
Exploiting Structure To Efficiently Solve
Loosely Coupled Stochastic Games

Hala Mostafa
Computer Science Department

University of Massachusetts, Amherst
hmostafa@cs.umass.edu

Victor Lesser
Computer Science Department

University of Massachusetts, Amherst
lesser@cs.umass.edu

ABSTRACT
This paper is concerned with sequential decision making
by self-interested agents when their decision processes are
largely independent. This situation can be formulated as a
stochastic game which would traditionally be represented in
extensive form (a single game tree), a representation that
fails to exploit the loose coupling in the game. We propose
a new representation for 2-agent loosely coupled stochastic
games that allows exploiting the sparsity and structure of
agent interactions while still being able to capture a general
stochastic game. We provide analytical and experimental
results to show the representational and computational sav-
ings we obtain compared to extensive form in settings with
different degrees of coupling. Our second contribution is a
compact formulation of our problem as a Multi-Agent Influ-
ence Diagram, a first step towards the goal of solving prob-
lems with more than two agents. Finally, we investigate the
challenges that need to be resolved to meet this goal.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence
and coordination

General Terms
Performance, Economics

Keywords
Game theory, Structured game representations

1. INTRODUCTION
In this section, we introduce the notion of loosely coupled

stochastic games, provide an example to motivate it and
provide a general characterization of this class of games.
We also introduce the running example that will be used
throughout this chapter.

1.1 Loosely coupled stochastic games
A stochastic game describes a situation where agents are

self-interested and interact over a number of stages. Each
stage begins with the game at some state. Agents take ac-
tions simultaneously and, in general, receive rewards based
on the actions taken by all agents and the particular state

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

the game was in. The game then probabilistically transi-
tions to a new state based on the previous state and joint
actions. The agents are therefore very tightly coupled; each
action of each agent affects the rewards and next games of
all others.

In contrast to this tight coupling, we introduce loosely
coupled stochastic games where the agents are largely inde-
pendent. Each agent has its local state and its decisions only
affect its own reward and next state. In our games, an agent
generally does not know about the other agent’s states and
actions and, typically, does not care. What ties the decision
processes of the two agents, however, is that there is some
interaction between the agents; some actions of an agent af-
fect the others. As the number of interactions increases, we
move from completely independent decision processes to the
tightly coupled stochastic games discussed in the literature.

Loose interactions arise in many situations. Consider a
set of cleaning robots owned by different companies which,
between them, manage the cleanliness of a building. Each
robot is responsible for a set of halls, but corridors are
joint responsibility and the robots can get extra reward if
they correctly coordinate their cleaning of this shared space.
Other interactions stem from sharing the waste bins and po-
tentially getting into each other’s way in shared areas like
corridors and elevators. Non-situated agents can also have
loose interactions. Consider a set of self-intersted compu-
tational servers that offer their computational resources for
a fee. Each server has its set of incoming computational
tasks, resources, and fee policy. However, some tasks re-
quire more resources than is available to any single server,
in which case the server receiving the task can propose to
some of the others to complete the task for a fee. In addi-
tion to affecting each other’s rewards, the servers can affect
each other’s state. Collaborating on certain tasks can result
in a server gaining more experience on these tasks, causing
it to transition to states where future tasks of this kind are
executed more quickly.

Traditionally, the above situations would be represented
in extensive form, which requires specifying an agent’s re-
wards and next state for each of its actions and the other
agents’ actions. Clearly, this representations is overly ver-
bose, since in most cases, the rewards and new states are
independent of the other agents. Ignoring this fact results
in game trees that are much larger than they need to be. Be-
sides being representationally inefficient, a single game tree
obscures the structured interaction among agents, making it
hard to exploit to efficiently find a Nash equilibrium.

1.2 Characteristics of loosely coupled games

The above examples share these general characteristics:

• Each agent has its local states and actions (e.g. robots
have different locations and grabbing actions). Most
of an agent’s action outcomes and rewards are inde-
pendent of the other agent.

• Agents are generally unaware of each other’s states and
actions, unless some form of communication is speci-
fied.

• Few interactions among agents, compared to the num-
ber of actions they can take. They are also structured,
meaning that an action can affect the other agent in
a specific way. In a reward (resp. transition) interac-
tion, an action of one agent affects the reward (resp.
outcome probabilities) of certain actions of the others.

• Interactions are not only between actions taken at the
same time. An action can be affected by something
that happened in the past (e.g. a robot’s dumping a
large object in a waste bin will affect the outcome of
using the bin at any later point). The fact that the
affecting action happened is not necessarily encoded
in an agent’s state.

Self-interested Mars rovers
To ground future discussions, we use the following simple
example that captures the above characteristics.

We use a self-interested variant of the Mars Rovers sce-
nario [1]. Consider a situation where two countries send
autonomous rovers to collect data from the surface of Mars.
Each rover has a list of samples that it wants to gather.
The rovers need to accomplish their missions within a lim-
ited time, so they cannot gather all the samples on their list.
A rover’s set of actions is the set of sites it has not visited
yet, and each action has two outcomes, fast and slow, prob-
abilistically chosen by nature. An agent’s decision problem
is therefore which sites to gather data from and in what or-
der so as to maximize its expected reward. Even though
the rovers are generally unaware of each other’s actions and
whereabouts, their decision processes are not totally inde-
pendent. We define a shared site to be a site where one
agent’s visit can affect the reward or the outcome probabil-
ity of the other agent when/if it visits that same site. For
example, if both rovers want to gather data from the same
site, they may help each other, thus getting a higher re-
ward for the site, or they may get in each other’s way, thus
reducing one or both rover’s reward.

