
The Use of Meta-level Information in Learning Situation-Specific Coordination�

M V Nagendra Prasad and Victor R Lesser
Department of Computer Science

University of Massachusetts, Amherst, MA 01003.
fnagendra,lesserg@cs.umass.edu

Abstract

Achieving effective cooperation in a multi-agent
system is a difficult problem for a number of rea-
sons such as limited and possibly out-dated views
of activities of other agents and uncertainty about
the outcomes of interacting non-local tasks. In this
paper, we present a learning algorithm that endows
agents with the capability to choose the appropri-
ate coordination algorithm from a set of available
coordination algorithms based on meta-level infor-
mation about their problem solving situations. We
present empirical results that strongly indicate the
effectiveness of the learning algorithm.

1 Introduction
Coordination is the act of managing interdependencies in a
multi-agent system[Decker & Lesser, 1995]. Achieving ef-
fective coordination in a multi-agent system (MAS) is a dif-
ficult problem for a number of reasons. An agent’s local
control decisions about what activity to do next or what in-
formation to communicate and to whom or what information
to ask others may be inappropriate or suboptimal due its lim-
ited view of the interactions between its own activities and
those of the other agents. In order to make more informed
control decisions, the agents have to acquire a view of the
task structures of other agents. To the extent that this resolves
agents’ uncertainty about the non-local problem solving ac-
tivities, they can act coherently. However, an agent has to
expend computational resources in acquiring and exploiting
such non-local views of other agents’ activities. This involves
communication delays and the computational cost of provid-
ing this information and assimilating the information from
other agents. Given the inherent uncertainty in agents’ activ-
ities and the cost of meta-level processing, relying on sophis-
ticated coordination strategies to acquire non-local views of
task structures may not be worthwhile for all problem-solving
situations[Durfee & Lesser, 1988; Decker & Lesser, 1995;
Nagendra Prasad et al., 1996]. For example, when the agents

�This material is based upon work supported by the National
Science Foundation under Grant Nos. IRI-9523419. The content of
this paper does not necessarily reflect the position or the policy of
the Government, and no official endorsement should be inferred.

are under severe time pressure and the load of the activities at
the agents is high, it is often difficult for them to rearrange their
local activities so that they can exploit the results generated
by other agents or to generate results that the other agents can
exploit. In these situations, sophisticated agent coordination
strategies may not pay-off. In this paper, we will be dealing
with how agents can learn to dynamically choose the appro-
priate coordination strategy in different coordination problem
instances. We empirically demonstrate that even for a narrow
class of agent activities, learning to choose an appropriate
coordination strategy based on meta-level characterization of
the global problem solving state outperforms using any single
coordination strategy across all problem instances.

In order to accomplish learning, we break the coordination
problem into two phases. In the first phase, the agents ex-
change meta-level information not directly used for coordina-
tion. This information is used by the agents to derive a predic-
tion of the effectiveness of various coordination mechanisms
in the present problem solving episode. These mechanisms
differ in the amount of non-local information they acquire and
use, and in the complexity of analysis of interactions between
activities at the agents. Agents choose an appropriate subset
of the coordination mechanisms (or a coordination strategy)
based on the meta-level information and enter Phase II. In this
phase, the coordination strategy decides the types of informa-
tion to be exchanged and the kind of reasoning about local and
non-local activities the agents perform to achieve coherent ac-
tivity. We call the meta-level information a situation and the
two phase process situation-specific coordination. Learning
situation-specific coordination involves associating appropri-
ate views of the global situation with the knowledge learned
about the effectiveness of the coordination mechanisms.

The rest of the paper is organized as follows. After placing
our work in context, we briefly review the TÆMS task structure
representation for coordination problems. We then describe
our learning algorithm that learns to choose among three coor-
dination modes of different levels of sophistication. We then
present some of our experimental results and conclude.

