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Abstract— We present several discrete-time Markov
queuing models to compare the performance of batch
versus streaming processing of sensor data in a weather
detection and monitoring system architecture. The first
model assumes independent arrivals and illustrates the
average case behavior of the system. The remaining models
assume correlated arrivals and demonstrate how different
scan strategies across multiple elevations impact system
performance. We also show how the models are useful in
dimensioning the computational resources of the system
given workload arrival characteristics. We apply the mod-
els to several hypothetical scenarios with varying weather
feature arrival and processing rates. We also evaluate
our models using processing runtime data obtained by
running two NEXRAD algorithms on weather data from
six airports. Our results show that for this particular
application and reasonable system utilizations, delaying
processing start time to perform batch processing does not
adversely affect system performance or require significant,
additional computational resources. More generally, our
models show how system performance is dependent on
the scan strategy and the burstiness of the sensor data.

I. INTRODUCTION

In this paper, we use discrete time Markov queuing
models to compare the performance of batch versus
streaming processing of sensor data in a weather detec-
tion and monitoring system. In particular, we model and
analyze the feature detection subsystem of the Meteoro-
logical Command and Control (MC&C) component of
the proposed architecture for the Collaborative Adaptive
Sensing of the Atmosphere (CASA) weather prediction
system [1], [2]. In the proposed MC&C, weather data
from sensors are input to feature detection algorithms
during a fixed window of time. During that window, the
detection algorithms must process the data and deposit
any detected features into a repository. These features are
then used by the system to redirect the sensors to scan in
new regions, and the process then repeats. We compare

two approaches to processing the data from sensors.
In the first, the detection algorithms process data in a
streaming fashion by continuously processing the data
during the time window. In the second, the algorithms
use batch processing in which they wait some amount
of time before beginning to process the accumulated
data. Once they have processed all accumulated data,
the algorithms switch to the streaming method for the
remaining time. Our goal in undertaking this study is to
determine the extent to which batch processing of “sit
and spin” radars (in which radars are not retasked in
real-time based on detected meteorological features) is
still appropriate in the case that radars are dynamically
retasked in real-time based on detected features.

We present several Markov chain models of the above
system. Since feature processing occurs over a finite win-
dow, we perform a transient analysis. In the first model,
we represent the feature detection system as a Geo/Geo/1
discrete-time queue. Features (which require processing
to be detected) arrive independently during a slot ac-
cording to a geometric distribution. Service completions
within a slot are modeled with a Bernoulli random vari-
able. This results in a one-dimensional Markov chain that
we use to compute the work completion probability—
the probability that at most one unprocessed feature will
remain in the system at the end of the window (i.e.,
the probability that the work that has arrived during the
interval is processed by the end of the interval). This
allows us to find the latest time to begin batch processing
such that the work completion probability is greater than
or equal to some target probability. The model is also
used to determine the processing power needed to ensure
that the work completion probability is above the target
given known feature arrival characteristics and a desired
batch processing start time.

The next two models are extensions of the first, but
no longer assume independent feature arrivals. In slightly



different ways, each uses a two-state source Markov pro-
cess to model correlated meteorological feature arrivals.
The motivation for this model is that features of weather
phenomena arrive in clusters that are dependent on the
elevation at which radar scans take place. In one model,
the rate at which features arrive is dependent on the state
of the source process. In the other, it is the processing
time that is dependent on the state of the source process.

To do the analysis for all models, we explore several
hypothetical scenarios as well as utilize empirical run-
times derived from two NEXRAD [3] algorithms run on
data collected by several NEXRAD radars. Our results
show that for this particular application and reason-
able system utilizations, delaying processing start time
to perform batch processing does not adversely affect
system performance or require significant, additional
computational resources. More generally, our models
show how system performance is dependent on the radar
scan strategy and the burstiness of the sensor data.

The remainder of the paper is structured as follows.
Section II discusses the simple model in which features
arrive independently of one another. Section III discusses
the extended models with correlated feature arrivals. We
conclude in Section IV.

II. INDEPENDENT ARRIVALS

In this section, we model the MC&C feature detection
system as a Geo/Geo/1 queue with finite capacity. This
is a discrete time model in which time is divided into
equally sized intervals or slots. Meteorological features
arrive at the queue during each slot according to a
geometric distribution and service begins on a feature
only at the beginning of a slot [4]. Thus, the earliest that
service can begin on a feature is in the slot immediately
after the one in which it arrived. At most one feature can
be processed during a slot and service completions are
modeled by a Bernoulli random variable. The resulting
model of this system is a one-dimensional Markov chain.

We use discrete-time queues, as opposed to
continuous-time queues, as the basis of our models
because exact, time-dependent solutions for continuous
time queuing systems are computationally complex and
intractable for all but the simplest models [5], requiring
approximate numerical approaches instead [6]. Our
discrete-time model lends itself to a simpler approach
by which we can approximate continuous time queuing
solutions if the slot size used is small enough. Another
decision we made was to focus on the transient behavior
of the queue over a finite time window as we are
interested in the time-dependent behavior of feature

TABLE I

PARAMETERS FOR THE MODEL WITH INDEPENDENT ARRIVALS.

