
Approximately Solving Sequential Games
With Incomplete Information

Hala Mostafa and Victor Lesser

Computer Science Department
University of Massachusetts
Amherst, MA 01003-4610

{hmostafa,lesser}@cs.umass.edu

Abstract

Games of incomplete information are notorious for their difficulty which usually makes
finding an exact solution intractable. The problem is even harder when the game has
multiple stages and sequential decision-making is required. Some efforts have therefore
addressed the issue of finding approximate equilibria for various classes of games, but these
have mostly been restricted to 1-stage games. We propose an anytime search algorithm
for calculating ε-Bayes-Nash equilibria in sequential games of incomplete information. Our
algorithm first collapses the game tree by making “obvious” decisions and backing up values
wherever possible. It then searches the space of strategy profiles by iteratively improving
a random starting point until either the desired level of stability is reached or no further
improvement is possible, in which case the point is randomly perturbed and the process
repeats. We identify a continuum of measures for the stability of a strategy profile that
vary in their accuracy and ease of calculation. We use one such measure to obtain results
of the performance of our algorithm on randomly generated game trees and compare it to
the Quantal Response Equilibria algorithm. We also present results of both algorithms on
games derived from random instances of the database view maintenance problem. These
experimental results demonstrate our algorithm’s attractive anytime behavior which allows
it to find good-enough solutions to large games within reasonable amounts of time.

1 Introduction

Games of incomplete information are notorious for their difficulty which usually makes finding
an exact solution intractable. The problem is even harder when the game has multiple stages
and sequential decision-making is required. We propose a general anytime algorithm for approx-
imately solving sequential games of incomplete information by searching the space of strategy
profiles for an approximate equilibrium. Our algorithm has three novel features: 1) it collapses
the game tree as a pre-processing step, resulting in more tractable trees; 2) it generates local
measures that guide the search by indicating which parts of a strategy profile are least stable
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(and therefore yield the most improvement if remedied); 3) it proposes a continuum of global
measures of the stability of a profile by calculating upper bounds on players’ regrets when playing
this profile.

Our algorithm is different from work in the area of incomplete information games in the
following respects: 1) it deals with sequential rather than the 1-shot or repeated games which
have attracted the most attention so far; 2) it does not make assumptions about the interaction
graph [6, 12, 13, 15] of the players (i.e. no assumptions about how or which players interact
with each other); 3) unlike domain-specific algorithms (e.g. [7, 3]), ours is a general algorithm
for solving general games of incomplete information. Our algorithm demonstrates attractive
anytime behavior which allows it to find good-enough solutions to large games within reasonable
amounts of time.

In addition to testing our algorithm on general game trees, we also test it on game trees
derived from instances of the view maintenance problem. A database view is a dynamic, virtual
table composed of the result set of a query executed over one or more data sources. The view
maintenance problem [1, 2, 5] concerns how a view is refreshed when its underlying data sources
are updated. When there are self-interested database managers from different institutions, the
view maintenance problem can be formulated as a game; database managers decide how much
information they contribute to refreshing the view based on the cost of disclosing various pieces
of information and the reward of maintaining the view [10]. Because maintaining the view takes
place over a number of time steps, we have a sequental game. The fact that a database manager
does not know how much information others possess makes it a game of incomplete information.

This document is organized as follows. Section 2 gives a brief background on games and
equilibria, presenting the problem of finding an equilibrium as a search process. Our anytime
search algorithm is presented in Section 3. Section 4 shows experimental results. Related work is
discussed and compared in Section 5. We conclude and discuss areas of future work in Section 6.

