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Chapter 3

Instantiating Descriptions of

'Organizational Structures

H. Edward Pattison, Daniel D. Corkill and Victor R. Lesser

Abstract

Instantiating and maintaining large distributed processing networks requires an explicit
description of the system’s organizational structure. Such a description identifies the
system’s functional components, their responsibilities and resource requirements, and
the relations among them. Existing languages with features for describing organiza-
tional structure are inadequate for this task because they cannot describe the complex
domain-specific relations found in many organizations. EFIGE is a language for speci-
fying such relations. EFIGE aids the instantiation of these relations by allowing them
to be constrained from the perspective of their members, and by allowing preferences to
be expressed among instances of them. This chapter describes EFIGE and shows how
relations with complex constraints may be implemented.

3.1 Introduction

The need to describe large and complex process structures—in order to instantiate them
on specific processor configurations and to provide information to the operating system
for resource allocation decisions and communication routing—has been recognized by a
number of researchers, and they have developed languages for this purpose. These lan-
guages include DPL-82 (1], HISDL (2], ODL (3], PCL [4], PRONET [5], and TASK [6].
However, these languages are very weak in their ability to specify the complex process-
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ing structures necessary for the next generation of network architectures and distributed
applications. This is especially true for applications with closely interacting tasks im-
plemented on networks which are heterogeneous compositions of databases, effectors,
sensors, and processors with various processing speeds and memory sizes. For example,
the specification of the processing structure of a distributed processing network that per-
forms signal interpretation requires a complex, domain-specific, communication relation
between interpreting nodes and sensing nodes. This communication relation requires each
interpreting node to communicate only with the smallest group of sensing nodes that can
provide it with information about the region for which it is responsible. At the same
time, each sensing node is required to communicate with a limited number of integrating
nodes in order to minimize the time it must allocate for communication.

The specification of such complex process structures involves identifying functional
components (such as interpreting and sensing nodes), their responsibilities (providing
interpretations of the signals detected in a particular region) and resource requirements
(processor speed and memory size, knowledge about interpreting signals, etc.), and the
relations among them (communication and authority). Together, this information is a
specification of the system's organizational structure. We see specification of organiza-
tional structure as not just parameter substitution and macro expansion, but rather a
problem of organizational planning under conflicting instantiation constraints. These
constraints arrive from the need to specify complex relations among the components
of an organization. Relations include communication relations, authority relations that
specify the importance given to directives from other nodes, and proximity relations that
specify spatial positioning among objects. All of these relations may be complicated by
interacting constraints. This was true of the communication relation between sensing
and interpreting nodes given above, and is true of other relations as well. For example,
a producer of a product whose value decreases with time may require that it be located
near the consumer using the product or that both be located near nodes of a reliable
transportation network.

Existing languages have implemented a few specific relations but their approach is
limited. A communication relation, for instance, is described by explicitly stating that
process X is to communicate with process Y. If the processes may be replicated, this
statement becomes X; communicates with Y;, where ¢ identifies a specific copy of each
process. This form of description is not general enough. If Y3, for example, is lost due to
node failure, X3 might as well be lost. Any information it was to have received from Y,
will not be forthcoming and it will be idle; the production of any information it was to

have sent Y3 will consume system resources in vain. Since the description specifies only
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that X3 is to communicate with Y;, there is no way to find a substitute and one cannot
be created because the characteristics of Y; that made communication with X3 important
are unknown.

Both the ability to specify more complex relations and to allow network designers to
specify domain specific relations (such as the communication relation given above) are
needed. Instead of requiring designers to specify communication relations as point-to-
point connections, they should be asked to supply the criteria by which such pairings can
be determined. The criteria that a member of one domain of a relation uses to recognize
an acceptable member from another domain are called constraints. Constraints specify
a relation because they indicate which pairings of a member of one domain with the
members of another are permissible. More precisely, a relation defines a subset of the
ordered pairs (in general, n-tuples) that is the Cartesian cross-product of each domain
of the relation, where each constraint in the relation is a predicate that selects some of
the pairings as more significant than others. We will more loosely describe constaints
as defining a new, more restricted relation, by refining the definition of a more general
relation.

In this chapter we describe a language, called EFIGE (pronounced “effigy”), for spec-
ifying the complex relations needed to describe a distributed problem solving system’s
organizational structure. We also describe an interpreter for EFIGE, that is able to in-
stantiate a particular organization by combining a description (in EFIGE) of a generic
class of organizational structures and a set of instantiation constraints that specify the
particular instantiation. The introduction of relations defined with constraints to orga-
nization descriptions significantly enhances the description as a symbolic representation
of the organization. It allows the description of organizational classes, as opposed to
descriptions of specific instances of some class. Constraints, however, complicate organi-
zation instantiation. To instantiate a relation, solutions must be found that satisfy each
of the constraints in the relation. This requires searching large spaces of possible solu-
tions in an attempt to find values that will simultaneously satisfy all of the constraints.
As an interim approach, we have adapted an algorithm from the Artificial Intelligence
literature that is used to eliminate inconsistent assignments of values to constraints [7).
This approach is limited, however, because it tries to choose solutions that satisfy one
constraint without first performing some analysis that will insure that the solution will
be acceptable to the remaining constraints. The use of a more sophisticated approach
awaits further research.

In the next section we present an example of an organizational structure, then discuss

how it might be described in an organizational description language. Section 3.3 intro-
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duces the description language EFIGE and indicates how structures are described within
this language. Section 3.4 describes how descriptions are instantiated, and Section 3.5

discusses the current status of this work and its relation to ongoing research.

3.2 An Example

In this section, a hierarchical organizational structure for distributed signal interpretation
is presented. We use this organization as an example with which to identify organizational
features requiring description.

In our scenario for distributed signal interpretation, different kinds of signals are emit-
ted by various vehicles as they move through a region. The system’s task is to create
a history of vehicular activity within the region based on the signals it detects. One
processor organizational structure for performing signal interpretation is the hierarchical
organization. It has three types of components: sensing nodes, which perform signal
detection and classification; synthesizing nodes, which make local interpretations of the
signal information they receive from the sensing nodes; and integrating nodes, which
combine interpretations received from other nodes to create interpretations over larger
portions of the sensed region. Figure 3.1 illustrates an instance of the hierarchical or-
ganizational structure that has one integrating node, four synthesizing nodes, and four
sensing nodes. The figure also shows the lines of communication between the nodes, al-
though the directionality of these communication links and the information transmitted
is not the same between all pairs of nodes. Finally, the figure indicates the overlapping
regions scanned by each sensor. Figure 3.2 shows another instance of the hierarchical
organizational structure. It has five integrating nodes, sixteen synthesizing nodes, and
sixteen sensing nodes.

