various classi-
fier construction methods was applied using the same
experimental conditions. To assess the ability of each
method to produce an accurate classifier we average,
for each method, the results of ten runs. For each run
we split the original data randomly into two sets; 90%
of the data was used to form the classifier and the re-
maining 10% was used to evaluate the classifier. We
hold back 10% of the data for testing because the goal
of a classifier construction method is to create a clas-
sifier that will provide a high degree of accuracy when
used to classify previously unseen cases.! For each of
the 10 splits, the few missing feature values were re-
placed with the class average observed for the feature
in the training set.

To ensure that the distribution of cases across the
classes of sick and healthy (similarly died and survived)
is the same in the training and test sets, we first sorted
the data into these two groups. We then dealt the
horse cases out randomly to the training and test sets
in the specified proportions (90 and 10). Each method
was run using the same partitions. In the experiments
we report the average of each method’s generalization
accuracy: accuracy on the independent test sets.

3 Classifier induction methods

In addition to traditional classification methods such as
linear regression and logistic regression, several dozen
classifier construction algorithms have been developed

'If the evaluation were done on the same data as the
training, some methods would achieve 100% accuracy, be-
cause they would remember the classes of the training ex-
amples correctly.

in the last few decades in the machine learning com-
munity, including various versions of perceptron (Nils-
son 1965), version space (Mitchell 1977), decision tree
(Quinlan 1986), instance-based (Duda & Hart 1973),
and neural net algorithms (Rumelhart & McClelland
1986). The results of empirical comparisons of existing
algorithms illustrate that each algorithm has a selective
superiority: it is best for some but not all classifica-
tion tasks (Brodley 1993). Selective superiority arises
because each learning algorithm searches within a re-
stricted hypothesis space defined by its class of models.
For example, the class of first-order linear regression
models is not appropriate when the data is best fit by
a second-order linear regression model. In addition,
each method has a specific strategy for exploring its
hypothesis space; exploring the entire is space is typi-
cally computationally infeasible.

The existence of selective superiority can also be eas-
ily shown by a theoretical argument. Say that one
wants to show that classifier A is better than classifier
B on all classification problems in terms of accuracy
on feature vectors that are not in the training set. A
classifier is a mapping from feature vectors to classes.
For classifier A to be better than B, these two clas-
sifiers have to have different classifications for some
feature vectors. If both classifiers are consistent with
the training set, then the feature vectors on which the
two classifiers predict different classes cannot be the
training set. Let an adversary pick the correct class
for these feature vectors. Now, the adversary can pick
so that A misclassifies all of them, while B classifies all
of them correctly. Thus for this labeling, B is a better
classifier than A, which disproves the attempted argu-
ment. Thus no classifier can be better than another in
general in the sense of generalization accuracy, because
an adversary can refute this claim.

This paper compares six methods for constructing
classifiers in the morbidity diagnosis and mortality
prediction problems: linear regression, decision trees,
nearest neighbor classifiers, the Model Class Selec-
tion system, logistic regression, and 3-layer feedforward
neural networks. These methods, their relative merits,
and the results regarding classification accuracy are
discussed in the following subsections.

3.1 Linear regression

A linear threshold unit (LTU) (Nilsson 1965) is a bi-
nary test of the form W'Y > 0, where Y is a vector
consisting of a constant 1 and the n features that de-
scribe the instance. W is a vector of n+ 1 coefficients,
also known as weights. If WTY > 0, then the LTU in-
fers that Y belongs to one class A, otherwise the LTU
infers that Y belongs to the other class B.

To find the set of weights that leads to an accurate
classifier, we used the Recursive Least Squares (RLS)
Procedure (Young 1984). RLS, invented by Gauss, is a
recursive version of the Least Squares (LS) Algorithm.
An LS procedure minimizes the mean squared error,



3=, (yi — 9i)? of the training data, where y; is the true
value and g; is the estimated value of the dependent
variable, y, for feature vector 7. For discrete classifica-
tion problems, the true value of the dependent variable
(the class) is either ¢ or —c. In our implementation of
the RLS procedure we use ¢ = 1. Note that a procedure
that minimizes the mean squared error between the es-
timates and the true value of the dependent variable
is a maximum likelihood estimator for the coefflicients.
However, although RLS is a MLE, if the data are not
linearly separable then the LTU will not be able to
capture the exact underlying structure of the data.

