
Problem Structure and Subproblem Sharing in Multi-Agent Systems

Dorothy L. Mammen and Victor R. Lesser�

Department of Computer Science
University of Massachusetts
Amherst, MA USA 01003

fmammen, lesserg@cs.umass.edu

Abstract

In multi-agent problem-solving systems in which agents
work asynchronously and in parallel on parts of a prob-
lem distributed among them, subproblem communication
and integration protocols can have a major impact on prob-
lem solving efficiency. Transmitting too soon can neces-
sitate having to “take back” transmitted partial solutions,
wasting communication and processing time. Transmitting
too late can complicate integration of partial solutions de-
rived independently. The trade-off between these depends
on the nature of the subproblem interdependency among
the agents. We present a parameterized distributed con-
straint satisfaction problem (CSP) generator and a parame-
terized multi-agent problem-solving simulator. Using these
tools, we offer some empirical observations of the trade-
off between strategies for subproblem communication tim-
ing. Our goal is to derive domain-independent answers to
questions of subproblem sharing in multi-agent systems for
problems that can be represented within the CSP paradigm.

1. Introduction

In multi-agent problem-solving systems in which agents
work asynchronously and in parallel on parts of a problem
distributed among them, then combine their partial solu-
tions into an overall solution, subproblem communication
and integration protocols can have an enormous impact on
problem-solving efficiency. While the differential efficacy
of various protocols in different situations has been docu-
mented (for example, [4, 3]), there is no general theory of
how communication and subproblem integration should be

�This material is based upon work supported by the National Science
Foundation under Grants No. IRI-9321324 and IRI-9523419. Any opin-
ions, finding, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

organized as a function of the structural characteristics of
the problem, including its decomposition among the agents.

Domain information as a basis for coordinating agent
problem solving is not always available. For example,
whereas in distributed vehicle monitoring it is clear that
sharing processing results for a track at the edge of an
agent’s sensor region can facilitate its neighbor’s computa-
tions [2], in a furniture placement problem there may be no
a priori knowledge to suggest that one agent’s placement of
some pieces might facilitate another agent’s tasks. Depend-
ing on the floor plan, furniture to be placed, and distribu-
tion of responsibility among the agents with respect to the
furniture, the nature of advantageous coordination among
the agents can change from one problem to another, or dy-
namically as pieces are placed. Identification of underlying
relationships between problem structure, problem-solving
strategy, and performance could be useful for both online
agent interaction during problem solving, and for off-line
design of multi-agent problem-solving systems.

One aspect of communication is the question of when an
agent should share a partial subproblem solution with other
agents, who will generally incorporate it as a constraint into
their own problem-solving efforts. In particular, in this pa-
per we consider what size subproblem, in terms of number
of variables, an agent should share, based on information
about the structure of its subproblem and its relationship to
the subproblems of other agents.

To share partial subproblem solutions most advanta-
geously, an agent must balance two competing pressures:

1. An agent does not want to communicate a partial sub-
problem solution too soon, because it wants to max-
imize the probability that the shared partial result is
locally extendible. That is, the agent does not want
to continue its local problem solving only to discover
that it must “take back” a partial result that it has al-
ready communicated to other agents, as this will result
in wasted communication and processing time, both
for the sharing agent and for receiving agents as well.
In general, the more complete an agent’s partial solu-



tion, the more certain the agent can be that the partial
solution will at least be locally extendible. This results
in pressure on agents to share partial subproblem solu-
tions later rather than sooner.

2. An agent does not want to communicate a partial sub-
problem solution too late, because other agents will si-
multaneously, independently, have extended their own
subproblem solutions further as well. The longer prob-
lem solving progresses without the sharing of partial
solutions, the more likely it is that work will have
to be undone to reconcile independently-derived sub-
problem solutions. Earlier sharing of partial solutions
allows receiving agents to incorporate received partial
solutions as constraints, and ensure that their own par-
tial solutions are globally consistent as they are de-
veloped. In addition, receiving agents may discover
that communicated subproblem solutions are not con-
sistent with their own subproblem solution in progress,
and generate new constraints or initiate a resolution
process sooner. These factors result in pressure on
agents to share partial subproblem solutions sooner
rather than later.

In this paper we look at the trade-off among these two
pressures, and begin to show how problem structure, includ-
ing distribution among agents, can have implications for
coordinating the sharing of subproblem solutions. Specif-
ically, we consider what size subproblem agents should
share, based on the degree to which problem constraints are
between agents versus within agents.