One solution concept for the above situation is the Nash
equilibrium; a pair of policies such that no agent is moti-
vated to deviate from its policy. At an equilibrium, i.e.,
each agent’s policy is a best response to the other’s.

2. REPRESENTING AND SOLVING 2-PLAYER
LOOSELY COUPLED GAMES

2.1 Existing representation: Extensive form
A stochastic game can be represented as an extensive form

game (EFG), which is a tree capturing the order in which
agents take actions, what they know when they take each
action, and the probabilistic nature of actions. An EFG is
a tuple < I, V, E, P, H, u, p > where:

• I is the set of n players

• (V, E) is a finite directed tree with nodes V and edges
E and Z is the set of terminal nodes

• Player : V \ Z → I determines which player moves at
each decision node.

• H = {H0, ..., Hn} is the set of information sets, one
for each player. Each Hi is a partition of Playeri.

• Ai(h): the set of actions available at information set h

• u : Z → R is the utility function defined over the set
of terminal nodes. For x ∈ Z, ui(x) is the payoff to
player i if the game ends at node x

• p is the transition probability of chance moves

In a game with imperfect information, an agent does not
know exactly the state of the other agent (and thus the
game played by the agents at any particular stage), but does
have a probability distribution over it. In such games, an
information set can contain more than one node, which the
agent cannot tell apart. A policy should therefore make
the same decision across all nodes belonging to the same
information set. It is a mapping from information sets to
probability distributions over actions.

2.2 Proposed representation: Self-Interested
EDI-CR

In loosely coupled games, the rule is that agents’ actions
are independent and the exceptions are the reward and tran-
sition interactions among them. We would therefore like
to represent the decision processes of the two agents sepa-
rately and enumerate the (relatively few) interactions. This
is exactly what our model Event-Driven Interactions with
Complex Rewards (EDI-CR) does. In previous work [14],
we used EDI-CR to capture structured interactions among
cooperative agents. For self-interested agents, we slightly
modify the original definition of EDI-CR to allow agents to
have different reward functions. A 2-agent EDI-CR instance
is therefore a tuple < S1,2, A1,2, P1,2, R1,2, ρ, τ, T > where:

• Si, Ai, Ri : Si ×Ai → R, Pi : Si ×Ai ×Si → [0, 1] are
the local state space, action space, reward function and
transition function of agent i. These elements specify
the separate decision processes of the agents.

• ρ = {< (sk
k1 , ak

k1), ..., (s
k
k2 , ak

k2), r
k >k=1..|ρ|} specifies

reward interactions. The kth entry specifies rk, the
additional reward/penalty obtained when each agent
does its specified action in its specified state at any
point during its execution.

• τ = {< (sk
k1 , ak

k1), (s
k
k2 , ak

k2), p
k >k=1..|τ |} specifies tran-

sition interactions. The kth entry specifies the new
transition probability pk of the state-action pair of
agent k2 when agent k1 does its specified state-action
pair before the affected agent makes its transition.

• T is the time horizon for the problem.

The individual states, actions and rewards describe the
dynamics of each agent’s decision process, while ρ and τ
capture the interactions among them. We stress that the
model can be used for general stochastic games; it would
have entries in ρ and τ for every combination of actions and
states to mirror the fact that all actions affect all agents.

Representing a game as an EFG is more compact than
EDI-CR when modeling tightly coupled games. With 2
agents, each having 2 states and 2 actions, the joint rep-
resentation has 32 entries (16 in each of the reward and

transition functions). If all actions participate in determin-
ing the game’s next state and individual rewards, EDI-CR
has 4 entries per local transition and reward function, in
addition to 16 reward and 16 transition interactions, clearly
less compact than EFG. At the other extreme, if the agents
do not interact, then instead of having a single tree in which
rewards and transitions depend on the joint states and ac-
tions of agents, EDI-CR has separate trees with transition
and reward functions defined over local states and actions.
In this case, EDI-CR only has entries in the local functions,
for a total of 8 entries compared to EFG’s 32. Between these
two extremes, the extent to which EDI-CR’s representation
is more intuitive depends on the number of interactions (e.g.,
for 3 interactions, EDI-CR would have 8+3=11 entries, com-
pared to EFG’s 32).