Figures 3.1 and 3.2 show two instances of the same organizational class. The goal
of this work is to develop a way of describing organizational classes, as opposed to de-
scribing specific organizations that are instantiations of some class. The key features of
any organizational class are the different types of components (in the distributed signal
interpretation application, sensing, synthesizing, and integrating nodes) and the relations
between them (communication between sensing and synthesizing nodes, synthesizing and
integrating nodes, and low-level and high-level integrating nodes'). Each type of compo-
nent has its own particular set of responsibilities to carry out (signal detection, interpre-
tation, integration) and a set of requirements for resources to be utilized in meeting its
responsibilities (processing hardware, knowledge about signal interpretation, etc.). The

1This Jast relation is not instantiated in Figure 3.1 because there is only one integrating node.
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Figure 3.1: An instance of the hierarchical organizational structure with one integrating
node (circle), four synthesizing node (dots), and four sensing nodes (squares).

hep—85

Figure 3.2: The hierarchical organizational structure with five integrating nodes, sixteen
synthesizing nodes, and sixteen sensing nodes.




relations between component types are independent of the numbers of components that
may be instantiated for each type or on what processor they may execute—synthesizing
nodes must always receive signal information from sensing nodes. For that reason, their
descriptions must also be independent of details specific to single instances of the orga-
nization.

The key features of an organizational class are its components and the relations be-
tween them. In the rest of this section, we indicate what information must be included
in a description of these organizational features and the range of values that will have to
be accommodated. We start, however, with a discussion of the organization’s purpose.

3.2.1 Purpose

An organization is a group of one or more individuals whose purpose is to perform some
set of tasks in an attempt to achieve a set of goals while observing a set of constraints.
Constraints on how the goals are to be achieved determine the rate of processing needed
and, in turn, affect the size and complexity of the organization. For example, the goal of
the hierarchical organization is to create a high-level history of vehicular activity over a
region. The tasks required to achieve the goal include the detection and classification of
acoustic signals generated by the vehicles, the weighing of evidence for the presence of a
particular type of vehicle based on the signal types detected, and determining the paths
of vehicles through the region and recording them.

Constraints on achieving the organization’s goal emphasize processing tradeoffs be-
tween such features as topicality, production costs, robustness, completeness, and quality.
For example, in the signal interpretation task, we may insist that the system produce
highly rated interpretations of the data as quickly as possible, thus emphasizing maxi-
mal values for topicality (short response time) and quality (correct interpretations), at
the expense, perhaps, of production costs (the rate of processing needed to derive the
answer). Furthermore, distributed systems are typically expected to be robust; able to
adjust to node failures and to have performance degrade gracefully as error in the system
increases.

3.2.2 Components

Organizations are composed of components. The hierarchical organization, for instance,
has three components: sensing, synthesizing, and integrating nodes. What these com-
ponents have in common are sets of responstbilities and resources to be used in meeting
them.
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Responsibilities

Components perform tasks. These include: a subset of the tasks necessary for accomplish-
ing the organization’s purpose; management tasks incurred as organizational overhead;
and—especially in human systems—tasks that counter, or do not contribute towards,
the organization’s purpose but are, for idiosyncratic reasons, important to the compo-
nent. One way of specifying responsibilities is by assigning components subregions of the
problem-solving space defined by the organizational task. For the signal interpretation
task, the dimensions of the problem-solving space might be the physical region monitored
by the system, problem-solving events (such as the detection of a signal of a certain type,
the decision that a group of signals were produced by a particular type of vehicle, etc.),
abstraction levels (signals of different types, groups of signals, vehicle types, patterns of
vehicles), and time. Out of all of the tasks that an organization for signal interpretation
needs to perform to meet its goals, sensing nodes perform only the signal detection task.
Other components are responsible for performing the remaining tasks.

Resources

Components possess certain resources with which they are expected to perform their
tasks, thus the resources required by a component will depend on the roles it plays in the
organization. We describe three “flavors” of resources: software resources (knowledge),
hardware resources (tools), and other components (consultants). Access to a component
resource is access to another set of software and hardware resources and another list of
component contacts.

Knowledge. We also describe three types of knowledge: algorithms, data bases,
and expertise. Algorithms specify how to process data, data bases are repositories
of information, and expertise refers to the type of heuristic knowledge characteristic of
expert systems. The problem-solvers located at each node may incorporate any or all
of these forms of knowledge. Algorithms and expertise, for example, tell a node how
to interpret signal data as evidence for the presence of vehicles and how to track those
vehicles. Some knowledge may be meta-level knowledge used to determine when it is
appropriate to apply domain-specific knowledge.

Tools. In addition to knowledge about how to perform a task, a worker may require

particular implements with which to execute the task. These can be effectors (a robot
arm or the hammer or wrench that the arm may wield during a particular process) or
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sensors (the devices that a sensing node uses to detect signals). Use of a tool requires
that the worker have additional knowledge: how to use it.

Consultants and Subcontractors. If unexpected problems arise that are outside the
range of expertise of a component, it is useful to know of someone who does have the
expertise. Given this information, the component could ask for problem solving advice
or contract the problem’s solution to the expert. Similarly, a component might find it
useful to know who can use its data, who can provide it with missing data, or who is
available to share its processing load. Smith has investigated a method of distributed
problem solving, called the contract-net approach, in which a node, given a problem that
it cannot solve alone, contracts for the solution of the problem or of its subproblems [8).
This method does not rely on knowing in advance who is capable of solving the problems
or subproblems, since they can be broadcast to the network, but this information is
used if available. This is known as focused addressing. We can imagine a scenario in
the signal interpretation task in which a sensing node begins sending a synthesizing
node information about signals of a type for which the node has no knowledge. If the
synthesizing node knows, however, of another node that does have the knowledge, it could
ask for help. If not, it could broadcast a request for the knowledge it needs.

Individual Characteristics

There may be information about a component that is not directly related to its responsi-
bilities or resource requirements. For instance, it may be necessary to have some abstract
description of how the component will function, especially if the organization’s perfor-
mance is to be evaluated before instantiation. The level of detail will vary with the ap-
plication, but can include estimates of the average reliability of the component’s outputs,
mean time to failure, rates at which inputs can be Processed, or even a state transition
model that simulates how the component will behave. Pavlin, for example, presents a
way of modeling the behavior of an entire distributed problem solving organization [9).

3.2.3 Relations Between Components

Components in an organization do not exist, nor do they function, independently of one
another. Components interact. Commands, information, and subassemblies (including
partial solutions) are passed between them, and they may work cooperatively at perform-
ing operations on some ob ject. These interactions are expressed as relations between the
components involved.
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Relations between components can be arbitrarily complex. It will seldom be the
case that only a single relation will exist between only two components. In general, a
conjunction of relations between groups of components will be required. These groups
may, in turn, be formed from other relations.

Communication

The most important relation between two or more components is who talks to whom.
This is the relation shown most prominently in Figures 3.1 and 3.2, where each internode
line represents an instance of a communication relation. The communication relation is
used to identify a component’s sources of a particularly valuable resource, information,
and to identify the consumers of the information it produces.