2 Related Work
Much of the literature in multi-agent learning relies on re-
inforcement learning and classifier systems as learning al-
gorithms. In Sen, Sekaran and Hale[Sen, Sekaran, & Hale,
1994] and Crites and Barto[Crites & Barto, 1996], the agents



do not communicate with one another and an agent treats the
other agents as a part of the environment. Weiss[Weiss, 1994]
uses classifier systems for learning appropriate multi-agenthi-
erarchical organization structuring relationships. In Tan[Tan,
1993], the agents share perception information to overcome
perceptual limitations or communicate policy functions. In
Sandholm and Crites[Sandholm & Crites, 1995] the agents
are self-interested and an agent is not free to ask for any kind
of information from the other agents. The MAS that this paper
deals with contain complex cooperative agents (each agent is
a sophisticated problem solver) and an agent’s local problem
solving control interacts with that of the other agents’ in in-
tricate ways. In our work, rather than treating other agents
as a part of the environment and learning in the presence of
increased uncertainty, an agent tries to resolve the uncertainty
about other agents’ activities by communicating meta-level
information to resolve the uncertainty to the extent possible
(there is still the environmental uncertainty that the agents
cannot do much about). In cooperative systems, an agent can
“ask” other agents for any information that it deems relevant
to appropriately situate its learned local coordination knowl-
edge. Agents sharing perceptual information as in Tan[Tan,
1993] or bidding information as in Weiss[Weiss, 1994] do
not make explicit the notion of situating the local control
knowledge in a more global abstract situation. The infor-
mation shared is weak and they are studied in domains such
as predator-prey[Tan, 1993] or blocks world [Weiss, 1994]
where the need for sharing meta-level information and situat-
ing learning in it is not apparent.

Sugawara and Lesser[Sugawara & Lesser, 1993] also rec-
ognize the need for situation specificity in learning coordina-
tion, though they do have the notion of two phase coordination.
They are concerned with learning to make the situations more
discriminating to avoid using an inappropriate coordination
strategy in the domain of distributed network diagnosis. Their
learning relies on deep domain knowledge and agent homo-
geneity assumptions to learn to progressively refine situations
based on failure-driven explanation and comparative analysis
of problem solving traces. They test the theory on very lim-
ited number of coordination situations and the evidence was
anecdotal. It is not clear how such knowledge-intensive learn-
ing can be generalized to other instances without significant
knowledge engineering and the development of more sophis-
ticated explanation-based learning techniques. Despite these
limitations, combining their work on learning situation repre-
sentations with the learning presented here on situation-based
choice of coordination could have interesting implications for
situation-specific learning.

3 Task Analysis, Environment Modeling, and
Simulation

3.1 TAEMS
The TÆMS framework (Task Analysis, Environment Model-
ing, and Simulation) [Decker & Lesser, 1993] represents co-
ordination problems in a formal, domain-independent way.
A TÆMS model of a task environment specifies what actions
are available to agents and how those actions relate to one
another and to the performance of the system as a whole. A

coordination problem instance is represented as a task group
T . Each task group has an arrival time Ar�T �, and a deadline
D�T �. A task group, consisting of a set of computationally
related actions, is represented by a directed acyclic graph. The
quality of a task T at a particular time t (Q�T� t�) is a function
of the quality of its subtasks (in this paper this function is
either minimum(AND-like) or maximum(OR-like)). Quality
is used as a catch-all term representing acceptability char-
acteristics like certainty, precision completeness, other than
temporal characteristics. Leaf tasks are called methodsM and
they represent domain actions, such as executing a blackboard
knowledge source, running an instantiated plan, or executing
a piece of code with its data. Executable methods have base
level quality and duration. A task may have multiple ways to
accomplish it, represented by multiple methods, that trade off
the time to produce a result for the quality of the result.

Besides tasks/subtask relationships, there can be other inter-
relationships between tasks in a task group[Decker & Lesser,
1993]. In this paper, we will be dealing with two such inter-
relationships:

� facilitates relationship or soft interrelationship: If
the results of execution of Task A are available for Task B
before it starts executing, then Task B will have increased
quality and/or decreased duration.

� enables relationships or hard interrelationship: Task
A must be executed before Task B can be executed.

A design-to-time scheduling[Garvey & Lesser, 1993] algo-
rithm heuristically enumerates a promising subset of quality
and time trade-offs to produce schedules that maximize qual-
ity given the deadlines. In a cooperative multi-agent system,
the goal of the agents is to work together to produce the highest
possible quality for as many task groups as possible.