3.2 Decision tree

A univariate decision tree is either a leaf node contain-
ing a classification or a node containing an attribute
test. In the latter case, the node contains a branch to
a decision tree for each value of the attribute. To clas-
sify a feature vector using a decision tree, one starts
at the root node and finds the branch corresponding
to the value of the test attribute observed in the fea-
ture vector. This process repeats at the subtree rooted
at that branch until a leaf node is reached. The fea-
ture vector is then assigned the class label of the leaf.
One well-known approach to constructing a decision
tree is to grow a tree until each of the terminal nodes
(leaves) contains training instances from a single class
only. The tree can then be pruned back with the ob-
jective of reducing the misclassification rate. Our al-
gorithm uses reduced error pruning (Quinlan 1987),
which replaces a subtree with a leaf if it reduces the
error on a set of data independent from the training
data. (Note that this requires that we retain a portion
of the training data to use for pruning the tree).

To select a test for a node in the tree, we choose the
test that maximizes the information-gain ratio metric
(Quinlan 1986). Univariate decision tree algorithms
require that each test have a discrete number of out-
comes. To meet this requirement, each ordered feature
A; is mapped to a set of unordered features by finding
a set of Boolean tests of the form A; > b, where b is
in the observed range of A;. Our algorithm finds the
value of b that maximizes the information-gain ratio.
To this end, the observed values for A; are sorted, and
the midpoints between class boundaries are evaluated
(Quinlan 1986; Fayyad & Irani 1992).

Decision trees are restricted to placing boundaries in
the feature vector space that are orthogonal to each of
the feature axes. Therefore if there is any relationship
among the features it may not be captured well. On
the other hand, unlike linear machines, decision trees
are not restricted to dividing the feature vectors lin-
early into classes, because any section of the feature
vector space that is separated from other parts of the
space by a boundary, can be further split into sub-
spaces that carry different class labels. Decision trees
are perhaps the most human-understandable learning
method, which is important for trying to explain clas-

sification decisions.

3.3 Nearest neighbor classifier

A k-nearest neighbor classifier (Duda & Hart 1973) is
a set of n instances, each from one of m classes, that
are used to classify feature vectors according to the
majority classification of the feature vector’s k nearest
neighbors. In this version of the algorithm each in-
stance in the training data presented to the algorithm
is stored.? To determine how near a feature vector is
to another, the Euclidean distance between the two is
computed. In our experiments k was set to one.

Nearest neighbor classifiers have a less restrictive hy-
pothesis space than linear discriminants and decision
trees; they form piece-wise linear boundaries in the fea-
ture vector space. However, if some of the features that
describe the data are irrelevant or noisy then a near-
est neighbor classifier may be inaccurate. One solution
to this problem is to use a learning method to define
weights for each for the features (Aha 1992; Cost &
Salzberg 1993). Indeed, in Section 4 we illustrate that
only a subset of the features are relevant in the diag-
nosis and prediction problems in equine colic.

3.4 Model Class Selection (MCS) system

Given a data set, it is often not clear beforehand which
algorithm will yield the best performance. In such situ-
ations, someone wanting to find a classifier for the data
will be confused by the myriad of choices, and will need
to try many of them in order to be convinced that a
better classifier will not be found easily. Recently, the
Model Class Selection (MCS) system has been devel-
oped to overcome this problem. MCS applies knowl-
edge about the biases (restricted hypothesis spaces and
limited ways of exploring those spaces) of linear dis-
criminant functions, decision trees, and nearest neigh-
bor classifiers to conduct a recursive automatic algo-
rithm search.