Equally important are the details of what is exchanged during communication. The
need to associate a message structure with a communication relation complicates its
instantiation. It requires that objects satisfying the relation must, additionally, satisfy
the constraint that their message structures be compatible. That is, if one ob ject expects
to send messages consisting of certain information in a specific format, the other object
in the relation (assuming the binary case) must be prepared to receive that information
in the same format.

Finally, it may be necessary to associate a specific communication strategy with a
communication relation. Durfee, Lesser, and Corkill have investigated the effects of

several communication strategies on the global behavior of a distributed problem solving
network [10].

Authority

Authority is a relation that indicates how much emphasis should be given to messages
from different sources or, possibly, to different messages from the same source. If the
message has authority, the component may allow it to have greater impact on its activities.
In the five-node organization, the integrating node may be given the authority to direct
synthesizing nodes to look for evidence of vehicles in regions it designates. Upon reception
of such a message, a synthesizing node might cease whatever processing it had chosen to
do (based on the local information available to it) and take up the requested work.
How much attention should be paid to an authority? The component may realize that
the environment has changed and the authority’s instructions are no longer appropriate.
Should they be followed, ignored, or disputed? A synthesizing node may have very strong
evidence that a vehicle’s path lies in a certain direction when jt receives a directive from
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the integrating node to look elsewhere. The node must decide if it is more important to
continue processing the strong data or to follow the integrator's instructions. In fact, it
may be desirable to have individual variation between nodes, weighting some synthesizing
nodes with greater bias toward the integrating node’s authority than others. Nodes with
little bias towards authority are called sclf-directing or skeptical. Reed and Lesser have
discussed the importance of self-direction in the members of honey bee colonies [11).
Corkill discusses the use of skeptical nodes in distributed problem solving organizations
performing signal interpretation [12).

In general, organizational relations can be described on two levels, at a (relatively)
global level outlining the relation and its participants, and at the local level, where details
and individual variance are elaborated.

Location, Proximity, et cetera

Many other important relations may exist between the components of an organization.
For instance, if one component is a producer of a product whose value decreases with
time, the component using that product may need to be located nearby, or they may
both need to be placed near terminals of a reliable transportation network. Sales offices
for a manufacturer may need to be located across the country, instead of all in one city.
Sensing nodes in the organizations for signal interpretation need to be distributed across
the entire region. Synthesizing nodes need to communicate with a sensing node (more
generally, group of sensing nodes) that scans the nodes’ region of responsibility.

3.2.4 Composite Components

Organizations are often composed of suborganizations. In order to simplify descriptions
of such organizations, the suborganizations are treated as single components and the
interactions among these components are detailed; then the components are “enlarged”
to reveal the suborganization they represent. While these composite components do not
have physical counterparts in the actual organization, they serve two purposes: they help
make descriptions of organizations understandable, and they group physical compornents
that perform the same organizational function. For these reasons, an organizational
description language should provide the ability to logically “package” an organization
as a single component of another organization. Furthermore, the language should treat
individual and composite components the same. If one description knows as little as
necessary about another, it will be easier to make modifications.

Composite components allow recursive descriptions of organizations. If there are
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enough nodes (twenty-one, for instance), the hierarchical organization (Figure 3.2) is
instantiated as an integrating node with hierarchical organizations as its components.
Each of these hierarchical suborganizations is again instantiated with its share of the
original nodes. When the number of nodes becomes small enough, the organization is
instantiated as a single integrating node with synthesizing nodes under it. If the number
of nodes is small enough to start with, of course, no composite components need to be
created. The synthesizing nodes are created right away. This is the case for five nodes,

for example.

3.3 Describing Organizational Structures with EFIGE

This section introduces EFIGE, a language for describing organizational structures. De-
scriptions of organizations in EFIGE are hierarchical. That is, they are composed of
either individual or composite structures, and a composite structure’s components may
be individual or composite. Figures 3.3 and 3.4 show part of the description of the hier-
archical organization presented in Figures 3.1 and 3.2. Descriptions have global names,
parameters that may have default values, and local variables. Components are given local
names, are conditionally instantiated, may be replicated, and information—in the form
of values for parameters—may be partitioned among them. Parameterized descriptions
and conditional instantiation of components allow descriptions to be defined recursively.
This is the case with the hierarchical organization.

Figure 3.5 shows part of the description of an individual component. Fields are pro-
vided for specifying the individual's duties within the organization, listing the resources
the individual will require to meet its duties, and for additional information about the
individual that may be accumulated during instantiation or may provide information to
be used to estimate the individual’s processing characteristics. Values for these fields are
necessarily application dependent.

3.3.1 Relations

The hierarchical approach we have presented for describing organizations is similar to
the specification framework of other languages. What gives our approach additional
representative power is the introduction of relations and constraints into this hierarchical
descriptive framework.

EFIGE allows relations of any kind to be established between components and allows
additional information to be associated with the relation. For instance, almost all lan-

guages for describing organizational structures give their individual and composite struc-
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i: All descriptions are given names.
(NAME hierarchical

;s A ‘composit;’ description has components.
TYPE composite

i+ Descriptions are parameterized. The user can specify that a
i parameter be bound to a different value than its default.

PARAMETERS
((number-of-integrating-nodes :DEFAULT 6)
(region D )]

+; The LOCAL-VALUES field is used to compute and assign values to
i+ local variables.

LOCAL-VALUES
((number-of-synthesizers ... )
(number-of-hierarchies ... ))

i; The COMPONENTS field lists the components of a compogite
i; organization.

COMPONENTS
;i Components are given local names.
((COMPONENT-NAME synthesizers

i; Components are described by other organizational descriptions.

+3 A description called ‘synthesizing-node’ is used to describe this
component. It could be used to describe other components, as well.
‘Synthesizing-node’ has a parameter, ‘region’, which will be set to
i the value of ‘worker-region’ (defined in the COPIES field).

. we

e wa we
-

Figure 3.3: Part of the Description of the Hierarchical Organization
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DESCRIPTION (synthesizing-node ((region worker-region)))

i+ The organization that describes a component may be instantiated
;: more than oncae, depending on the value in the COPIES field.

;7 ‘Synthesizing-node’ is to be instantiated ‘one-less-node’ times.
HH

‘One-less-node’ is a local variable defined in the LOCAL-VALUES
field.

N
NN,

COPIES (one-less-node

at a
The VARY clause of the COPIES field is a construct for

declaring variables and assigning them a sequence of values
‘Worker-region’ will be assigned a different value for each
instantiation of ‘synthesizing-node’; consequently, each
instantiation will have a different value for its ‘region’
parameter.

we we ws we ws wa
e we ®i we we we

188 to (VARY

(worker-region ... )))

;; Components are only instantiated if their PRECONDITION predicate
ii function evaluates to true. This component is to be instantiated
;; only if ‘number-of-nodes’ ig within the range 3-5, inclusive.