N System capacity
s Number of slots per second
[0, τ ] Processing interval
t = sτ Number of slots in [0, τ ]

τ0 Processing start time (seconds)
t0 = sτ0 Processing starting slot
m = t− t0 Processing duration in slots
a(n) = (1− p)pn Feature arrival distribution per slot
λ = sp

1−p
Mean feature arrival rate

σ Prob. service will complete in current slot
u = 1 − σ Prob. service will require one or more slots
µ = sσ Mean service completion rate
ρ = λ

µ
System utilization

ξ Prob. of at most one feature at slot t

β(i) Prob. of i arrivals by slot t0

detection, especially at the end of the time window
rather than its steady state behavior.

While there has been considerable research pertaining
to transient and nonstationary analysis of queues (for
example [6]–[11]), to our knowledge this work is the first
to use transient analysis to compare streaming versus
batch processing of sensor data and to determine the
amount of computational resources needed to achieve
satisfactory system performance in each case.

A. Definitions

Table I summarizes the parameters of our first model.
N is maximum number of features able to be in the
system at one time, including the feature being pro-
cessed. We assume that features are lost if they arrive
when the system is at capacity. (Note that we can choose
N large enough to make the probability of this event
exceedingly small.) The parameter s gives the number
of slots per second, which allows us to control the
granularity of the model. The interval [0, τ ] gives the
window of time during which weather data arrive from
sensors and feature processing must occur. t = sτ

is the number of slots over the interval [0, τ ]. τ0 and
t0 = sτ0 are the time in seconds and number of slots
at which processing begins. Obviously, 0 ≤ τ0 ≤ τ and
0 ≤ t0 ≤ t. Processing lasts m = t − t0 slots after t0.

In our first model, features arrive according to a
geometric distribution with parameter p:

a(n) = (1 − p)pn n = 0, 1, 2, . . . (1)



where n is the number of arrivals in a slot. Given this
distribution, the mean number of feature arrivals per slot
is given by

E[n] =

∞
∑

n=0

n(1 − p)pn =
p

1 − p

and the mean number of features per second λ is given
by sp

1−p
.

Let σ be the probability that service on the feature
being processed will complete in the current slot, and
u = 1 − σ be the probability that service on the feature
will require at least one more slot. Since service com-
pletions are governed by a Bernoulli random variable,
the mean number of completions per second is given
by µ = sσ. Given λ and µ, let ρ = λ

µ
be the system

utilization.
Finally, our performance metric ξ is the work com-

pletion probability—the probability that at most one
unprocessed feature will remain in the system at the end
of the processing window at slot t. β(i) is the probability
that i features have accumulated in the system by the
time processing begins at slot t0. We discuss ξ and β(i)
in more detail below.

We use a one-dimensional Markov chain to model the
system. The state space is the set {i = 0, 1, 2, . . . , N}
where i is the number of features (including the one in
service) in the system. With the definitions in Table I, it
is relatively straightforward to determine the following
one-step transition probabilities of the Markov chain.

P0j = a(j), 0 ≤ j < N (2)

Pii−1 = σa(0), 0 < i ≤ N (3)

Pii+j = σa(j + 1) + ua(j), 0 < i ≤ i + j < N (4)

PiN = 1 −

N−1
∑

j=0

Pij, 0 ≤ i ≤ N (5)

Pij = 0, otherwise (6)

The one-step transition probabilities define the one-
step transition probability matrix, P. From P we can
compute the m-step transition probability matrix by
computing P

m [12], where m = t − t0 is the number
of slots during which processing occurs. P

m provides
the probability of starting in any state i during slot t0
and ending in any other state j when processing stops
at slot t. To compute the work completion probability ξ,
we must condition on the starting state at t0. This is the
number of features that have accumulated in the system
from slot zero to slot t0 when processing starts. To do

this, we must first find the distribution of the number of
features that have arrived by slot t0.

Let X(t0) be the number of features that have accu-
mulated in the system before processing begins at slot
t0 and β(i) be the probability that X(t0) = i. β(i) has
the following distribution:

β(i) =



















(

i+t0−1
t0−1

)

(1 − p)t0pi for 0 ≤ i < N,

1 −
∑N−1

k=0 β(k)} for i = N,

0 otherwise.

(7)

To see that this is the case, consider the distribution
of arrivals within a single slot a(n) = (1 − p)pn for
n = 0, 1, 2, . . . . The parameter p can be seen as the
probability that a first feature will arrive in a slot and
1− p as the probability that no more features will arrive
in a slot. In order for there to be i arrivals in t0 slots,
i features must arrive and features must stop arriving t0
times. Thus, we can think of there being i + t0 flips of
a coin necessary to have i arrivals. Since the last time
that features stop arriving must occur on the final flip of
the coin there are a total of

(

i+t0−1
t0−1

)

ways in which the
i features can arrive. This accounts for the case when
0 ≤ i < N . The second case follows since the system
has finite capacity, and the third since there can only be
a positive number of arrivals.