2.3 Solution Method
In this section, we review an existing formulation of a

stochastic game as a bilinear program (BLP) and discuss
how this formulation is affected by having nearly separable
decision processes as opposed to a single game tree. The
original formulation of extensive form games was derived by
Petrik and Zilberstein [15] and is as follows:

Maximize xTr1 + xT(C1 + C2)y + yTr2 − λT
1b1 − λT

2 b2

subject to A1x = b1 A2y = b2

r1 + C1y −AT
1λ1 ≤ 0

r2 + xTC2 −AT
2λ2 ≤ 0 x, y ≥ 0

We use the sequence form [10] to represent the agents’
policies. x and y are vectors of realization weights of agent
i and j’s action sequences, respectively. r1 (resp. r2) is a
vector representing the individual rewards of agent i (resp.
j); those rewards that do not depend on what the other
agent does. Each entry in ri contains the expected reward
of a sequence of player i. C1 and C2 are matrices with a
row for each sequence of i and a column for each sequence
of j. These matrices represent rewards of i and j whose
attainment depends on what both agents did. A1, A2, b1

and b2 form constraints that guarantee that a solution in-
deed represents the realization weights of a legal policy; i.e.
probabilities of actions at each state add up to 1 (for more
details on the constraints over a policy in sequence form,
see [10]). λ1 and λ2 are the variables of each agent’s dual
optimization problem. Their presence in the objective func-
tion reflects our interest not in a solution that maximizes
the sum of rewards, but in one that is an equilibrium.

When dealing with loosely coupled games, there can po-
tentially be many sequences of one agent’s actions that nei-
ther affect, nor are affected by, the other agent. These se-
quence will have their own local rewards, but will have zero
entries in the agent’s C matrix. Using this observation, we
can have much fewer rows and columns in C1 and C2 if we
exclude such sequences. Denoting by x̄ and ȳ those elements
of x and y that affect, or are affected by, actions of the other
agent, we get the following program

Maximize xTr1 + x̄T(C1 + C2)ȳ + yTr2 − λT
1b1 − λT

2 b2

subject to A1x = b1 A2y = b2

r1 + [C1ȳ; 0̄]−AT
1λ1 ≤ 0

r2 + [x̄TC2; 0̄]−AT
2λ2 ≤ 0 x, y ≥ 0

where [v; 0̄] is vector v padded with enough zeros to make
it of the desired length. The details of calculating C1 and

C2 are similar to those of calculating the team’s reward ma-
trix C in the formulation of the cooperative case [14]. The
resulting bilinear program is solved using an existing algo-
rithm [15] to find a Nash equilibrium.

3. COMMUNICATION SCHEMES IN EDI-
CR AND EXTENSIVE FORM

In this section, we investigate how the degree of coupling
affects the relative savings of using EFG and EDI-CR. One
simple way to change the degree of coupling is by introducing
different amounts of communication among agents1. The
more the agents communicate, the more they affect each
other; sending a message affects what the receiver observes.

Analytical and experimental setup
We present three communication schemes; no, mandatory
and optional communication. For each, we analyze the effect
on the size of an instance when represented using EDI-CR,
EFG and the MAID which will be discussed in the next sec-
tion. For EFG and EDI-CR, we measure size as the number
of states in the joint game tree and in each agent’s decision
process, respectively. For MAIDs, we look at the total size
of the CPDs of all nodes. We express these quantities in
terms of A actions, O outcomes per action, T time steps,
k reward interactions and m transition interactions, with
k + m ≤ A. The variables k and m allow us to investigate
how the number of interactions and their nature affect the
size of a representation. We stress that our analysis is not
specific to the Mars rover example. It applies to any loosely
coupled game that fits the characterization we give in Sec-
tion 1.2. To simplify the analysis, we assume that an action
takes one time unit and that actions can repeat.

We also look at the effect of communication on the time to
find the first Nash equilibrium2. EFGs are solved using the
logit solver in the game theoretic package Gambit [13] and
reported as “Gambit” (we report results of logit because it
performed better than lcp). EDI-CR is solved as a bilinear
program reported as “BLP”. We time out a solver after 30
minutes and report “N/A”.

We present experimental results from 8 instances of the
Mars rovers domain with T ∈ [6, 8] and number of actions
is 5 or 6 (unlike the analytical analysis, an action here can
take more than one time unit). To avoid generating very
large games that would not fit in memory regardless of the
representation, we can specify restrictions over actions by
having earliest start times before which they cannot proceed.
We obtained results from a larger set of data which showed
the same trend as in the results we report, so we omit them.

3.1 No communication
We first look at the case where communication is not al-

lowed. An agent makes decisions based only on its local
state, which keeps track of what actions have been done so
far and the outcomes obtained for them. With EFG, each
stage consists of actions and outcomes for both agents. The
number of nodes is therefore O(A2T O2T).
1Communication is a special kind of transition interaction;
sending a message makes the recipient transition to a state
where the message is observed, thereby affecting its transi-
tion probability. As such, communication can be handled
by our solution method.
2Because it is hard to compare solution qualities in selfish
settings, we are concerned with finding any equilibrium

Table 1: Size and performance comparison for the
no-communication case (times in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

49 1301 132 89.85% 9 2
68 1618 140 91.35% 18 9
100 3195 216 93.24% 63 2.4
151 7987 303 96.21% 306 2.5
173 11.2k 348 96.89% 1080 3
296 25.1k 610 97.57% N/A 2.5
333 44.4k 695 98.43% N/A 2.6
841 473k 2079 99.56% N/A 8

In EDI-CR, each stage in an agent’s decision process con-
sists of an action and outcome for this agent only, resulting
in O(AT OT) states per agent. Because there are transition
interactions, an agent needs to remember the outcome of
affected actions, but our state representation remembers all
outcomes, so states space size is independent of m.