PRECONDITION (within-subrange? number-of-nodes 3 5))
i+ A second component.
(COMPONENT-NAME subhierarchy

; The component,’ ‘subhierarchy’, is described by the description,
;i ‘hierarchical’, thus this component is recursive. ¢

riptiona.

scribe this DESCRIPTION (hierarchical ... )

mts, as well. COPIES (number-of-hierarchies
1111 be set to (VARY ... ))
ald) PRECONDITION (> number-of-nodes S))
S el

vee )

Irganization




;+: This description is of an individual structure, it has no components :

(NAME synthesizing-node
TYPE individual

7+ Descriptions of individuals have PARAMETERS and LOCAL-VALUES fields,
;; but we’ll ignore them here.

- .o

: The tasks that an individual are to perform are specified in the

; RESPONSIBILITIES field. For our application, responsibilities are
i; specified as regions of the problem-solving space and rated by

; importance. ‘Sl-sensor-regions’ is bound to a description of a

i problem-solving region in the LOCAL-VALUES field.

RESPONSIBILITIES
((PROCESS-AREA (8sl-sensor-regions)
IMPORTANCE D

)

:i The resources the individual needs to perform the tasks for which it is
:; responsible are given in the RESOURCES field. One resource reguired by
;3 our application is knowledge about specific tasks.

RESOURCES
(KNOWLEDGE-SOURCES
((KS-NAMES (determine-communication-kss ?this-description)
GOODNESS ves )
)

;+ The CHARACTERISTICS field contains information that will vary

;s between individuals--aeven though they belong to the same component of
;; the organization--or information that can be used to simulate the

;+ individual’s behavior.

CHARACTERISTICS
(LOCATION ... )
)

Figure 3.5: Part of the Description of an Individual
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tures ports and allow the composite structures to specify communication links among the

ports of their components and between ports belonging to the composite structure and

oS a5 1

its component ports. But a communication link is only one kind of relation and ports
no components :::

Y

are just devices for associating message structures, directionality, and other information
with the relation. These concepts have been generalized in EFIGE.
There are three parts to the description of a relation and each part appears within the

A X

'ALUES fields, 3, description of a different structure. The declaration of a relation between components
F appears in a composite structure (Figure 3.6). A declaration simply specifies that a

relation exists between one, or more, components. Either type of component (individual

or composite) can participate in a relation, but it is more likely that a composite structure

ed in the will forward membership in the relation to some of its own components instead (Figure
i:::i:s are 3.7). Forwarding may occur again if the component to which membership in a relation
ion Ofyn is forwarded is another composite structure. Finally, the relation is refined within the

structures that are to actually participate in it (Figure 3.8). This is where the constraints
are specified and it is heré, also, that any additional information is associated with it.
It should be noted that one relation may depend on the instantiation of another. For
example, an integrating node may wish to communicate only with synthesizing nodes
that receive information from sensing nodes with particular characteristics. This re-
quires that the sensor-synthesizer communication relation be instantiated before the
integrator-synthesizer relation. Because EFIGE is currently unable to recognize such
situations, relations must indicate the order in which they are to be evaluated, relative
to all of the other relations in the organization. This also helps the user avoid making
circular references in constraints. The evaluation order of a relation is specified with its

for which it is
_urce required by

ion) declaration.
A RELATIONS field is part of both composite and individual structure descriptions.
It contains a list of parts of relations, although only refinement parts can appear in
L vary descriptions of individuals. Figure 3.6 shows the declaration part of a relation in EFIGE.
:u§::§°:;:t of The RELATION-NAME field gives the relation a local name; the RELATION-TYPE field indicates
the type of relation expression. (The value new is used to indicate the declaration part
of a relation, forward indicates the forwarding part, and refine the refinement part.)
These two fields appear in all parts of the description of a relation. The integer expression
in the EVALUATION-ORDER field is used to establish a partial order among new relations.
" The relations will be sorted in increasing order by their values for this field.
‘ The RELATE field declares a relation between components by listing them as members
dual 2

of the domains of the relation. An n-ary relation has n domains. Each domain is
provided with a name; component names, paired with the name of one of their relation
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RELATIONS
;; Entries in the RELATIONS field are given names.
((RELATION-NAME sensor-synthesizer

;; Entries of type ‘new’ are used to declare the existence of a
i relation between components of an organizationm.

RELATION-TYPE new
;: Thie new relation is to be among the first implemented.
EVALUATION-ORDER 1

;3 This relation has two domains. The first is given the name,
;; ‘sensor’, and consists of the structures instantiated for the
;; component, ‘sensor-array’. Within those structures, more

;s information about the relation is contained in an entry in

;3 their RELATIONS field with the name, ‘to-synthesizer’.

i+ Similarly, the second domain is named, ‘synth’, and its

;; members are the structures instantiated for the ‘synthesizer’
i component. These structures contain an entry in their

+; RELATIONS field with the name, ‘to-sensor’, that also

+; contains more information about the relation.

RELATE ((sensor sensor-array$to-synthesizer)
(synth synthesizers$to-sensor)))

Figure 3.6: Example of the Declaration of a Relation
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(RELATION-NAME middle-integrator

Composite structures may have entries in their RELATIONS field

HH

i; with type, ‘forward’. These pass the composite structure’s

i; membership in a relation on to one (or more) of the structure’s
;7 components.

RELATION-TYPE forward

; The structures instantiated for the ‘integrator’ component will

; become members in the relation in Place of the composite structure.
i The entry in their RELATIONS field with the name, ‘upper-exchange’,
; will contain more information about the relation.

FORWARD (integratorssupper-excha.nga) )

Figure 3.7: Forwarding a Relation

parts, are listed after it. All copies of the component will be included in the domain.
The relation parts in the components must either refine the relation or forward it. The
relation sensor-synthesizer in Figure 3.6 has two domains named sensor and synth.
The members of the sensor domain are all of the copies of the structure instantiated
for the component sensor-array. Similarly, the members of the synth domain are
the structures instantiated for the synthesizers component. Within these structures,
there must be an entry in their respective RELATIONS fields named to-synthesizer and
to-sensor, respectively.

Figure 3.7 shows an example of the forwarding of a relation. In effect, forwarding
a relation results in the replacement of the reference to a composite structure in the
original relation with the list of the composite structure’s components. Thus the struc-
tures instantiated for integrators will receive membership in the relation instead of the
structure which includes middle-integrator.

A refine expression is embedded in the structure that will participate in the re-
lation. It contains constraints for refining the relation and additional data that is to
be associated with the relation. Constraints are discussed below. Figure 3.8 gives an
example of relation refinement. The relation part to-sensor appears in the individual
structure synthesizing-node which was instantiated as the synthesizers component
of the composite structure hierarchical (Figures 3.3 and 3.4). It refines the relation
sensor-synthesizer, which referred to it in Figure 3.6. Since this is (implicitly) a

communication relation, to-sensor includes information that is to be associated with
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the relation (such as the direction messages are to travel in the relation, their format,
communication strategies, etc.).