We view distributed problem solving as distributed
search, and use a distributed constraint satisfaction prob-
lem (DCSP) formalism, as do others, such as [9, 13]. The
CSP formalism can be used to describe many types of prob-
lems, both theoretical and in the real world, including de-
sign, sensor interpretation, circuit analysis, image under-
standing, and scheduling. It can be used to describe prob-
lems ranging in difficulty from trivially easy to NP-hard,
such as graph coloring. As a problem representation, one
of its greatest strengths is the explicit representation of sub-
problem interaction.

Our work is a mix of empirical and analytical ap-
proaches, but we present just empirical results in this pa-
per. We generate DCSP problems using a parameterized
problem generator to tailor problem structure along partic-
ular dimensions. We solve the problems with a multi-agent
simulator parameterized with regard to particular aspects
of problem-solving strategy. The problem generator is de-
scribed in Section 2, the multi-agent simulator in Section 3.
Our experiments and results are presented in Section 4, and
we conclude and summarize in Section 5.

2. Parameterized problem generator

Our goal in problem generation is to be able to generate
problems with particular problem structure characteristics,
for use in evaluating distributed problem-solving strategies
as a function of aspects of problem structure. Our problem
generator generates distributed problems based on domain-
independent problem characteristics, specifying problem
size and various aspects of the density and distribution of
constraints. Use of a problem characterization independent
of any particular problem domain means that the results are
applicable to any problem domain, based on the problem
structure characteristics of the domain.

In earlier work on the relationship between problem
structure, problem-solving algorithms, and solution cost for
centralized CSPs [6], we specified problems using just three
parameters: number of problem variables, n, domain size
of variables, b, and number of binary nogoods, m. Each
nogood defines a constraint in the form of one inconsistent
variable-value pair. In this work, we augment the central-
ized problem description to include number of agents as
well as how variables and nogoods are distributed among
agents, for the distributed context.

The problem generator creates random constraint prob-
lems parameterized along nine dimensions of problem
structure, enumerated below. Problems generated may ei-
ther be solvable or unsolvable. For each problem parame-
ter, we specify a frequency distribution of possible values
from which the generator will choose one or more values,
depending on the parameter. Thus a given parameteriza-
tion describes a class of problems, of which each generated
problem is one instance. The nine problem parameters and
their relevance with respect to characterizing problem struc-
ture are described below.

2.1. Problem class parameters

� Number of problem variables, n; set of problem vari-
ables denoted V � fv� � � � vng
Specify �n, �n; normal distribution.
Number of variables is one measure of problem size.

� Problem variable domain sizes, bv� � � � bvn
Specify �bv , �bv ; normal distribution.
Problem variable domain sizes are another measure of
problem size.

� Number of binary nogoods (constraints), m
Specify mmin, mmax; uniform distribution.
Number of binary nogoods1 is a measure of problem

1Generator could be extended to include constraints of arity greater
than two



constrainedness. Problem constrainedness has a well-
documented relationship to problem difficulty (for ex-
ample, see [1, 7, 10, 5]).

� Number of agents, g; set of agents denoted A �
fa� � � � agg
Specify �g , �g ; normal distribution.
Number of agents is a measure of problem distribution.

� Number of problem variables per agent, na� � � � nag ;
set of problem variables belonging to agent a denoted
Va.
Mean number of variables per agent, �na � n�g.
Specify �na as coefficient of variation; normal distri-
bution. Generator chooses number of problem vari-
ables na for each agent a from the specified distribu-
tion, with the additional constraints (1) �na � ��na
contains na, and (2)

P
a�A na � n.

Variance in number of variables per agent is a measure
of problem distribution.

� Number of nogood vertices per agent, ma� � � �mag

Mean number of nogood vertices per agent,

�ma
� �m

X
v�Va

bv
X
v�V

bv �
X
v�Va

b�v

�X
v�V

bv

��

�
X
v�V

b�v

� (1)

Specify �ma
as coefficient of variation; normal distri-

bution; constraints (1) �ma
� ��ma

contains ma, and
(2)
P

a�Ama � �m. Note: when �bv � �ma
� ���,

�ma
� �m �na�n�.

Variance in number of nogood vertices among agents
is a measure of variation in inter-agent constrained-
ness.