While theoretically the sizes of EFG and EDI-CR are both
exponential in the time horizon T , Table 1 shows that in
practice, doubling the exponent results in game trees that
are too large to build and/or solve.

3.2 Mandatory communication
We now model situations where communication is inher-

ently part of the setting, rather than a conscious decision on
the part of the agents. An agent i doing its part of a reward
or transition interaction involuntarily leaves a trace that it
has done this action. Consequently, the other agent j will
see this trace upon doing its part of the action. An agent
does not suffer a cost for this implicit communication, but
cannot avoid it either. To allow an agent to make decisions
based on the traces it sees, an agent’s state keeps track of
a flag denoting whether a trace was seen upon doing each
reward or transition interaction.

In EFG, even though the state now stores the actions,
outcomes and k+m flags of each agent, the number of states
is not O(A2T O2T 22k+2m). The reason is that the values of
an agent’s flags are fully determined by earlier actions of the
other agent, so when an agent does an ineteraction, there is
no branching over whether it will see a trace there. In fact,
there is no more branching in this communication scheme
than in the case without communication, and the number of
nodes in the EFG tree is still O(A2T O2T).

Even though they are of the same size, the EFG repre-
sentation of the no communication case and the mandatory
case are not the same. To see why, note that because of the
additional flags, an agent has more information available to
make its decisions when there is communication. This trans-
lates into the game tree having more information sets per
agent; nodes that were indistinguishable in the absence of
communication can now be told apart. Comparing Tables 1
and 2 shows how much the number of information sets in an
EFG increased. Since a policy specifies a distribution over
actions for each information set, mandatory communication
increases the size of the policy space and makes finding a
Nash equilibrium more difficult. Table 2 indeed shows that
even though the size of EFG did not change, the solution
time generally increased.

As for EDI-CR with mandatory communication, there is
probabilistic branching in an agent’s decision process over

Table 2: Size and performance comparison for the
mandatory communication case (times in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

82 1301 1107 14.91% 21 2.7
83 1618 377 76.70% 29 6
135 3195 600 81.22% 120 6.5
204 7987 1481 81.46% 460 3
201 11.2k 2600 76.80% 900 4
574 25.1k 3475 86.17% N/A 5
630 44.4k 3000 93.24% N/A 14.3
1438 473k 7823 98.35% N/A 5.6

whether or not it sees a trace upon doing an interaction,
since that depends on what the other agent has done. The
size of each agent’s process is therefore O(AT OT 2k+m).

It is interesting to note the effect of mandatory communi-
cation on the size gap between EFG and EDI-CR. Compared
to no-communication, mandatory communication results in
EDI-CR achieving less reduction in size. The increased cou-
pling introduced by communication makes EFG less inad-
equate, compared to EDI-CR. If we increase the frequency
and language of communication, at some point the decision
processes will be so tightly coupled that EDI-CR’s advan-
tage of representing them separately will be lost.

3.3 Optional communication
We now look at optional communication where an agent

can choose whether to leave a trace upon doing its part
of an interaction. Even though communication here does
have a cost, an agent may still decide to communicate if it
knows that communication will cause the other agent to do
something beneficial to it. For example, in the Mars rovers
scenario, if rover j knows from i’s policy that if i visits site
s1, then i will visit s2, and if s2 has a much higher value
if visited by both rovers, then rover i will choose to leave a
trace at s1 as an inducement for j to go there too.

To represent optional communication in EFG, in addition
to actions and outcomes for each agent, there is an action
node with two branches (leave trace or not) after every de-
cision to do part of an interaction. A state keeps track of
the actions and outcomes of both agents, as well as at most
k +m binary communication decisions per agent, for a total
of O(A2T O2T 22(k+m)) states. Note that even though in this
scheme an agent can potentially have the same information
to make its decisions as in the mandatory case, the number
of decisions itself is much larger, because of the communi-
cation decisions, resulting in a larger number of information
sets.

In EDI-CR, again, there are communication decision nodes,
in addition to branching over whether an agent will see
a marker upon visiting a site. The number of states is
O(AT OT 22(k+m)).

Table 3 shows that having communication decisions re-
sults in huge EFG trees, making it impossible for Gambit to
solve them within a reasonable amount of time. However,
the 4th instance shows that solution time and size are not
always correlated, which can be explained by the fact that
we are searching for the first equilibrium we can find, and
the time this takes depends on both the size of the problem
and the structure of the search space.

Table 3: Size and performance comparison for the
optional communication case (times in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

547 21.1k 6213 70.58% N/A 8.6
136 3777 671 82.23% N/A 3
190 7511 1093 85.45% N/A 2.8
602 51.6k 5651 89.06% N/A 214
589 68.3k 5766 91.57% N/A 11
2668 295k 13.9k 95.29% N/A 35
2004 316k 10.2k 96.76% N/A 32
N/A 2200k 21.8k 99.01% N/A 195

4. COMPACTNESS OF MAIDS FOR LOOSELY
COUPLED GAMES

EFG is a representation that does not exploit any struc-
ture in a game. In this section, we investigate a more struc-
tured representation and its suitability for loosely coupled
games. We give a brief background on Multi-Agent Influ-
ence Diagrams (MAIDs) and discuss how we can represent
our communication schemes using it.

