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Abstract

Distributed Constraint Optimization Problems (DCOP)
have, for a long time, been considered an important research
area for multi-agent systems because a vast number of real-
world situations can be modeled by them. The goal of many
of the researchers interested in DCOP has been to find ways
to solve them efficiently using fully distributed algorithms
which are often based on existing centralized techniques.
In this paper, we present an optimal, distributed algorithm
called optimal asynchronous partial overlay (OptAPO) for
solving DCOPs that is based on a partial centralization tech-
nique called cooperative mediation. The key ideas used by
this algorithm are that agents, when acting as a mediator,
centralize relevant portions of the DCOP, that these cen-
tralized subproblems overlap, and that agents increase the
size of their subproblems as the problem solving unfolds. We
present empirical evidence that shows that OptAPO per-
forms better than other known, optimal DCOP techniques.

1. Introduction

For a number of years now, researchers in distributed
problem solving have struggled with the question of how
to find an optimal assignment to a set of variables spread
over a number of agents which have interdependencies.
Out of this work, a number of formulations have arisen
including the distributed partial constraint satisfaction
problem (DPCSP)[2], distributed valued constraint sat-
isfaction problem [4], and the distributed constraint opti-
mization problem (DCOP) [8].
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A number of powerful, distributed algorithms have
been developed that solve these problems either optimally,
or close to optimally. For example, Distributed Depth-
first Branch and Bound (DDBB) and Distributed Itera-
tive Deepening (DID) [8], Synchronous Branch and Bound
(SBB) and Iterative Distributed Breakout (IDB) [2], and
the Asynchronous Distributed Optimization (Adopt) al-
gorithm [6]. Each of these algorithms has, at their core,
two common threads. First, their basic design originated
directly from an associated centralized algorithm and sec-
ond, they maintain total separation of the agents’ knowl-
edge during the problem solving process.

In this paper, we present a cooperative, mediation-
based DCOP protocol, called Optimal Asynchronous Par-
tial Overlay (OptAPO), that allows the agents to ex-
tend and overlap the context that they use for making
their local decisions as the problem solving unfolds. When
an agent acts as a mediator, it computes a solution to
a portion of the overall problem and recommends value
changes to the agents involved in the mediation session.
This algorithm, like its DCSP variant APO [5], provides
rapid, distributed, asynchronous problem solving without
the explosive communications overhead normally associ-
ated with current distributed algorithms. OptAPO rep-
resents a new methodology that simultaneously exploits
the speed of centralized techniques and the ability of dis-
tributed problem solving to identify problem substruc-
ture. In the graph coloring domain, this algorithm per-
forms better, both in terms of communication and com-
putation, than the Adopt algorithm which is currently the
fastest known complete DCOP technique.

In the rest of this paper, we present a formalization of
the DCOP problem. We then present the OptAPO algo-
rithm and present an example of its execution on a simple
problem. Next, we present the results of extensive testing
that compares OptAPO with Adopt within the commonly
used graph coloring domain. Lastly, we discuss some of our
conclusions.



procedure initialize
di ← random d ∈ Di;
F ∗

i
← 0;

pi ← sizeof(neighbors);
mi ← active;
mediate← none;
add xi to the good list;
send (init, (xi, pi, di,mi,Di, Ci, pathi,j )) to neighbors;
initList← neighbors;

end initialize;

when received (init, (xj , pj , dj ,mj ,Dj , Cj , [pathj,i])) do
Add (xj , pj , dj , mj ,Dj , Cj , path) to agent view;
if xj is a neighbor of some xk ∈ good list do

add xj to the good list;
add all xl ∈ agent view and xl /∈ good list
that can now be connected to the good list;

pi ← sizeof(good list);
end if;
if xj /∈ initList do

send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
else

remove xj from initList;
check agent view;

end do;

when received (value?, (xj , pj , dj , mj , cj)) do
update agent view with (xj , pj , dj ,mj , cj);
check agent view;

end do;

Figure 1. TheOptAPOprocedures for initialization,

receiving “init” messages, and receiving “value?”

messages.

2. Distributed Constraint Optimization

A Constraint Optimization Problem (COP) consists of
the following:

• a set of n variables V = {x1, . . . , xn}.

• discrete, finite domains for each of the variables D =
{D1, . . . , Dn}.