3.2 Environment-Specific Coordination
Mechanisms

In order to bring to bear different collections of coordination
mechanisms for different multi-agent problem-solving envi-
ronments, we use the Generalized Partial Global Planning
(GPGP) approach[Decker & Lesser, 1995]. GPGP consists of
several coordination mechanisms, each of which notices cer-
tain features in its local partial view of the task structures of
other agents and their relationship with its own task structure
and responds by taking certain communication or information
gathering actions, or by proposing new commitments to other
agents. In GPGP, a coordination strategy can be derived by
activating a subset of the coordination mechanisms. Specifi-
cally we will be investigating the effect of three coordination
strategies:
Balanced (or dynamic-scheduling): Agents coordinate their
actions by dynamically forming commitments. Relevant re-
sults are generated by specific times and communicated to
the agents to whom corresponding commitments are made.
Agents schedule their local tasks trying to maximize the ac-
crual of quality based on the commitments made to it by the
other agents, while ensuring that commitments to other agents
are satisfied. The agents have the relevant non-local view of
the coordination problem, detect coordination relationships,
form commitments and communicate the committed results.



Data Flow Strategy: An agent communicates the result of
performing a task to all the agents and the other agents can
exploit these results if they still can. This represents the other
extreme where there are no commitments from any agent to
any other agent.
Rough coordination: This is similar to balanced but com-
mitments do not arise out of communication between agents
but are known a priori. Each agent has an approximate idea of
when the other agents complete their tasks and communicate
results based on its past experience. “Rough commitments”
are a form of tacit social contract between agents about the
completion times of their tasks.

The latter two coordination strategies are the alternatives
normally used in the distributed data processing domain[Na-
gendra Prasad et al., 1996]. [Decker & Lesser, 1995]proposed
balanced as a sophisticated strategy that exploits a number
of mechanisms to achieve coordination.

4 COLLAGE: Learning Coordination
4.1 Learning Coordination
Our learning algorithm, called COLLAGE, uses abstract
meta-level information about coordination problem instances
to learn to choose, for the given problem instance, the ap-
propriate coordination strategy from the three strategies de-
scribed previously. Learning in COLLAGE (COordination
Learner for muLtiple AGEnt systems) falls into the category
of Instance-Based Learning algorithms[Aha, Kibler, & Albert,
1991] originally proposed for supervised classification learn-
ing. We, however, use the IBL-paradigm for unsupervised
learning of decision-theoretic choice.

Learning involves running the multi-agent system on a large
number of training coordination problem instances and ob-
serving the performance of different coordination strategies
on these instances. When a new task group arises in the envi-
ronment, each of the agents has its own partial local view of
the task group. Based on its local view, each agent forms a
local situation vector. A local situation represents an agent’s
assessment of the utility of reacting to various characteris-
tics of the environment. Such an assessment can potentially
indicate how to activate the various GPGP mechanisms and
consequently has a direct bearing on the type of coordination
strategy that is best for the given coordination episode. The
agents then exchange their local situation vectors and each
of the agents composes all the local situation vectors into a
global situation vector. All agents agree on a choice of the
coordination strategy and the choice depends on the kind of
learning mode of the agents:
Mode 1: In this mode, the agents run all the available co-
ordination strategies and note their relative performances
for the each of the coordination problem instances. Thus,
for example, agents run each of data-flow, rough, and
balanced for a coordination episode and store their perfor-
mances for each strategy.
Mode 2: In this mode, the agents choose one of the coordina-
tion strategies for a given coordination episode and observe
and store the performance only for that coordination strat-
egy. They choose the coordination that is represented the
least number of times in the neighborhood of a small radius

around the present global situation. This is done to obtain
a balanced representation for all the coordination strategies
across the space of possible global situations.

Mode 2 is quasi-online algorithm. In the initial stages it
just explores and in the later stages it just exploits the learned
information. A more typical online learning algorithm inter-
leaves exploration and exploitation. Studying COLLAGE in
this kind of a setup is high on our agenda of future work.

At end of each run of the coordination episode with
a selected coordination strategy, the performance of the
system is registered. This is represented as a vector of
four performance measures: total quality, number of meth-
ods executed, number of communications, and termina-
tion time. Learning involves simply adding the new in-
stance formed by the performance of the coordination strat-
egy along with the associated problem solving situation
to the “instance-base”. Thus, the training phase builds a
set of fsituation� coordination strategy� performanceg
triplets for each of the agents. Here the global situation vector
is the abstraction of the global problem solving state associ-
ated with the choice of a coordination-strategy. Note that at
the beginning of a problem solving episode, all agents commu-
nicate their local problem solving situations to other agents.
Thus, each agent aggregates the local problem solving situ-
ations to form a common global situation. All agents form
identical instance-bases because they build the same global
situation vectors through communication.