2 Games and Searching for Equilibria

2.1 Background: Games and Their Solutions

Non-cooperative game theory focuses on situations where self-interested agents make decisions
that affect their own and each other’s rewards. A solution is a strategy profile that prescribes,
for each agent, what it should do under every possible contingency in the form of a probability
distribution over actions available at that contingency. An equilibrium profile is one where no
player stands to gain by unilaterally deviating from the strategy prescribed to it by the profile.
In games of incomplete information, each player has private information, his type, that affects
his own payoffs but is unknown to other players. The prior probability distribution over agents’
types is, however, common knowledge. There are two sources of uncertainty: 1) a player does
not observe the chance moves that assign other players’ types and 2) the rules of the game may
stipulate that certain actions by other players are not observable to it. The player may therefore
be unable to distinguish among a set of nodes, an information set, in the game tree which have
the same observable history from its prespective. Consequently, a strategy maps information
sets, rather than specific nodes, to actions.

In sequential games, players take moves after observing moves of chance (e.g., a roll of a die)
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and moves of the other players. Sequential games are also referred to as extensive form games
(EFGs). An EFG consist of multiple stages where each stage is a game. Actions taken at a stage
affect the game that will be played at the next stage, thereby making it necessary to think about
long-term consequences of actions. An EFG is a tuple < I, V, E, P, H, u, p > where:

• I is the set of players
• The pair(V, E) is a finite directed tree with nodes V and edges E and Z is the set of

terminal nodes
• Player : V \Z → I determines which player moves at each decision node. Player induces

a partition over V \ Z and Playeri = {x ∈ V \ Z|Player(x) = i} is the set of nodes at
which player i moves

• H = {H0, ..., Hn} is the set of information sets, one for each player. Each Hi is a partition
of Playeri. The information set of a node x is denoted as h(x)

• Ai(h) is the set of actions available at information set h ∈ Hi

• u : Z → R is the utility function defined over the set of terminal nodes. For x ∈ Z, ui(x)
is the payoff to player i if the game ends at node x

• p is the transition probability of chance moves

In incomplete information games, the first n levels of the tree represent chance nodes where
at level i, Nature assigns player i’s type with probability specified by the commonly known
probability distribution over i’s type space. A strategy σ for player i is a complete plan covering
all possible contingencies for every possible type. For each information set h ∈ Hi, a behavior
strategy is σi(h) ∈ ∆(Ai(h)) where ∆(Ai(h)) is the set of all probability distributions over actions
available at information set h. A strategy profile is a set of strategies σ = (σ1, ..., σn), one per
player. We write σ−i to denote the set of strategies of all players except i.

In a perfect information game, a strategy profile σ is a Nash equilibrium if ui(σi, σ−i) ≥
ui(σ′

i, σ−i) for all i ∈ I and all σ′
i. A Bayes-Nash equilibrium (BNE) of a game of incomplete

information Γ corresponds to the Nash equilibrium of the normal form game derived from Γ.

2.2 Searching The Space Of Strategy Profiles

2.2.1 A strategy profile as a point in space

As mentioned earlier, at each h ∈ Hi, σ specifies a probability distribution over actions available
at information set h. It is therefore straightforward to think of a strategy profile as a point
in multi-dimensional space. The dimensionality of the space is

∑n
i=1

∑
h∈Hi

(|Ai(h)| − 1) where
each dimension extends from 0 to 1. For each player i, for each of his information sets h, there
is a dimension for each action available to i at h, except the last action which is assigned the
probability left over from the other actions. Because probabilities of actions at an information
set must add up to 1, not all points in the space correspond to valid strategy profiles. The search
for a Bayes-Nash Equilibrium (BNE) is a search in this multi-dimensional space for a point that
satisfies the equilibrium condition: given the other player’s part of the profile represented by the
point, no player would like to deviate from its strategy. This view was adopted in pervious work
dealing with 1-stage games (e.g. [15, 11]) but large multi-stage games pose new challenges to the
search algorithm.

3

94



2.2.2 Constraints on a BNE

A point in the above multi-dimensional space is a BNE if it satisfies certain constraints which
guarantee that at each information set of each player, the player’s strategy is rational given the
expected values of actions available at that information set. In other words, if there is a single
action with maximum expected value, that action is played with probability 1. If there are several
such actions, the probability mass is divided among them. At a BNE, this division is such that
the same rationality holds for the other player. This ensures that no player has any motivation
to deviate from the prescribed strategy. Stated more formally, the following condition should
hold at each information set h:

∑

a∈A(h)

σi(h, a) ∗ E(Payoffi(a)) = maxa(E(Payoffi(a)))

where σi(h, a) is the probability that strategy σ assigns to taking action a at h and E(Payoffi(a))
is the expected value, to player i, of taking action a. This expected value is calculated in terms
of the payoffs of the leaf nodes that i can end up in when taking action a and the probabilities
of actions along the branches from the root to these leaves passing through a.