Given the distribution of the number of features that
have accumulated by time t0 and the m-step transition
probability matrix, P

m, we are in a position to compute
the work completion probability, ξ. Let ξ0(m) and ξ1(m)
be the probabilities of having zero and one features in
the system respectively when processing stops at slot t.
We determine these by conditioning on the number of
features in the system when processing starts at t0.

ξ0(m) =

N−1
∑

i=0

β(i)P m
i0 +

[

1 −

N−1
∑

i=0

β(i)
]

Pm
N0

ξ1(m) =

N−1
∑

i=0

β(i)P m
i1 +

[

1 −

N−1
∑

i=0

β(i)
]

Pm
N1

where P m
ij is an entry in P

m and 1−
∑N−1

i=0 β(i) is the
probability of being in state N at t0. Therefore,

ξ = ξ0(m) + ξ1(m)

gives the work completion probability ξ.

B. Numerical Calculations

All computations in this and subsequent sections were
performed using Matlab.



1) Latest Processing Start Time: Our first perfor-
mance metric of interest is the workload completion
probability ξ. Our goal is to find the latest time at which
processing can start, τmax

0 , such that ξ is greater than
some target probability given λ and µ. Since actual
values for λ and µ are not yet available for the CASA
project, we take two approaches to exploring the model.
We first compare τmax

0 across several hypothetical sce-
narios. We then use the runtime data that we have
collected on NEXRAD detection algorithms to evaluate
the model. In this and subsequent sections we assume
that τ = 30 seconds.

Tables II and III summarize the results for two values
of µ and two target probabilities. In all cases s was held
constant at ten slots per second, and the system capacity
was held constant at 20 features. In the scenario shown
in Table II, µ was held constant at 1 feature processed
per second, and λ increased such that λ

µ
had the values

shown. For the target probability of 0.9 in this scenario,
the largest possible value of λ such that the target could
be reached at all was 0.3. For a target of 0.95, the largest
value was 0.2. In the second scenario µ was held constant
at 4 features per second.

It is also instructive to view how ξ changes as we
increase the processing start time. Figures 1 and 2 plot ξ

versus processing start time for some of the values of λ

and µ in the two scenarios represented by Tables II and
III. The graphs in Figures 1 and 2 are flat initially, and
as the ratio of λ to µ increases, the duration over which
each graph is flat decreases. This indicates that for the
relatively small values of λ

µ
discussed here, there is little

difference between streaming processing (when t0 = 0)
and batch processing even if batch processing starts as
much as half way through the processing window.

Another implication is that the initial state of the
system does not significantly affect the outcome if the
processing start time is early. In other words, although
we are analyzing the system over a finite period of time,
if λ

µ
is small and the processing start time is not too large,

the system approaches its steady state distribution. We
have verified this by comparing the value of ξ when
τ0 = 0 to the analogous value in a continuous time
M/M/1/N queue with the same λ, µ and N . As the
number of slots per second increases in the Geo/Geo/1
queue, the value of ξ approaches the closed form solution
of the continuous case.

Tables II and III and Figures 1 and 2 illustrate the
effect that λ and µ have on the transient behavior of the
system. They show that for a given value of λ

µ
, the graph

is flat for longer and τmax
0 is higher if the actual values

TABLE II

VALUES OF τmax
0 FOR TWO TARGET PROBABILITIES IN THE

SCENARIO WHERE µ IS HELD CONSTANT AT 1 FEATURE PER

SECOND AND λ IS INCREASED. τmax
0 IS THE LATEST TIME THAT

PROCESSING CAN START WITHIN THE PROCESSING WINDOW [0, τ ]

SUCH THAT THE WORK COMPLETION PROBABILITY IS AT LEAST

THE TARGET.

τ = 30 sec Target Prob. = 0.9 Target Prob. = 0.95
λ µ λ

µ
τmax
0 (seconds) τmax

0 (seconds)

0.1 1 0.1 24 23
0.125 1 0.125 23 21
0.15 1 0.15 22 20
0.175 1 0.175 21 18
0.2 1 0.2 19 16

0.225 1 0.225 18
0.25 1 0.25 16
0.275 1 0.275 14
0.3 1 0.30 12

TABLE III

VALUES OF τmax
0 FOR TWO TARGET PROBABILITIES IN THE

SCENARIO WHERE µ IS HELD CONSTANT AT 4 FEATURE PER

SECOND AND λ IS INCREASED. τmax
0 IS THE LATEST TIME THAT

PROCESSING CAN START WITHIN THE PROCESSING WINDOW [0, τ ]

SUCH THAT THE WORK COMPLETION PROBABILITY IS AT LEAST

THE TARGET.