3.3.2 Constraints

EFIGE allows each member of a relation to make local refinements to the relation's
domains using a combination of restriction, group, and preference constraints. A relation,
R, defines a set of n-tuples, () ...z,), that is the Cartesian product of n (not necessarily
distinct) sets, X1 x ... x X, (the domains of the relation). The number of n-tuples is
equal to the product of the cardinality of each set. EFIGE uses restriction, group, and
preference constraints to reduce the size of each of these sets and, hence, the size of R.
They are described in this section.

Restriction

Restriction constraints are applied to the members of a set to identify those members
for which the constraint evaluates to true. In other words, the constraint acts as a
characteristic function, identifying a new set among the members of the old. EFIGE
allows such a function to be provided for all of the domains of a relation:

(P Xi),i=1...n
where
(FX) denotes the set {z|(z € X) A (Fz)},
X; is the i-th domain of R,

P; is a predicate over X;: the constraint. In effect, the relation becomes:

R= fI(P.' X;)

=Y
where [I7_; X; is used to indicate the Cartesian product, X; x ... x X,.

Restriction constraints are used to identify those members in the other domains of a
relation that are acceptable to the current member of the current domain as partners in
the relation. The TASK language uses restriction constraints to direct assignment of re-
sources [6]). These are limited to specification of proximity relations between processes and
sets of physical resources identified by their attributes (features of the Cm* hardware). A

TASK constraint, for example, might specify that a process must execute on a processor
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(RELATION-NAME to-sensor

Each of the ultimate members of a relation (after all forwarding of
membership) has an entry of type ‘refine’ for that relation.

The ‘refine’ entry may provide each member with fialds for the
description of additional information needad by the relation and may
reduce the size of the relation by allowing each member to reject
some of the tuples in which it was included when the relation was

originally defined (with a ‘new' relation entry in the description
of some composite structure).

RELATION-TYPE refine

The CONSTRAINTS field contains the constraints with which tuples
in the relation are selected and/or rejocted (see Figure 9).

CONSTRAINT

s ®s ®s we w»
we we we wr we

.o

The ADDITIONAL-DATA field is used to add information to a

structure’s description that is needed for the relation. A
communication relation, for oxample, needs to know the direction
in which messages will travel, the type of message, and a
description of its format.

ADDITIONAL-DATA

((communication

((DIRECTION receive
NATURE (hyp)
DISPATCHES ... ))

Figure 3.8: Relation Refinement
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with a large local memory. Artificial Intelligence programs that perform planning tasks
also use restriction constraints. For example MOLGEN, when planning experiments in

molecular genetics, generates a constraint restricting the choice of a bacterium to one
that resists an antibiotic [13].

Group

Group constraints are applied to a single set to create a set of sets. Each set in the new
set is a subset of the original and, for each, the constraint evaluates to true. Thus the
constraint is a characteristic function with a domain that is the power-set of the original
set. As with restriction constraints, EFIGE allows a group constraint to be specified for
each domain of a relation:

(QP(X))i=1...n

where
P(X) denotes the power-set of X,
Qi is a predicate over P(X;).

The group constraint, Q;, identifies a set of sets: each subset, or group, is acceptable
as the i-th domain of the relation. Thus alternate relations are possible, one for each
combination of groups from each domain:

R =TIVIIT(@: Px)) (31)

i=1
where V X is used to indicate that alternative selections can be made from X and [T X
denotes the Cartesian product of an indeterminate number of sets, the members of X.

Group constraints identify groups of objects that together satisfy some property that
their individual members cannot (unless the size of a group is one). For instance, a
relation in an organization that performs distributed signal interpretation may specify
that sensing nodes are to communicate with synthesizing nodes. Each synthesizing node
may use & group constraint to refine the relation by requiring that it communicate only
with groups of sensing nodes that together can provide information about the entire region
for which it is responsible. ADABTPL, a language for describing databases, employs both
group constraints and restriction constraints {14).

Preference

Preference constraints implicitly define a partial order over a set by selecting one object
from it. If this object is then removed, a second may be chosen, and so on. The i-th
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object in the ordering over a set X, where S is the preference constraint, is (S V;), for
1 £ £ |X|, where
Vi=Via —{(§ Via)}

=X
Vixpr = 6.
Preference constraints may be used by any member of a relation to refine any domain:

(SEX),i=1...nke{1...|X])

where (§¥X) = (SVi). Using preference constraints alone reduces the relation to a single
tuple: :
R=((SP' X))...(Sk X)), ki € {1...]X:]}

During instantiation, preference constraints are employed to choose between the ap-
parently equal options generated by a group constraint. For instance, the group constraint
refining the communication relation between sensing and synthesizing nodes may identify
two groups of sensing nodes that will be acceptable to a synthesizing node. A preference
constraint is used to choose between them. The smaller group may be chosen in order to
reduce communication overhead.

Composition

Composition provides a means for functional composition. Thus the domain of one con-
straint may be a set that has been defined by another constraint and the domains of a

relation may be refined by many constraints. For instance:
R = (S (Qi P(P. X)), ki € {1...|X:]) (3.2)
i=1
where
S; is a preference constraint,
Qi is a group constraint,

P; is a restriction constraint,

X; is the t-th domain of R.




Note the differences between Equations 3.1 and 3.2. Preference constraints identify a
single group from the list of groups produced by each group constraint, with the result
that a single relation is selected from among the myriad possibilities.

EFIGE allows each member of a relation to refine (further specify) the relation using
restriction, group, and preference constraints that are composed with each other in that
order. The resulting constraint is evaluated for each member in its local context; thus the
results may vary from member to member, even though the same constraint is applied.
In any case, the solution to the overall relation then becomes (approximately) the union
of the results of applying each of its members’ local refinements:

R = (JITI(SY (@ PP Xig)))]

j=1 i=1
where
m = ¥, | Xi| (i.e. j varies over all of the members of the relation),
ki € {1...1(Qi P(P;5 X))},
Xi; = Xi— {7}
F; is member j's constraint on domain i.

Actually, the union operator is too simple for combining the local refinements to a
relation. This is because the tuples in the desired relation must be consistent with one
another. If, for example, the constraints for a member j of a binary relation select a
tuple (j{), then the constraints for / should include that tuple in their selection as well.
If this is not the case, it may be that the two members can be made consistent by using
their second choices for tuples (choosing different values for k;). Section 3.4 presents an
algorithm for evaluating constraints and combining them in such a way that they are
consistent.

