
Lateral and Hierarchical Partial Centralization for Distributed Coordination and
Scheduling of Complex Hierarchical Task Networks∗

Mark Sims, Hala Mostafa
Bryan Horling, Haizheng Zhang
Victor Lesser and Daniel Corkill

University of Massachusetts
Multi-Agent Systems Laboratory

{msims,hmostafa,bhorling,hzhang,lesser, corkill}@cs.umass.edu

John Phelps
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418

john.phelps@honeywell.com

Abstract

We describe a new approach to coordinating the
scheduling and execution of a complex hierarchical task
structure distributed among a set of agents. Our ap-
proach decomposes allocation, scheduling, and moni-
toring into manageable local pieces that are coordinated
with one another. Each agent is assigned mediator re-
sponsibilities for multiple tasks in the task structure so
that each task has a mediator. We also establish medi-
ator responsibilities to deal with task interrelationships
that span portions of the task network located in differ-
ent agents. In this mediator organization, each medi-
ator is responsible for a small, tractable portion of the
global scheduling and execution process. Mediators co-
ordinate their allocation and scheduling decisions with
other mediators, both hierarchically and laterally. Me-
diators communicate relevant local-agent activities us-
ing an abstract partial-order representation of resource
availability and flexibility and combine these abstrac-
tions to make informed scheduling decisions for their
portion of the global task structure. We detail how our
approach operates in challenging hierarchical task set-
tings, such as those being scheduled and executed in the
DARPA COORDINATORS program, and we discuss how
our approach differs from related techniques.

Introduction
We present a solution to the problem of scheduling and exe-
cuting a hierarchical task structure that is distributed among
a set of agents, none of which have a global view. Our solu-
tion must meet the following requirements:
• be responsive to unforeseen dynamics
• reschedule quickly
• have low interaction among agents
• localize the responses to dynamics as much as possible.

∗This material is based upon work supported by the
DARPA/IPTO COORDINATORs program and the Air Force Re-
search Laboratory under Contract No. FA8750–05–C–0030. The
views and conclusions contained in this document are those of the
authors, and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Re-
search Projects Agency or the U.S. Government.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We use a heuristic approach that employs a negotiation pro-
tocol with the following key aspects:
• partial centralization
• lateral and horizontal mediation
• abstraction
• partial order schedules.
Our approach partially centralizes allocation, monitoring,
and scheduling by assigning mediation responsibilities for
tasks to the agents in the system. This divides the task net-
work into a static structure of local task mediator respon-
sibilities organized both hierarchically and laterally. This
structure decomposes the global scheduling problem so that
each task’s mediator is responsible for a small, tractable por-
tion.

An important aspect of our approach is the unique combi-
nation of lateral and hierarchical mediators serving as multi-
agent schedulers that use abstractions in their interactions.
There are two types of mediators: Task Managers and Chain
Managers. Both are assigned to the agents in the system
and each agent can have multiple mediator responsibilities.
A Task Manager is assigned to each task in the task hier-
archy and is responsible for collecting information about
that task’s subtasks, handling commitment requests, and
scheduling operations for the task. A Chain Manager han-
dles enablement interrelationships that exist laterally across
portions of the task network. An enablement relationship
exists between two tasks if the first must be accomplished in
order for the second to be executed. It is possible that a task
that enables another may itself be enabled by some other
task. Thus, these interrelationships can form chains of en-
ablements that span large numbers of tasks and agents. For
each chain a single Chain Manager is responsible for obtain-
ing a complete view of the chain and performing scheduling
operations involving it. When the operations of a task and
chain manager intersect, the Task Manager is subservient
to the Chain Manager since the Chain Manager has the
greater context for understanding the non-local implications
of scheduling tasks in the chain.

We use abstractions to limit the scheduling process for
each task at every level in the hierarchy and reduce the com-
plexity of the multi-agent scheduling problem. The abstrac-
tion that mediators construct is based on a partial-order rep-
resentation of agent activities. It summarizes the possible



ways that tasks may be achieved. By collecting partial-order
schedule alternatives from subordinates, a mediator is able
to build a composite representation of the activities of each
agent that contributes to solving the mediator’s task. The
reduction in complexity from using abstractions comes at a
cost, however. The abstraction process merges the activities
of an agent into a single continuous activity with flexibil-
ity to move within a larger time window. The result is that
the agent may appear able to perform longer duration tasks
than it actually can and unable to perform short duration
tasks that might fit between existing tasks. It is possible that
agents can recover from the former problem since the failure
to form a commitment for a long duration task will be caught
and a new agent will be requested to perform the task or a
new, shorter task will be requested. The latter problem, how-
ever, cannot be recovered from since the abstraction process
obscures feasible schedules, making it impossible for a re-
questing agent to know that it can request the short duration
task. Future work will address this problem.