τ = 30 sec Target Prob. = 0.9 Target Prob. = 0.95
λ µ λ

µ
τmax
0 (seconds) τmax

0 (seconds)

0.4 4 0.1 25 25
0.5 4 0.125 24 24
0.6 4 0.15 23 23
0.7 4 0.175 23 22
0.8 4 0.2 22 21
0.9 4 0.225 21
1.0 4 0.25 21
1.1 4 0.275 20
1.2 4 0.30 18

of λ and µ are higher.
2) Independent Arrivals and NEXRAD Data: The

above examples explored the independent arrival model
for several hypothetical scenarios. We next use empir-
ical data from two NEXRAD algorithms to evaluate
the model. Doing so requires a slight modification. As
described, the model assumes that fine-grained features
arrive individually to be processed. The NEXRAD data
we have, however, are at the granularity of entire ele-
vation scans. Each elevation scan contains a number of
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Fig. 1. Probability of at most one feature in the system at the end
of the 30 second processing window vs. processing start time for
three values of λ

µ
where µ is held constant at 1 feature processed per

second.
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Fig. 2. Probability of at most one feature in the system at the end
of the 30 second processing window vs. processing start time for
three values of λ

µ
where µ is held constant at 4 features processed

per second.

features, and, as such, the processing per elevation varies
according to the number of features in the scan. A scan
with many features will take longer to process than a
scan of a clear sky, which has few features. As such, we
modify the model to view each “arrival” as bringing a
group of features. λ then is the rate at which elevation
scans arrive, and µ is the mean processing rate of scans.

The two algorithms whose runtimes we have bench-
marked are llsd (Linear Least Squares Derivative) and
w2merger which are used in the Warning Decision Sup-
port System - Integrated Information (WDSS-II) [13].
The first algorithm calculates wind shear; the second

algorithm merges data in overlapped scanned regions and
performs radial-to-Cartesian coordinate transformation.
The raw data was collected from single radars at six
airports. To process the data and obtain runtime infor-
mation, both algorithms were run using a 3.25 gHz Xeon
processor, using this raw input data.

Given the data, we can determine the parameters of
the independent arrival model. To determine the mean
service completion rate µ, we use the runtime data. The
mean runtime for llsd was 0.193 seconds per elevation
and 0.272 seconds for w2merger. The mean total pro-
cessing rate µ is thus 2.151 elevation scans per second.
(Note that in the actual CASA implementation a suite of
detection algorithms will be run on incoming data, all
of which will contribute to the total runtime.) As in the
above subsection, we assume that the processing times
are geometrically distributed.

To determine the arrival rate λ of elevation scans, we
assume that on average three elevation scans arrive from
a single radar during the thirty second interval. This gives
a mean arrival rate of λ = 0.1 elevations per second.
We model the number of arrivals per slot as being
geometrically distributed with this mean arrival rate. The
geometric variability in the arrival process models the
fact that radar dwell times can be variable; the networked
transfer of radar data to a remote processing site adds
further variability to the interarrival times. Because in
the CASA project data will arrive from multiple radars,
we also run the model using several larger values of λ

to simulate scenarios with a greater number of radars.
Table IV and Figure 3 summarize the results of

applying the above parameters to the model. Again
the processing window is assumed to be 30 seconds.
Table IV shows how the latest processing start time
changes for µ = 2.15 elevation scans processed per
second as we increase λ for two target probabilities.
Figure 3 plots the work completion probability ξ versus
processing start time. Again, for the values shown, there
is little difference between streaming processing (t0 = 0)
and batch processing as long as the delay is not more
than half the 30-second processing window.

3) Dimensioning: The above model can also deter-
mine the processing power needed to ensure that the
work completion probability is above some threshold for
a known arrival rate λ and batch processing start time
τ0. Given such values, we can use the model to find
a value of the service completion rate (i.e., processing
power) µ = sσ that allows the system to complete its
work that arrived during the 30 second interval with
high probability. Figure 4 plots the value of µ versus



TABLE IV

VALUES OF τmax
0 FOR TWO TARGET PROBABILITIES IN THE

SCENARIO WHERE µ IS HELD CONSTANT AT 2.15 FEATURES PER

SECOND AS DERIVED FROM THE EMPIRICAL NEXRAD DATA. λ IS

INCREASED. τmax
0 IS THE LATEST TIME THAT PROCESSING CAN

START WITHIN THE PROCESSING WINDOW [0, τ ] SUCH THAT THE

WORK COMPLETION PROBABILITY IS AT LEAST THE TARGET.

τ = 30 sec Target Prob. = 0.9 Target Prob. = 0.95
λ µ λ

µ
τmax
0 (seconds) τmax

0 (seconds)

0.1 2.15 0.047 27 27
0.2 2.15 0.093 25 24
0.3 2.15 0.140 23 22
0.4 2.15 0.186 21 19
0.5 2.15 0.233 19
0.6 2.15 0.279 16
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Fig. 3. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for four values of
λ with µ held constant at 2.15 elevations processed per second.

τ0 for λ = 0.1 and λ = 0.3 features per second given a
target probability of 0.95. We again assume a processing
window of 30 seconds and 10 slots per second.