MCS uses characteristics of the given data set, in the
form of feedback from the learning process, to guide a
search for a tree-structured hybrid classifier. Heuristic
knowledge about the data characteristics that indicate
that one algorithm is better than another is encoded
in a rule base. The approach does not assume that the
entire data set is best learned using a single algorithm;
for some data sets choosing to form a hybrid classi-
fier will produce a more accurate classifier, and MCS
attempts to determine these cases. The results of an
empirical evaluation illustrate that MCS achieves clas-
sification accuracies equal to or higher than the best of
its primitive learning components for each of a variety
of data sets, demonstrating that the heuristic rules ef-
fectively select an appropriate algorithm(s). Details of
these experimental results and of the MCS system can
be found in Brodley (1995).

2This is distinct from the entire set of training data; the
filtering mechanism may determine that only part of the
data should be given to the k-nearest neighbor classifier.



Table 1 shows the generalization accuracy of MCS
and its component learning algorithms. For the mor-
tality data set, MCS has higher accuracy than its prim-
itive algorithms. For the morbidity data set, every
method except for decision trees performs equally well.

3.5 Logistic regression

Logistic regression is a well-known statistical method
for building classifiers. The idea is to use the log:it
transformation In(c/(1 — ¢)) to recode the classifica-
tion ¢ which is between zero and one. Then a linear
model is used to predict In(c/(1 — ¢)) based on the
input features. The maximum likelihood estimator is
acquired via an iterative least squares method.

Again, for each split separately, the classifier was
constructed based on the training set and evaluated
on the test set. Before each regression, collinearity
was removed. If a feature was highly correlated with a
linear combination of other features, that feature was
dropped from the model. This was repeated with the
remaining features until all such collinearities were re-
moved.

In two-class classification problems, one class is asso-
ciated with the values of ¢ close to zero, and the other
with values close to one. The classification threshold
need not be at ¢ = 0.5. It was chosen so as to maximize
classification accuracy on the training data.

Logistic regression has a very restricted model class:
like linear regression, it can only divide the feature vec-
tor space into two regions—one for each class—using a
hyperplane. Yet, it has advantages over linear regres-
sion. First, it never associates a feature vector with a
class value that is out of range, i.e. greater than one
or less than zero. Second, it tends to assign class val-
ues close to one or zero unlike linear regression, which
linearly assigns values in between also.

Table 1 shows the generalization accuracy of MCS,
its component algorithms, and logistic regression. For
the mortality data set, logistic regression did worse
than a linear discriminant and MCS. For the morbidity
data set, it outperformed the other methods.

Method Mortality | Morbidity
Linear discriminant function 66.0 95.3
Decision tree 62.0 94.7
Nearest neighbor classifier 64.0 95.3
Model Class Selection system 68.0 95.3
Logistic regression 65.0 98.8

Table 1: Average generalization accuracy (%).

3.6 Neural net

We also examined how well the classification prob-
lems can be solved using artificial neural nets. Unlike
the other methods, the neural network is not a single
method but a collection. To instantiate a specific net,
one needs to decide the topology—e.g. number of hid-
den units and connections—and the parameters for the

learning algorithm that updates the weights in the net.
In the experiments, each input feature is an input to
the net, resulting in sixteen input units. The inputs
were not coded or normalized in any way. We used
a three-layer feedforward neural net architecture, be-
cause it can represent any mapping from inputs (from
a closed and bounded part of the feature vector space)
to outputs, i.e. it has no restrictions on the model
class (Hecht-Nielsen 1991). Each input unit was con-
nected to each hidden unit, and each hidden unit was
connected to the single output unit. We denoted one
class with an output of 1 and the other class with a
0. During testing, we used a classification threshold
of 0.5 on the output of the net. The input units sim-
ply output their input. The hidden units and output
unit output according to the logistic function (Rumel-
hart & McClelland 1986). The weights of the connec-
tions were updated using the standard backpropaga-
tion rule (Rumelhart & McClelland 1986). Backprop
has two parameters: learning rate determines how fast
the weights in the net are adjusted and momentum de-
termines how slow it is to change the weight changes
themselves on each update (Rumelhart & McClelland
1986). In our experiments, learning rate was varied
and momentum was set to one tenth of the learning
rate.