Forming a Local Situation Vector
The situationvector is an abstraction of the coordinationprob-
lem and the effects of the coordination mechanisms in GPGP.
It is composed of six components:
(a) The first component represents an approximation of the ef-
fect of detecting soft coordination relationships on the quality
component of the overall performance. An agent creates vir-
tual task structures from the locally available task structures
by letting each of the facilitates coordination relation-
ships potentially affecting a local task to actually take effect
and calls the scheduler on these task structures. In order to
achieve this, the agent detects all the facilitates interre-
lationships that affect its tasks. An agent can be expected to
know the interrelationships affecting its tasks though it may
not know the exact tasks in other agents that affect it without
communicating with them. The agent then produces another
set of virtual task structures, but this time with the assumption
that the facilitates relationships are not detected and
hence the tasks that can potentially be affected by them are
not affected in these task structures. The scheduler is again
called with this task structure. The first component, repre-
senting the effect of detecting facilitates is obtained
as the ratio of the quality produced by the schedule without
facilitates relationships and the quality produced by the
schedule with facilitates relationships.
(b) The second component represents an approximation of
the effect of detecting soft coordination relationships on the
duration component of the overall performance. It is formed
using the same techniques discussed above for quality but
using the duration of the schedules formed with the virtual
task structures.



(c) The third and fourth components represent an approxima-
tion of the effect of detecting hard coordination interrelation-
ships on the quality and duration of the local task structures
at an agent. They are obtained in a manner similar to that
described for facilitates.
(e) The fifth component represents the time pressure on the
agent. In a design-to-time scheduler, increased time pressure
on an agent will lead to schedules that will still adhere to
the deadline requirements as far as possible but with a sac-
rifice in quality. Under time pressure, lower quality, lower
duration methods are preferred over higher quality, higher du-
ration methods for achieving a particular task. In order to
get an estimate of the time pressure, an agent generates vir-
tual task structures from its local task structures by setting
the deadlines of the task groups, tasks and methods to � (a
large number) and scheduling these virtual task structures.
The agents schedule again with local task structures set to the
actual deadline. Time pressure is obtained as the ratio of the
schedule quality with the actual deadlines and the schedule
quality with large deadlines.
(f) The sixth component represents the load. It is obtained
as the ratio of execution time under actual deadline and the
execution time under no time pressure. It is formed using
methods similar to that discussed above for time pressure but
using the duration of the schedules formed with the virtual
task structures.

In the work presented here, the cost of scheduling is ignored
and the time for scheduling is considered negligible compared
to the execution time of the methods. However, more sophis-
ticated models would need to take into consideration these
factors too. We view this a one of our future directions of
research.

Forming a Global Situation Vector
Each agent communicates its local situation vector to all other
agents. An agent composes all the local situation vectors: its
own and those it received from others to form a global situa-
tion vector. We can have a number of composition functions
but the one we used in the experiments reported here is sim-
ple: component-wise average of the local situation vectors.
Thus the global situation vector has six components where
each component is the average of all the corresponding local
situation vector components.

For example, one global situation vector looks as fol-
lows: (0.82 0.77 0.66 0.89 1.0 0.87). Here the
low value of the third component represents large quality
gains by detecting and coordinating on hard interrelation-
ships. Thus two of the more sophisticated coordination
strategies called balanced and tough[Decker & Lesser,
1995] are found to be better performers in this situation.
On the other hand, in a global situation vector such as
(0.80 0.90 0.88 0.80 0.61 0.69) the low values
of fifth and sixth components indicate high time pressure and
load in the present problem solving episode. Even if the agents
use sophisticated strategies to coordinate, they may not have
the time to benefit from it. Hence, relatively simple coordina-
tion strategies likesimple or mute[Decker & Lesser, 1995]
do better in this scenario.

Note, however, that in most situation vectors, these trade-

offs are subtle and not as obvious as the above examples. It is
difficult for a human to look at the situations and easily predict
which strategy is the best performer. Hence, hand-coding the
strategies by a designer is not a practical alternative.

4.2 Choosing a Coordination Strategy
COLLAGE chooses a coordination strategy based on how
the set of available strategies performed in similar past cases.
We adopt the notation from Gilboa and Schmeidler[Gilboa &
Schmeidler, 1995]. Each case c is triplet

hp� a� ri � Ci

Ci � P �A� R

where p � P and P is the set of situations representing
abstract characterization of coordination problems, a � A
and A is the set of coordination choices available, r � R and
R is the set of results from running the coordinationstrategies.