� Number of nogood vertices per variable, mv� � � �mvn ,
within an agent
Mean number of nogood vertices for variable vi,

�mvi�Va
� ma

bvi
X
v�V

bv � b�viX
v�Va

bv
X
v�V

bv �
X
v�Va

b�v
� (2)

Specify �mvi
�Va as coefficient of variation; normal

distribution; constraints (1) �mvi
� ��mvi

contains

mvi , and (2)
X
v�Va

mv � ma. Note: when �bv �

�mv
� ���, �mv�Va

� ma�na.
It is possible to specify different values in this param-
eter for different agents.
Variance in number of nogoods among variables with-
in one agent is a measure of intra-agent variation in
constrainedness, or variable tightness.

� Relative proportion of local nogood vertices per agent,
fa� � � � fag
Specify ��� � famin

� famax
� ���; uniform distri-

bution, indicating proportion of nogoods to be local
(intra-agent), relative to frequency of internal versus
total possible constraints, which we call par, where

par �

�X
v�Va

bv

��

�
X
v�Va

b�v

X
v�Va

bv
X
v�V

bv �
X
v�Va

b�v
� (3)

Parameter fa is used to compute the actual proportion
of local nogoods, pa, as follows: for ��� � fa � ���,
pa � fa � par; for ��� � fa � ���, pa � par �
�fa����������par�. Given pa, actual number of local
nogood vertices, la, can be calculated as la � ma �
�pa��� � pa� vertices; ma��� pa���� � pa� vertices
will be involved in nogoods involving another agent.
Example: if pa � ���, 0.67 of agent a’s ma nogood
vertices will be involved in local nogoods, while 0.33
of its nogood vertices will be involved in nogoods with
other agents, so that 0.5 of the nogoods the agent is
involved are local.
Relative proportion of local nogoods is a measure of
agent independence versus interdependence.

� Number of local nogoods per agent variable,
lv� � � � lvn , within an agent
Mean number of local nogoods for variable vi,

�lvi�Va � mvi

bvi
P

v�Va
bv � b�vi

bvi
P

v�V bv � b�vi
� (4)

Specify �lvi as a coefficient of variation; normal dis-
tribution; constraints (1) �lvi � ��lvi contains lvi , and

(2)
X
v�Va

lv � la.

Variance in number of local nogoods per agent variable
is a measure of the distribution of an agent’s external
constraints among its variables.

2.2. Example

Figure 1 shows an example of a set of problem class
parameters and one problem instance generated within the
specified class. We believe these problem class parameters
characterize problem structure and decomposition fairly
completely. They allow for control of overall problem size
using total number of variables and their domain sizes; for
overall problem difficulty using number of nogoods; for dis-
tribution of problem using number of agents and variance in
number of variables per agent; for distribution of variable



Problem variables (�n � ��, �n � ���): 10
Vbl dom sizes (�bv � 	, �bv � ���): 3,2,2,3,1,4,3,4,4,1
Nogoods (mmin � ��, mmax � 
�): 54
Agents (�g � �, �g � ���): 4
Variables/Agent (�na � ����): 2, 2, 2, 4
Nogood vertices/agent (�ma

� ����): 19, 24, 18, 47
Ng verts/vbl (�mvi

� ����): 10,9,9,15,4,14,10,13,12,12
Loc ng verts/agt (famin

� ���, famax
� ���): 4, 4, 2, 24

Loc ng/vbl (�lvi � ���): 2, 2, 2, 2, 1, 1, 6, 8, 8, 2

Figure 1. Example of a set of problem class
parameters and a problem instance drawn
from that class.

tightness among and within agents using variance in num-
ber of nogood vertices per agent and variance in number of
nogood vertices per variable within an agent; for relative
independence versus interdependence of agents using rela-
tive proportion of local nogoods per agent; and for distribu-
tion of local versus external constraints within an agent us-
ing variance in local nogoods per variable within an agent.
Parameters varied for the experiments reported herein are
number of nogoods and relative proportion of local nogood
vertices per agent.

3. Parameterized multi-agent simulator

We use a simple, complete, reasonably efficient, multi-
agent problem solving protocol as a basis for studying the
question of when to transmit partial solutions. Based on
Yokoo’s asynchronous weak-commitment search algorithm
[12], our algorithm allows for parallel processing among
agents and is guaranteed to either find a solution if one ex-
ists, or report that a solution does not exist if none does.