We experimented with different net topologies by
varying the number of hidden units from a low of three
to a high of 31. By exploratory data analysis we nar-
rowed the number of hidden units for the tests to five,
ten and twenty. The results, which are very sensitive to
these changes in topology, are shown in Table 2. From
the results it is clear that five hidden units was too few.
On the other hand, twenty seems to be unnecessarily
many on the mortality task, but is a good number for
the morbidity problem. Increasing the number of hid-
den units increases the net’s degrees of freedom—and
therefore also the representation power3—and usually
provides better accuracy on the training data, but may
result in lower accuracy on previously unseen test data
due to overfitting of the training data.

Each training session included 10,000 passes (epochs)
through the training data. After each epoch, the classi-
fication accuracy on the test data was measured. When
using neural nets in practise, it is difficult to know
when to stop training. With too few epochs, the net
will not have enough time to learn. With too many
epochs, the net usually overfits the training data, caus-
ing a decrease in classification accuracy on the test
data. On the equine data sets the optimal point to
stop training varied between net topologies and learn-
ing algorithm parameterizations. Even more problem-
atically, it varied widely between different splits of the
data for a given topology and parameterization.

Each entry of Table 2 reports four different results.
The first number reports the average of the highest

3With n inputs, 2n + 1 hidden units suffice to represent
any mapping from inputs to outputs (Hecht-Nielsen 1991).



observed classification accuracy for each test set, i.e.
when the net had already learned, but when it had not
yet overfit the training data. This number was mea-
sured at the best number of training epochs for each
of the ten splits separately.* According to these num-
bers, the neural net outperforms the other methods—
particularly on the difficult mortality prediction prob-
lem. But this is an unfair comparison because the net
uses the test data in choosing the classifier: it gener-
ates a different classifier at each training epoch (based
on the training set), and the best classifier is chosen
(based on the test set) over all epochs. In practice,
one would not have this information unless part of the
training data was retained for this task, which in turn
could result in lower accuracy because the net would
be trained using fewer training instances. As a more
traditional comparison, the generalization accuracies
were also analyzed at fixed numbers of training epochs
(100, 1000, and 10000). This degraded generalization
significantly, which can be seen in Table 2.

Hidden Mortality

units Learning rate 0.01 Learning rate 0.001
5 62.0, 59.0, 59.0, 60.0 | 63.0, 57.0, 57.0, 53.0
10 72.0, 56.0, 62.0, 60.0 | 70.0, 63.0, 59.0, 53.0
20 71.0, 58.0, 59.0, 61.0 | 70.0, 56.0, 56.0, 57.0
Hidden Morbidity

units Learning rate 0.01 Learning rate 0.001
5 75.3, 66.7, 66.7, 66.7 | 91.3, 66.7, 80.0, 78.0
10 86.7, 71.3, 66.7, 68.0 | 99.3, 66.7, 88.0, 86.7
20 92.7, 68.0, 66.7, 66.7 | 99.3, 77.3, 94.7, 98.0

Table 2: Average generalization accuracy (%). The
first number is the accuracy when training is stopped
on the best epoch for each of the ten training sets sep-
arately. “Best” is measured as classification accuracy
on the test set. The second number is the accuracy
after 100 epochs, the third for 1000, and the jth for
10000.

4 Feature selection

In the method comparison experiments above, all six-
teen features were used. It is sometimes advantageous
to lower the dimensionality of the feature vector space
by ignoring some features. This allows a finite set of
training instances to populate the space more densely,
but may ignore significant predictors.

