
A Compact Mathematical Formulation For Problems With
Structured Agent Interactions

Hala Mostafa
Computer Science Department

University of Massachusetts, Amherst
hmostafa@cs.umass.edu

Victor Lesser
Computer Science Department

University of Massachusetts, Amherst
lesser@cs.umass.edu

ABSTRACT
The general problem of calculating policies in decentralized
POMDPs is known to be NEXP-complete. One way of deal-
ing with this prohibitive complexity is identifying a sub-
class of the general problem that is more tractable to solve,
but still of practical interest. One such sub-class consists of
problems exhibiting structured transition and reward inter-
actions among agents, and is modeled using Event-Driven
Interactions with Complex Rewards (EDI-CR). In this pa-
per, we propose a Mixed Integer Linear Program formulation
of EDI-CR instances. The key insight we use is that from
one agent’s perspective, most action sequences of another
agent have the same effect, thereby allowing us to treat them
similarly and use fewer variables in the formulation. Exper-
imental results show that our formulation is more compact,
and leads to faster solution times, than formulations ignor-
ing the structure of interactions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence
and coordination

General Terms
Algorithms, Performance

Keywords
Coordination, Optimization

1. INTRODUCTION
Decision-theoretic models have been widely used to model

multi-agent decision making problems. One of the most gen-
eral models is Decentralized Partially Observable Markov
Decision Process (DEC-POMDP) which can capture situa-
tions where the agents do not have access to the true world
state, but receive observations correlated with it.

But with this expressive power comes computational in-
tractability; calculating agent policies in DEC-POMDP is
known to be NEXP-Complete [5]. One way of dealing with
this prohibitive complexity is identifying sub-classes of the
general problem that are more tractable to solve, but still
of practical interest. Among the sub-classes that have been
proposed in the literature are DEC-MDPs, which assume

The Sixth Annual Workshop on Multiagent Sequential
Decision-Making in Uncertain Domains (MSDM-2011), held
in conjunction withAAMAS-2011 on May 3, 2011 in Taipei, Taiwan.

that pooling observations of all agents uniquely determines
the underlying world state. A special case of DEC-MDPs
is where the state space factors into a state per agent and
a world state that is not under any agent’s control. Dif-
ferent models make different assumptions about how each
agent’s transitions and rewards are affected by other agents
(e.g. Transition Independent DEC-MDPs [4], Networked
Distributed POMDPs [9]).

The sub-class we address in this paper consists of prob-
lems exhibiting structured transition and reward interac-
tions among agents. In other words, an agent’s rewards
and transition probabilities cannot be said to be completely
independent of what other agents do, but the interactions
among agents are relatively few compared to all possible
ways in which one agent can affect the others, and involve
a well-defined set of states and actions. For example, con-
sider a robotic team dealing with a building on fire. One
agent is in charge of putting out the fire, another locates
and evacuates survivors and a third delivers first aid to the
injured. The actions of each agent mainly affect only itself;
the first agent’s decision of how to attack the fire and what
kind of extinguisher to use mainly affect its own progress in
fire fighting. Likewise, the paramedic agent’s choice of the
kind of first aid care to give to the injured mainly affects its
own progress towards getting them out of critical conditions.
However, the fire-fighting agent’s decision of when to secure
a given area affects how easy it will be for the rescue agent
to locate survivors in that area.

The kind of interaction discussed above can of course be
modeled using DEC-MDPs with factored state space. How-
ever, this representation does not exploit the fact that the
agent’s sub-problems are largely independent, and therefore
cannot achieve any representational savings out it. More
importantly, a DEC-MDP would obscure all structure, mak-
ing it difficult for a solution algorithm to exploit it and
achieve computational savings. To deal with these issues,
the model Event-Driven Interactions with Complex Rewards
(EDI-CR) was developed for problems with structured tran-
sition and reward interactions. For cooperative agents, EDI-
CR is a much more compact representation than general
DEC-MDPs [7]. For the case where agents are self-interested,
EDI-CR has been shown to be much more compact than
general extensive form games [8]. EDI-CR has the same ex-
pressive power as DEC-MDPs with local observability (co-
operative case) and general extensive form games (selfish
case).

In this paper, we exploit structured interactions to obtain
a compact formulation of EDI-CR as a Mixed Integer Linear

55

Program (MILP) and show the representational and com-
putational savings achieved by doing so. The next section
contains background material on EDI-CR and the sequence
form representation of a policy. Section 3 reviews an existing
approach to formulating DEC-MDP as MILP. In section 4,
we present our MILP formulation and show how we used
the special structure of our problem to reduce the number
of variables in it. Section 5 experimentally shows the savings
obtained from our formulation compared to one that does
not exploit structure. A survey of related work is given in
Section 6, followed by conclusions and directions for future
work.

2. BACKGROUND
In this section, we give background material about the

decision-theoretic model that will be used in the rest of this
paper. We also explain the policy representation that we
will use in our mathematical formulation.