Our version extends the asynchronous weak-commit-
ment search algorithm in various ways. We allow each
agent to be responsible for multiple variables, using the
same priority-raising scheme within agents as among them.
We include a termination detection mechanism, based on
each agent sending a consistent message to every other
agent when its variables are consistent with respect to its
view of the problem. The simulation is finished when all
agent message queues are empty and each agent has re-
ceived consistent messages from each other agent since the
last time at which any local variable was assigned or no-
good generated. Our agents send ok? messages only to
those agents for whom the information is relevant, namely
those agents with whom a constraint is shared, rather than to
all agents. As problem solving progresses and implicit con-
straints are discovered, which agents are relevant changes
dynamically. We also include the flexibility for agents to
send more information than assignment value and priority

along with a variable assignment, for other agents to use in
decision making during problem solving. This allows us to
explore more sophisticated problem-solving strategies.

Finally, we derive new nogoods by computing the mini-
mal subsets of assignments that are responsible for a discov-
ered inconsistency, rather than using the entire agent-view
(agent’s record of variable values). During problem solv-
ing, each time a local assignment conflict is discovered, we
record exactly which assignments (or set of assignments)
in the agent-view are responsible. When an inconsistency
is discovered, we use that information to derive the set of
minimal nogoods. There is a trade-off between computa-
tional time and utility of nogoods, smaller nogoods requir-
ing more computational effort to derive, but being more use-
ful in problem solving.

We have also parameterized the algorithm along several
dimensions of problem-solving strategy, for studying the
efficiency of different strategies. In addition, we have pa-
rameterized the timing of various types of problem-solving
events. The parameterization of the problem solver with re-
spect to algorithm and problem-solving events is described
below.

3.1. Problem-solving algorithm parameters

� Communication strategy
Specifies at what point during problem solving a sub-
problem solution will be communicated.
Options: after assignment of every x variables, where
� � x � na (default, with x � �); only in the case
of backtracking; only in the case of any constraint vi-
olations with one or more other agent(s)’s variables;
after local variable assignments have satisfied a certain
number or percentage of an agent’s local nogoods

� Initial variable ranking strategy
Specifies method for determination of initial variable
priorities.
Options: random equivalent (default); random unique;
in order of number of nogoods.

� Variable ordering
Specifies method for selection of assignment variable.
Options: random, priority order (default), most re-
maining nogoods, most relevant agents.

� Value ordering
Specifies which value an agent selects for a variable
assignment.
Options: random, min-conflict (default).

3.2. Problem-solving system parameters

� Communication delay
Specifies any delay between when an agent sends a



message and when it is received.
Specify mean and variance; normal distribution.

� Communication packaging overhead
Specifies time to package one or more pieces of infor-
mation to communicate
Specify mean and variance; normal distribution.

� Communication processing overhead
Specifies overhead of interrupting local problem-
solving to process received information
Specify mean and variance; normal distribution.

� Problem-solving action timing
This is actually multiple parameters, specifying the
time required for all problem-solving actions, such as
assigning a variable with or without backtracking, con-
sistency checking, generating new nogoods, etc.
Specify mean and variance; normal distribution.

4. Experiments and results

For the experiments reported in this paper, we gener-
ated distributed constraint satisfaction problems consisting
of ten variables with three possible values for each one, dis-
tributed evenly (3 - 4 - 3) among three agents, with no vari-
ance in these values. We work with these small problems to
allow for analysis of problem structure and problem solv-
ing at a level of detail that is simply not possible with larger
problems. Again, our goal is understanding relationships
between problem structure and problem-solving strategies.

For all problems generated, nogood vertices were dis-
tributed among agents in proportion to the number of vari-
ables belonging to each agent, and evenly among variables
within each agent. We generated 1000 problems at each
multiple of ten nogoods from 30 to 130, for three points
along a continuum of interdependence among agents (spec-
ified as relative proportion of local nogood vertices per
agent, fai): completely independent (fai � ���: all intra-
agent nogoods, no inter-agent nogoods), par (fai � ���,
intra- and inter-agent nogoods in proportion to the number
of intra- and inter-agent nogoods possible), and completely
interdependent (fai � ���: no intra-agent nogoods, all
inter-agent nogoods). The independent and interdependent
classes mark extremes of the continuum. We use them for
comparing simulation results against intuition, acknowledg-
ing that real-world problems for multi-agent systems would
rarely fall at either extreme. In all three classes, the intra-
agent and inter-agent nogoods belonging to a given agent
were distributed evenly among its variables.