Figures 3.9 and 3.10 show an example of the constraints a synthesizing node might
use to refine a communication relation with sensing nodes. The PARTNERS field lists the
names of the domains in the relation, omitting the name of the domain to which the
synthesizing node belongs. The names in this list must match those given when the
relation was declared {except for the name of the domain in which this constraint is a
member). A restriction, group, and preference constraint must be provided for each of
the domains listed. Thus the RESTRICTIONS, GROUPS, and PREFERENCES fields each contain
a list of ordered pairs: the name of the domain followed by the constraint that will be

applied to it. The restriction constraint is applied first to all of the members of a domain.

80




e constraints identify a
1straint, with the result
ities.

ecify) the relation using
with each other in that
s local context; thus the
1e constraint is applied.
proximately) the union

an),

: local refinements to a
be consistent with one
dinary relation select a
their selection as well.
ade consistent by using
Section 3.4 presents an
h a way that they are

‘nthesizing node might
PARTNERS field lists the
: domain to which the
those given when the
ich this constraint is a
ie provided for each of
CES fields each contain
constraint that will be

members of a domain.

AN A I T e i

s 0

In Figures 3.9 and 3.10, the remaining contraints insure that the information associated
with the relation (in the ADDITIONAL-DATA field, see Figure 3.8) is compatible and that
the sensing node detects signals in at least part of the region for which the synthesizing
node is responsible. Since this is a communication relation, compatibility means that
there must be at least one sender and at least one receiver in the relation and that the
proposed topics for discussion overlap. The group constraint is applied to those members
that satisfied the restriction constraint. In this example, it will form groups of sensing
nodes that together detect signals over the specified region. The preference constraint
is applied to the groups to select one of them. In this case, it will choose the smallest
group.

3.3.3 The Procedural/Declarative Interface

Figures 3.9 and 3.10 illustrate that much of the information in a description written in
EFIGE is procedural. That is, functions provide details about how an organization is
to be instantiated. This information is inherently application dependent; users of the
language will need to develop libraries of the functions useful for each application. For
instance, in Figure 3.9, the function, sensors-that-cover-region, returns groups of
sensing nodes that, together, are able to detect signals from every part of a rectangular
region. This function will not be of use in most applications. The declarative part of
EFIGE, the component fields, provide a framework for organizing the procedural infor-
mation and a method for applying it. Appendix B describes other functions needed to
describe organizations for our distributed signal interpretation application.

3.4 Instantiating a Description

Instantiating an organization involves performing parameter substitution, testing compo-
nent preconditions to find out which are to be instantiated, instantiating each component
the specified number of times with the indicated parameter settings, and implementing
relations between components. Implementing a relation requires finding solutions to each
of the constraints associated with the relation. Finding these solutions is difficult because
the solutions may interact. For example, the constraints refining a communication rela-
tion between synthesizing nodes and sensing nodes may choose the same sensing node for
each of three synthesizing nodes. The sensing node’s constraint’s, however, may restrict
it to communicating with any two of the synthesizing nodes, but not all three, in order
to limit the amount of time it must allocate to communication. One of the synthesizing
nodes will have to choose & different sensing node, which may affect the choices of other
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CONSTRAINT

:; The PARTNERS field lists the other domains of the relation (other
i; than the one to which the owner of thig constraint belongs). A
i: constraint of each type is provided for each of the domains.

(PARTNERS (sensor)

;+ The RESTRICTIONS field pPredicates act as filters, rejecting
i members of the other domains that do not meet their criteria.

RESTRICTIONS

i+ The predicate ‘compatable-communication?’ examines the

++ descriptions in the ADDITIONAL-DATA fields of this relation

i; (see Figure 8) and each member of the ‘sensor’ domain for

;i congistency (e.g., since the DIRECTIONS field in this relation
ii is ‘receive’, the other must be ‘gend?).

((sensor (and (compatable-communication?
?this-relation ?partner-relation)

;i This predicate determines if the area scanned by each sensing

i; node includes the area specified by region. The symbol

i ‘?partner-structure’ will be bound to each sensing node’s

i+ structure description. 1In contrast, the symbol

HR ‘?partner-relation’, above, is bound to the relation entry in

i: each structure description that is used to refine the relation
i; between sensing and synthesizing nodes.

(sensor-scans-part-of-region?
region ?partner-structure))))

ii The functions in the GROUPS field select groups of tuples in

; which the members of the given domain are, together, able to
7+ satisfy some predicate. The function,
HH ‘senaots-that-cover-region’, returns a list of those groups of
i3 non-redundant sensors that together are able to scan the area
i: given by ‘region’. The symbol, ‘?candidate-structures’, is
;; bound to a list of the the descriptions of those structures
;+ that passed the restriction constraints.

Figure 3.9: Constraints
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GROUPS ((sensor (sensors-that-cover-region
region ?candidate-structures)))

;+ The functions in the PREFERENCE field return one of the
;i groups of tuples formed by the group constraints. The
;3 function, ‘Belect-smallest-set’ finds the group with the
;+ least number of members.

PREFERENCE ((sensor (select-smallest-set ?groups))))

Figure 3.10: Constraints (continued)

nodes. In this section, we first present the algorithm for finding solutions to constraints,
then briefly describe how the hierarchical organization is instantiated.

3.4.1 The Constraint Solution Algorithm

The algorithm we use for finding solutions to the interacting constraints associated with
a relation first applies each member’s preference and group constraints, then chooses a
member with the smallest number of groups. Thus a synthesizing node whose group
constraint produced only one solution will be processed before any node with two or
more groups to chose from. This strategy minimizes branching in the search tree, which
is important because we have no global knowledge to apply when choosing a branch.
Instead we use local knowledge. The member’s preference constraint is used to select one
of its groups, if there is more than one. The selected group is a local solution. Local
solutions are then used to build the global solution. The local solution lists the sensing
nodes with which this synthesizing node will communicate, the global solution contains
all of the sensing-synthesizing node pairings.

The groups of the other members of the relation that do not yet have a local solution
must be made consistent with the solution just chosen. For the other members’ groups
to be consistent with the solution they must either:

1. contain the name of the member just processed, if the solution contains their name;

2. not contain the name of the member just processed, if the solution does not contain
their name.

Inconsistent groups are deleted and the unprocessed member that now has the smallest
group is selected for processing. Thus the choice of a local solution may prune the search
tree and affect the order in which nodes in the tree are visited.
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If any of the other members has all of its groups deleted, a new group must be chosen
for the local solution, the effects of making the other members consistent with the old
solution undone, and they must be made consistent with the new solution instead. If all of
a member’s groups arc tried as local solutions without success, chronological backtracking
is employed. The search is returned to the last member processed, its local solution is
discarded, its consistency effects undone, and so on. If the search ends up back at the
first member tried and tries all of its groups unsuccessfully, no global solution exists and
the relation cannot be implemented.

The complete algorithm is included in Appendix A.