• a set of cost functions f = {f1, . . . , fm} where each
fi(di,1, . . . , di,j) is function fi : Di,1 × · · · × Di,j →
N ∪∞.

The problem is to find an assignment A∗ =
{d1, . . . , dn|di ∈ Di} such that the global cost, called
F , is minimized. Although the algorithm presented will
work for any associative, commutative, monotonic ag-
gregation function defined over a totally ordered set of
values, with min and max elements, in this paper, F is de-
fined as follows

F (A) =

m∑

i=1

fi(A)

In the distributed version of this problem, DCOP, each
agent is assigned one or more variables along with the
functions on their variables. Overall, COP and DCOP
have both been shown to be NP-complete, making search
a necessity.

In this paper, we restrict ourselves to the case where
each agent is assigned a single variable and is given knowl-

procedure check agent view
if initList 6= ∅ or mediate 6=none do

return;
c′
i
← {xj |∃fi

xj ∈ fi ∧ fi > f∗

i
};

m′

i
← none;

//Compute my new mediate intentions
if (Fi > F ∗

i
and ∃j (fj < f∗

j
∧ pj ≤ pi)) do

m′

i
← active;

else if Fi > F ∗

i
do

m′

i
← passive;

//Active mediate and I’m not expecting from a higher priority
if m′

i
== active and ¬∃j(pj > pi ∧mj == active)

if ∃(d′
i
∈ Di) (d′

i
∪ agent view causes Fi == F ∗

i
)

and changes are with lower priority neighbors
di ← d′i;
mi ←none;
c′
i
← {xj |∃fi

xi ∈ fi ∧ fi > f∗

i
};

send (value?, (xi, pi, di,mi, c′i)) to all xj ∈ agent view;
else

do mediate(m′

i
);

//Passive mediate
else if m′

i = = passive
do mediate(m′

i);

//Mediate flag or conflict set changed
else if mi 6= m′

i
or (mi = = none and ci 6= c′

i
)

mi ← m′

i
;

send (value?, (xi, pi, di,mi, c′i)) to all xj ∈ agent view;

//Nothing to do, see if I need to update my good list
else if mi = = none

for ∀xj , xk xj ∈ agent view ∧ xk ∈ cj ∧
xk /∈ good list ∧mj = = none do

for ∀xl on the path to xk ∧ xl /∈ agent view do
send (init, (xi, pi, di, mi, Di, Ci, pathi,l)) to xl;
add xl to initList;

end do;
end do;

end if;
ci ← c′

i
;

end check agent view;

Figure 2. The check agent view procedure.

edge of its functional relationship with other neighboring
variables. Since each agent is assigned a single variable, we
will refer to the agent by the name of the variable it man-
ages. Also, we restrict ourselves to considering only bi-
nary functions which are of the form fi(xi1, xi2). Our ap-
proach can be extended to handle cases where one or both
of these restrictions are removed.

Throughout the paper, we use the term relationship
graph to refer to the graph formed by representing the
agents as nodes and the functional relationships as edges.
The term neighbors is used to refer to agents that are con-
nected by an edge in the relationship graph.

3. Optimal APO

Figures 1, 2, 3, 4, and 5 present the OptAPO algorithm.
OptAPO works by constructing a good list and maintain-
ing a structure called the agent view. The agent view

stores the names, values, domains and functional relation-
ships of agents in the environment that are linked to the
owner of the agent view. The good list holds the names



procedure mediate(m′

i
)

preferences← ∅;
counter← 0;
for each xj ∈ good list do

send (evaluate?, (xi, pi,m
′

i
)) to xj ;

counter ++;
end do;
mediate← m′

i
;

mi ← m′

i
;

end mediate;

when receive (wait!, (xj , pj)) do
counter - -;
if counter == 0 do choose solution;

end do;

when receive (evaluate!, (xj , pj , labeled Dj)) do
record (xj , labeled Dj) in preferences;
counter - -;
if counter == 0 do choose solution;

end do;

Figure 3. The procedures formediating inOptAPO.

of the agents that the owner has identified either a di-
rect or indirect relationship to through one or more func-
tional relations in the relationship graph.