Figure 4 demonstrates that, for the values of λ shown,
delaying the processing start time by as much as half
of the processing window to do batch processing does
not cause a significant increase in the computational re-
sources required to keep the work completion probability
above the target probability. For example, for λ = 0.3
feature arrivals per second, a service completion rate µ

of 1.5 features processed per second is required when
τ0 = 0 (streaming mode) to keep the work completion
probability above the target. As τ0 increases for batch
processing, the µ required remains constant until τ0 = 18

Processing start time (seconds)
0 5 10 15 20 25

P
ro

ce
ss

in
g 

ra
te

 n
ec

es
sa

ry
 (

fe
at

ur
es

/s
ec

on
d)

0

1

2

3

4

5

6

7

Processing Rate for Target Probability 0.95 with lambda=0.1 and 0.3

lambda = 0.1

lambda = 0.3

Fig. 4. Feature processing rate necessary for λ = 0.1 and 0.3
features arriving per second with a target probability of 0.95.

when µ must increase to 2 features per second in order
to maintain the target work completion probability. As
we increase τ0 further, µ increases rapidly, approaching
∞ as τ0 approaches τ .

As before, we see the effect that λ and µ have on
the transient behavior. The graph is flat and then curves
upward approaching ∞ as τ0 approaches τ , but the
upward trend begins earlier for the higher value of λ.

III. CORRELATED MODELS

In this section, we explore two models in which me-
teorological feature arrivals are correlated. Both are ex-
tensions of the independent arrival model, but no longer
assume that arrivals are independent since in the case of
weather phenomena, features arrive in clusters, with the
number of features depending on the elevation at which
the radars are scanning. We model meteorological feature
correlation with a two-state Markov process. In the first
correlated model below this source process controls the
parameter of the geometric arrival distribution. When
the process is in state 0, the distribution has parameter
p0; when it is in state 1, the distribution has parameter
p1. This allows us to model the fact that features arrive
in bursts by setting one parameter high and the other
low. In the second correlated model, we assume a
constant rate of feature arrivals, and the two-state source
Markov process controls the probability that service will
complete within the slot. In both cases, by viewing the
states of the source process as representing either low or
high elevation scans, we can model different radar scan
strategies with different processing times.

The two correlated models are really two sides of the
same coin and can both be used to model the same



TABLE V

DEFINITIONS FOR THE CORRELATED ARRIVAL MODEL.

qkl Trans. probs of source Markov process.
Pik,jl Trans. probabilities of the 2-dim chain
ak(n) = (1 − pk)pn

k Arrival dist. for source process state k.
π0 = q10

(1+q10−q00)
Limiting prob. of source process state 0.

π1 = 1 − π0 Limiting prob. of source process state 1.
λ = π0λ0 + π1λ1 Average feature arrival rate.
λk = spk

1−pk

Mean arrival rate for source process state k.

βk(i) Pr. i arrivals by t0, source process state k.
δ(i) Prob. i accumulated features by slot t0.

phenomenon. The difference is a matter of perspective.
Similar to the description in Section II-B.1, the first
correlated model applies to a situation in which fea-
ture arrivals are fine-grained and each of the individual
features is processed in turn. The second applies to
situations in which a single arrival brings several features
to be processed. This is similar to our empirical data
for the processing times of NEXRAD elevation scans,
as discussed in the previous section. Each elevation scan
contains a variable number of weather features on which
the processing time depends.

A. Correlated Arrivals

In this subsection we develop and analyze the model
in which fine-grained features arrive during a slot at rates
determined by a two-state source Markov process.

1) Definitions: We use a 2-dimensional Markov chain
to analyze this model. The state is defined by the set
{i, k} where i = 0, 1, 2, . . . N is the number of features
in the system, and k = 0, 1 is the state of source arrival
process. Table V summarizes the definitions where they
differ from the first model. qkl for k, l = 0, 1 represents
the transition probabilities of the source process. Pik,jl

for i, j = 0, 1, 2, . . . N and k, l = 0, 1 represent the
transition probabilities of the 2-dimensional chain.

Features arrive with distribution ak(n) = (1 − pk)p
n
k

when the source process is in state k. λk is the mean
feature arrival rate for the source process state k, and
λ = π0λ0+π1λ1 is the average feature arrival rate where
π0 and π1 are the limiting probabilities of the source
process. Finally, let δ(i) be the probability that i features
have arrived by slot t0. This is analogous to β(i) in the
first model. βk(i) is discussed below.

Given the above information, we define the one-step

transition probabilities to be

P0k,il = qklak(i) 0 ≤ i < N k, l = 0, 1 (8)

Pik,i−1l = qklσak(0) 0 < i ≤ N k, l = 0, 1 (9)

Pik,i+jl = qkl[σak(j + 1) + uak(j)]

0 < i ≤ i + j < N k, l = 0, 1
(10)

Pik,Nl = qkl −

N−1
∑

j=0

Pik,jl 0 ≤ i ≤ N k, l = 0, 1

(11)

Pik,jl = 0 otherwise. (12)

These equations are the analogues of Equations 2
through 6 of the independent arrival model and follow
from similar reasoning. The 2-dimensional chain will
move to another state depending on the feature arrival
distribution for the source arrival process state k, the
service completion probability, and the source process’s
transition probabilities.