4.1 Background on MAIDs
Multi-agent influence diagrams (MAIDs) [11, 3] are repre-

sentations that have their origins in influence diagrams [7].
Like all alternatives to the extensive form representation,
MAIDs try to explicitly capture a structural property of a
game that would otherwise be obscured in extensive form.
In the case of MAIDs, this property is that not all decision
variables in a game are inter-dependent.

A MAID defines a directed acyclic graph in which nodes
correspond to random variables of three types. For each
agent i, there is a set of 1) decision variables, Di, whose
domains are available actions and are represented as rect-
angles; 2) chance variables, χi, whose values are chosen by
nature and are represented as ovals; and 3) utility variables,
Ui, which represent the agent’s payoffs and are drawn as di-
amonds. A conditional probability distribution (CPD) spec-
ifies the conditional probability of the node’s variable given
an instantiation of its parents, P (x|Pax).

A strategy profile for agent i is a set of decision rules, one
for each node in Di. A decision rule specifies the probability
of making a certain decision given values of its parents. To
represent perfect recall (an agent does not “forget” decisions
it made in the past), all earlier decisions and their parents
are among the parents of a later decision node.

4.2 No communication MAID
At each stage, each agent i has a decision node Di, a

chance outcome node Oi (e.g., a Boolean representing the
slow or fast outcome of visiting a site) and a utility node. To
guarantee perfect recall, an agent’s decision node depends on
all its previous decisions and outcomes. The per-agent util-
ity nodes Ui at each stage represent rewards from individual
actions. Addition utility nodes Uρ

i represent payoffs from
reward interactions.

In a naiive representation, Oi and Uρ
i nodes depend on all

j’s past decision nodes to account for the dependence of i’s
transitions and the shared rewards on j’s actions.

To avoid the blow up in CPDs size that this results in, we
introduce helper nodes that act as “memory” or storage, al-
lowing us to break some of the dependencies on previous de-

cision nodes and replace them with dependencies on helper
nodes at the previous stage only. A helper node is a chance
node representing a Boolean variable whose value determin-
istically depends on that of the corresponding helper node
at the previous stage and on the decision node at the current
stage. The helper node remembers whether a certain action
was done in the past.

For the no-communication scheme, we add, for each agent,
a helper node at each stage for each of the k+m interacting
actions. The variable of agent i’s helper node at stage t
indicates whether i did the associated action at or before
stage t. The node for agent i’s xth action that is involved in
a reward (resp. transition) interaction is denoted rx

i (resp.
tx
i) and is referred to as reward indicator (resp. transition

indicator). An indicator has the value True if it was True
at the previous stage or the associated action was taken at
the current stage. Figure 1 shows a no-communication Mars
rovers instance with A = 4, k = m = 2, T = 3 represented
as a MAID.

We now calculate the size of the MAID representation of
the no-communication case.

• Decision nodes: because of perfect recall, an agent’s
decision node has as its parents all its own previous
decisions and outcomes. The CPD of a decision node
at level t has At−1Ot−1 instantiations of parents, for
each of which it specifies the probability of A values,
for a CPD size of O(AT OT) per agent.

• Because it has a decision node and a Boolean as its
parents, a transition or reward indicator’s CPD is of
size 2A.

• Outcome nodes: if an action is part of a transition in-
teraction, its outcome probability depends on whether
the affecting action was done by the other agent. An
outcome node therefore depends on the current level
decision node and the other agent’s m transition indi-
cators from the previous level. The CPD then specifies
the probability of AO values for each of A×2m instan-
tiations of its parents.3

• Utility nodes: the individual utility nodes Ui (labeled
ux

i/j in the figure), specify a reward for each outcome

of each action, resulting in A2O2 entries for each CPD.
For shared reward nodes Uρ

i (labeled bx in the figure
to denote bonus from the xth interaction), the reward
depends on whether each agent has done its part of
the interaction as summarized in the last level reward
indicators of the xth interaction. Each CPD therefore
has 2 Boolean parents, for a total size of 4k per agent
for all reward interactions.

Even though the size of MAID’s decision CPDs is the same
order as EDI-CR, the MAID is overall larger because of the
CPDs of the other kinds of nodes.

Problems with MAID representation
The above mapping highlights some problems MAIDs have
in representing loosely coupled games. First, as can be seen
in the figure, the structure in our loosely coupled games
(the independence of most actions’ rewards and transitions)
is obscured because a decision node does not branch over

3Note that the outcome node needs the value of all m tran-
sition indicators because we do not know which of the m
affected actions, if any, this agent will take.

Figure 1: MAID representation of a no-
communication Mars rovers instance

the possible decisions, so we cannot isolate a single action
and represent its dependence on another. Second, MAIDs do
not naturally capture dependencies that are temporally non-
localized, forcing us to resort to constructs that “remember”
actions done in the past and allow them to affect future
actions without having the latter depend on all previous
decisions. A MAID representation is essentially stateless,
and trying to capture a game in which agents have local
state that is affected by previous actions and affects the
choice of future actions is problematic.