2.2.3 Approximate BNEs

It is straight forward to see that a point satisfying the above constraint at each information set
is indeed a BNE. However, consider the situation where some of these constraints are violated.

For example, consider an information set h where the above equation does not hold; the right-
hand side is greater than the left-hand side by 0.5. This means that, holding the other player’s
strategy fixed, this player gains 0.5 if he switches to the action that maximizes the right-hand
side. We refer to the amount by which a constraint c is violated as δc, also known in the literature
as regret.

As will be seen in Section 5, a search for an exact equilibrium corresponds to a Constraint
Satisfaction Problem. The search for an approximate equilibrium where some δs are non-zero
can be thought of as a Constraint Optimization Problem (COP). In both cases, the variables are
the probabilities assigned to actions by strategies and the constraints are as described above. In
this work, we try to find an approximate equilibrium by solving a COP.

3 Anytime Algorithm for Computing Approximate BNE

In this chapter we propose a simple algorithm that first collapses the game tree by making
“obvious” decisions and backing up values wherever possible. The algorithm then tries to satisfy
constraints derived from the collapsed game tree “as much as possible” by generating a random
initial point and iteratively improving it until either some user-defined stability measure on the
strategy profile is reached or no further improvement is possible. In the latter case, the point is
randomly perturbed and the process repeats. The following sections elaborate on these steps.
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3.1 Collapsing the Game Tree

Our experiments in building game trees from instances of the view maintenance problem show
that the size of the raw game tree is quite large. Examining raw trees shows that there are some
nodes at which decision making is not complicated by the incompleteness of information. These
are nodes where a player would choose to reveal the same piece of information, regardless of the
type of the other player. We therefore collapse the raw tree using the following simple algorithm.
Initially, all nodes are roots of collapsible subtrees. The main idea is to work from the leaves
of the tree upward, finding out which nodes are indeed roots of collapsible subtrees. For each
such node, collapse its subtree using simple backups. The node becomes a terminal node whose
payoffs reflect backed up values. Algorithm 1 shows how this is done.

for all level such that 0 ≤ level ≤ 2T do
collapsible[level] = non-terminal nodes at depth level

end for
for all level such that 0 ≤ level ≤ 2T do

for all node in collapsible[level] do
turnP layer = Player(node)
if ((|h(node)| == 1) ∨

(|AturnP layer(h(node))|==1) ∨
(best action is the same across h(node))) then
node.payoff = (argmaxc∈Childrenc.payoff.turnPlayer).payoff
delete all children of node

end if
remove all ancestors of node from their respective
collapsible[level] arrays

end for
end for

Algorithm 1: Simple algorithm for collapsing trees

Figure 1 shows examples of collapsing. Action nodes are in circles enclosing the number of the
acting player. Terminal nodes are shown in black circles with a pair of numbers specifying the
associated payoff for each player. A dotted box encloses nodes in the same information set. The
three situations where a node can be collapsed are shown; 1) incompleteness of information does
not affect the player’s decision (the best action is the same regardless of which particular node the
player is at), 2) node in a singleton information set and 3) node with a single available action.
Because we work from the leaves upward, a node eligible for collapsing always has terminal
children. As will be detailed when we present our experimental results, this simple collapsing
algorithm is very effective for game trees derived from the view maintenance problem.

3.2 Iteratively Improving A Point

To iteratively improve a point, we need to address the following issues:

1. Which component(s) of the point (strategy profile) should we improve? Should we focus
on improving individual constraints or the profile as a whole?
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Figure 1: Collapsible Subtrees: (a) action b is the best across the information set (b) singleton
information set (c) single available action

2. How should we explore the space? How do we generate neighboring points to which we can
move?

3. How do we assess a point? What measure of a point indicates the algorithm is moving in
the right direction in the multi-dimensional space?