We would like to be able to compare the three problem
classes as a function of number of nogoods. However, we
must take into account the fact that the way in which the no-
goods are distributed in the three classes affects solvability.

0 20 40 60 80 100 120
Nogoods

0.2

0.4

0.6

0.8

1

Fraction

Figure 2. Solvability as a function of number
of nogoods for the independent (dashed line),
interdependent (dotted line), and par (solid line)
problem classes. Each point is based on 1000
problems of 10 variables and domain size 3.
Error bars showing 95% confidence intervals
(given approximately by f � �

p
f��� f��N ,

where f is the estimated value of the fraction)
are included.

Figure 2 shows the proportion of solvable problems for the
independent, interdependent, and par problem classes as a
function of number of nogoods. The independent class of
problems, with intra-agent nogoods only, becomes unsolv-
able much faster than the par and interdependent classes,
which are quite comparable. This is due to the distribution
of problem nogoods among a smaller number of variable-
value pairs in the independent class. Assuming variances
of 0.0, if there are g agents, ng variables per agent, and
variable domain size is b, then in the independent class of
problems, the nogoods are distributed among

g �

�
ng
�

�
� b�

possible variable-value pairs, whereas in the interdependent
class, they are distributed among�

g

�

�
� ng

� � b�

possible pairs, the former always being smaller than the lat-
ter. Because the peak of problem difficulty usually occurs
near the point at which 50% of the problems are solvable
(see, for example, [8, 11]), the peak in problem difficulty
will be shifted left for the independent class. Thus we will
want to compare the patterns in problem solving behavior
rather than comparing for specific numbers of nogoods.

For the simulations reported in this paper, we used two
different subproblem communication strategies. In the ev-
ery strategy, each agent sends every assignment it makes to



30 40 50 60 70 80 90 100
Nogoods

20

30

40

50

60

70

80

Time

Figure 3. Solution time as a function of
number of nogoods for the independent class
of problems, for the every strategy (solid
line) and the locally-consistent strategy (dashed
line). Each point is the median for 100
problems of 10 variables and domain size 3,
solved 10 times each. Error bars showing
95% confidence intervals are included.

all relevant agents (those agents with whom it shares con-
straints for the assigned variable). In the locally-consistent
strategy, each agent waits until it has reached local consis-
tency for its own subproblem (or discovered that its own
subproblem is unsolvable) before sending any partial re-
sults. For all simulations, we used equivalent initial vari-
able priorities, priority-order variable ordering during prob-
lem solving, and min-conflict value ordering. Communica-
tion delay was zero, and communication packaging and pro-
cessing costs were negligible: only the actual computational
time of simulating them. For the simulations reported here,
solution time is reported in terms of internal run-time. On
later versions of the simulator we use parameterized times.

Figures 3, 4,and 5 show how solution time changes as a
function of number of nogoods for each of the three prob-
lem classes, for the two communication strategies.

Figure 3 shows that for the independent class of prob-
lems, it is always better for agents to reach local consistency
first, or discover that their own subproblem is unsolvable,
and then communicate their results. This makes intuitive
sense, as the agents’ subproblems are completely indepen-
dent of each other.

At the other extreme, Figure 4 shows that for the interde-
pendent class of problems, it is always better for agents to
send every assignment than to reach local consistency first.
This makes sense as well, as there are no intra-agent con-
straints to be satisfied, and checking just wastes time.

Figure 5 shows that for the par class of problems, with
nogoods distributed in proportion to the frequency at which
they are possible, neither communication strategy is best all

40 60 80 100 120
Nogoods0

100

200

300

400

500

Time

Figure 4. Solution time as a function of num-
ber of nogoods for the interdependent class
of problems, for the every strategy (solid
line) and the locally-consistent strategy (dashed
line). Each point is the median for 100
problems of 10 variables and domain size 3,
solved 10 times each. Error bars showing
95% confidence intervals are included.