2.1 Factored DEC-MDP
A factored DEC-MDP is where the world state can be

expressed as a tuple of locals states, one per agent. Local
observability means that instead of only receiving a noisy
observation regarding its local state, an agent can actu-
ally observe its own state with certainty (but not neces-
sarily those of other agents). Formally, an n-agent DEC-
MDP with factored state and local observability is a tuple
< S,A, P,R, T > where

• S = S1×S2× ...×Sn is the set of factored world states

• A = A1 ×A2 × ...×An is the set of joint actions

• P : S × A × S → [0, 1] is the transition function
P (< s′1, s

′
2, ..., s

′
n > | < s1, s2, ..., sn >,< a1...an >)

is the probability of transitioning to new local states
< s′1, s

′
2, ..., s

′
n > when the joint action < a1...an > is

taken in local states < s1, s2, ..., sn >

• R : S × A × S → R is the reward function. R(<
s1, s2, ..., sn >, (a1...an), < s′1, s

′
2, ..., s

′
n >) is the re-

ward obtained from taking joint action < a1...an >
when the agents local states are < s1, s2, ..., sn > and
transitioning to new local states < s′1, s

′
2, ..., s

′
n >

• T is the time horizon of the problem

It is important to note that in spite of the state space being
factored, and of the fact that each agent can observe its
local state, transitions and rewards depend on joint actions
and states. So even though an agent observes its state, its
rewards and next local state are affected by all other agents.

2.2 EDI-CR
Event-Driven Interactions with Complex Rewards (EDI-

CR) is a model developed for problems with structured tran-
sition and reward interactions [7]. It builds on the intuition
that for a group of agents that are largely independent of
each other, it is more natural to describe each agent’s de-
cision problem separately and list the interactions that tie
these processes together. Formally, an EDI-CR instance is
a tuple < S,A, P1..n, R1..n, ρ, τ, T > where:

• S = S1×S2× ...×Sn is the set of factored world states

• A = A1 ×A2 × ...×An is the set of joint actions

• Ri : Si ×Ai → R is agent i’s local reward function

• Pi : Si × Ai × Si → [0, 1] is agent i’s local transition
function

• ρ = {< (sk1 , ak1), ..., (skm , akm), rk >k=1..|ρ|} is the
set of reward interactions. Each element is an in-
teraction that lists the state-action pairs and the ad-
ditional reward/penalty obtained when the specified
agents take the specified actions in the specified states.
An interaction can involve any subset of agents.

• τ = {< (sk1 , ak1), (sk2 , ak2), pk >k=1..|τ |} is the set

of transition interactions. The kth entry specifies the
new transition probability pk of the state-action pair of
agent k2 when agent k1 does its specified state-action
pair before the affected agent makes its transition.

• T is the time horizon of the problem

The individual states, actions, transitions and rewards de-
scribe the dynamics of each agent’s decision process, while ρ
and τ capture the interactions among them. Previous work
showed that EDI-CR’s explicit representation of interactions
does not diminish its applicability; EDI-CR has the same ex-
pressive power as DEC-MDPs with local observability [7]. It
is capable of representing problems with arbitrary interac-
tions among agents, in which case there would be entries in
ρ and τ for every combination of actions and states to mirror
the fact that all actions affect all agents. The benefit of using
EDI-CR over DEC-MDP depends on the degree of coupling
among agents (the amount of interaction, as given by the
sizes of the sets ρ and τ in the definition). The tighter the
coupling, the less advantage we obtain from using EDI-CR.

In EDI-CR and DEC-MDP, as in any setting with co-
operative agents, the goal is to compute a joint policy that
maximizes total cumulative rewards of all agents. The exact
way a policy is represented is discussed next.

2.3 Sequence form policy representation
The use of sequence form to represent policies was first

suggested by Koller et. al [6] to represent games. It has since
been used both in settings with self-interested agents [8] and
cooperative agents [2]. In the context of game trees, the idea
behind this representation is that a policy can be character-
ized by the probability distribution it induces over the leaves
of the tree. If two policies induce the same distribution, then
they result in the same reward.

For models with local observability, a sequence of agent k
{s1, a1, s2, a2, .., sm, am} is an ordered set of k’s actions and
local states. Because we will adapt the formulation devel-
oped by Aras and Dutech [2], we will follow their nomencla-
ture and use the term history instead of sequence. A history
containing T (the problem’s time horizon) actions is called
a terminal history. For agent k, the set of all histories is
denoted by Hk, the set of terminal histories by Zk, and the
set of non-terminal histories by Nk. A joint history h ∈ H
is a tuple {h1, h2, ..hn} containing one history per agent.