3.2.1 What should we improve?

Improving individual constraints or the profile as a whole amounts to making local or global
changes to a profile, respectively. A local change tries to improve a constraint associated with
some information set h ∈ Hi to reduce the regret of player i at h. A global change completely
overhauls one or both players’ strategies to get to a more “stable” point; one at which the players’
motivations to deviate is lower. Owing to the complexity of overhauling a profile, we improve
individual constraints with the hope of effecting a global improvement through local changes.
Because it is not easy to determine which local changes produce the largest global improvement,
we use δs as heuristics to decide which parts of a strategy profile are more important to improve.
Constraints with high δs are associated with information sets with high regrets. Therefore when
iteratively improving a point, our algorithm greedily attempts to improve the constraint with
the highest δ first. Empirical observations indicate that this heuristic is indeed useful; improving
constraints with high δs results in more stable points. We quantify the notion of stability later
in the text.

3.2.2 Generating potential next points

For each variable (action probability) v involved in the constraint with the maximum δ, we cal-
culate the required change in v to bring δ down to 0, assuming all other variables are unchanged.
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We assess the impact of each potential change on the δs of other constraints by evaluating the
partial derivatives of affected constraints w.r.t. v. A change that results in a point with greater
than or equal stability than the current point is admitted, and the resulting point is added to
the list of Potential Next Points (PNPs). Algorithm 2 shows how this is done.

c = constraint with maximum δc. c = f(v1, ..., vk)
for all j in 1..k do

∆j = required change in vj to make δc = 0
σ′ = point obtained by making change ∆j

if stability(σ′) ≥ stability(σ) then
PNP.add(σ′)

end if
end for

Algorithm 2: Generating potential next points

The approach described above is actually one of two ways we try to decrease a given δc.
Instead of changing the probabilities of actions involved in a constraint as done above, we can
switch the player’s preference for two actions a and b by switching their probabilities. We generate
points from such reversals and as with the first approach, we assess the broader impact of the
change and decide whether to admit the points to PNP.

3.2.3 Assessing a point

Now that we have a set of PNPs, we need to move to the most stable PNP. Even though
δs determine which part of the profile to improve first, these local measures do not provide
good basis for comparing the stability of different points. The problem is that each δ specifies
the additional reward a player gets if it deviates at a single information set. This does not
say anything about the player’s potential gains if it deviates at multiple information sets. We
therefore need a global measure that specifies a player’s overall motivation to deviate from (or
completely overhaul) its strategy.

Following the notion of ε-BNE, we consider a profile stable if no player stands to make more
than ε% more reward by deviating from (or completely overhauling) its prescribed strategy. We
define a global measure called Maximum Overall Motivation(MOM) to deviate. MOM(σ) is the
maximum, over all players, upper bound on motivation to deviate from σ assuming strategies of
other players are held constant. MOM is therefore an upper bound on ε. The lower the MOM,
the more stable σ is. Approximating an equilibrium this way makes sense because practically,
a player will not want to take on the difficult task of calculating its best response strategy if it
knows that it stands to increase its payoff by no more than ε%. We capitalize on this “inertia”
and offer each player a “good enough” response to the others’ strategies.

We propose a simple way of calculating MOM. To calculate the upper bound on the motivation
of player i at point σ, we build a modified game Γrevealed from the original game Γ. Γrevealed is a
single-player perfect information game where i plays with Nature which we construct as follows.
Each node n ∈ h where h ∈ Hj and j (= i is changed to a chance node where the probability
of Nature playing action a is σ(h, a). In addition, the information sets in the original game tree
are revealed, i.e. i is granted full access to the history of play including the moves of Nature
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that determined players’ types, thereby removing i’s uncertainty about where it is within a given
information set. Γrevealed, being a perfect information game, can be solved by doing simple
backups. i’s payoff in Γrevealed is an upper bound on the payoff of its best response strategy in
Γ, since i can do no better than having perfect information. Because of the simplicity of doing
backups, we can quickly evaluate MOMs for a large number of PNPs.