Decisions about coordination strategy choice are made
based on similar past cases. Outcomes decide the desirability
of the strategies. We define a similarity function and a utility
function as follows:

s � P � � ��� ��

u � R � �

In the experiments presented later, we use the Euclidean
metric for similarity.

The desirability of a coordination strategy is determined by
a similarity-weightedsum of the utility it yielded in the similar
past cases in a small neighborhood around the present situa-
tion vector (in our experiments, the neighborhood radius was
heuristically set to 0.05). We observed that such an averaging
process in a neighborhood around the present situation vector
was more robust than taking the nearest neighbor. Let M be
the set of past similar cases to problem pnew � P (greater
than a threshold similarity).

m �M 	 s�pnew�m� 
 sthreshold

For a � A, let Ma � fm 	 hp� �� ri � M j� 	 ag. The
utility of a is defined as

U�pnew� a� 	
�

jMaj

X

hq�a�ri�Ma

s�pnew� q�u�r�

5 Experiments
5.1 Experiments in the DDP domain
Our experiments on learning coordination were conducted in
the domain of distributed data processing[Nagendra Prasad et
al., 1996]. This domain consists of a number of geographi-
cally dispersed data processing centers (agents). Each center
is responsible for conducting certain types of analysis tasks
on streams of satellite data arriving at its site: “routine anal-
ysis” that needs to be performed on data coming in at regular
intervals during the day, “crisis analysis” that needs to be per-
formed on the incoming data but with a certain probability
and “low priority analysis”, the need for which arises at the
beginning of the day with a certain probability. Low priority
analysis involves performing specialized analysis on specific



archival data. Different types of analysis tasks have different
priorities. A center should first attend to the “crisis analysis
tasks” and then perform “routine tasks” on the data. Time
permitting, it can handle the low-priority tasks. The process-
ing centers have limited resources to conduct their analysis
on the incoming data and they have to do this within certain
deadlines. Results of processing data at a center may need
to be communicated to other centers due the interrelation-
ships between the tasks at these centers. [Nagendra Prasad et
al., 1996] developed a graph-grammar-based stochastic task
structure description language and generation tool for mod-
eling task structures arising in a domain such as this. They
present the results of empirical explorations of the effects of
varying deadlines and crisis task group arrival probability.
Based on the experiments, they noted the need for different
coordination strategies in different situations to achieve good
performance. In this section, we intend to demonstrate the
power of COLLAGE in choosing the most appropriate coor-
dination strategy in a given situation. We performed two sets
of experiments varying the probability of the centers seeing
crisis tasks. In the first set of experiments, the crisis task group
arrival probability was 0.25 and in the second set it was 1.0.
For both sets of experiments, low priority tasks arrived with
a probability of 0.5 and the routine tasks were always seen at
the time of new arrivals. A day consisted of a time slice of 140
time units and hence the deadline for the task structures was
fixed at 140 time units. In the experiments described here,
utility is the primary performance measure. Each message
an agent communicates to another agent penalizes the overall
utility by a factor called comm cost. However, achieving a
better non-local view can potentially lead to higher quality that
adds to the system-wide utility. Thus, utility 	 quality �
total communication � comm cost. The system consisted
of three agents (or data processing centers).

Experiments
For the experiments where crisis task group arrival probability
was 0.25, COLLAGE was trained on 4500 instances in Mode
1 and on 10000 instances in Mode 2. For the case where
crisis task group arrival probability was 1.0, it was trained on
2500 instances in Mode 1 and on 12500 instances in Mode 2.
Figure 1 shows the average quality over 100 runs for different
coordination strategies at various communication costs. The
curves for both Mode 1 and Mode 2 learning algorithms lie
above those for all the other coordination strategies for the
most part in both the experiments. We performed a Wilcoxon
matched-pair signed ranks analysis to test for significant dif-
ferences (at significance level 0.05) between average perfor-
mances of the strategies across communications costs upto
1.0 (as versus, pairwise tests at each communication cost).
This test revealed significant differences between each of the
learning algorithms (both Mode 1 and Mode II) and each of
the other three coordination strategies, indicating that we can
assert witha high degree of confidence that the performance of
the learning algorithms across various communication costs
is better than statically using any one of the family of coor-
dination strategies�. As the communication costs go up, the