An agent’s policy induces a probability distribution over
its histories. The realization weight of a history {s1, a1, .., sm, am}
under a policy is the probability that the policy assigns to
taking actions a1, .., am given that the states s1, .., sm are
encountered. In other words, a history’s realization weight
does not include chance outcome probabilities. Instead, we
will have separate terms that reflect these probabilities. The

56

Table 1: DEC-MDP formulation as an NLP

max
∑

h∈Z
R(h)

∏

k∈A
xk(hk) (1)

s.t.
∑

a∈Ak

xk(a) = 1 ∀k ∈ A (2)

∑

a∈Ak

xk(h.s.a) = xk(h) ∀k ∈ A, s ∈ Sk, h ∈ Nk (3)

xk(h) ≥ 0 ∀k ∈ A, h ∈ Hk (4)

vector of realization weights of all sequences of agent k will
be denoted as xk. The realization weight of history h ∈ Hk
is given by xk(h).

A pure policy (also known as deterministic policy) is one
that chooses a single action with probability 1 at each de-
cision making point. Because in cooperative settings there
is at least one optimal pure joint policy, we restrict our at-
tention to pure policies. But even a pure policy will have
multiple terminal histories with non-zero weights, because
it must specify an action to take under each possible chance
outcome of each action in a history with non-zero weight.
And because a history’s weight does not include chance out-
come probabilities, the realization weight can only be 0 or
1. The set of terminal histories with non-zero weights under
a policy is called its support set, denoted by σi, and its size
is called support size.

3. EXISTING MATHEMATICAL FORMU-
LATIONS

In this section, we review existing mathematical formu-
lations of a DEC-MDP with local observability as a Non-
Linear Program and as a Mixed Integer Linear Program.
We will adapt some of the ideas behind these formulations
in the next section.

3.1 DEC-MDP as NLP
The formulation of DEC-MDP with local observability as

a Non-Linear Program (NLP) is given in Table 1.
In the objective function, R(h) is the expected reward

of terminal joint history h. For terminal joint history h =
{s1, a1, .., sT , aT } consisting of joint states and actions

R(h) = β(h)r(h) +
∑

sl

P (sl|sT , aT)R(sT , aT , sl) (5)

where sl iterates over all the terminal states reachable
from the probabilistic branching after the last joint action
aT . β(h) is the probability of encountering the joint states
in h given the actions in h.

β(h) =

T−1∏

t=1

P (st+1|st, at)

In equation (5), r(h) is the sum of rewards of states and
actions along the history, up to but not including the last
action.

r(h) =

T−1∑

t=1

R(st, at, st+1)

The group of constraints in the NLP are called policy con-
straints. They guarantee that a solution to the NLP rep-
resents a legal policy where the sum of an agent’s action
probabilities in any state is 1.

The problem with the NLP formulation is that it results
in a non-concave objective function. There are no methods
that guarantee finding a globally optimal solution for this
kind of NLPs.

3.2 DEC-MDP as MILP
Aras and Dutech [2] developed a formulation for DEC-

POMDPs as a Mixed Integer Linear Program (MILP). The
advantage of this formulation is that for MILPs, it is possible
to find a global maximum, so a solver like Cplex [1], for
example, can find the realization weights representing an
optimal joint policy.

We slightly modify the original formulation of Aras and
Dutech for the case of DEC-MDP with local observability
in order to build on it and adapt it for EDI-CR. For ease of
explanation, we give here the formulation of the case with 2
agents i and j. The formulation is given in Table 2.

As in the NLP formulation, R(h, h′) in the objective func-
tion (7) already accounts for the transition probabilities of
both agents, so realization weights are either 0 or 1.

To change the NLP to a MILP, the objective function
must be linearized. To do this, Aras introduces compound
variables z. A variable zh,h′ is created for each pair of ter-
minal histories h ∈ Zi and h′ ∈ Zj . The variable is related
to the existing x variables by the identity

zh,h′ = xi(h)xj(h
′) (6)

Because a realization weight can only be 0 or 1, the x
and z variables are in fact all binary. However, the diffi-
culty of solving a MILP increases as the number of integer
variables increases. Aras observed that if we only restrict
weights of terminal sequences to be integer, other variables
will be guaranteed to take on integer values as well, so inte-
grality constraints are only imposed on weights of terminal
sequences.

The question now is how to enforce the identity using a
set of linear constraints. To do this, Aras uses combinatorics
(knowing the support size of each agent’s policy) and treats
the z variables as counters. For example, constraint (10)
guarantees that if history h is part of agent i’s support set,
there should be enough compound variables set to 1 to cover
j’s support set, i.e. enough compound variables involving h
should be 1. And if h is not part of the support, then all of
the compound variables involving h should be 0. Constraint
(12) limits the number of compound variables that can be
simultaneously set to 1.

4. PROPOSED MILP FORMULATION
In this section, we present our MILP formulation for EDI-

CR instances with 2 agents, with a note on extensions to
more than 2 agents at the end. Before we do so, we explain
the insight that we used to develop a compact formulation.