Overview of Our Approach
To mitigate agents’ incomplete views, our approach em-
ploys a multi-step scheduling process. The first phase iden-
tifies and assigns mediators based on the structure of the
task network and occurs prior to any commitment forma-
tion. Once mediators are assigned, a commitment acquisi-
tion process begins with a top-down, tentative commitment
phase in which mediators send out “rough ideas” of when
subtasks should be performed. A rough idea for a subtask
gives the largest possible time window during which that
task could be performed. In response, lower level mediators
respond with alternatives for when they are able to perform
their tasks given the rough ideas. The result of this process
is that each mediator in the hierarchy obtains a space of pos-
sible solutions for its task.

The final phase establishes firm commitments based on
alternatives obtained in the tentative commitment phase. Be-
cause firm commitments are formed asynchronously, a me-
diator may need to perform additional local search over the
alternatives, making it likely that a mediator can resolve con-
flicts without involving higher-level mediators. If this is not
possible, backtracking to a higher mediator will occur.

Along with firm commitments, mediators send values that
reflect the commitments’ importances from a perspective
with more context. These values are a mechanism for lo-
cally resolving conflicting requests for an agent’s resources.
As a result, a mediator may decommit from a commitment
which then triggers additional search and backtracking. A
similar recovery process is followed if an agent discovers
that it cannot satisfy a commitment during execution.

Finally, execution is based on partial-order schedules
which allow agents to avoid unnecessary rescheduling due
to minor changes if sufficient flexibility in the schedule ex-
ists.

The Approach at Work
Our hierarchical task networks are represented in C TAEMS
(Boddy et al. 2005), a refined subset of the TAEMS (Decker

Figure 1: Example global task structure.

Figure 2: Agent1’s initial subjective view

& Lesser 1993) representation language. Initially, each
agent receives a portion of the task structure as its local view
that includes interrelationships from nonlocal tasks that af-
fect the agent’s local tasks. Figure 1 shows the global view
of a simple, four-agent problem. Figure 2 shows the subjec-
tive view of Agent 1.

A task may appear locally in many agents’ subjective
views. For instance, task p1window1 is visible to all agents.
The agents know that each sees the task because the labels of
the agents that have a task in their task structures are stored
in a visible-to list with the task. However, no agent sees all
of the task’s subtasks. Long enablement chains of nonlocal
interactions, involving many tasks and agents, also charac-
terize the environment. Due to agents’ limited views, no
agent has a complete view of an entire chain.

Definitions
Problem-Level A problem-level task is a subtask of the
root task in a hierarchical task network.

Method-Level A method-level task (or simply a method)
is a leaf in the hierarchical task network.

Intermediate-Level An intermediate-level task is any task
in the network that is neither the root, a problem-level task,
nor a method.

QAF As seen in the figures throughout this paper, under
each non-leaf task in the task network is a quality accumu-
lation function (QAF). The QAF specifies how the quality
of a task’s subtasks combine to determine the quality of the
task itself (Horling et al. 1999). The important QAFs are



MIN (the quality of a task is the minimum quality of any of
its subtasks), MAX (the quality of a task is the maximum
of the quality of its subtasks), SUM (the quality is the sum
of the subtasks’ qualities), and EXACTLY ONE (exactly
one subtask must be performed and the quality of the task is
equal to that subtask’s quality). Note that any subtask that is
not performed has zero quality.

Partial Order Schedule A partial order schedule consists
of a set elements with associated constraints derived from
a TAEMS task structure. Each element contains a method.
Each method is associated with a single agent and multiple
methods may pertain to the same agent. Further, a method
in an element can be an actual task from that agent’s lo-
cal task structure or an abstraction of that agent’s activities
used in a more abstract task structure. The constraints on
a single element include its release and deadline specifying
its earliest start time and latest finish time and possibly a
start at constraint specifying the particular time the method
must start. Precedence constraints between methods are de-
rived from enables and facilitates interrelationships between
those methods in the TAEMS structure.