�Testing across communication costs is justified because in real-
ity, the cost may vary during the course of the day.

mean performance of the coordination strategies go down. For
crisis task group arrival probability of 0.25, the balanced
coordination strategy performs better than the learning algo-
rithms at very high communication costs because, learning
algorithms use additional units of communication to form the
global situation vectors. At very high communication costs,
even the three additional meta-level messages for local situa-
tion communication (one for each agent) led to large penalties
on utility of system. At communication cost of 1.0, Mode
1 learner and Mode 2 learner average at 77.72 and 79.98 re-
spectively, whereas, choosing balanced always produces
an average performance of 80.48. Similar behavior was ex-
hibited at very high communication costs when the crisis task
group arrival probability was 1.0. Figure 2 gives an exam-
ple of situation-specific choice of coordination strategies for
Mode 1 learner in 100 test runs when the crisis task group
probability was 1.0. The Z-axis shows the number of times a
particular coordination strategy was chosen in the 100 runs at
a particular communication cost. X-axis shows the commu-
nication cost and the Y-axis shows the coordination strategy.

When not to learn!
In order to test COLLAGE on interesting scenarios with a
range of characteristics, we created a number of “synthetic
domain theories” using graph grammar formalisms[Nagendra
Prasad et al., 1996]. Space limitations do not permit us to
discuss all the results but we would like to briefly talk about
a very interesting result seen in the synthetic grammar “G3”.
We trained COLLAGE on the G3 domain in both Mode 1 and
Mode 2 and tested them on 100 runs for different coordination
strategies at various communication costs. We found that a
coordination strategy called tough� coordination performs
slightly better than COLLAGE. Upon closer examination of
the problem instances, it was noted that tough was the best
performer in 81% of the instances and other coordination
strategies did better in the rest of the 19%. COLLAGE learns
to choose the right coordination strategy in all the 100 in-
stances. However, the agents require additional units of com-
munication of meta-level information to form the global situa-
tion vector and decide thattough is the strategy of choice (in
most cases). The lesson we learn from this grammar is that,
if there is an overwhelming favorite for best performance in
the family of strategies, then it may not pay to use COLLAGE
to determine the best performer through additional situation
communication. Sticking to the favorite without awareness
of the nonlocal situation may yield as good a performance.
However, if the few cases that warrant the choice of another
strategy give far superior performance, then the gains from
choosing a strategy can more than compensate for the addi-
tional communication. This, however, was not the case in
environments produced by grammar G3.

5.2 Discussion
COLLAGE chooses an appropriate coordination strategy by
projecting decisions from past similar experience into the
newly perceived situation. COLLAGE agents performed bet-
ter than using any single coordination strategy across all the

�Definition of the tough coordination strategy is not important
here.



a) Crisis TG 0.25
b) Crisis TG 1.0

26

36

46

56

66

76

86

96

106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 U
til

ity

Communication Cost

Collage M1

Collage M2

dataflow

balanced

rough

150

160

170

180

190

200

210

220

230

240

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 U
til

ity

Communication Cost

Figure 1: Average Quality versus Communication Cost

60

50

40

30

20

10

0

0

10

20

30

40

50

60

ROUGH

BALANCED

DATAFLOW

0
0.05

0.1
0.25

0.5
0.75

1

2

3

Figure 2: Strategies chosen by COLLAGE M1 for Crisis TG Probability 1.0 at various communication costs



100 instances in all domains we experimented with, except
G3. In these domains, the cost incurred by additional com-
munication for detecting global situation is offset by the ben-
efits of choosing a coordination strategy based on globally
grounded learned knowledge. Domain G3, however, is dis-
tinguished by the fact that there is little variance in the choice
best coordination strategy and the best coordination strategy
was almost alwaystough. This highlights the fact that learn-
ing is especially beneficial in more dynamic environments.

6 Conclusion

Many researchers have shown that no single coordination
mechanism is good for all situations. However, there is little
in the literature that deals with how to dynamically choose
a coordination strategy based on the situation. In this paper,
we presented a learning system, called COLLAGE, that uses
meta-level information in the form of abstract characteriza-
tion of the coordination problem instance to learn to choose
the appropriate coordination strategy from among a class of
strategies. Our experiments provide strong empirical evidence
of the benefits of learning situation-specific coordination.