4.1 Useful insight
For the 2-agent case, the NLP in Table 1 reduces to a

Quadratic Program (QP). Looking at the objective function
of this QP, we see that it has the form

xTQx

57

Table 2: DEC-MDP formulation as a MILP

maximize∑

h∈Zi,h′∈Zj

R(h, h′)zh,h′ (7)

subject to∑

a∈Ak

xk(a) = 1 k ∈ {i, j} (8)

∑

a∈Ak

xk(h.s.a) = xk(h) k ∈ {i, j}, s ∈ Sk, h ∈ Nk (9)

∑

h′∈Zj

zh,h′ = xi(h)‖σj‖ ∀h ∈ Zi (10)

∑

h∈Zi

zh,h′ = xj(h
′)‖σi‖ ∀h′ ∈ Zj (11)

∑

h∈Zi,h′∈Zj

zh,h′ = ‖σi‖‖σj‖ (12)

xk(h) ≥ 0 k ∈ {i, j}, h ∈ Hk
xk(h) ∈ {0, 1} k ∈ {i, j}, h ∈ Zk

z ∈ [0, 1]

where x = [xi, xj] and Q is the reward matrix. Q(h, h′) =
R(h, h′) if both h and h′ are terminal sequences, otherwise
the entry in the matrix is 0. So what the MILP in Table 2
does is that it “flattens” this matrix and multiplies each ma-
trix entry by the corresponding compound variable. We can
see that the introduction of compound variables essentially
created a variable for each entry in Q associated with ter-
minal histories.

For DEC-MDPs, because agents’ decision processes are
tightly coupled, the rewards and transitions of one agent
strongly depend on the actions taken by another. So for a
given history h, R(h, h′) can vary widely, depending on h′.
The variation comes from the dependency of encountered
states and rewards on the particular actions taken by the
other agent in h′. As a result, a given row or column in Q
contains many distinct values.

The situation can be very different in the presence of struc-
tured interactions. An agent is only affected by the critical
actions of another agent; those actions involved in reward
and transition interactions as given by ρ and τ in the defi-
nition of EDI-CR. As a result, for a given history h of one
agent, the rewards and transition probabilities of states and
actions along h do not depend on the exact actions in the
history of another agent. For example, suppose ρ says that
agents i and j get a bonus of 10 if they do actions a1 and a5,
respectively, at any point in time, and τ says that action a3

of agent j affects the transition probability of a7 of i. Now
suppose history h ∈ Zi involves doing action a1 at time 4
and a7 at time 6. In this case, all histories h′ ∈ Zj that
involve doing a3 before time 6 and a5 any time will have the
same effect on the transitions and rewards of h.

Let us go back to the matrix view of the objective func-
tion. Because in EDI-CR agents have their local reward
functions, we can express Q as the sum of reward matrices
of the 2 agents Qi + Qj . Note that this does not assume
that rewards are simply additive; each entry in each of these
matrices can depend on the histories of both agents, thus
representing the complex reward structure ρ. The rows in

Table 3: EDI-CR formulation as a MILP

maximize∑

bh∈Bh

Rk(h, bh)zh,bh k ∈ {i, j}, h ∈ Zk, (13)

subject to∑

a∈Ak

xk(a) = 1 k ∈ {i, j} (14)

∑

a∈Ak

xk(h.s.a) = xk(h) k ∈ {i, j}, s ∈ Sk, h ∈ Nk (15)

∑

bh∈Bh

zh,bh = xk(h) k ∈ {i, j}, h ∈ Zk (16)

zh,bh ≤
∑

h′∈bh

β(h′|h)x−k(h′)

k ∈ {i, j}, h ∈ Zk, bh ∈ Bh (17)

xk(h) ≥ 0 k ∈ {i, j}, h ∈ Hk
xk(h) ∈ {0, 1} k ∈ {i, j}, h ∈ Zk

z ∈ [0, 1]

Qi will contain many duplicate entries, and the columns in
Qj will also contain many duplicate entries, reflecting the
fact that an agent is oblivious to many of the details of the
other agent’s history.

The above observations clearly indicate that simply using
the DEC-MDP MILP formulation for EDI-CR ignores im-
portant structure that can be used to avoid duplication and
reduce the number of the introduced compound variables.

4.2 2-agent EDI-CR as MILP
In our formulation of EDI-CR with 2 agents as a MILP, we

introduce compound variables, but use the insight discussed
above to obtain the compact formulation given in Table 3.

4.2.1 Binning histories
The main idea in our formulation is that for a given history

h, we group all histories of the other agent that have the
same effect on the transitions and rewards in h into a single
bin. For each history h ∈ Zk of some agent k, the set of
bins it induces, Bh, is a partition over the set of terminal
histories of the other agent, i.e.

⋃
bh∈Bh bh = Z−k and bmh ∩

bnh = ∅ ∀bmh , bnh ∈ Bh. Consequently, a history that is not
affected at all by the other agent has a single bin containing
all histories of the other agent.

Instead of creating a compound variable for every pair of
terminal histories, our formulation introduces a compound
variable for every history and every one of the bins associ-
ated with this history. So for every history h and associated
bin bh, we introduce zh,bh . In the matrix view of the objec-
tive function, instead of creating a variable for each entry
in Q, we create a variable for each distinct entry in each
of Qi and Qj . Because these matrices will typically contain
many duplicate entries as previously discussed, this idea can
significantly reduce the number of compound variables we
introduce.