We also note that for simplicity, we assumed that actions
can repeat. MAIDs are not good at representing domains
where the set of available actions is context-sensitive, which
is what would be needed. To disallow repeated actions, we
would need, for every pair of an agent’s decision nodes, a
utility node that imposes a large penalty if the actions taken
at these nodes are the same.

4.3 Mandatory communication MAID
Representing mandatory communication requires making

the following modifications to the no-communication MAID.

• At each stage, we need an indicator for whether an
agent sent a message (left a trace) when it did its
part of an interaction. This information is already con-
tained in the transition and reward indicators.

• For each agent, each stage, and each of the k+m inter-
actions, we add a helper node called RCV that indi-
cates whether a message regarding the corresponding
interaction was received. A RCV is True if it was True
at the previous level, or if the agent did its part of an
interaction that was also done by the other agent. The
parents of a RCV at level t are the RCV from level
t − 1, the other agent’s indicator for the interaction
from level t− 1 and this agent’s decision node at level
t, for a size of 4A.

• We change each decision node at each level t so that in
addition to all previous decision and outcome nodes,
its parents also include RCV nodes from level t − 1,
allowing an agent to base decision on what messages
it received. The size of a decision node at level t is

AtOt2k+m, resulting total size of decision nodes being
O(T2k+mAT OT).

Mandatory communication exacerbates MAID’s main prob-
lems because 1) receiving messages depends on actions done
by the other agent arbitrarily long ago and 2) decision nodes
now have even more information feeding into them.

4.4 Optional communication MAID
To represent optional communication, we need to make

the following changes to the mandatory communication MAID:

• We add a SND node after each decision node. SND
is a Boolean decision node representing the choice of
whether to leave a trace or not. To represent per-
fect recall, a SND has all previous decision, SND and
RCV nodes as parents. The total size of SND CPDs
is therefore O((4AO(k + m))T+1).

• Decision nodes have the same set of parents as SND
nodes, so their size is comparable.

• A RCV node at level t now depends on the RCV at
level t − 1, the decision node at level t, and the other
agent’s SND node at level t− 1.

Experimentally comparing MAID to EFG and EDI-CR
was not possible because of the simplifying assumptions we
made (actions have unit durations and can repeat) in order
to get a reasonable MAID representation, assumptions that
place MAIDs and other representations on unequal foot-
ings. Without these assumptions, we would get even bigger
MAIDs, but even with them, the MAIDs were too large to
solve.

5. RELATED WORK: STRUCTURED GAME
REPRESENTATIONS

MAID: As introduced earlier, Multi-Agent Influence Di-
agrams [11, 3] (MAID) is a representation for sequential
games that is suitable for capturing independence among
variables, rather than among actions of different agents. Ini-
tial work on MAIDs used this representation to decompose a
game into interacting fragments, and provided an algorithm
that finds equilibria for these smaller games in a way that
is guaranteed to produce a global equilibrium for the entire
game [11]. Later work addresses the issue that most realis-
tic games are not decomposable in this way. Blum et. al.
address this by exploiting finer-grained structure in MAIDs
to improve the efficiency of a certain family of algorithms
called continuation algorithm [3]. In Section 6, we discuss
the possibility of exploiting the structure in loosely coupled
games to improve continuation algorithm.
TAGG: Temporal action graph games (TAGG) [8] is a graph-
ical representation of imperfect-information extensive form
games that can be much more compact than MAIDs; a
TAGG can be exponentially more compact than a naiive
MAID representation. However, a carefully constructed MAID
is only polynomial in the size of the TAGG. TAGGs repre-
sent games with anonymity (a player’s payoffs depend on
how many players took a certain action, rather than ex-
actly who they are) and context-specific utility indepen-
dence. TAGGs are an extension of AGGs to represent games
taking place over multiple stages. Because TAGGs are specif-
ically geared towards games with anonymity, we cannot use
them to represent our games.

Succinct EFG: For some games, the game trees expressed
in extensive form are too large to be stored in memory ex-
plicitly. To overcome this, Dudik and Gordon propose an
implicit representation called succinct EFG [5]. A represen-
tation is succinct if it has enough information to support
certain queries that make it possible to simulate play in a
game through sampling. As such, MAIDs are themselves
examples of succinct EFGs. However, MAIDs cannot rep-
resent context-specific independence (e.g. allowing different
decision nodes to have different available actions), a draw-
back addressed by succinct EFG. For loosely coupled games,
however, succinct EFG does not capture the large degree of
independence that agents have, and still represents their in-
teraction in a single game tree.
I-DIDs [4] model multi-agent interactions extending over
time. An agent maintains and updates models of other
agents as part of its belief update. We believe this explicit
modeling and the maintenance of the models can get expen-
sive. For loosely coupled games, agents may not need to
construct and maintain such accurate models of each other.
Other representations Unlike the dearth of representa-
tions for sequential games, a number of representations have
been proposed for 1-stage games with special structure. For
example, graphical games [9], Game nets (G-nets) [12] and
action-graph games [2] address games whose special struc-
ture is the locality of interactions where an agent only inter-
acts with a subset of other agents whose size is small relative
to the total number of agents.