However, one important limitationof COLLAGE is its scal-
ability. As the number of coordination alternatives become
large in number, the learning phase could become computa-
tionally very intensive and the instance-base size could in-
crease enormously with respect to Mode 2. We are looking at
how to integrate methods for progressively refining situation
vectors such as those in [Sugawara & Lesser, 1993], ways to
organize the instance-base to access and detect regions where
there is insufficient learning and also ways to do more di-
rected experimentation during learning rather than randomly
sampling the problem space.

In COLLAGE, all the agents form identical instance-bases.
We could as well have done with one designated agent form-
ing the instance-base and choosing the coordination strategy.
However, our configuration was set up with a more general
scheme in mind. Instead of all agents choosing the same coor-
dination algorithm, they can choose pairwise or group-wise.
A subset of the agents coordinate to choose the same strategy.
This will lead to different case-bases at different agents and
an agent may have more than one case-base if it is a part of
more than one group. This leads us to another scalability
issue: the number of agents. If there are a large number of
agents, then common situation vectors may lose “too many”
details about the situations. Pairwise or group-wise coordina-
tion may be a better option. However, we have to deal with
issues such as inconsistent and conflicting knowledge among
the case-bases, formation of appropriate groups, and different
amounts of learning for different groups.

Acknowledgments

We would like to thank Keith Decker and Alan Garvey for
their help and input during the course of this work. Thanks
also go to Daniel Neiman, Mike Chia and the anonymous
referees for their comments and feedback on draft versions of
this paper.

References
[Aha, Kibler, & Albert, 1991] Aha, D. W.; Kibler, D.; and

Albert, M. K. 1991. Instance-based Learning Algorithms.
Machine Learning 6:37–66.

[Crites & Barto, 1996] Crites, R. H., and Barto, A. G.
1996. Improving elevator performance using reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems 8.

[Decker & Lesser, 1993] Decker, K. S., and Lesser, V. R.
1993. Quantitative modeling of complex computational
task environments. In Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence, 217–224.

[Decker & Lesser, 1995] Decker, K. S., and Lesser, V. R.
1995. Designing a family of coordination algorithms.
In Proceedings of the First International Conference on
Multi-Agent Systems, 73–80. San Francisco, CA: AAAI
Press.

[Durfee & Lesser, 1988] Durfee, E., and Lesser, V. 1988.
Predictability vs. responsiveness: Coordinating problem
solvers in dynamic domains. In Proceedings of the Seventh
National Conference on Artificial Intelligence, 66–71.

[Garvey & Lesser, 1993] Garvey, A., and Lesser, V. 1993.
Design-to-time real-time scheduling. IEEE Transactions
on Systems, Man and Cybernetics 23(6):1491–1502.

[Gilboa & Schmeidler, 1995] Gilboa, I., and Schmeidler, D.
1995. Case-based Decision Theory. The Quaterly Journal
of Economics 605–639.

[Nagendra Prasad et al., 1996] Nagendra Prasad, M. V.;
Decker, K. S.; Garvey, A.; and Lesser, V. R. 1996. Explor-
ing Organizational Designs with TAEMS: A Case Study of
Distributed Data Processing. In Proceedings of the Second
International Conference on Multi-Agent Systems. Kyoto,
Japan: AAAI Press.

[Sandholm & Crites, 1995] Sandholm, T., and Crites, R.
1995. Multi-agent reinforcement learning in the repeated
prisoner’s dilemma. to appear in Biosystems.

[Sen, Sekaran, & Hale, 1994] Sen, S.; Sekaran, M.; and
Hale, J. 1994. Learning to coordinate without sharing
information. In Proceedings of the Twelfth National Con-
ference on Artificial Intelligence, 426–431. Seattle, WA:
AAAI.

[Sugawara & Lesser, 1993] Sugawara, T., and Lesser, V. R.
1993. On-line learning of coordination plans. In Proceed-
ings of the Twelfth International Workshop on Distributed
AI.

[Tan, 1993] Tan, M. 1993. Multi-agent reinforcement learn-
ing: Independent vs. cooperative agents. In Proceedings of
the Tenth International Conference on Machine Learning,
330–337.

[Weiss, 1994] Weiss, G. 1994. Some studies in distributed
machine learning and organizational design. Technical
Report FKI-189-94, Institut f
ur Informatik, TU M
unchen.