As the problem solving unfolds, each agent tries to im-
prove the value of the subproblem they have centralized
within their good list or to justify its cost by identify-
ing over-constrained structures in the relationship graph.
To do this, agents take the role of the mediator, com-
pute the optimal value of their subsystem, and attempt
to change the assignments of the variables within the ses-
sion to achieve this optimal value. Whenever, this can-
not be achieved without causing cost for agents outside of
the session, the mediator links with those agents assum-
ing that they are involved in related cost-justifying sub-
structure. This process continues until each of the agents
have justified the cost of their centralized subproblem and
they have ensured that this centralized portion contains
all of the cost-barring substructures that they are part of.

In order to facilitate the problem solving process, each
agent has a dynamic priority that is based on the size
of their good list (ties are broken by the ordering of the
agents names). Priorities are used by the agents to decide
the order in which one or more agents mediate when they
have a need. Priority ordering is important for two rea-
sons. First, priorities ensure that the agents with the most
knowledge gets the make the decisions. This improves the
efficiency of the algorithm by decreasing the effects of my-
opic decision making. Second, priorities improve the effec-
tiveness of the mediation process. Because lower priority
agents expect higher priority agents to mediate, they are
less likely to be involved in a session when the media-
tion request is sent.

3.1. Initialization (Figure 1)

On startup, the agents are provided with the value
(they pick it randomly if one isn’t assigned) and the func-

procedure choose solution
select a solution s using a Branch and Bound search that:

1. minimizes the cost for the agents in the good list
2. minimizes the cost for the agents not in the session;

F ∗

i
← cost(s);

F ′

i
← Fi+ current cost for agents not in the session;

F ′

s ← F ∗

i
+ cost of using s for agents not in the session;

if mediate = = active and F ′

s ≤ F ′

i do
di ← d′i;

for each xj ∈ agent view do
if xj ∈ preferences do

if d′
j
∈ s violates an xk and xk /∈ agent view do

send (init, (xi, pi, di,mi, Di, Ci, pathi,k)) to xk;
add xk to initList;

end if;
if mediate = = active and F ′

s ≤ F ′

i
do

send (accept!, (d′
j
, xi, pi, di)) to xj ;

update agent view for xj

else if mediate = = active and F ′

s > F ′

i
do

send (accept!, (dj , xi, pi, di)) to xj ;
end if;

else if mediate = = active do
send (value?, (xi, pi, di,mi, ci)) to xj ;

end if;
end do;
mediate← none;
check agent view;

end choose solution;

Figure 4. The procedure for choosing a solution.

tions on their variable. Initialization proceeds by having
each of the agents, i, send out an “init” message to each
of its neighbors, j. This initialization message includes
the variable’s name (xi), priority(pi), current value(di),
domain(Di), and functional relationships(Ci). Also in-
cluded in this message are the variable mi, which indi-
cates the agents current desire to mediate, and a list of
agents that lie between i and j in the relationship graph.
The purpose of both of these pieces of information will
be described below. The array initList records the names
of the agents that initialization messages have been sent
to, the reason for which will become immediately appar-
ent.

When an agent receives an initialization message (ei-
ther during the initialization or through a later link re-
quest), it records the information in its agent view and
adds the variable to the good list if it can. An agent is
only added to the good list if it is connected to another
agent already in the list through a functional relation-
ship. This ensures that the graph created by the agents
in the good list always remains connected. The initList is
then checked to see if this message is a link request or a re-
sponse to a link request. If the agent is not in the initList

then it means this is a link request, so a response “init” is
generated and sent. If an agent is in the initList, it means
that this message is a response to a request that was pre-
viously sent. In this case, a response message is not gen-
erated. This mechanism prevents the agents from sending
“init” messages to one another in an infinite loop

At times, the agents in the good list are a subset of the
agents contained in the agent view. This is done to main-



when received (evaluate?, (xj , pj ,mj)) do
update agent view with (xj , pj ,mj);
if (mediate 6= none or ∃k(pk > pj ∧mk = = active))

and mj = = active do
send (wait!, (xi, pi));

else
if mediate 6= active do

mediate← mj ;
label each d ∈ Di with the names of the agents
and associated costs incurred by setting di ← d;

send (evaluate!, (xi, pi, labeled Di));
end if;

end do;

when received (accept!, (d, xj , pj , dj ,mj)) do
di ← d;
mediate← false;
send (value?, (xi, pi, di,mi, ci)) to all xj in agent view;
update agent view with (xj , pj , dj ,mj);
check agent view;

end do;

Figure 5. Procedures for receiving a session.

tain the integrity of the good list and allow links to be
bidirectional. To understand this point, consider the case
when a single agent has repeatedly mediated and has ex-
tended its local subproblem down a long path in the re-
lationship graph. As it does so, it links with agents that
may have a very limited view and therefore are unaware
of their indirect connection to the mediator. In order for
the link to be bidirectional, the receiver of the link re-
quest has to store the name of the requester, but cannot
add the them to their good list until a path can be iden-
tified.