40 60 80 100 120
Nogoods0

100

200

300

400

500

600

700

Time

Figure 5. Solution time as a function of num-
ber of nogoods for the par class of prob-
lems, for the every strategy (solid line) and the
locally-consistent strategy (dashed line). Each
point is the median for 100 problems of 10
variables and domain size 3, solved 10 times
each. Error bars showing 95% confidence in-
tervals are included.

the time. For problems with fewer than about 78 nogoods, it
is better to send every assignment as it is made, whereas for
more than 78 nogoods, it is better to reach local consistency
before sending. Interestingly, 78 nogoods is approximately
the transition point for this class of problems: the point at
which half the problems are unsolvable (Figure 2). The fact
that the two strategies differ in efficiency on either side of
the transition point suggests that they may perform differ-



40 60 80 100 120
Nogoods0

250

500

750

1000

1250

1500

Time

Figure 6. Solution time as a function of num-
ber of nogoods for the par class of problems,
for solvable (black lines) and unsolvable (grey
lines) problems considered separately, us-
ing the every (solid line) and locally-consistent
(dashed line) strategies. Each point is the
median for 100 problems of 10 variables and
domain size 3, solved 10 times each. Error
bars showing 95% confidence intervals are
included.

ently for solvable versus unsolvable problems.
Figure 6 shows how the strategies compare for solv-

able and unsolvable problems considered separately. For
unsolvable problems, it is almost always better to use the
locally-consistent strategy, whereas for solvable problems,
it is better to use the every strategy up to about 100 nogoods,
and then the locally-consistent strategy. Thus the relative
performance of the two strategies for solvable and unsolv-
able problems, combined with the crossover in solvability at
about 78 nogoods, explains the crossover in advantageous
strategy at the same point.

The relative advantage of the two strategies depends in
part on the degree to which local work contributes to the
global solution. Roughly speaking, if a subproblem solu-
tion derived in the absence of external information is very
likely to advance problem solving, then agents should em-
ploy the locally-consistent strategy, which postpones com-
munication until a complete locally-consistent partial solu-
tion is reached. If not, then agents should communicate
sooner. Clearly, this trade-off is affected by communica-
tion costs, including packaging and integration costs. Those
costs were minimal in the results reported here.

Figure 7 shows, for solvable problems, (1) the proba-
bility that a complete set of local assignments is locally
consistent, and (2) the probability that a complete, locally-
consistent solution is globally consistent. For solvable prob-
lems with more than 100 nogoods, over 90% of complete
locally-consistent solutions are globally consistent. Global

40 60 80 100 120
Nogoods

0.2

0.4

0.6

0.8

1

Probability

Figure 7. Probability that a complete local so-
lution is locally consistent (solid line), and
that a locally-complete, locally-consistent so-
lution is globally consistent (dashed line), for
solvable problems, as a function of number
of nogoods. Each point is the mean for 500
problems of 10 variables and domain size
3, solved 10 times each, except for 130 no-
goods, which is based on 100 problems. Er-
ror bars showing 95% confidence intervals,
calculated as in Figure 2, are included.

consistency is so likely that inter-agent exchange of partial
solutions, even if relatively inexpensive, is not worthwhile.
At lower numbers of nogoods, two factors come into play:
(1) a given set of local assignments is less likely to be lo-
cally consistent, so more effort is required to reach a locally-
complete, locally-consistent solution; and (2) once a com-
plete, locally-consistent solution has been derived, it is less
likely to be globally consistent than at greater numbers of
nogoods. Both of these factors favor inter-agent sharing of
partial subproblem solutions. In this paper, communication
overhead was minimal relative to computation time. Higher
communication costs would lower the number of nogoods
at which the locally-consistent strategy becomes advanta-
geous over the every strategy.

For unsolvable problems, of course, locally-consistent
solutions cannot be extended to global solutions. The fact
that the locally-consistent strategy is always advantageous
except at 30 nogoods suggests that as agents work locally,
they derive new nogoods more quickly, and thus reach un-
solvability sooner, than they would if they were sharing ev-
ery assignment made.

5. Conclusions

For problems of the par class used in this study, with no-
goods distributed in proportion to the actual ratio of intra-
versus inter-agent interactions, we can reach some tenta-



tive conclusions with respect to the two subproblem sharing
strategies examined.

If solvability is known in advance, for example it is
known that the class of problems to be solved is solvable,
it is better to use the every strategy up to the point at which
solvability becomes negligible in randomly-generated prob-
lems. At this point, solvable problems generally have only
one solution, and locally-consistent solutions have a very
high probability of global consistency. This point can be
approximated analytically [5]. If solvability is not known in
advance, one should use the every strategy up to the solv-
ability transition point, which can also be approximated an-
alytically, then switch to the locally-consistent strategy. The
exact point at which the locally-consistent strategy will be-
come advantageous over the every strategy depends on com-
munication overhead. In our simulations, communication
overhead was very low.