The work on poker (e.g. [6]) tries to exploit structure in
sequential games to scale to larger games and provides auto-
matic abstractions that produce much smaller games whose
solutions can be converted to solutions of the original games.
The problem is that with the assumptions they make, it is
not clear that these techniques are of general use.

6. CHALLENGES OF HAVING MORE THAN
TWO AGENTS

Even though we pointed out some weaknesses in using
MAIDs to represent loosely coupled games, MAIDs still have
one important advantage over our bilinear program formula-
tion: using MAIDs and algorithms developed for MAIDs, we
can represent and solve games with more than two agents.
In this section, we briefly overview the state-of-the art algo-
rithm for solving MAIDs [3], investigate whether we can ex-
ploit the structure in loosely coupled games to make this al-
gorithm more efficient, and highlight the challenges involved
in doing so.

6.1 Continuation method for MAIDs
Continuation methods work by perturbing a problem into

a simpler problem that can be easily solved. The solution
is then traced to that of the original problem by decreasing
the magnitude of the perturbation. When the perturbation
is zero, we have a solution to the original problem.

This approach was used by Blum et. al to solve MAIDs [3].
A large pertubation is applied to the rewards in the form of
a bonus vector that rewards an agent for its actions regard-
less of anything else that happens in the game. If large
enough, these bonuses dominate the original game rewards
and simply determine what the optimal strategies are.

When applied to MAIDs, tracing the solution of the per-
turbed problem to that of the original problem requires find-

ing the Jacobian (the first order derivative) of the vector
function V G(σ). Each entry V G

a (σ) in this function maps
the profile σ to the payoffs obtained by the agent playing
a for deviating from σ and playing a all the time. Using
the sequence form representation, if there is a total of n se-
quences for all agents, then σ is a profile of length n, V G(σ)
is a vector of length n and ∇V G(σ) is an n× n matrix.

In an unstructured game, we would need to fill an entry
in the Jacobian for each pair of sequences. In a MAID,
however, Blum et. al decompose this task into computing a
joint marginal distribution for every pair of agents i and j,
and every utility node Ui of agent i over PaUi , Di and Dj ,
where PaUi is the set of parents of Ui and Dx is the set of
decision nodes of agent x. For node Ui, the calculation is

X
PaUi

,Di,Dj

Util(Ui) ∗ P (PaUi , Di, Dj)

σi(Di)σj(Dj)

where σx(Dx) is the realization probability of decisions in
Dx as dictated by x’s part of the profile σ, and Utili(Ui) is
i’s utility from Ui under a given assignment of the variables
in PaUi , Di and Dj . Note that the above expression is

an expectation E(Util(Ui)
σi(Di)σj(Dj)

) taken over all values of the

variables in PaUi ∪Di ∪Dj .
Instead of doing naiive inference on the induced Bayesian

Network of the MAID4 , Blum et. al use the clique tree algo-
rithm to compute and cache factors over pairs and triplets of
cliques which are later used to calculate the desired marginals.
So the joint probability P (PaUi , Di, Dj) would be obtained
from a triple factor over the union of variables in the 3 cliques
containing these 3 sets of variables. In what follows, we de-
note the clique containing a set of variables V by Q(V).

6.2 Computational challenges
We tried to use Blum et. al’s implementation of their con-

tinuation method for MAIDs [3] to solve 2-agent instances
of Mars rovers5. We faced the following computational chal-
lenges. The first is typical of most implementations of nu-
merical algorithms, while the second is a more inherent con-
cern.
Sensitivity to the initial random seed: The continua-
tion method starts with certain random parameters, which,
because tracing the path is not 100% exact, can affect whether
a run will find an equilibrium. For our examples, we found it
difficult to hit upon a random seed that results in a solution.
Large size of Jacobian: In our instances, a profile can
easily have 500 elements (with A = 4 and T = 3, σ has
512 elements), so the sheer size of the matrix is very large.
Manipulating the matrix, and even constructing it, quickly
becomes infeasible.

We next discuss how the second problem can be addressed.

6.3 Exploiting loose coupling
The construction of the Jacbobian as described in [3] does

not use the fact that not all of an agent’s variables affect
another agent’s reward. Our idea for making the calcula-
tion of the Jacobian more efficient is to exploit the structure
in loosely coupled games to come up with reduced versions

4The induced BN of a MAID under a profile σ is obtained by
replacing decision nodes in the MAID with random variables
whose CPDs are dictated by the decision rules in σ
5We are very grateful to Prof. Christian Shelton of UC
Riverside for the code and related discussions.

of the marginal utilities that abstract away details of one
agent that are irrelevant to another agent’s reward, leading
to smaller factors and a speed up in calculation.

In our loosely coupled game, consider calculating the ex-
pectation of i’s individual utility node at time 2, which only
depends on i’s decision at time 2 (d2

i) and its probabilistic
outcome (ch2

i), so PaUi = {d2
i , ch

2
i }. Q(PaUi), however, can

potentially include many more variables; decisions of i and
their outcomes, as well as reward and transition indicators
of j. Similarly, a set Dx contains decision variables of agent
x, but the clique Q(Dx) contains these variables in addition
to all but the last outcome variable of x. The number of
parents of a utility node is therefore much smaller than the
number of variables in the union of the 3 concerned cliques.