A partial order schedule, as opposed to a linear sched-
ule, allows subsystems to exploit the flexibility of an agent’s
TAEMS structure. The partial order schedule avoids lin-
earization that is not required by the precedence relations
assuming the elements are specific, low-level methods. If
each element of a partial order schedule is an abstraction
of multiple activities, there is additional flexibility from the
delayed decision of how those activities should be elabo-
rated. The coordination component uses the constraints to
schedule activities and negotiate time windows for actions.
The execution component uses the constraints to determine
if rescheduling is needed if a method takes longer than ex-
pected, or if the downstream actions can simply be shifted
within the partial order schedule.

Rough Idea/Tentative Commitment A rough idea is the
largest possible time window during which a subtask can be
performed from the perspective of the parent task’s manager
or the subtask’s Chain Manager. In practice a mediator re-
questing tentative commitments forms a rough idea from the
fixed constraints in its task structure and the constraints from
any tentative commitments it has received from other medi-
ators. For example, a Task Manager will use the earliest start
time and deadline on its task as the bounds of the window in
the tentative commitment for each of its subtasks.

The manner in which rough ideas are formed implies that
multiple rough ideas sent out by a mediator for tasks will
possibly violate constraints between those tasks. This is not
a problem. The rough ideas are used merely to gather in-
formation from other mediators as to when their tasks can
be achieved. The requesting mediator will use the returned
information to find schedules that do not violate constraints.

Alternative An alternative is a partial order schedule with
associated quality and cost information passed from one me-
diator to another to summarize the sender’s possible contri-
bution to a larger schedule. A mediator sends multiple al-
ternatives to another in response to a rough idea/tentative

Figure 3: Example of the abstract structure used to schedule
the subtasks of a task.

commitment request. The elements of alternatives returned
by method-level task managers consist of agents’ actual
method-level tasks. The elements of alternatives returned
by higher-level managers consist of abstractions of agents’
activities. Therefore, an alternative provides not only qual-
ity, cost, and duration information about how a task can be
achieved, but also abstract information about the contribu-
tions of other agents.

To understand how mediators generate and propagate al-
ternatives, it is instructive to see how Task Managers sched-
ule in response to tentative commitments. At the method-
level a Task Manager uses the Design-to-Criteria (DTC)
scheduler (Wagner, Garvey, & Lesser 1998) to perform a
local scheduling process that takes the agent’s existing com-
mitments and schedule into account.

DTC outputs an ordered list of linear schedules. For each
that contains the requested method, the Task Manager gener-
ates a partial order schedule containing the required method.
The set of these schedules represents the different ways in
which the agent can achieve that method.

When an intermediate or a problem-level manager re-
ceives alternatives from subtask managers, it performs a dif-
ferent scheduling process. The manager first generates a
four-level task structure that captures the abstract informa-
tion contained in the alternatives. Figure 3 shows the ab-
stract view of agent 1 in its capacity as Task Manager of
p1window1. The root is the managed task (p1window1 in
this example). The second level consists of the managed
task’s subtasks. The third level tasks correspond to alter-
natives for the second level tasks. In other words, for each
alternative received for a subtask, the manager creates a new
subtask of the subtask. Because only one alternative can
be used to satisfy a subtask, second-level tasks have EX-
ACTLY ONE QAFs.

Fourth-level methods are derived from the partial order
schedules associated with third-level tasks by merging all
elements in a schedule associated with the same agent into
a single method. Each such method is a composite of the
earliest start time (EST) and deadline (DL) information in
the elements from which it is derived. The new EST of
a composite method is min(EST1, EST2, ...ESTn) where
ESTi corresponds to the earliest start time of the ith el-
ement before merging. The deadline of the composite is
max(DL1, DL2, ...DLn). The new duration is simply the
sum of the durations of the original elements.

As mentioned in the introduction, merging all elements
associated with the same agent into a single method obscures
the fact that there may be slack time between elements and



Figure 4: A Chain Manager’s abstract task scheduling struc-
ture.

that the agent may not be able to perform tasks whose dura-
tions are less than the combined slack time. In future work,
we will explore situations in which a finer-grained abstrac-
tion may be necessary (as discussed in Status and Future
Work).

Although each third-level task in Figure 3 has one fourth-
level method, a third-level task generally has multiple sub-
tasks.

DTC cannot schedule multiple agents’ tasks. It treats all
tasks as if they belonged to one agent which obscures the po-
tential for parallelism. To enable us to schedule multi-agent
task structures, we created the Multi-Agent DTC (MADTC)
construct. MADTC uses a task structure transform that en-
ables DTC to treat agents as TAEMS consumable resources
(Horling et al. 1999) and schedule overlapping methods.