We now turn to the formulation of the objective func-
tion (13). We would like to fold into Rk(h, bh) all the factors
that are common to all histories in bh. These are quantities
of h that are oblivious to which history h′ ∈ bh is played,

58

namely h’s transition probabilities and rewards1. We there-
fore have

Rk(h, bh) = rk(h|bh)β(h|bh)

The factors on the right can be calculated using any history
in the bin. Suppose h′ is one such history, in which case

rk(h|bh) =

T−1∑

t=1

Rk(st, at, st+1) + rρ(h, h
′)/2

where Rk is the individual reward function and rρ(h, h
′)

represents rewards that depend on actions of both agents,
as specified in ρ, and will be zero if the actions in h are not
involved in any reward interactions. Dividing by 2 avoids
double counting reward interactions.

As for the transition probabilities, they are given by

β(h|h′) =

T−1∏

t=1

Pτ (st+1|st, at, {a′1..a′t})

where {a′1..a′t} are the actions in h′ done up to time t. Pτ
depends on the local transition function Pk and, for tran-
sitions involved in τ , previous actions in the other agent’s
history.

Having folded the factors common to all histories in the
bin into Rk(h, bh), we fold into zh,bh quantities that depend
on the particular h′ in the bin, namely the transition prob-
abilities along h′, given history h. The meaning of a com-
pound variable is therefore given by the following identity

zh,bh = xk(h)
∑

h′∈bh

β(h′|h)x−k(h′) (18)

where x−k is the realization weight vector of the other
agent. zh,bh is therefore the probability that h is part of an
agent’s policy, multiplied by the probability that the other
agent plays a history in the bin bh.

The effect of the number of interactions on the size of
the formulation is clear from the meaning of the introduced
compound variables. The more interactions, the more de-
tails one agent will care about in another agent’s history.
As we increase the number of ways in which an agent can
be affected by another, we need more bins to group histo-
ries into, since each bin represents a unique way in which
one agent can affect another’s rewards and transitions. So
the more interactions, the larger the number of bins, and
the more compound variables we need. In the extreme case
where each history of agent i affects agent j’s history in a
different way, we need a separate bin for each of i’s histo-
ries, essentially creating a compound variable for every pair
of histories, resulting in a formulation with the same number
of variables as in the DEC-MDP MILP.

4.2.2 Enforcing the identity
As Aras did in the DEC-MDP formulation, we need to en-

force the identity defining compound variables through a set
of linear constraints. However, doing so is more challenging
than in the DEC-MDP case. To see why, note that the iden-
tity (6) defining the DEC-MDP’s compound variables results

1For ease of exposition, we do not include here the reward
and transition of the last action in h. These can be included
using terms that refer to all terminal states reachable by the
last action, as done in Equation (5).

in variables that are binary, since they are products of bi-
nary variables. Therefore the DEC-MDP MILP formulation
can use compound variables as counters (in constraints (10),
(11),(12)), allowing the use of combinatorics and support set
sizes to enforce the identity by linear constraints.

In our formulation, the definition of compound variables
involves transition probabilities, so these variables are no
longer binary, thereby preventing the use of combinatorics.
We must resort to other properties of, and relations among,
the variables to derive constraints equivalent to the identity.

Starting with the identity in (18), summing over all bins
on both sides gives

∑

bh∈Bh

zh,bh =
∑

bh∈Bh

xk(h)
∑

h′∈bh

β(h′|h)x−k(h′)

= xk(h)
∑

bh∈Bh

∑

h′∈bh

β(h′|h)x−k(h′)
(19)

Since Bh is a partition over Z−k, the double sum on the
second line reduces to a sum over all histories of the other
agent, giving

∑

bh∈Bh

zh,bh = xk(h)
∑

h′∈Z−k

β(h′|h)x−k(h′) (20)

A property of a legal policy is that it prescribes an action
at each state reachable by a non-terminal history with non-
zero realization weight. As a result, histories in a policy’s
support set cover all possible transitions of actions along
parents of these histories. This means that the sum of prob-
abilities of transitions along histories in the support set must
be 1, i.e. for agent k and any history h of the other agent,

∑

h′∈σk

β(h′|h) = 1 (21)

It follows that
∑

h′∈Z−k

β(h′|h)x−k(h′) = 1 (22)

because the x variables act as switches for including the
various βs, and only the switches of histories in the support
will be ’on’, so the left side only contains their corresponding
βs and, by (21), is 1.

From (20) and (22), we have the following set of con-
straints, one per terminal history of each agent

∑

bh∈Bh

zh,bh = xk(h) (23)

This constraint makes intuitive sense because it guaran-
tees that if h is not part of an agent’s support set, then all of
the compound variables involving h and all of its bins should
be 0. If h is part of the support, it guarantees there is enough
contribution from the compound variables associated with
all bins of h.