We are currently evaluating these strategies for other dis-
tributions of nogoods, for problems of different sizes and
numbers of agents, and for different amounts of communi-
cation overhead, to evaluate the generality of these results
and to extend them. We are also studying more complex
subproblem-sharing strategies, and examining in detail ex-
actly what agents are doing during problem solving under
different scenarios. Finally, we are comparing our empirical
results with theoretical predictions on probability of global
consistency given locally consistent results of a certain size.

Our goal in this research is to discover and explain
domain-independent relationships between problem struc-
ture, problem-solving strategies, and problem-solving ef-
ficiency. We believe that understanding these relation-
ships and deriving generalizations that can be applied across
problem-solving domains is very important. At the same
time, it is important to be clear about the assumptions upon
which any model is based, or generalizations derived. Our
results are derived within the paradigm of constraint sat-
isfaction, and furthermore, are based on a model in which
problem variables are assigned to agents (though they could
be shared by more than one agent) and constraints are
within or between agents. In addition, we make certain
assumptions about problem and constraint representation,
type of information communicated, and so on. Our results
are applicable for problems that can be represented within
the CSP paradigm, with variables owned by agents, using
the basic problem-solving model that we assumed.

Although the CSP model as we have instantiated it here
has wide applicability, there are also many places where
it does not apply. Our results will not apply to problems
that cannot be represented as CSPs, or to problem-solving
systems in which constraints are instantiated as agents, or
to systems that deviate in other significant ways from the
problem-solving model we have presented here, such as by
communication of ranges of values rather than particular

assignments or constraint equations rather than nogoods.
Some of these represent ways that this model could be ex-
tended; others call for alternative models altogether. Our re-
sults are domain-independent, but they are not independent
of the basic problem-solving model we used; the problem-
solving architecture is one piece of the puzzle. There is
certainly room for much work in this area.

References

[1] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the re-
ally hard problems are. In Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelligence, pages
331–337, Sydney, Australia, 1991.

[2] K. S. Decker. Distributed artificial intelligence testbeds.
In G. O’Hare and N. Jennings, editors, Foundations of
Distributed Artificial Intelligence, chapter 3. Wiley Inter-
Science, 1995. Forthcoming.

[3] K. S. Decker and V. R. Lesser. Quantitative modeling of
complex computational task environments. In Proceedings
of the Eleventh National Conference on Artificial Intelli-
gence, pages 217–224, Washington, DC, USA, 1993.

[4] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Coherent
cooperation among communicating problem solvers. IEEE
Transactions on Computers, 36(11):1275–1291, 1987.

[5] T. Hogg and C. P. Williams. The hardest constraint prob-
lems: A double phase transition. Artificial Intelligence,
69:359–377, 1994.

[6] D. L. Mammen and T. Hogg. A new look at the easy-hard-
easy pattern of combinatorial search difficulty. Journal of
Artificial Intelligence Research, 6:47–66, 1997.

[7] D. Mitchell, B. Selman, and H. Levesque. Hard and easy
distributions of SAT problems. In Proceedings of the Tenth
National Conference on Artificial Intelligence, pages 459–
465, San Jose, CA, USA, 1992.

[8] B. M. Smith. Phase transition and the mushy region in con-
straint satisfaction problems. In A. Cohn, editor, Proceed-
ings of the ECAI-94, pages 100–104. John Wiley and Sons,
1994.

[9] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed con-
strained heuristic search. IEEE Transactions on Systems,
Man, and Cybernetics, 21(6):1446–1461, 1991.

[10] C. P. Williams and T. Hogg. Using deep structure to locate
hard problems. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, pages 472–477, San Jose,
CA, USA, 1992.

[11] C. P. Williams and T. Hogg. Exploiting the deep structure
of constraint problems. Artificial Intelligence, 70:73–117,
1994.

[12] M. Yokoo. Asynchronous weak-commitment search for
solving distributed constraint satisfaction. In Proceedings of
the First International Conference on Principles and Prac-
tices of Constraint Programming (CP-95), pages 407–422,
Cassis, France, 1995.

[13] M. Yokoo and E. Durfee. Distributed search formalisms
for distributed problem solving. In Proceedings of the
Eleventh International Workshop on Distributed Artificial
Intelligence, pages 371–390, Glen Arbor, MI, USA, 1992.