3.4.2 Instantiation of the Hierarchical Organization

Figure 3.11 shows how instantiation of each composite description leads to instantia-
tion of individual components and the implementation of relations between them. The
hierarchical organization was instantiated with the number-of-nodes perameter set
to twenty-one and the number-of-sensors parameter set to sixteen. When the upper
hierarchical structure was instantiated, the preconditions of only two of its components
evaluated to true: the integrators component and the subhierarchies component.
One copy of the integrators, and four of the subhierarchies, were instantiated. The
integrator-integrator relation is implemented because, at this point, it is actually
an integrator-subhierarchies relation. In the subhierarchies, membership in the
relation is forwarded to their integrators components.

Each of the subhierarchies components is another hierarchical organization. This
time, however, in each of them the precondition for the subhierarchies component
evaluates to false and the recursion stops. The other components’ preconditions eval-
uate to true and, for each of the new hierarchical organizations, one integrators,
four synthesizers, and four sensor-array components are instantiated. In each orga-
nization, an integrator-synthesizer relation and a synthesizer-sensor relation is
implemented.

3.5 Status and Ongoing Research

This section describes the current status of EFIGE followed by a discussion of improving
the organization instantiation process and a discussion on using organization descriptions
to automate the configuration process. These activities are steps toward an eventual goal
of organizational self-design, where the organization is able to reconfigure modify itself

in response to changes in its operating requirements and environment.
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Figure 3.11: Instantiation of the hierarchical organizational structure with sixteen sen-
sors, sixteen synthesizing nodes, and five integrating nodes, requires five instantiations of
the hierarchical composite description as well. :




in a savings in file space, since one description can be stored instead of many instantia-
tions, and in the experimenter’s time, because Previous to this work instantiations had
to be generated by hand—a time-consuming and error-prone procedure,

3.5.2 Improvements to EFIGE

Investigations directed toward finding answers to three questions should result in an
improved system. These questions are:

1. How can the constraint mechanism be made more general?
2. How can search efficiency be improved?
3. What can be done when a set of constraints is over-constrained?

Directions in which to search for answers to these questions are considered in the following
sections,

Bottom-Level Constraints
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with given values for some or all of their attributes or that particular relations be imple-
mented. Such constraints could specify an entire processing network, making it the job
of the interpreter to instantiate, as best as possible, an organization’s functional compo-
nents and their relations over a physical network that provides less than optimal support.
For example, if bottom-level constraints specify that there are only a dozen processing
nodes but the instantiated organization needs thirty-seven, the interpreter will have to
assign multiple organizational nodes to the same processor.

Constraint Propagation

Because of the combinatorics, it may be unreasonable to apply restriction or group con-
straints to all of the members of a domain. For instance, the number of ways n synthesiz-
ing nodes can communicate with s sensing nodes, where any given synthesizing node may
be assigned from zero to s of the sensing nodes, is 2™, The present algorithm attempts
to avoid examining all of the objects of this set by eliminating subsets of objects on the
basis of local information. Thus, if the restriction constraint for synthesizing node A
selects sensing node P, P is checked to see if its restriction constraint selected A. If not,
P is eliminated as a candidate for A. This eliminates from further consideration all of
those configurations in which P and A are paired, thus cutting the search space in half,
Unfortunately, evaluation of A’s restriction constraint requires applying it to all of the
sensing nodes in the domain and this is repeated for all of the synthesizing and sensing
nodes in the relation.

Another approach to improving efficiency is constraint propagation [13]. In this
method a description of the partner required by a member in a relation is gradually
built up as constraints are evaluated. Constraint propagation, it is hoped, would allow
the accretion of a more specific constraint that would identify, after only one pass say, the
sensing nodes that both require and are required by a synthesizing node. Propagation of
restriction constraints has been performed in systems such as MOLGEN [13]. Propaga-
tion of the more complex constraints used in EFIGE, however, is a problem that remains
to be investigated.

Constraint Utility

When a set of constraints proves to be over-constrained, it would be useful to be able
to intelligently modify them so that a solution can be obtained or to determine which
ones must be satisfied and which ones can be safely ignored or relaxed. This requires
knowledge about the purpose of the constraint (based on the organizational goals), so
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that judgments about its importance can be made, and it requires the ability to locate
the conflict, to determine which constraints to modify. This may not always be possible.
Fox assigns constraints utility ratings which can then be used to determine the usefulness
of a given constraint’s satisfaction, or lack of satisfaction, in a situation [16]. The least
useful constraints are less likely to adversely affect results if they are not met. Utility
ratings are also used during backtracking to find decision points where 1t is most likely
that the wrong choice was made. A new choice is sought for and made at these points

and the search is restarted.

Optimal Solutions

Group and restriction constraints provide binary valued ratings of choices: either an
element of a set is accepted or it is rejected. Preference constraints order choices but
provide no information about their relative worth. An assignment of relative worth to
choices might allow more intelligent decisions to be made: several choices could turn out
to be equivalent, or one choice may emerge as much more preferable than all others. The
problem is, given the relative worth of local choices, how can they be optimized globally?

3.5.3 Organizational Self-Design

The long-term goal of this research is organizational self-design. An organization with
this ability will perform the following tasks:

1. monitor the organizational structure’s effectiveness in directing organizational ac-
tivities,
2. identify new organizational structures appropriate to a new situation,

3. select the best among them,

4. implement the new structure over the network while preserving the network’s prob-

lem solving activities.
This work’s contribution toward organizational self-design is a language that provides for
low-level, symbolic representations of organizational structures, but much work remains.
Organization Design

A slightly simpler problem is that of organization design. Organization design is the
problem of choosing the best organization class—from a set of class descriptions—given

knowledge about the organization’s purpose (goal, task, and constraints on the goal) and
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the environment in which the organization is to operate. In fact, there are two problems:
determining which organizations satisfy the constraints and then deciding which is “best”.

These correspond to steps 2 and 3 of the organizational self-design task.

Repairing Broken Organizations

Another simplification of the organizational self-design task is the problem of reconfigu-
ration. Reconfiguration is needed to repair a “broken” instance of an organization (for
example, one in which a component has failed), given its organization class description
and environment information. This includes the problem of fault detection/diagnosis
(roughly step 1), but the emphasis is then placed on recovering lost functionality without
adopting a new organizational structure (eliminating steps 2 and 3, simplifying step 4).
This is still a difficult problem; more fundamental problems underlie both it and the prob-
lems of organizational design and self-design. The sections below discuss some of these
more fundamental problems. They also adopt a further simplification by considering
static organizations (an organization capable of self-design is, by definition, dynamic).

Task Description

The purpose of an organization is to perform some task. A description of that task is
essential for organizational self-design, and may be useful during instantiation as well.
It is required for organization design in order to assign components their tasks, which
will include parts of the organization’s task. Fox states that tasks can be described by
listing inputs, outputs, the transformations inputs undergo to become outputs, and the
state transitions the processor goes through during task execution [3]. Is this information
adequate for describing tasks? What is a suitable notation for representing this infor-
mation? Pavlin, for instance, uses a Petri-net inspired approach to model the behavior

of distributed problem solving organizations, this method might be adapted to describe
tasks as well [9].