The problem with the above constraint is that on the
left hand side, it does not prevent one compound variable
from taking too high a value at the expense of another com-
pound variable. So having this kind of constraint alone is
not enough to enforce the identity in (18). To limit the con-
tributions of individual compound variables on the left hand
side, we need to impose upper bounds on them. A simple
source of such bounds is the identity itself. Because in (18)

59

xk(h) is either 0 or 1, we can form the following constraints

zh,bh ≤
∑

h′∈bh

β(h′|h)x−k(h′) (24)

Together, the sets of constraints in (23) and (24) enforce
the identity. One advantage of our constraints over the
combinatorics-based constraints in the DEC-MDP formu-
lation is that ours do not involve the size of the support
set. Aras assumes that this support size can be calculated
using a simple formula involving the time horizon and the
size of an agent’s observation set (for DEC-POMDP). So
the implicit assumption is that an agent’s branching factor
after each action at each time step is the same. But this is
not necessarily true in settings where a state-action transi-
tion can end up in any number of next states, depending on
the particular action taken. In such settings, determining
the support size requires carefully looking at an agent’s de-
cision tree and the paths that can be taken in it, which is
non-trivial for large problems.

A final remark on our formulation concerns the number
of constraints. The set of constraints in (23) has the same
size as the set of constraints in the DEC-MDP MILP. The
set in (24), however, is larger, because it has a constraint for
each bin of each history of each agent. But as will be seen
in the next section, this does not prevent us from obtaining
computational advantage over the DEC-MDP formulation.

A note on 3 or more agents.
For problems with n > 2 agents, we can still use the idea

of grouping histories that have the same influence on a given
agent’s history. But with n agents, a bin does not contain
histories of just 1 agent. Instead, it contains history tuples,
where each tuple consists of histories of the n − 1 agents.
We denote a tuple of histories of everyone except agent k as
h−k, and denote an individual history within this tuple by a
superscript indicating the agent it belongs to. For a history
h ∈ Zk of agent k and one of its bins bh, the associated
compound variable is given by the identity

zh,bh = xk(h)
∑

h−k∈bh

∏

hq∈h−k

β(hq|h, h−k)xq(h
q)

Similar to the 2-agent case, the set of bins associated with
history h, Bh, is a partition over

⋃
q 6=k Zq, so we can use

constraint (23). The problem is that if we use the idea be-
hind constraint (24) to bound the values of the compound
variables, the result will not be a linear constraints, but a
constraint of order n− 1. We are still trying to find a set of
linear constraints that imposes the necessary upper bounds.

The existing general DEC-MDP formulations extend to
n agents. The NLP formulation in Table 1 naturally ex-
tends to any number of agents because it simply multiplies
realization weights of history tuples in the objective func-
tion. The DEC-MDP MILP formulation given by Aras also
extends beyond 2 agents, but the number of compound vari-
ables grows exponentially with the number of agents, since
a variable is created for each history tuple.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results from com-

paring 3 formulations of EDI-CR instances; 1) QP formula-
tion given in Table 1, but restricted to 2 agents, 2) MILP for-
mulation developed for general DEC-MDPs ignoring struc-

ture given in Table 2 and 3) MILP formulation for EDI-CR
given in Table 3. All 3 kinds of mathematical programs
were solved using IBM ILOG Cplex [1]; the first using Cplex
Mixed Integer QP solver, and the other two using Cplex
MILP solver. In all 3 cases, we used the default Cplex pa-
rameters.

We experimented with 22 instances of the modified co-
operative Mars rovers problem used in [7]. The number of
interactions ranges from 4 to 7.

Before discussing the performance of the solver in solving
each of the 3 formulations, we note that the time to gen-
erate these formulations is almost the same. Specifically,
constructing the bins and objective function in the EDI-CR
MILP is not more expensive than constructing the reward
matrix in the QP or the objective function in the DEC-
MDP MILP. In all 3 cases, we need to iterate over every
joint history, calculate its expected reward and calculate the
probability of the chance outcomes along the history.

First, we look at the behavior of the 3 formulations with
respect to optimality. As mentioned before, the QP for-
mulation is not guaranteed to result in an optimal solution
because it is non-concave, so Cplex may report a locally
optimal solution and quit. But even after obtaining a so-
lution that we know is optimal (by comparing to another
solution known to be optimal), Cplex may spend a very
long time until it verifies optimality. We therefore have 5
possible outcomes of a run: 1) optimal solution found and
verified, 2) optimal solution found but not verified within
reasonable time2 , 3) Locally optimal solution found, 4) Op-
timal solution could not be found within reasonable time,
but a suboptimal solution was found, 5) No solution at all
found within reasonable time. Of our 22 instances, Table 4
compares how many fall in the different categories for each
formulation. Because a solver would never report a locally
optimal solution for a MILP, the corresponding entries are
marked by ’-’. As can be seen, our formulation resulted
in a provably optimal solution in 17/22 instances. In the
remaining instances, we obtained higher rewards than the
other formulations, but cannot say with certainty that our
solution was optimal because there is nothing to compare it
to, so each of the remaining 5 instances falls into into cat-
egory 2 or 4. QP and DEC-MDP MILP were equally good
at finding optimal solutions, although DEC-MDP MILP was
better at verifying optimality. The table shows that the non-
concavity of the QP can often lead the solver to just report
a locally optimal solution. It also shows that in some cases,
the number of compound variables introduced in the DEC-
MILP is too large to allow the solver to find any solution
within reasonable time.