In our feature selection experiments, both the train-
ing data and test data were used together. To begin
with, collinear features were removed as in Section 3.5.
Then feature selection was performed exhaustively by
running a linear regression on each possible combina-
tion of the features. The criterion for the goodness

*In 92% of all the splits of the mortality data, highest
generalization accuracy was achieved by 500 epochs. Sim-
ilarly, in 80% of the splits of the morbidity data, highest
accuracy was achieved by 500 epochs.

of the model was based on the adjusted R? statis-
tic, which takes into account both the residual sum
of squares, and the number of features in the model
(Statistix User’s Manual 1992). In general, the model
with the higher adjusted R? was preferred, but when
the difference in the adjusted R? was small for two
models (less than 0.0225), the model with fewer fea-
tures was chosen. The best model for the morbidity
problem contained four features: endotoxin, KT, pulse
rate, and D-dimer. The best model for the mortality
problem contained three features: Cl~, D-dimer and
pulse rate.®

Next we analyzed the accuracy of logistic regression
using these reduced feature sets. For each split we
trained the model on the training data and tested it
on the separate test data. The average accuracy on the
mortality problem increased to 73% but on the mor-
bidity problem it dropped to 95.6%. These numbers
are not directly comparable to those in Table 1 be-
cause the test data was used for feature selection as
described above—and thus implicitly for classifier con-
struction. When trained and evaluated on the same
data (training and test data combined), the classifi-
cation accuracy of logistic regression on the mortality
problem increased to 77.5%.

5 Conclusions and future research

Classifier induction algorithms differ on what inductive
hypotheses they can represent, and on how they search
their space of hypotheses. For example, linear and lo-
gistic regression have very restricted hypothesis spaces
while three-layer neural nets have an unrestricted hy-
potheses space. Yet, no classifier is better than another
for all problems: they have selective superiority. In this
paper we empirically compared six classifier induction
methods in the domains of diagnosing equine colic and
predicting its mortality.

Morbidity diagnosis was easy for all methods. The
average generalization accuracy varied between 94.7%
and 99.3%. Logistic regression and neural nets had
the highest accuracies, but the differences between the
methods were small. High accuracy was achievable be-
cause endotoxin in plasma is an accurate discriminator
between sick patients and controls. Mortality predic-
tion was difficult for all methods. The average gen-
eralization accuracy varied between 62.0% and 72.0%.
Neural nets and MCS had the highest accuracies. For
both classification tasks, MCS had higher accuracy
than any of its base-level methods. The neural net
results are not directly comparable to the other meth-
ods because test data was used in choosing the number

®Feature selection methods using logistic regressions
with forward addition and backward elimination also found
the same feature combinations to be the most relevant ones.
This happened even though instances with missing feature
values were ignored and the sixteenth feature (a ratio of
two other features) was not included among the alterna-
tives (Sandholm et al. 1995).



of hidden units, the learning rate, and the best time to
stop training and generalization accuracy is sensitive
to these choices.

Decreasing the number of features reduced the gen-
eralization accuracy of logistic regression in morbidity
classification, but enhanced it in mortality prediction
from 65% to 73%. This is the best generalization ac-
curacy achieved on the problem. Test data was used
in feature selection, but not in running the logistic re-
gressions. The best classifier for mortality prediction
contained only three features.

The classifiers provide a convenient way of perform-
ing rapid "horse-side” prediction based on a large set
of relatively easily measurable patient features. Future
work would include tailoring classifiers to individual
horse clinics based on their previous cases. Comparison
of the observed mortality with the predicted mortality
would allow a clinic to monitor how well it—or an in-
dividual surgeon—is performing. Classifiers trained on
case data from other clinics would also allow compar-
isons across clinics. When the therapy (surgery) fail-
ures are analyzed against the predicted nonsurvivals,
one can minimize the effect of the status of the horse
and extract the effect of therapy. Therefore, the clas-
sifiers would allow therapy success to be analyzed even
if the status of the horses varies from patient to pa-
tient and from clinic to clinic. Continuous updating
with new cases would indicate the performance trends
of the clinic and of each surgeon.

Another extension would be to analyze the ongoing
change in a patient’s features. With current methodol-
ogy, it is quite difficult to analyze the patient’s chang-
ing condition during the short disease process and to
draw conclusions. Apparently the importance of in-
dividual features changes at different stages of the
disease. Here, rapid classifier-based decision making
could certainly help.
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