To summarize, we use a local measure (δ) to generate PNPs and a global measure (MOM) to
assess and compare points. The global measure indicates how stable a point is, but does not give
indication of how it should be improved. The local measure indicates where it may be effective
to try to improve.
A range of approximations
As detailed above, we regard the problem of finding a BNE as a search in multi-dimensional space
for a point/strategy profile whose regret is guaranteed to be below a certain threshold. Because
the actual regret is expensive to compute, we examine the landscape given by MOM, which, at
every point, is guaranteed to be no lower than the actual regret. However, examining the MOM
landscape in some of the experiments we conducted showed that sometimes the upper bound
provided by MOM is very loose; e.g., the MOM landscape is everywhere higher than 20%. The
reason for this looseness is that the game Γrevealed is too easy compared to Γ. We can obtained
a tighter upper bound on actual regret if we can calculate payoffs in a game that is harder than
Γrevealed but still easier than Γ. In fact, there should be a whole spectrum of such games with
varying levels of difficulty. At one end of the spectrum is Γrevealed where all information sets are
disclosed. These games are very easy to solve but provide very loose upper bounds. At the other
end is Γ where no information sets are disclosed. As we already know, these games are hard to
solve.

To illustrate the kind of bound we get from a slightly harder game than Γrevealed, consider the
game ΓLI which differs from Γrevealed only in that all information sets except the highest-level
information sets for each player are revealed. Clearly, the payoff in this game is at least as high
as that obtained in Γ but no higher than in Γrevealed. At the same time, solving this game is
not too hard; do regular backups from the bottom of the game tree upwards, and, on reaching
the highest-level information sets, choose the action that maximizes reward in expectation over
the turn player’s beliefs about where it is within this information set. We call the maximum
motivation to deviate from σ in this game MOM-LessInformation(MOM-LI).

To illustrate the different possible payoffs with an example, Table 1 shows the payoffs achieved
by player i’s different strategies when its opponent plays its part of the strategy profile σ =<
σi, σj > in different variants of an example game. Payoff(σ) is i’s payoff from playing σi in
the original game Γ. PBR is i’s payoff from its best response to σj in Γ. It is obtained by
calculating i’s payoff in a transformed game where j’s nodes are changed to chance nodes with
action probabilities as dictated by σj. PLI is i’s payoff from its best response to σj in the
slightly harder game ΓLI with less-than-perfect information. PPI is i’s payoff from its best
response to σj in the perfect information game Γrevealed. Since PBR cannot exceed PPI or PLI,
the overall motivation to deviate calculated using either of these measures is an upper bound
on a player’s actual regret. MOM and MOM-LI are the maximum, over all players, percentage
regrets calculated using PPI and PLI, respectively. It is easy to see that the following relation
holds:

Payoff(σ) ≤ PBR ≤ PLI ≤ PPI

8

99



Table 1: Calculating MOM With Different Levels Of Information

Quantity Player 1 Player 2

Payoff(σ) 8.97 7.88
Payoff of B.R.(PBR) 10.39 8.48

Payoff in Γrevealed (PPI) 12 9.09
Payoff in ΓLI (PLI) 11 9
Overall Motivation 25.25% 15.26%

(PPI-Payoff(σ))/PPI * 100%
MOM 25.25%

Overall Motivation LessInfo 18.45% 12.4%
(PLI-Payoff(σ))/PLI * 100%

MOM-LI 18.45%

4 Experimental Results

4.1 The Effect of Collapsing

The first set of experiments investigates the efficacy of our collapsing algorithm for trees from
random instances of the view maintenance problem (henceforth called VM trees) as well as
general trees. Table 2 shows the result of collapsing VM trees. Unless indicated otherwise in
brackets, we generated 10 random instances per configuration for a total of 65 instances. As can
be seen, the size of the collapsed tree is roughly an order of magnitude smaller than the raw
tree. This pre-processing step is therefore very useful for providing our anytime algorithm with
tractable input.