While Task Managers schedule to generate alternatives
for a single task, Chain Managers use MADTC on four-
level, multi-agent abstract views to generate alternatives for
entire chains. Figure 4 shows agent 3’s Chain Manager view.
The root has a SUM QAF to allow the Chain Manager to
schedule the whole chain or only part of it. The second level
tasks are the chain members. The third and fourth levels are
as for Task Managers.

Refined Commitment A refined commitment for a sub-
task is a firm commitment that is sent out by a mediator after
it has collected and processed alternatives from other media-
tors. The time window of a refined commitment is contained
within the rough idea in the earlier tentative commitment for
that task. Included with the refined commitment is its value
determined from a more complete context (see below).

Commitment Value In many real-world situations, agents
cannot necessarily accomplish all commitments they are
asked to perform. As such, it is important during the
scheduling process for agents to understand the relative val-
ues of commitments, so that they can make appropriate de-
cisions when tradeoffs are unavoidable.

Because no agent necessarily has a complete view of how
tasks and methods interact, it is not possible to compare
two requests without additional information. For example,
suppose an agent must choose between performing some
method A that is expected to produce quality 10 and B with
quality 1. Although A is superficially better than B, it is
only by evaluating those options in context that their true
value may be known. If B is at the root of a critical chain, or
if A is below a MAX QAF that has alternatives with greater
expected quality, then B may in fact be the globally appro-
priate choice. In both of these situations, however, the infor-

mation needed to make the decision is not necessarily avail-
able in an agent’s local task structure.

This lack of knowledge means that the agent must rely
on the requesting manager to correctly value the commit-
ment that it is proposing. A Chain Manager will know if B
is a critical member of the chain, and a Task Manager will
know if A has higher-quality alternatives. So, if those two
managers know the value of the commitments they have re-
ceived, they can use that information along with the struc-
tural knowledge they have accumulated to determine the
value of the commitments they request. Commitment val-
uation is therefore a recursive process, with individuals re-
lying on information present in the commitments they have
themselves received. The ultimate source of this informa-
tion comes from the highest-level manager, which can de-
termine the global expected quality for its task based on the
expected quality information present in the subtask alterna-
tives it chooses to pursue.

The manner in which a Task or Chain Manager assigns
the value of the commitments it proposes depends on 1) the
value of the commitment it is responding to, 2) the relative
qualities of the alternatives it has received and 3) the re-
quested task’s QAF (Task Manager) or position in the chain
(Chain Manager). For example, suppose a Task Manager
with a SUM QAF has been requested to satisfy a commit-
ment with value v. The value for the set of subtask commit-
ments C is computed as:

foreach c in C
c.value = min(v, c.expected quality)
v = max(v − c.value, 0)

A similar function distributes value evenly among sub-
tasks in the case of a MIN, and another places the majority
of value on the alternative with greatest expected quality in
the case of a MAX. A Chain Manager will assign the same
value to all tasks in the chain that are required to perform
the task that was originally requested. Different valuations
will produce different behaviors. For example, by spreading
value to more than one subtask under a MAX the manager
can obtain a certain level of redundancy.

Because all valuations are recursively derived from the
expected quality that occurs at the root task, they will be ap-
propriately normalized such that the agent can correctly rank
the various requests that it receives. This allows it to pro-
duce local schedules that indirectly take into account global
objectives, so that team-level needs are respected despite the
fact that the individual agent may not have the detailed struc-
tural knowledge required to infer those needs itself.

Initialization

During the initialization phase Task Managers are chosen for
each task in the hierarchical task network. They then expand
their local views to include information about subtasks not
originally visible to them. Chain Managers are also selected
for each enablement chain and expand their views to include
entire chains.

Task Manager selection is based on the C TAEMS task’s
visible-to list. Agents in the list know its contents, obviating



Figure 5: Agent3’s subjective view after subtask retrieval
and chain discovery

the need for a negotiation or an election.1 The task’s name
is a seed to a pseudorandom process that deterministically
selects an agent from the list to be that tasks’s manager.

After an agent recognizes that it is the Task Manager of
a task, it sends a request to each agent in the visible-to list
for an abstraction of any locally-managed subtasks of the
manager’s task. This subtask retrieval process provides the
Task Manager with a complete list of its subtasks.

Returning to Figure 2, the pseudorandom process deter-
mines that agent 1 is the Task Manager of p1window1, and
agent 1 begins subtask retrieval to obtain information about
all four tasks under p1window1.