Organizational Goals

The goals of an organization are its desired performance abilities. Examples of organiza-
tional goals include: meet a minimum production rate, do not expend more than can be
recovered by a maximum per unit cost, products must meet minimum standards of qual-
ity and reliability, the organization must function at a minimum rate of efficiency, and
so on. How can these organizational goals be formulated and evaluated? Assessing the
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ability of an organization to meet a set of goals may require simulating the organization

and observing its behavior as it processes its tasks. How is this to be done?

Environment Model

The design of an organization that is able to meet its organizational goals requires infor-
mation about the environment in which it will function. The environment is the ultimate
source of the organization’s inputs and the destination of its products. The model needs
to include knowledge about the rate at which its inputs will arrive and the variability of
that rate, the characteristics of its inputs and their variability, interactions or correlations
between inputs, the effects of outputs on inputs, and the degree to which it is ignorant
of any of these things. The model is a prediction of what the environment will be like
when the organization is functioning within it. How can this knowledge be represented?

Integration of Knowledge. How can the knowledge about the organization's task,
its goals, and its environment be combined and used effectively when making choices
during instantiation?

3.5.4 Summary

We have suggested that descriptions of organizational structure are important for the
instantiation and maintenance of distributed systems over large heterogeneous networks.
Current languages for describing organizational structure do not allow descriptions of
arbitrary relations and are incapable of describing higher-order relations. We have iden-
tified three types of constraints (restriction, group, and preference) and have used them
to describe and instantiate arbitrary and complex organizational relations. We have
provided an algorithm for finding solutions to interacting constraints employed in de-
scriptions of relations. Finally, we have tested these techniques by incorporating them in

an organizational instantiation language, called EFIGE, and its interpreter.
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Appendix A: The Complete Constraint Solution Al-
gorithm

begin
Order relations with RELATION-TYPE “new"” by EVALUATION-ORDER.
for
each relation with RELATION-TYPE “new”
do
Determine the members of each domain of the relation.
for
all members in the relation
do
Apply appropriate RESTRICTION constraint to members of each domain
to form CANDIDATES set.
end-for.
for
all members in the relation
do
Make CANDIDATE sets mutually consistent.
end-for.
if
any member is left with an empty CANDIDATES set
then
Indicate over-constrained.
else
for
all members in the relation
do
Apply appropriate GROUP constraint to each domain’s CAKDIDATES
sets to form GROUP sets for each domain.
end-for. '
end-if

Set PROCESSED stack to empty.
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Set UNSOLVED list to list of all members in the relation.
repeat
while
(not over-constrained) and (UNSOLVED list not empty)
do
Set CURRENT-MEMBER to member in UNSOLVED list with smallest
product of the number of GROUP sets for each domain.
Set REJECTED list of CURRENT-MEMBER to empty.
repeat
if
GROUP set for any domain of CURRENT-MEMBER is empty
then
Add members in REJECTED list to GROUP set.
Set REJECTED list to empty.
if
PROCESSED stack is empty
then
Indicate over-constrained.
else
Set CURRENT-MEMBER to top of PROCESSED stack.
Pop top of PROCESSED stack.
end-if

else
Use PREFERENCE constraints to select a group for each
domain from GROUP sets of CURRENT-MEMBER.
Set SOLUTION of CURRENT-MEMBER to selected groups.
Delete selected groups from GROUP sets of CURRENT-MEMBER.
Make GROUP sets of members in UNSOLVED list consistent
with SOLUTION of CURRENT-MEMBER.
if
no member in UNSOLVED list left with an empty GROUP set
then
Delete CURRENT-MEMBER from UNSOLVED list.
Add CURRENT-MEMBER to PROCESSED list.

Indicate local-success.
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(not over-constrained) and (not local-success)
then
Undo consistency changes to members in UNSOLVED list.
Add SOLUTION of CURRENT-MEMBER to REJECTED list
of CURRENT-MEMBER.
end-if
until (local-success) or (over-constrained).

:h domain.
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EMBER is empty
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2 get.
end-wvhile
§ if
(additional-solutions-requested) and (not over-constrained)
then
‘ for
all members in the relation
ESSED stack. do

Save SOLUTION of member.
end-for.
Set CURRENT-MEMBER to top of PROCESSED stack.
Pop top of PROCESSED stack.
Add SOLUTION of CURRENT-MEMBER to REJECTED list

group for each of CURRENT-MEMBER.

'~-MEMBER.

cted groups.

of CURRENT-MEMBER.
b list consistent

end-if
until (no additional-solutions-requested) or (over-constrained).
end-for

end

Appendix B: Domain Specific Functions

th an empty GROUP set
: This appendix describes some functions needed for the description of organizations in the
'ED list. DVMT. A few of these have been seen in the examples throughout this report.

list. 3 The simplest class of functions tests, collects, or summarizes the contents of particular

it
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fields in a given description. For example, one function in this class tests if a node's
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knowledge sources include a particular set of knowledge sources, and another determines
if a sensor is capable of detecting vehicular activity in some portion of a given region.
Other examples examine a subfield of the CHARACTERISTICS field in a sensor description
to see if it includes a given list of values, compare the rating of a sensor's accuracy
at classifying and locating signals with a given value, test to see if an organization has
interest-areas that intersect with a supplied list of interest-areas, list the classes of signals
a sensor detects, and determine the communication knowledge sources an individual will
need based on its communication activity.

Another function class tests for the presence of a relation between fields in multiple
descriptions or summarizes data from multiple descriptions. The example in Section 3.2
includes a function from this class which finds all of the combinations of sensors (from a
list of sensors) that will, between them, scan all of & given region. Other functions from
this class check that the distance between two locations does not exceed a given value,
order individual organizations by their distance from a given location and return a list of
the n closest organizations, and return a region that encloses all of the regions scanned
by a list of sensors.

A number of functions were written to perform operations on regions, two-dimensional
rectangular areas specified by the coordinates of their lower-left and upper-right corners.
(Technically, a region is just one dimension of an interest-area and it is only a matter of
convenience that they are all rectangles in the DVMT.) Some of these functions

¢ compute a minimum enclosing rectangle
® accept a list of rectangles and return the rectangle that is overlapped by all of them

¢ accept two overlapping rectangles, break up the area of the first rectangle that is

not overlapped by the second into smaller rectangles (at most, three are required),
and return them in a list

o fill a rectangle with overlapping rectangles (this is used by a composite structure
to assign regions to its components).

A final function, with arguments an integer, a maximum divisor, and a minimum
quotient, returns a list of no more than maximum divisor integers, all of them at least
as large as the minimum quotient, such that they all add up to the original number.
This function is used to distribute employees to subhierarchies (in the example of Section
3.3), where managers do not want to manage more than some number of subhierarchies
(maximum divisor) and a minimum number of employees are required to make up a
hierarchy (minimum quotient).
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