The one-step transition probabilities define the one-
step transition probability matrix. Whereas in the inde-
pendent arrival model we had an (N + 1) × (N + 1)
matrix, here the matrix is 2(N + 1) × 2(N + 1). We
index the matrix from 0 to 2N + 1 where an index r

gives the state of the two-dimensional Markov chain as
{r mod N + 1, b r

N+1c}. In other words P(r, s) rep-
resents the probability of moving from a state with
r mod N + 1 features when the source process is in
state b r

N+1c to a state with s mod N + 1 features when
the source process is in state b s

N+1c.
Again, our goal is to compute the work completion

probability ξ, the probability that at most one unpro-
cessed feature will remain in the system at time τ (slot
t) given a processing start time of τ0 (slot t0). We first
compute the m-step transition probability matrix P

m

where m = t − t0. From P
m, we can compute the

probability Q(i, j) of going from a state with i features
in the system at slot t0 to a state with j features in the
system at slot t by conditioning on the state of the source
Markov process. We assume that the probability that the
source process is initially in state k at t0 is equal to its
limiting probability πk. We, therefore, define Q(i, j) to
be

Q(i, j) = π0

[

P
m(i, j) + P

m(i,N + 1 + j)
]

+ π1

[

P
m(i + N + 1, j)

+ P
m(i + N + 1, N + 1 + j)

]

(13)



where π0 = q10

(1+q10−q00)
and π1 = 1 − π0 which can

be easily verified since for a two state chain πj =
∑1

i=0 πiqij for j = 0, 1 and π0 + π1 = 1 [12].
Given Q(i, j), we compute the work completion prob-

ability by conditioning on the number of features in the
system at slot t0. To do this, we need the distribution δ(i)
of the number of features in the system at slot t0 which
depends on the initial state of the source process. Again,
assuming that the probability that the source process is
in initial state k is equal to πk, we define δ(i) to be

δ(i) =







π0β0(i) + π1β1(i) i < N

1 −
∑N−1

i=0 (π0β0(i) + π1β1(i)) i = N
(14)

where βk(i) is the probability that i features have arrived
by slot t0 given that the source process is in state k. βk(i)
has the negative binomial distribution (as in the case for
β(i) in Equation 7) with parameter pk.

Finally, the work completion probability ξ is

ξ = ξ0(m) + ξ1(m) (15)

where

ξ0(m) =

N−1
∑

i=0

δ(i)Q(i, 0) + (1 −

N−1
∑

i=0

δ(i))Q(N, 0)

ξ1(m) =

N−1
∑

i=0

δ(i)Q(i, 1) + (1 −

N−1
∑

i=0

δ(i))Q(N, 1)

2) Numerical Calculations: We analyze the correlated
arrival model as we did the independent arrival model.
To examine the relationship between the feature arrival
rate and the feature service rate, we must consider not
only the average arrival rate, but also the burstiness of the
arrivals. In this subsection we examine four scenarios. In
two of the four, the source arrival process spends 80% of
the time in state zero with transition probabilities q00 =
0.8, q01 = 0.2, q11 = 0.2, and q10 = 0.8. In the other
two scenarios the source process spends 20% of the time
in state zero with q00 = 0.2, q01 = 0.8, q11 = 0.8, and
q10 = 0.2.

Table VI compares τmax
0 when the arrival process

spends 80% of the time in state zero to the case where
it spends 20% of the time in state 0. In both cases the
target probability is 0.9. µ is held constant at 1 feature
processed per second, and λ

µ
varies. λ0, which is always

less than λ1, is fixed at 0.05 features per second. λ1

varies accordingly to maintain the value of λ
µ

given λ0.
Thus, the expected system utilization over the processing
window is the same in both scenarios.