To see how much general game trees collapse, we generated trees where both players have
the same number of types and the same number of actions is available at each information set.
We generated 10 random trees for each configuration < T, numTypes, numActions > where T
is the time horizon 1 ≤ T ≤ 4, 2 ≤ numTypes ≤ 3 and 2 ≤ numActions ≤ 3 (N/A entries were
too large to generate). Payoffs were generated randomly in the range [0,15]. Table 3 shows the
raw tree size and average percentage reduction for these configurations.

Clearly, trees derived from the view maintenance problem are much more susceptible to
collapsing than general trees. To understand why this is the case, we need to remember the
source of uncertainty faced by a player in a VM tree as given in the formulation in [10]. In spite
of the imperfect information about player j’s type, player i has no uncertainty regarding the
payoffs of actions. This results in the lowest level of the tree always collapsing, making it more
likely that levels higher up in the tree collapse as well (a node is eligible for collapsing only if its
children are terminals).

4.2 Performance of the Anytime Search Algorithm

We now present results of the performance of our anytime algorithm and compare it to the
Quantal Response Equilibria (QRE) algorithm [14] as implemented in Gambit [9]. We ran the
two algorithms (anytime search and QRE), on 2 tree types (VM and general trees) using MOM
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Table 2: Collapsing VM trees
T Raw Avg %

Size Reduction

2

716 84.3
2253 89.5
2253 88.8
6847 84.7

3
3608 91.2
15423 88.9
36232 92.9

Table 3: Collapsing general trees with 2 (top) and 3 (bottom) types per player
#Actions=2 #Actions=3

T Raw Avg % Raw Avg %
Size Reduction Size Reduction

1 34 23.5 58 15.5
2 130 25.5 490 21.9
3 514 27.3 4378 22.3
4 2050 24.9 N/A N/A

1 70 11.1 124 4.4
2 286 11.7 1096 7.5
3 1150 13.5 9844 7.9
4 4606 12.6 N/A N/A

and MOM-LI for a total of 8 sets of experiments, but for space limitations, we do not report
all of them here. In all our results, we are interested in the average time, in seconds, needed to
reduce regret (MOM or MOM-LI) to 5%. We bin results by tree size and show the percentage of
trees in each size bin for which the algorithm could reach the desired regret within the indicated
time range. Note that the reported tree size is the size of the collapsed, rather than the original,
tree. We omit from our tables time or size bins that were found to be empty.

For VM trees, randomly generated costs and rewards sometimes result in a tree which col-
lapses to an empty game. This happens if, for example, it is always lucrative to disclose all
information regardless of any uncertainty. Out of the 65 VM trees reported in Table 2, 52 col-
lapse to non-empty games. For each of these 52 trees, we ran our search algorithm 3 times
starting from different random points.

For general trees, we generated 73 random trees, none of which collapsed to an empty tree.
Again, on each tree we ran our search algorithm 3 times starting from different random points.

Tables 4 and 5 show results of our algorithm and QRE, respectively, on VM trees when using
MOM-LI. For most of the trees in any given tree size bin, our algorithm reaches the required level
of regret within 100 seconds. Compared to our anytime search algorithm, QRE has comparable
performance on smaller trees but fails to finish within the allocated time on a much higher
fraction of larger trees than our algorithm.
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Table 4: Anytime performance on VM trees with MOM-LI
Tree ≤ 20 21-100 101-500 501-1000 1001-1400 > 1400
Size secs secs secs secs secs secs
0-200 100%

200-400 96.1% 3.9%
400-1000 66.7% 20.8% 8.3% 4.2%
1000-2000 28.5% 47.6% 14.3% 4.8% 4.8%
2000-3600 44.4% 48.1% 3.7% 3.7%

Table 5: QRE performance on VM trees with MOM-LI
Tree ≤ 20 21-100 101-500 501-1000 1001-1400 > 1400
Size secs secs secs secs secs secs
0-200 88.9% 11.1%