Chain Manager selection is similar to Task Manager se-
lection. An agent may be a Chain Manager if its local view
contains a task with incoming but no outgoing interrela-
tionships. Such a task is a chain sink. Because multiple
agents may see this task, a pseudo-random process similar to
that for Task Managers deterministically chooses the Chain
Manager from the sink’s visible-to list.

When an agent realizes that it is a Chain Manager, in
the simplest scenario it discovers the chain members by fol-
lowing the enablement links between nodes, acquires chain
member information in a process similar to that used by Task
Managers to obtain subtask information, generates an ID for
its chain, and informs chain members of the chain ID and
the manager’s name. It is possible, however, that multiple
chains interact. This occurs, for example, if a task enables
more than one task or a task has multiple incoming enables
relationships. In this case, there will be multiple chain sinks
each with its own Chain Manager. These Managers compete
for managing the nodes upstream of the intersection. Each
Chain Manager sends a management request to the Task
Manager of the task at the intersection. This Task Manager
grants the first request it receives and declines the rest. The
winning Chain Manager explores the rest of the chain start-
ing from the task(s) enabling the task at the intersection un-
til it either reaches a node without incoming enablements or
competes in another race. The losing Chain Manager stops
exploring its chain and includes the task at the intersection as
the first chain member even though it is managed by a dif-
ferent Chain Manager. This information will be used later
during the negotiation over tasks in the interacting chains.

Figure 5 shows that agent 3 as Chain Manager has a com-

1In general, however, this will not be the case since the visible-
to list is specific to the C TAEMS representation.

plete view of the chain in the global structure after chain
discovery.

Negotiation Protocol
Once subtask and chain information is in place at the ap-
propriate Task and Chain Managers, task scheduling and ne-
gotiation begins. The pseudocode in Algorithms 1 through
8 illustrates the major pieces of the protocol. In the pseu-
docode TM refers to Task Manager, CM to Chain Manager.
The Task Manager of a problem-level task initiates the nego-
tiation protocol with a vertical process. This manager gen-
erates rough ideas for each of its subtasks and sends out ten-
tative commitments to each subtask manager. Ignoring the
presence of enablement chains, at each level a manager re-
ceiving a rough idea repeats the process using the constraints
in the tentative commitment as the bounds of its rough ideas.
The process bottoms out at the manager of a method. This
manager schedules its task locally in a process that takes
existing commitments into account to form alternatives and
passes them to the sender of its tentative commitment. In-
termediate Task Managers collect alternatives from below
and schedule using them to generate alternatives to pass up.
When the problem-level manager receives alternatives from
below, it schedules to generate and send down refined com-
mitments for a subset of its subtasks. These propagate down
the tree and eventually reach method-level nodes, resulting
in the methods being scheduled for execution.

Algorithm 1 Task Manager Start Up
if problem-level then

generate rough ideas
send tentative commitments to subtask managers
wait for alternatives to be returned

else
wait for tentative commitment message

end if

Algorithm 2 TM Handle Tentative Commitment(msg)
if method-level then

schedule to generate alternatives
pass alternatives to msg sender

else
if (chain member ∧ msg not from CM) then

Forward msg to CM
else if (not chain member) ∨ (chain member ∧ msg
from CM) then

generate rough ideas
send tentative commitments to subtask managers
wait for alternatives to be returned

end if
end if

When a tentative commitment arrives at a task that is part
of an enablement chain, a horizontal process interrupts the
vertical one. The manager receiving the tentative commit-
ment forwards it to its Chain Manager. In response the Chain



Algorithm 3 TM Handle Alternatives(msg)
if haven’t received alts from all subtask managers then

queue msg
else

Schedule to merge queued alternatives
if chain member then

send merged alts to Chain Manager
wait for alternative from Chain Manager

else if problem-level then
Extract refined commitments from highest rated
schedule
send refined commitments to subtask managers

else
send merged alts to higher manager

end if
end if

Algorithm 4 TM Receive Refined Commitment(msg)
if chain member ∧ msg not from CM then

forward msg to CM.
else if intermediate Task then

send refined commitments to subtask managers
else

schedule method for execution
end if

Algorithm 5 TM Handle Alt from Chain Manager(msg)
send alternative to upper task manager

Algorithm 6 CM handle forwarded Tent. Com(msg)
generate rough ideas
send tentative commitments to all chain members

Algorithm 7 CM Handle Alternatives(msg)
if haven’t received alts from all chain members then

queue msg
else

Schedule to merge queued alternatives
find highest rated schedule
send single chain-consistent alternative to each chain
member.