In order to ensure the optimality of the algorithm, each
of the agents does not terminate until all of the func-
tional relations fj > f∗

j that include an agent within its
agent view appear in its good list. During periods of inac-
tivity, agents try to achieve this condition by growing their
good list to include these “non-optimal” relations. This is
how agents prevent unnecessary centralization and where
the path information provided as part of the initializa-
tion message comes into play. This process ensures that
the following property is enforced at the termination of
the algorithm:

Property 1 ∀xj∀fj ((xj ∈ agent viewi ∧ xj ∈ fj ∧ fj >

f∗

j ) → fj ∈ good listi) upon termination.

3.2. Checking the agent view (Figure 2)

After the agents receive all of the initialization mes-
sages, they execute the check agent view procedure. In
this procedure, the agent view (assigned, known variable
values) is used to calculate the current cost, Fi, of the
relationship subgraph formed by the agents within the
good list. If, during this check, an agent finds that Fi is
greater than the optimal value of the subsystem, called
F ∗

i , it conducts either an active or passive mediation ses-
sion. This check ensure that the following property is ob-
tained at the termination of the algorithm:

Property 2 ∀iF
∗

i = = Fi upon termination

At startup, the value of F ∗

i is always initialized to 0
meaning that the best answer obtained thus far has no
cost. This value changes as the agent centralizes substruc-
tures which must have some cost in the optimal answer.
Agents can determine this cost because of the centralized
solver used in the mediation process. Whenever an agent
mediates, it recomputes the value of F ∗

i by running a cen-
tralized search on its entire good list.

Agents decide between an active or passive mediation
based on whether or not one of the suboptimal functional
relations in their good list has an agent in it that is lower
or equal (itself) priority to itself. If one of the agents is
lower or equal priority, the mediation will be active, oth-
erwise, it will be passive.

There are two main difference between active and pas-
sive mediation. First, during an active mediation, the re-
ceiving agent sets its mediate flag. This flag prevents it
from starting or engaging in another active mediation un-
til it is cleared. This causes a region of stability in the
agent system which allows to mediation session to have
the full effect but, reduces parallelism because it prevents
other agents from mediating. The second difference is re-
ally based on the intent. The intent of passive mediation
is to verify and understand the results that higher priority
agents have obtained without interfering in their actions
or changing their current solution. In other words, the in-
tent of passive mediation is to change the value of F ∗

i , the
intent of active mediation is to change F ∗

i and Fi. Pas-
sive mediation both increases the parallelism of the prob-
lem solving and allows agents to gain additional context
(extend their views) without causing system instability.

If an agent decides that it wishes to actively mediate, it
can only do so when it has not been told by a higher pri-
ority agent that they want to actively mediate. Agents
within the system are able to tell when a higher priority
agent wants to mediate because of the mi flag mentioned
in the previously section. Whenever an agent checks its
agent view it recomputes the value of this flag which indi-
cates its desire to mediate in the future if given the oppor-
tunity. This information is shared with each of the agents
in its agent view whenever the value changes. The over-
all effect of the mi flag is similar to the two-phase com-
mit commonly seen in database systems and ensures that
the protocol remains live-lock and deadlock free.

As an active mediator, an agent first attempts to rec-
tify the suboptimal condition by changing its own vari-
able. This simple technique prevents sessions from occur-
ring unnecessarily, which stabilizes the system and saves
messages and time. If the mediator finds a value that
makes Fi == F ∗

i and it finds that the functional rela-
tionships being improved by the change are shared with
only lower priority agents, it makes the change and sends
out a “value?” message to the agents in its agent view. If



cannot find such a value, it starts an active mediation ses-
sion which is described in section 3.3.