Next, we look at the compactness of the MILP formu-
lation with and without exploiting structured interactions.
We group our 22 instances into 3 groups of small, medium
and large instances containing 5, 9 and 8 instances, respec-
tively. Table 5 shows the number of terminal sequences for
each agent, and the number of compound variables, z, in-
troduced in the DEC-MDP formulation and our EDI-CR
formulation. Results were averaged over instances in each
group. Clearly, the DEC-MDP formulation introduces many
more compound variables than our formulation. The differ-
ence in the number of variables becomes more pronounced

2Reasonable time for most scenarios is taken to be 60 sec-
onds. For larger scenarios, we time out a run after 600 sec-
onds.

60

Table 4: Comparison of formulations with respect
to optimality

QP DEC-MDP EDI-CR
MILP MILP

1) Optimal, Verified 5 9 17
2) Optimal, Not verified 9 5 x
3) Local optimal 5 - -
4) Suboptimal 3 6 5-x
5) No solution 0 2 0

Table 5: Comparison of formulations with respect
to compactness

|Zi| |Zj | EDI-CR DEC-MDP
MILP |z| MILP |z|

Small 81 46 254 3,762
Medium 162 112 608 18,062
Large 941 781 3,793 596,950

as the problem size increases. Whereas the DEC-MDP for-
mulation creates a compound variable for each pair of ter-
minal histories, our formulation will only create as many
variables as needed to distinguish between bins induced by
a given history. Although our formulation has more con-
straints than the DEC-MDP MILP, we next show that the
increased number of constraints is offset by the large reduc-
tion in the number of variables, resulting in MILPs that are
overall easier to solve.

We now look at the solution time for each formulation. Ta-
ble 6 shows the results of comparing both the time needed
to find the optimal solution (reported as ‘Find’), and the
time needed to verify that the solution is indeed optimal (re-
ported as ‘Verify’). The times are in seconds, averaged over
instances in each group. For groups where some solutions
were not found/verified within reasonable time, the number
of instances over which the averaging was done is indicated
in brackets. In general, solving the EDI-CR MILP formu-
lation is significantly faster than solving the other 2 formu-
lations. There is also a large difference in the time needed
to verify optimality. In the Small group, only 3 instances
could be solved provably optimally within 60 seconds using
the DEC-MDP MILP and QP formulations. In the Medium
group, the differences in time to verify optimality among
the different formulations is even more pronounced. In the
Large group, Cplex found solutions for all our problems, but
could not verify optimality. A solution with the same quality
could not be found with any of the other formulations.

6. RELATED WORK
Formulating decision problems as mathematical programs

has been done by other researchers, with the aim of mak-
ing use of available industrial-grade solvers like Cplex. Aras
and Dutech proposed two MILP formulations for general
DEC-POMDPs [2]. One of these formulations was given
in Table 2. The other uses game-theoretic concepts to lin-
earize the objective function. This latter formulation is out-
performed by the one we reviewed and built upon in this
paper.

Petrik and Zilberstein [10] developed formulations of de-
cision problems of cooperative and self-interested agents as
separable bilinear programs and presented an algorithm for

solving this class of programs. The QP discussed in this pa-
per is itself a bilinear program, because realization weights of
one agent are only multiplied by weights of the other agent,
so the objective function is linear if the weights of one agent
are fixed. Previous work on the EDI-CR model [7] used the
bilinear formulation and solution algorithm.

Aras et. al [3] give a mathematical formulation for a
special case of DEC-POMDP called Network Distributed
POMDP [9] (ND-POMDP) where agents have independent
transition and observation functions, but have reward in-
teractions. In ND-POMDP, we can decompose the set of
agents into subsets, where an agent’s reward only depends
on agents belonging to its subset(s). Because they only con-
sider problems where each subset contains 2 agents (i.e. bi-
nary interactions), Aras et. al were able to formulate this
problem as a QP. They present a linearization of the QP
to a compact MILP that avoids having a compound vari-
able for each joint terminal history. However, they report
that the compactness of their formulation does not translate
to savings in the time needed to solve the resulting MILP,
compared to a simple formulation with one variable per joint
history. One explanation they provide is that the compact
MILP has a constraint matrix that is not sparse, making it
hard for Cplex to deal with it efficiently.

Besides the fact that ND-POMDP assumes transition in-
dependence and EDI-CR does not, the difference between
these two models is that in the former, agents belonging to
the same subset are assumed to have very tight reward inter-
action; there is a single reward function per subset, and it is
defined over joint actions and states of agents in the subset.
We can see this as a coarse-grained kind of independence
where agents either have reward interactions involving all
their actions or none at all. EDI-CR captures a more fine-
grained kind of interaction where specific actions affect, or
are affected by, what another agent does. As a result of
this difference, formulations of ND-POMDP would not be
very useful, if at all, when directly applied to EDI-CR, since
they cannot capture and exploit fine-grained interactions.
The general ideas and techniques for linearizing a high or-
der expression can, however, be useful across models and
formulations.