If we just wanted to calculate E(Util(Ui)), we could get
rid of all variables except {d2

i , ch
2
i }. But because of the terms

σi(Di)σj(Dj), we can only get rid of some of these variables.
To see how this can be done, we expand the expectation to

X
Di

X
Dj

X
CHi

X
CHj

X
Tj

Util(Ui) ∗ P (Di, Dj , CHi, CHj , Tj)

σi(Di)σj(Dj)

where CHx are x’s chance outcome variables and Tx are its
transition indicators. By pushing terms outward as far as
the summations allow, we get

X

d2
i

X

ch2
i

Util(Ui)
X

Di\d2
i

1

σi(Di)

X
Dj

1

σj(Dj)

X

CHi\ch2
i

X
CHj

X
Tj

P (Di, Dj , CHi, CHj , Tj)

Clearly, the last 3 summations can be eliminated to give

X

d2
i

X

ch2
i

Util(Ui)
X

Di\d2
i

1

σi(Di)

X
Dj

1

σj(Dj)
P (Di, Dj , ch

2
i)

For a utility node representing i’s reward from a shared
task, the node’s parents will be the reward indicator vari-
ables at the last level, which indicate whether each agent
has done its part of the shared task. Again, our 3 cliques
will contain variables that are irrelevant to the expectation,
so we marginalize out all variables CHi, CHj and all reward
indicators except the parents of the utility node.

The question we have not resolved yet is how to calculate
these smaller joint distributions. Blum et. al calculate joint
distributions by manipulating potentials computed in the
calibration step of the clique tree algorithm. But since we
want distributions over parts of cliques, we cannot do this.

7. CONCLUSION
In this paper, we addressed a special kind of stochastic

games where the agents are largely independent except for
a relatively small number of interactions among them. We
characterized this kind of games and proposed a representa-
tion that separates the agents’ decision processes and enu-
merates their interactions. Using this representation, we
can formulate the problem of finding a Nash equilibrium
as a bilinear program. We also discussed the suitability
of two existing representations (extensive form games and
multi-agent influence diagrams) for loosely coupled games.
We introduce different kinds of communication as a way of
varying the degree of coupling among agents. We investi-
gate how changing this degree affects the compactness of the

three representations we study, both analytically and exper-
imentally. Finally, we looked at the potential of exploiting
the special structure in our games to make algorithms for
multi-agent influence diagrams more efficient, which would
open the way to solving games with more than two agents.

One important future direction of our work is investigating
the effect of having communication on the quality, in terms
of social welfare, of the Nash equilibria we find. In order to
do this, we need to be able to find (a bounded approximation
of) the socially optimal equilibrium; the one with the highest
total reward. We are currently trying to make the objective
function of the bilinear program reflect this requirement.

8. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Solving transition independent decentralized markov
decision processes. Journal of Artificial Intelligence
Research, 22:423–455, 2004.

[2] N. A. R. Bhat and K. Leyton-Brown. Computing nash
equilibria of action-graph games. In Proceedings of the 20th
Conference in Uncertainty in Artificial Intelligence.
University of Toronto, July 2004.

[3] B. Blum, C. R. Shelton, and D. Koller. A continuation
method for nash equilibria in structured games. Journal of
Artificial Intelligence Research, 2006.

[4] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for
online solutions to interactive pomdps. In AAMAS 2007,
2007.

[5] M. Dud́ık and G. Gordon. A sampling-based approach to
computing equilibria in succinct extensive-form games. In
Proc. 25th Conference on Uncertainty in Artificial
Intelligence, Montreal, Canada, 2009.

[6] A. Gilpin and T. Sandholm. Finding equilibria in large
sequential games of imperfect information. In ACM
Conference On Electronic Commerce, pages 160–169, 2005.

[7] R. A. Howard and J. E. Matheson. Influence diagrams.
Readings on the Principles and Applications of Decision
Analysis, pages 721–762, 1984.

[8] A. Jiang, K. Leyton-Brown, and A. Pfeffer. Temporal
action-graph games: A new representation for dynamic
games. In Proc. 25th Conference on Uncertainty in
Artificial Intelligence, pages 268–276, Montreal, Canada,
2009.

[9] M. Kearns, M. Littman, and S. Singh. Graphical models for
game theory. In Proceedings of the 17th Annual Conference
on Uncertainty in Artificial Intelligence, CA, USA, 2001.

[10] D. Koller, N. Megiddo, and B. von Stengel. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior, 14, 1996.

[11] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. In Proceedings of the
Seventeenth International Joint Conference on Artificial
Intelligence, pages 1027–1034, 2001.

[12] P. La Mura. Game networks. In Proceedings of the 16th
Annual Conference on Uncertainty in Artificial
Intelligence, pages 335–343, San Francisco, CA, 2000.

[13] R. D. McKelvey, A. M. McLennan, and T. Turocy. Gambit:
Software tools for game theory, 2007.

[14] H. Mostafa and V. Lesser. Offline planning for
communication by exploiting structured interactions in
decentralized MDPs. In 2009 IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology, pages 193–200, Italy, 2009.

[15] M. Petrik and S. Zilberstein. A bilinear programming
approach for multiagent planning. Journal of Artificial
Intelligence Research, 35:235–274, 2009.