A “value?” message is similar to an “init” message, in
that it contains information about the priority, current
value, etc. of a variable. Unlike the “init” message how-
ever, “value?” messages contain a list, ci, which gives the
name of any agent which shares a relation with the sender
that has a cost greater than 0. Using this list, an agent
can tell when conflicts exist that may need to be included
in their good list. This allows the agents to prevent un-
necessary centralization when the situation clearly indi-
cates that it has no direct benefit. In other words, there
is no need to add an agent to the local subsystem when
they are not involved in a relationship which is increas-
ing the global cost.

3.3. Mediation (Figures 3, 4, and 5)

The most complex and certainly most interesting part
of the protocol is the mediation session. As was previ-
ously mentioned in this section, an agent decides to medi-
ate if it finds that Fi > F ∗

i . The mediation session starts
with the mediator sending out “evaluate?” messages to
each of the agents in its good list. The purpose of this
message is two-fold. First, it informs the receiving agent
that a mediation is about to begin and, as mentioned ear-
lier, if the mediation is active, tries to obtain a lock from
that agent. The second purpose of the message is to ob-
tain information from the agent about the effects of mak-
ing them change their local value. This is a key point.
By obtaining this information, the mediator gains infor-
mation about variables and relationships outside of its lo-
cal view without having to directly and immediately link
with those agents.

When an agent receives a mediation request, it will
respond with either a “wait!” or “evaluate!” message.
Agents respond with a “wait” message whenever the re-
quest is for an active session and the agent is either cur-
rently involved in another active session or is expecting a
request for an active session from an agent that is higher
priority than the requester. This allows for a great deal
of parallelism because all passive requests are responded
to and active requests are only turned away when abso-
lutely needed. Whenever it can, the agent evaluates each
of its domain elements and labels them with the names
of the agents that would have a shared functional relation
with cost fi > f∗

i along with that cost if it were asked
to take that value. In the graph coloring domain, the la-
beled domain can never exceed O(|Di| + n). This infor-
mation is returned in an “evaluate!” message.It should be
noted that, although in this implementation, the agents
need not return all of the names if for security reasons
they wish not to. This effects the optimality of the algo-
rithm because it prevents agents from gaining enough con-
text, but does provides some degree of autonomy and pri-
vacy to the agents.

When the mediator has received a response from all of
the agents that it has sent a request to (the counter vari-
able reaches 0), it chooses a solution. Agents that sent a
“wait!” message are dropped from the mediation, but the
mediator attempts to fix whatever problems it can based
on the information it receives from the remaining agents.
The mediator then conducts a Branch and Bound search
[1] which, as a primary criteria, minimizes the cost of the
subproblem in the good list and as a secondary criteria
minimizes the costs for agents outside of the session. The
results of minimizing the primary criteria, being the opti-
mal value for the subproblem in the good list, is saved as
F ∗

i .

The agents employ two special tactics during this
search. First, the values are ordered so that the first
branch of the search is the current solution. This usually
causes the bound to become very close to F ∗

i after it is ex-
plored taking advantage of previous work that has been
done on the problem. This has the overall effect of improv-
ing the search speed as was reported in [7]. The second
tactic terminates the search early whenever the bound is
equal to the current F ∗

i and the cost for agents outside of
the mediation is 0. This method works because the cur-
rent F ∗

i is always an lower bound on the actual F ∗ and F ∗

i

only increases on successive search because of the mono-
tonic nature of the number of variables in the search and
the aggregation function. This method considerably re-
duces the effort used during this search.

At the conclusion of the local search, the mediator com-
putes two values, F ′

i and F ′

s. The value F ′

i is the cost, given
the current set of variable values, for the extended subsys-
tem which is composed of the agents within the good list

along with any other agents which appear in the pref-
erence information returned in the “evaluate!” messages.
The value F ′

s is the cost for this same extended subsystem
given the solution s returned by the centralized search.
Ideally, these values will be the same. In other words, s

has a non-negative effect on the current state of the global
problem. Because agents act myopically when they com-
pute s, they sometime choose a solution which appears
to be good, but overall has a very negative effect. When-
ever this happens, the mediator ignores s (keeping any
changes to F ∗

i however) and reverts to the current solu-
tion, effectively preventing itself from making a locally op-
timal decision that has obviously bad global consequences.
The overall effect is similar to passive mediation in that
it maintains stability in the system while the agent gains
context information.