end if

Algorithm 8 CM Handle Forwarded Refined Com(msg)
if haven’t received refined coms from all chain members
then

queue msg
else

Extract refined commitments from highest rated sched-
ule
send refined commitments to all chain members

end if

Manager sends tentative commitments to all chain mem-
bers in order to collect alternative information from them
and make chain-consistent scheduling decisions. If a chain
member is actually managed by a different Chain Manager
due to interacting chains, that chain member forwards the
tentative commitment request to its actual Chain Manager
which is then responsible for scheduling that node and its
downstream tasks (not shown in the pseudocode). After
the Chain Manager has received alternatives from all chain
members, it schedules the chain to find chain-consistent al-
ternatives for each chain member to pass up to the manager
that sent the original tentative commitment. In our current
implementation, the Chain Manager sends a single alterna-
tive to each chain member. It does this by finding the most
highly rated chain schedule and sending each chain mem-
ber an alternative that corresponds to its part in the sched-
ule. This ensures that when higher-level task managers re-
quest refined commitments of chain members, all constraints
within the chain will be respected. We are exploring options
for sending more alternatives to each chain member without
allowing constraints to be violated.

When an upper-level Task Manager receives a single al-
ternative from a chain member, it treats the alternative ex-
actly as it would any other. When it eventually sends a
refined commitment to the chain member, the chain mem-
ber forwards the commitment to its Chain Manager. After
the Chain Manager has received forwarded refined commit-
ments from all members, it sends out refined commitments
to all Chain Members. The reason for this extra step is to
ensure that the chain can indeed be executed.

We now illustrate the steps of the protocol using part of a
trace from our example scenario. In the following, a Task
Manager of a task is referred to as TM-task-name. Ini-
tially, TM-problem1 sends a tentative commitment to TM-
p1window1 with a rough idea spanning the interval [20
120] which represents the earliest start-time and deadline of
p1window1. TM-p1window1 then sends tentative commit-
ments with the same rough idea to TM-p1ctask1a through
TM-p1ctask1d. The steps below pertain to TM-p1ctask1a,
but are similar for its three sibling Task Managers:

1. TM-p1ctask1a at Agent 1 receives from TM-p1window1
also at Agent 1 the tentative commitment request with
rough idea [20 120].

2. The vertical process is interrupted. TM-p1ctask1a realizes
that p1ctask1a is chain member and forwards the rough
idea to its Chain Manager (agent 3).

3. Agent 3 as Chain Manager, having received similar mes-
sages from other chain members, uses the rough ideas as
constraints, generates new rough ideas, and sends tenta-
tive commitments to chain members.

4. TM-p1ctask1a receives the new tentative commitment
from the Chain Manager and uses it to constrain
its scheduling. The vertical process resumes and
TM-p1ctask1a sends tentative commitments to TM-
p1method1aA and TM-p1method1aB both with [20 120]
as the rough idea.

5. TM-p1method1aA and TM-p1method1aB schedule lo-
cally and send alternatives to TM-p1ctask1a. In general,



the scheduling process would take their existing commit-
ments into account by not sending alternatives that would
violate those commitments. In this example, there are
no preexisting commitments. The alternative from TM-
p1method1aA consists of a single element with an ex-
pected quality of 40 and an expected duration of 20. The
alternative from TM-p1method1aB also consists of a sin-
gle element with an expected quality of 32 and an ex-
pected duration of 16.

6. TM-p1ctask1a reschedules its subtasks using these alter-
natives, resulting in alternatives of when p1ctask1a can
be done. It sends the three possible alternatives to the
Chain Manager: one that includes both methods and has
expected quality 40 (because the QAF under p1ctask1a is
a MAX), one that contains just p1method1aA with quality
40, and one that contains just p1method1aB with quality
32.

7. After the Chain Manager receives alternatives from all
members, it reschedules, resulting in alternative sched-
ules for the whole chain. From the highest quality sched-
ule, the Chain Manager extracts each member’s chain-
consistent alternative and sends them out. The alternative
that the Chain Manager sends to TM-p1ctask1a indicates
that p1ctask1a can be performed any time between time
20 and time 116.

8. TM-p1ctask1a receives its alternative from the Chain
Manager and forwards it to TM-p1window1.

9. TM-p1window1 reschedules and sends alternatives to TM-
problem1. In response, TM-problem1 sends a refined
commitment for p1window1 with an earliest start time
(EST) of 20 and a deadline of 120. The reason the refined
commitment has the same bounds as the tentative commit-
ment TM-problem1 originally sent is that p1window1 is
the sole subtask under problem1 in this example. The re-
fined commitment’s value is 44 (p1ctask1a supplies most
of the quality. The remainder comes from its siblings).