TABLE VI

COMPARISON OF τmax
0 WHEN THE SOURCE PROCESS SPENDS 80%

OF THE TIME IN STATE 0 TO τmax
0 WHEN IT SPENDS 20% OF THE

TIME IN STATE 0 FOR SEVERAL VALUES OF λ. µ IS HELD

CONSTANT AT 1 FEATURE PROCESSED PER SECOND AND λ0 AT

0.05 FEATURES PER SECOND. THE TARGET PROBABILITY IS 0.9

80% State 0 20% State 0
λ
µ

τmax
0 τmax

0

0.1 23 24
0.125 20 23
0.15 18 22
0.175 16 20
0.2 14 19

0.225 12 17
0.25 10 16
0.275 7 14
0.3 11

TABLE VII

COMPARISON OF τmax
0 WHEN THE SOURCE PROCESS SPENDS 80%

OF THE TIME IN STATE 0 TO τmax
0 WHEN IT SPENDS 20% OF THE

TIME IN STATE 0 FOR SEVERAL VALUES OF λ. µ IS HELD

CONSTANT AT 4 FEATURE PROCESSED PER SECOND AND λ0 AT 0.2

FEATURES PER SECOND. THE TARGET PROBABILITY IS 0.9

80 % State 0 20 % State 0
λ
µ

τmax
0 τmax

0

0.1 24 25
0.125 24 24
0.15 24 23
0.175 23 22
0.2 23 22

0.225 22 21
0.25 19 20
0.275 20
0.3 18

Table VII shows the same information as Table VI
but for µ = 4 features processed per second and λ0 =
0.2 features per second. Figures 5 and 6 plot the work
completion probability ξ versus processing start time for
the examples in Table VI. Figures 7 and 8 do the same
for the examples in Table VII.

The above tables and figures show that the system can
tolerate later processing start times for batch processing
when the source process spends more time in the state
with the higher feature arrival rate. This follows our
intuition since in order to maintain the average utilization
with fixed λ0, λ1 must be higher when the system spends
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Fig. 5. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for three values
of λ for the example in Table VI with µ held at 1 feature processed
per second and the source process in state 0 80% of the time.
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Fig. 6. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for three values
of λ for the example in Table VI with µ held at 1 feature processed
per second and the source process in state 0 20% of the time.

most of its time in state 0. The figures also show that
ξ drops much more gradually when the source process
spends more time in the state with the lower feature
arrival rates. The reason is that when the source process
spends more time in the state with lower feature arrivals,
it is less likely that a burst of features will arrive near
the end of the processing window. These differences
emphasize the importance of being able to characterize
the arrival process accurately.

As with the independent arrival model, we can use
the correlated arrival model to determine the processing
power needed to maintain ξ above a threshold, given
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Fig. 7. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for three values
of λ for the example in Table VII with µ held at 4 features processed
per second and the source process in state 0 80% of the time.
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Fig. 8. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for three values
of λ for the example in Table VII with µ held at 4 features processed
per second and the source process in state 0 20% of the time.

the known characteristics of the system. Figure 9 plots
for target probabilities 0.9 and 0.95 the value of µ versus
processing start time in the case when the source process
spends 80% of the time in state 0, given an average
feature arrival rate of λ = 0.4 features per second. λ0 =
0.2 and λ1 = 1.2 features per second. Again, we see that
the processing power for batch processing is the same
as that for streaming as long as batch processing begins
within the first half of the processing window.
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Fig. 9. Feature processing rate necessary for target probabilities of
0.9 and 0.95 given that of λ = 0.4, λ0 = 0.2, λ1 = 1.2, q00 = 0.8,
q01 = 0.2, q11 = 0.2, and q10 = 0.8.

B. Correlated Processing Times

We next consider the model in which groups of
features arrive within a time slot with an identical
probability from slot to slot, but the processing rate of
those groups is dependent on a two-state source arrival
process. We again utilize empirical runtime data for the
llsd and w2merger NEXRAD algorithms to evaluate this
model.

1) Definitions: As in Subsection III-A, a two-
dimensional Markov chain is the basis of this model.
Its state and transition probabilities as well as those of
the source process are as defined in Subsection III-A.
Groups of features (elevation scans) arrive within a slot
according to a geometric distribution with parameter p

as in Equation 1 of Subsection II-A. The arrival rate λ

is also as defined in Section II-A and is the arrival rate
of elevation scans.

Let σk be that probability that service on an elevation
scan will complete in the current slot given that the
source process is in state k. Let uk = 1 − σk be the
probability that service on an elevation scan will require
at least one more slot given that the source process is in
state k. The remaining definitions are the same as those
in Tables I and V.

Given the above, the one-step transition probabilities
are the same as Equations 8 through 12 except that σ

and u are replaced by σk and uk respectively and ak(n)
is replaced by a(n). To compute the work completion
probability, ξ, we compute the m-step transition proba-
bility matrix and condition on the number of elevation
scans accumulated in the system at slot t0. Because the
arrival distribution of scans is independent of the source

process, this distribution is simply β(i) from the model
in Section II defined in Equation 7. The expression for
Q(i, j), the probability of going from an initial state that
has i scans in the system at slot t0 to a state that has
j features in the system at slot t, is the same as that
in Equation 13. The work completion probability, ξ, is,
therefore:

ξ = ξ0(m) + ξ1(m) (16)

where

ξ0(m) =
N−1
∑

i=0

β(i)Q(i, 0) + (1 −
N−1
∑

i=0

β(i))Q(N, 0)

ξ1(m) =
N−1
∑

i=0

β(i)Q(i, 1) + (1 −
N−1
∑

i=0

β(i))Q(N, 1)

2) Numerical Calculations: As noted earlier, our em-
pirical data indicates that scans of low elevations take
more time on average to process than scans of higher
elevations. Thus, for this model state 0 of the source
Markov process represents scanning being done on low
elevations, and state 1 represents scanning at higher
elevations. By manipulating the transition probabilities
of the source process, we can model different scan
strategies as discussed below.