After computing these values, the mediator links
(sends “init” messages) with any agent that is not
in its agent view and has been forced to have an in-
creased cost as result of s. This occurs even if the medi-
ator chooses not to use s. This step expands the agent’s
good list so that the next time it mediates, it does not re-
peat the same mistake. The mediator concludes the
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Figure 6. The startup and first step of OptAPO solving an example 2-coloring problem.

session by sending “accept!” messages (if the ses-
sion was active) to the agents in the session, who, in
turn, adopt the proposed answer and “value?” mes-
sages to all of the other agents in its agent view.

3.4. An Example

Consider the 2-coloring problem in figure 6(a), which
was chosen to illustrate the algorithms features without
being overly complicated. In this problem there are 6 vari-
ables, each assigned to a different agent, and 8 functional
relations between the variables. Each of the functional re-
lations is a ’not equals’ and has a cost of 1 for being vio-
lated and 0 otherwise. The goal of the agents is to mini-
mize the global cost F ∗ (the sum of the values returned by
the functional relations), which in this case is 1. In other
words, this is a MaxSAT problem instance.

On startup, the problem is in the state in figure 6(a).
The current cost of the system is 4, because 4 of the ’not
equals’ relationships are violated (indicated by the dot-
ted lines). Each of the agents has an internal optimal sub-
system value, F ∗

i = 0, since none of them have mediated
and therefore computed the actual value.

Following the protocol, the agents send out “init” mes-
sages to each of their neighbors. So, for example, ND0 send
out “init” messages to ND1, ND2, and ND3. As the “init”
messages are received, the agents add each of their neigh-
bors to their good list because they have a direct path
through a shared relation.

Once all of the “init” messages are received, the agents
check their agent view. All of the agents are able to de-
tect the non-optimal state of the problem by computing
the value of Fi. For example, ND2 computes an Fi = 3

because it has ND0, ND2, ND3, ND4, and ND5 in its
good list and can see the cost of the relations between
ND0 and ND2, ND2 and ND3, as well as ND4 and ND5.
This causes ND2 to set its mi flag to active. In this ex-
ample, each of the agents is involved in a suboptimal re-
lation so they all set their mi flag to active. ND2 is the
highest priority agent in the system, it has a priority of
5, elects to take over as the mediator and begins an ac-
tive session with ND0, ND3, ND4, and ND5.

As the mediator, ND2 first checks to see if it can cor-
rect the suboptimality by making a local change, which it
cannot. It sends “evaluate?” messages to ND0, ND3, ND4,
and ND5. Each of these agents, upon receiving the mes-
sage, checks to see if it is expecting a mediation from a
higher priority agent, which they are not, and then sets
its mediate flag to active. They label each of their do-
main elements and reply with the following information
each using an “evaluate!” message (since the costs are all
1, they are left out for clarity):

• ND0 - Black conflicts with ND1; Red conflicts with ND2

• ND3 - Black conflicts with ND5; Red conflicts with ND2

• ND4-Black conflictswithND1andND5;Redconflictswith
ND2

• ND5 - Black conflicts with ND4; Red conflicts with ND2
and ND3

ND2 conducts a Branch and Bound search and finds
that F ∗

i = 1 for its good list as well as finding a solution
which has 0 conflicts external to the mediation. It tells
ND4 to change its value to Red and changes its own color
to Black, leaving the system in the state in figure 6(c).

All of the agents check their agent view again. Several
agents detect a suboptimal subsystem. In fact, ND3, ND4



and ND5 have suboptimal subsystems. ND5 set its mi flag
to active and ND3 and ND4 sets their mi to passive, be-
cause the only cost they see is between ND2 (pi = 5) and
ND5 (pi = 4, tie broken on name) who are both higher pri-
ority.

This time ND5 actively mediates. ND5 is unable to lo-
cally correct the difference in its Fi and F ∗

i so it sends
“evaluate?” messages to ND2, ND3, and ND4. It receives
the following information from those agents in the re-
turned “evaluate!” messages:

• ND2 - Black conflicts with ND5; Red conflicts with ND0,
ND3, and ND4

• ND3 - Black conflicts with ND2 and ND5; Red causes no
conflicts

• ND4 -Black conflictswithND1,ND2, andND5;Red causes
no conflicts

At the same time, ND4 starts a passive mediation ses-
sion with ND1, ND2, and ND5. and ND3 starts a passive
session with ND2 and ND5.