10. In response to the refined commitment TM-p1window1
sends a refined commitment to TM-p1ctask1a also with
an EST of 20 and deadline of 120. The reason it does not
use the [20 116] range is that TM-p1window1 is unaware
of the constraints due to the chain. From its perspective
[20 120] is just as good as [20 116]. The value on the
commitment is 40 to match p1ctask1a’s expected contri-
bution.

11. TM-p1ctask1a forwards the refined commitment from
p1window1 to the Chain Manager as do its sibling Task
Managers. In response the Chain Manager sends final-
ized commitments with their values. The commitment
for p1ctask1a has an EST of 22, a deadline of 63, and
a value of 44. The time constraints differ from those in
the forwarded commitment because the Chain Manager
has a complete view of the chain and must ensure that
all tasks in the chain can be accomplished. The value of
the commitment is different because the Chain Manager
understands that if p1ctask1a is not performed, the tasks
it enables also cannot be performed. Therefore, its value
from the Chain Manager’s perspective is higher than that
from TM-p1window1’s perspective.

12. After TM-p1ctask1a receives the Chain Manager’s re-
fined commitment, it sends a refined commitment to TM-
p1method1aA only. When the method-level manager re-
ceives this commitment, it includes the method in its
schedule.

Handling the Unexpected
As with any realistic environment, there will be cases where
the agent’s expectations will not be met. This happens when
local actions do not complete as expected, when subordi-
nates fail to satisfy their commitments, or when the task
structure itself changes in response to external or environ-
mental demand. In each of these cases the system must react
appropriately to succeed in the new conditions.

Failed Actions
A method deviates from its expected outcome when it takes
longer than expected to complete, or when it fails to accrue
sufficient quality. This may have both direct and indirect
implications; a method taking longer than expected may vi-
olate its own local deadline and also indirectly affect other
scheduled activities by depriving them of time to execute.

The agent must consequently reason about the larger ram-
ifications of a deviation. The first step in that process is
to exploit the flexibility in the partial order representation,
which can avoid a potentially expensive rescheduling pro-
cess. For example, if the remaining actions all have release
times later than the current time, no changes may be needed.

We are concerned with agents that can perform only one
action at a time. Because of this, although the constraints
in the partial order representation may indicate that many
actions can start at a particular time, only one may be se-
lected in practice. The process of finding a totally-ordered
sequence of actions from the partial order representation that
respects all constraints is called linearization and is per-
formed by the agent’s execution component. Once an ac-
tion’s expected duration has been exceeded, the feasibility
of the current local schedule is determined by searching for
a valid linearization among the remaining activities.

When creating a linearization, it is not sufficient simply
to pick an arbitrary action whose constraints are currently
satisfied, because the order of actions in a linearization, to-
gether with their durations and deadlines, affects how many
of them can be included in it.

Because of interactions such as this, the search for a valid
linearization must explore the space of sequences character-
ized by the partial order representation. If the existing lin-
earization is not valid, the search progresses in a recursive
manner using branch and bound techniques. A search path
is bound if at any point there is insufficient time (relative
to the latest applicable deadline) to perform the remaining
activities, or if any constraints on the most recently placed
action have been violated. Once a linearization is found, it
is stored along with the representation for future use.

If a linearization cannot be found, or if a completed action
does not accrue sufficient quality, the current schedule is in-
validated, and a more involved repair process starts. The
remaining actions are passed to the local scheduler, which



produces a new schedule consisting of a subset of those ac-
tions. Unlike the linearization search, this process may re-
move actions that cannot be performed, either because the
agent no longer has the resources to do so or because higher
valued commitments used the needed resources. Commit-
ments that are no longer satisfied are passed to the appropri-
ate local Task Manager which reports that failure to the Task
Manager that requested the commitment.

The requesting Task Manger tries to resolve the prob-
lem locally. It searches the alternatives it obtained during
the scheduling and commitment acquisition process to de-
termine if any of the remaining alternatives can satisfy the
constraints imposed by the commitment in question. If so, it
sends out new finalized commitments. Otherwise, the man-
ager informs its higher-level manager that the commitment
has failed. That manager then repeats the same process.

The procedure for handing commitments that are rejected
is identical to that described for failure.