200-400 94.1% 5.9%
400-1000 50% 25% 12.5% 12.5%
1000-2000 14.3% 28.6% 57.1%
2000-3600 22.2% 22.2% 55.6%

General trees proved to be more challenging than VM trees. To illustrate the difference
between using MOM and MOM-LI, Table 6 shows the result of our search algorithm using
MOM. For the first 3 tree size bins, the algorithm manages to reach the desired regret level most
of the time. For trees with more than 800 nodes, however, the algorithm needs an unreasonable
amount of time and possibly never gets to the threshold. The situation is much better when
using MOM-LI. Tables 7 and 8 show the result of our search algorithm and QRE, respectively,
on general trees using MOM-LI. Our algorithm performs better than QRE on smaller smaller
trees and is comparable to it on larger ones. We plan to investigate what characteristics of trees
derived from the view maintenance problem make them more amenable to an algorithm like ours.

Some remarks about our results are in order. First, it should be noted that there are many
possibilities for finetuning the search algorithm (e.g. random restarts and changing the magni-
tudes of random perturbations as the search proceeds), but we leave this for future work. Second,
it is important to remember that a strategy profile provides players with a plan of action for
every type with non-zero probability in the game definition. Therefore we only need to run
the search algorithm when the players type spaces, or the probability distributions over them,
change. In the view maintenance problem, database managers can continue using a strategy as

Table 6: Anytime performance on general trees with MOM
Tree Num. of ≤ 20 21-100 101-500 > 2000
Size Trees secs secs secs secs
0-200 105 63.8% 6.7% 29.5%

200-400 75 56% 22.7% 8% 13.3%
400-600 9 11.1% 77.8% 11.1%
800-1100 30 10% 10% 80%
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Table 7: Anytime performance on general trees with MOM-LI
Tree Num. of ≤ 20 21-100 101-500 501-1000 1001-1400 > 1400
Size Trees secs secs secs secs secs secs
0-200 105 96.2% 2.9% 0.9%

200-400 75 85.3% 12% 2.7%
400-600 9 44.4% 55.6%
800-1100 30 20% 40% 20% 20%

Table 8: QRE performance on general trees with MOM-LI
Tree Num. of ≤ 20 21-100 101-500 501-1000 1001-1400 > 1400
Size Trees secs secs secs secs secs secs
0-200 105 97.1% 2.9%

200-400 75 40% 56% 4%
400-600 9 100%
800-1100 30 80% 10% 10%

long as the number of potentially relevant tuples and the probability distributions over them
are unchanged. So the time taken to calculate a strategy profile is amortized over all the view
maintenance episodes for which the profile is valid.

5 Related Work

One of the few works concerned with large sequential games of incomplete information is that by
Gilpin and Sandholm [4]. They automatically abstract games in such a way that any equilibrium
in the smaller (abstracted) game corresponds directly to an equilibrium in the original game.
However, the original game must satisfy the condition of having an ordered signal space so we
cannot compare performance of our algorithm to theirs.

The idea of finding an exact (resp. approximate) equilibrium as a constraint satisfaction
(resp. optimization) problem was explored in previous work, but only for 1-stage games. This
line of work was started by Kearns et al for games of perfect information where the interaction
graph depicting which players affect each other is a tree [6]. The basic idea was extended to
games with incomplete information [12], to perfect information games with arbitrary interaction
graphs [15] and to games with incomplete information and arbitrary interaction graphs [13].
These algorithms are decentralized, which allows scaling w.r.t. the number of players. However,
they are all limited to 1-stage games. In the CSPs and COPs derived from these games, a variable
represents a players strategy, i.e. a probability distribution over its actions. In sequential games,
however, a players strategy is a probability distribution over a sequence of actions. The space of
strategies is therefore enormous, even if discretized as suggested in [6].