Another MILP formulation of Transition-Independent DEC-
MDP [4] is given by Wu and Durfee [11]. Their formulation
is approximate and is the result of discretization and piece-
wise linear approximation of non-linear constraints. This
work therefore finds exact, optimal solutions to an inexact
model. The errors introduced by the discretization and lin-
earization can be controlled, at the expense of introducing
more variables into the formulation.

7. CONCLUSION
This paper presents a compact mathematical formulation

of a class of DEC-MDPs where there are structured tran-
sition and reward interactions among agents. This class of
problems is modeled using Event-Driven Interactions with
Complex Rewards. Previously, instances of EDI-CR would
either be formulated as Quadratic Programs, in which case
a globally optimal policy is not guaranteed because of the
non-concavity of the QP, or as a MILP through a formu-
lation that was conceived for general DEC-POMDPs and
adapted to DEC-MDPs. The formulation we developed suc-
cessfully exploits structured interactions, and rests on the
observation that when considering a given history of agent

61

Table 6: Comparison of formulations with respect to solution time
EDI-CR MILP DEC-MDP MILP QP Find EDI-CR MILP DEC-MDP MILP QP Verify

Find Find Verify Verify
Small 0.29 8.68 0.57 0.12(3) 3.5(3) 0.58(3)
Medium 0.59 10.72 6.4 0.35(6) 21.6(6) > 60
Large 83 N/A N/A N/A N/A N/A

i, many histories of the other agent have the same effect on
the rewards and transitions of i. Therefore, in doing the
linearization necessary to obtain a MILP, we can avoid cre-
ating a compound variable for every pair of joint terminal
histories. Instead, we create one variable for every group of
histories that have the same effect on a given history. Our
experimental results show the compactness of our formula-
tion compared to a MILP that does not exploit structure.
We also show that our formulation allows a solver to find
an optimal solution and verify its optimality faster than the
other formulations discussed in this paper. This allows us to
solve larger problems which would otherwise be intractable.

We are currently working on extending our formulation
beyond the 2-agent case. The main issue is to find a set of
linear constraints that enforce the non-linear identity defin-
ing compound variables. One possible starting point is to
look at settings with more than two agents, but where any
interaction only involves two agents. This is still different
from the binary ND-POMDPs discussed in Section 6 because
we allow for transition interactions.

Another future direction we are interested in involves ap-
proximation. Currently, we group histories into the same bin
only if they have exactly the same effect on a given history.
One possible approximation is grouping histories whose ef-
fects are similar enough. This is equivalent to making an
agent indifferent among a larger set of the other’s histories,
and would further reduce the number of compound variables.
We need to study how this can be done in a principled man-
ner.

8. REFERENCES
[1] IBM ILOG Cplex available under the Academic

Initiative.

[2] R. Aras and A. Dutech. An investigation into
mathematical programming for finite horizon
decentralized POMDPs. Journal of Artificial
Intelligence Research, 37:329–396, 2010.

[3] R. Aras, A. Dutech, and F. Charpillet. Quadratic
Programming for Multi-Target Tracking. In AAMAS
2009 Workshop on Multi-agent Sequential
Decision-Making in Uncertain Domains, pages 4–10,
Budapest, Hungary.

[4] R. Becker, S. Zilberstein, V. Lesser, and C. V.
Goldman. Solving transition independent
decentralized Markov decision processes. Journal of
Artificial Intelligence Research, 22:423–455, 2004.

[5] D. Bernstein, R. R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of Markov decision processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

[6] D. Koller, N. Megiddo, and B. von Stengel. Efficient
computation of equilibria for extensive two-person
games. Games and Economic Behavior, 14(2):247 –
259, 1996.

[7] H. Mostafa and V. Lesser. Offline planning for
communication by exploiting structured interactions
in decentralized MDPs. In 2009 IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology, pages 193–200, Italy,
2009.

[8] H. Mostafa and V. Lesser. Exploiting Structure To
Efficiently Solve Loosely Coupled Stochastic Games.
In AAMAS 2010 Workshop on Multi-agent Sequential
Decision-Making in Uncertain Domains, pages 46–53,
Toronto, Canada, 2010.

[9] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed pomdps: A synthesis of
distributed constraint optimization and POMDPs. In
Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI-05), 2005.

[10] M. Petrik and S. Zilberstein. A bilinear programming
approach for multiagent planning. Journal of Artificial
Intelligence Research, 35:235–274, 2009.

[11] J. Wu and E. H. Durfee. Mixed-integer linear
programming for transition-independent decentralized
MDPs. In Proceedings of the 5th International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), 2006.

62

	MSDM2011 57
	MSDM2011 58
	MSDM2011 59
	MSDM2011 60
	MSDM2011 61
	MSDM2011 62
	MSDM2011 63
	MSDM2011 64