Related Work
Our work extends Generalized Partial Global Planning
(GPGP) (Lesser et al. 2004) by using mediator-based rather
than pair-wise coordination. Also, in our approach agents
reason about and obtain commitments for joint goals. Our
approach also shares partial centralization aspects with Op-
timal Asynchronous Partial Overlay (OptAPO) (Mailler &
Lesser 2005). The major difference is that in OptAPO, me-
diators are dynamically created and interact at the same level
of detail. In our approach, mediators are statically defined
based on the task structure and interact at different levels
of abstraction. Durfee and Montgomery (Durfee & Mont-
gomery 1990) also use task hierarchies and abstraction but
to solve a different problem of how to avoid negative inter-
ractions and capitialize on positive ones among agents. A
further difference is that interactions are resolved pair-wise,
making it necessary to check that a resolution does not in-
troduce new conflicts. Our partial centralization is designed
to avoid this problem. Hunsberger and Grosz solve a similar
problem to ours in a centralized manner using a combinato-
rial auction (Hunsberger & Grosz 2000). Zhang and Lesser
also address negotiation chains in a decentralized manner by
introducing a pre-negotiation exchange of meta-level infor-
mation (Zhang & Lesser 2005). Our approach using media-
tors with expanded contexts is more centralized.

Status and Future Work
The evaluation of our approach to date has focused on rel-
atively simple task structures. Many questions can only be
answered by extensive experimentation with large-scale task
networks. These include understanding the speed-up gained
by decomposing the scheduling problem, how small medi-
ators’ abstract views tend to be, how many are solved, and
how often mediators must reschedule in response to failure
or other changes.

Future work will focus on the abstraction process. Our
current method can obscure feasible schedules and make in-
feasible ones seem feasible. We are considering mechanisms
for dynamically changing the granularity of the abstraction.

This would provide a way to continue the search process if
the first mechanism did not reveal a feasible schedule.

We will also explore other ways of assigning Task Man-
agers. Rather than assign a manager for every task, we can
aggregate more tasks under a single manager. This will
have the combined effect of reducing the total number of
managers that perform scheduling operations and reduce the
time for alternatives to percolate up the hierarchy and com-
mitment requests to move down it, potentially at the cost
of complicating each mediator’s scheduling problem. Key
to this will be understanding an appropriate balance of size
versus cost.

We are considering mechanisms to recognize more con-
straints among tasks during initialization to provide tighter
rough ideas. Also, our approach to commitment valuation
is an approximate technique for handling preemption. We
intend to compare it to a more detailed approach involving
scheduling both with and without the requested tasks.

References
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vincent,
R.; Long, C.; and Kohout, B. 2005. Ctaems language
specification. Unpublished.
Decker, K., and Lesser, V. R. 1993. Quantitative Modeling
of Complex Environments. International Journal of Intel-
ligent Systems in Accounting, Finance and Management.
Special Issue on Mathematical and Computational Models
and Characteristics of Agent Behaviour. 2:215–234.
Durfee, E. H., and Montgomery, T. A. 1990. A hierar-
chical protocol for coordinating multiagent behaviors. In
Dietterich, T., and Swartout, W., eds., Proceedings of the
8th National Conference on Artificial Intelligence (AAAI-
90), 86–93. Boston, MA, USA: AAAI Press.
Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.;
Zhang, S.; Decker, K.; and Garvey, A. 1999. The TAEMS
White Paper. http://mas.cs.umass.edu/paper/
182.
Hunsberger, L., and Grosz, B. J. 2000. A combinatorial
auction for collaborative planning. In Proceedings of the
Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), 151–158.
Lesser, V.; Decker, K.; Wagner, T.; Carver, N.; Gar-
vey, A.; Horling, B.; Neiman, D.; Podorozhny, R.; Na-
gendraPrasad, M.; Raja, A.; Vincent, R.; Xuan, P.; and
Zhang, X. 2004. Evolution of the GPGP/TAEMS Domain-
Independent Coordination Framework. Autonomous
Agents and Multi-Agent Systems 9(1):87–143.
Mailler, R., and Lesser, V. 2005. Asynchronous Partial
Overlay. Journal of Artificial Intelligence Research. To
appear.
Wagner, T. A.; Garvey, A. J.; and Lesser, V. R. 1998. Cri-
teria Directed Task Scheduling. Journal for Approximate
Reasoning (Special Issue on Scheduling) 19:91–118.
Zhang, X., and Lesser, V. 2005. Solving negotiation chains
in semi cooperative multi-agent systems. Technical Report
UMASSD-CIS-TR-2005007, University of Massachusetts
Dartmouth.