The work of Vickrey and Koller [15] is the closest to ours. Their hill-climbing algorithm
tries to minimize the sum of regrets over all players. They iterate over the steps of choosing
a strategy to change, calculating the new strategy and updating affected regrets in a way that
is close to ours. However, this work is again not directly comparable to ours because 1) they
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operate on 1-stage game and if we represent our games as 1-stage games where each strategy
is actually a sequence of actions, the resulting matrix is going to be very large; 2) Vickrey and
Koller primarily address a problem different from ours; scaling with the number of players by
trying to exploit local interactions among them to calculate equilibria more efficiently. Another
work addressing 1-stage games with complete information is that of La Mura and Pearson [11].
Their algorithm does not require that payoffs be common knowledge.

Instead of proposing an algorithm for general games, some work uses knowledge about the
problem domain to solve games in this domain more efficiently (e.g. [3, 7]). However, this work
is usually limited in applicability because it relies on features of specific domains.

The Quantal Response Equilibria algorithm was devised by Turcoy [14] whose work is based
on that of McKelvey and Palfrey [8]. It applies a quantal choice model when the players observe
payoffs with a random additive shock and choose optimally according to those noisy payoffs.
In the case where the additive disturbances associated with players’ strategies are drawn inde-
pendently from the extreme value distribution with precision parameter λ, the form of the rule
determining quantal response equilibrium choice probabilities is logistic. McKelvey and Palfrey
refer to quantal response equilibria with this distribution of disturbances as logit equilibria. The
set of logit equilibria can be viewed as a correspondence from λ to the set of mixed strategy
profiles. At λ = 0, this correspondence contains only the centroid. As λ approaches infinity, the
correspondence converges to a (possibly strict) subset of the Nash equilibria of the game.

6 Conclusion and Future Work

We propose a general anytime algorithm for approximately solving general games of incomplete
information by searching the space of strategy profiles for an ε-Bayes-Nash equilibrium. Our
algorithm has three novel features: it collapses the game tree as a pre-processing step, resulting
in more tractable trees; it generates local measures that guide the search by indicating which
parts of a strategy profile are least stable; it proposes a global measure of the stability of a profile
as a whole by calculating upper bounds on players’ regrets when playing this profile.

Experimental results demonstrate our algorithm’s attractive anytime behavior which allows it
to find good-enough solutions to large games within reasonable amounts of time. We conducted
experiments using two types of trees; general game trees and trees derived from instances of the
view maintenance problem. Collapsing general trees yields a reduction in the number of nodes
in a tree by 4-27%. Collapsing is much more effective for view maintenance trees, resulting in
collapsed trees roughly an order of magnitude smaller than the original trees. Experiments on
finding an approximate equilibrium to the view maintenance game also produced encouraging
results; our anytime search algorithm demonstrates good anytime behavior by reaching a regret
level of 5% within 100 seconds for most trees and performs much better than the Quantal
Response Equilibria algorithm on larger trees. General game trees proved more challenging to
our algorithm. However, it still performs better than QRE on smaller trees and is comparable
to it on larger ones.

The main conclusion we draw from our results is that in domains where approximate equi-
libria are acceptable, simple techniques prove to be effective in dealing with sequential games of
incomplete information, a class of games notorious for its intractability. A simple pre-processing
step significantly reduces the size of game trees, especially those derived from the view mainte-
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nance problem. A fairly simple search algorithm can navigate the huge space of strategy profiles
and reach a reasonably low regret within hundreds of seconds in most cases.

We envision several potential directions for future work. Experimental results showed that
our search algorithm performs better on game trees derived from the view maintenance problem
than it does on general trees. We would like to gain more insight into why this is the case and
what special features of view maintenance trees make them easier to solve. Another direction
concerns the kind of equilibrium we search for. Currently, we search for Bayes-Nash equilibria.
However, it is known in game theory literature that some of these equilibria may be unrealistic
due to a phenomenon known as ”incredible threats”. Therefore we would like to investigate how
we can search for policies that meet refined notions of equilibrium (e.g. Perfect Bayes equilibria).
Yet another interesting issue we would like to investigate is whether our search algorithm can be
modified to more cleverly ”navigate” the policy space, something which requires some kind of
description of the space’s topology or a heuristic for coming up with one.
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