The runtime information we have is composed of
data from scans at thirty-one different elevations. We
consider a low elevation to be in one of the first fifteen
elevations and a high scan to be at one of the second
sixteen. The mean combined runtime for the llsd and
w2merger algorithms on low scans is 0.551 seconds for
a processing rate of µlow = 1.814 scans per second. The
mean combined runtime for high scans is 0.376 seconds
for a processing rate of µhigh = 2.662 scans per second.

As with the other models, we explore the relationship
of λ and µ to the maximum time at which batch
processing can start while still meeting a target work
completion probability. We also explore how different
scan strategies affect this measure. Table VIII compares
τmax
0 for three sets of transition probabilities for the

source process, which model three scan strategies. In the
first, the source process spends equal proportions of time
in state 0 and state1 with q00 = q01 = q10 = q11 = 0.5.
In the second, the source process spends 80% of the
time in state 0 (low elevation scans), and in the third,
the source process spends 90% of the time in state 0. In
all three cases, µlow = 1.814 and µhigh = 2.662, and
the target probability is 0.9. As in the previous models,
we assume geometric scan arrivals due to variability



TABLE VIII

VALUES OF τmax
0 FOR THREE DIFFERENT SCAN STRATEGIES. IN

ALL CASES µlow IS HELD CONSTANT AT 1.814 ELEVATIONS SCANS

PROCESSED PER SECOND, µhigh IS HELD AT 2.662 SCANS PER

SECOND, AND λ IS INCREASED. IN THE FIRST STRATEGY, LOW

AND HIGH SCANS ARRIVE IN EQUAL PROPORTIONS. IN THE

SECOND, 80% OF THE SCANS ARE LOW, AND IN THE THIRD, 90%

ARE LOW. THE TARGET PROBABILITY WAS 0.9.

50/50 80/20 90/10
λ τmax

0 (seconds) τmax
0 τmax

0

0.1 27 27 27
0.2 25 25 25
0.3 23 23 22
0.4 22 20 20
0.5 19 18 17
0.6 17 14 8

in network delay and radar dwell times and start with
λ = 0.1 elevation scans per second representing data
from a single radar. We increase λ to model greater
numbers of radars.

Figures 10, 11, and 12 plot ξ versus processing start
time for each of the strategies above for several values
of λ. Figure 13 compares the results from each of the
strategies when λ = 0.6 scans arriving per second. These
results demonstrate that the particular scan strategy im-
pacts the latest time at which batch processing can begin
and still maintain the same work completion probability
as streaming processing. The figures show that for a
given value of λ the knee of the curve shifts to the
left as the scan strategy spends more time in the state
representing low elevations. For example, for λ = 0.6
with a batch processing start time of 20 seconds into
the 30-second window, ξ equals 0.79, 0.67, and 0.63
for the three strategies. Thus, as we increase λ and the
amount of time the radars scan at low elevations, the
earlier we must start batch processing. It is, therefore,
important to be able to characterize the expected range
of scan strategies that the CASA implementation will
use in order to model it effectively.

IV. CONCLUSIONS

In this paper, we have presented several discrete-
time queuing models of the feature detection subsystem
of the Meteorological Command and Control (MC&C)
component of the proposed architecture for the Collab-
orative Adaptive Sensing of the Atmosphere (CASA)
hazardous weather detection system. The initial model

Processing start time (seconds)
0 5 10 15 20 25 30 35

P
ro

ba
bi

lit
y 

of
 a

t M
os

t O
ne

 F
ea

tu
re

 in
 th

e 
S

ys
te

m

0

0.2

0.4

0.6

0.8

1

Low and High Scans in Equal Proportions

lambda=0.1

lambda=0.2

lambda=0.4

lambda=0.6

Fig. 10. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for four values of
λ where µlow is held constant at 1.814 elevation scans processed per
second and µhigh is held at 2.662. The source process spends equal
proportions of time in each state.

that assumes independent arrivals is useful in performing
simple average case analyses. It shows the effects that
the arrival and processing rates have on the transient
behavior of the system and helps dimension the system
given known characteristics.

The other models assume correlated arrivals and show
that different scan strategies affect when batch process-
ing can start and still maintain the same work completion
probability as streaming processing. It is thus important
to characterize the data and scan strategies the system
will encounter.

These models and the analyses we have done represent
initial work. As we obtain data that pertains more closely
to the CASA implementation, we can model the system
more accurately. We could also extend the correlated
models to include more states in the source process in
order to model more elevations and a greater variety of
scan strategies. We are also working on a new model that
incorporates an advantage of batch processing due to the
better data compression that it allows. This model will
help in tradeoff decisions about when to start processing.
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Fig. 11. Probability of at most one feature in the system at the end
of the processing window vs. processing start time for four values of
λ where µlow is held constant at 1.814 elevation scans processed per
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