ND3, ND4, and ND5 conduct an internal searches and
each find a solution with an F ∗

i = 1, and no external con-
flicts. The solution they find, in fact, is identical to the cur-
rent assignment which was the first branch in their search
tree. ND5 sends out “accept!” messages and, since they
are passively mediating, ND3 and ND4 change their in-
ternal lower bound and send “value?” messages to their
neighbors

Finally, ND0 sees the conflict between ND2 and ND5.
It sees that their mediate flags are set to none, so it links
with ND5. This leaves the problem in the state in figure
6(b).

After two additional passive mediation sessions by ND0
and some additional linking, the algorithm terminates
in the state in figure 6(d). Each of the agents has a
F ∗

i = = Fi. Notice that only one of the agents achieves
complete centralization. In this example, ND0 achieved
this linking near the very end of the execution by identi-
fying the cost between ND2 and ND5, causing it to link
with ND5. This forced it to justify that cost, so it passively
mediated and discovered ND3 and ND4. This caused it to
link with them, allowing it to justify the total cost of 1.

4. Evaluation

To test OptAPO, we implemented the protocol in a dis-
tributed simulation environment called the Farm [3] and
conducted a number of experiments in the distributed
MaxSAT 3-coloring domain. We downloaded the Adopt
simulator and algorithm which was constructed by Prag-
nesh Jay Modi, the designer of the algorithm, and veri-
fied that both of the simulators use a comparable notion
of a cycle. In both simulators, during a cycle, all of the in-
coming messages are delivered and processed, and outgo-
ing messages are queued for delivery at the beginning of
the next cycle. We then instrumented the Adopt simula-
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Figure 7.ComparisonofOptAPOandAdopt for var-

ious graph sizes at m = 2.0n.

tor to compute the number of cycles, serial runtime, and
the number of messages being transmitted.

We ran two series of tests within the MaxSAT do-
main to compare these algorithms. In the first series of
tests, we compared the number of cycles and messages
used by OptAPO and Adopt. For this series, we created
random graph coloring instances with m = 2.0n (under-
constrained) and m = 3.0n (very over-constrained). We
generated 100 instances at n = 8, 12, 16, 20, 24, and 28
for a total of 1200 individual graphs. For fairness, we used
the same graphs to test both algorithms. The results of
this series can be seen in figures 7(a) 7(b), 8(a), and 8(b).

In the second set of tests, we compared the actual run
times of the two algorithms against each other. Both algo-
rithms were run on a single, dedicated 2.8 GHz Pentium 4
with 512MB of RAM on a 25 instance subset of the graphs
from the first series of tests. To show that OptAPO’s per-
formance was not simple an artifact of the Branch and
Bound search internal to the agents, we ran that algo-
rithm on the graph instances as well. The results from
this test can be seen in figures 9(a) and 9(b) which are
logarithm scale.

As you can see from the figure, OptAPO outperforms
Adopt in terms of cycles, messages, and runtime on both
under and over-constrained problems. OptAPO’s superior
performance can be most directly attributed to its com-
bined use of centralization and distribution. Adopt works
by iteratively trying different combinations of variables
while simultaneously refining its upper and lower bound.
OptAPO avoids this iterative discovery process which al-
lows the agents to find the optimal or near optimal as-
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signment quickly and then to verify its correctness and
make repairs when appropriate. What you should also no-
tice is that OptAPO actually runs faster that the Branch
and Bound search that it uses internally. This is by no
means meant to show that a distributed algorithm op-
erates faster than a centralized one, but shows that the
runtime characteristics of the algorithm are not simple
a byproduct of the centralized search. In fact, the im-
provements in search time over the centralized search are
most likely caused by the combination of the value order-
ing heuristic and early search termination method talked
about in section 3.3.

5. Conclusions

In this paper, we presented a new method for solv-
ing DCOPs called Optimal Asynchronous Partial Overlay
(OptAPO). The key features of this technique are that
agents mediate over conflicts, the context they use to make
local decisions overlaps with that of other agents, and as
the problem solving unfolds, the agents gain more context
information along the critical paths within the problem to
improve their decisions. We have shown that the OptAPO
algorithm is both optimal and complete and that it per-
forms better than the Adopt algorithm on MaxSAT graph
coloring problems.
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