
���������
	���
��������������������� �"!#��$����%$��&�'� (*)+�'$,�.-/�'�0�
1 � 23�&�4$5)+� 1/6 $5�72 �4�8��)9-�:

;�<>=@?>ACBD?CE�FG=@?CEIH@J
FLKNMPOQMRBD?CETSVU>=@?>EWH@JYXZB[EDK]_^`=DMRaRaRK]\cb
JYdeMRfNghB@\ji�KNklklKN_b
1Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130, USA
{ mon[prq sutovxwum } y{z}|�~�� n
�u|P��� � ~}�h�

2Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA
{ ��vx� � � ~o��q � ~}|�|�~o� } y�z}|�� �x��vu|�|�� ~}�h�
Abstract

Negotiation is one of the main mechanisms for coordination and cooperation
in multiagent systems. However, most negotiation protocols are complex and
their features are difficult to characterize. In this paper, we propose a general ex-
perimental approach to analyzing negotiation strategies using distributed search.
In this approach we first formulate the problems that negotiation protocols in-
tend to solve as distributed constraint satisfaction/optimization problems, and
then capture the negotiation protocols as distributed search algorithms. By ana-
lyzing the derived search algorithms, we can characterize many important prop-
erties of the negotiation protocols. In this paper, we are particularly interested in
the properties of a newly developed negotiation protocol, which is motivated by
distributed sensor network applications, including its completeness, complexity,
convergence rate, and scalability. Although the idea of viewing negotiation as
distributed search is not completely new, in this research we not only view nego-
tiation as distributed search, but directly apply a search algorithm to reveal the
essential features of a negotiation protocol and analyze its performance.

��� �
���Q�Q�����e���Q�x�c�.�����¡ G¢�£��Q¢e�x£¥¤
Negotiation is an important mechanism for coordination and collaboration

in multi-agent systems. It is particularly effective for systems consisting of

H

b
self-interested agents, each of which may have different objectives to achieve
and different restrictions to abide to. It is perhaps also prevalent in applica-
tions where privacy of individual agents needs to be protected. Due to its
importance, negotiation has been studied for quite some time, and many dif-
ferent negotiation strategies and protocols have been proposed and developed
[Cammarata et al., 1983; Adler et al., 1989; Conry et al., 1988; Durfee and
Lesser, 1989; Durfee and Montgomery, 1990; Lander and Lesser, 1992]. Co-
operative negotiation has been studied to solve difficult distributed problems
such as distributed conflict resolution [Adler et al., 1989; Lander and Lesser,
1992], distributed task allocation [Cammarata et al., 1983; Durfee and Mont-
gomery, 1990], and distributed resource allocation [Conry et al., 1988]. In all
these domains, multiple agents share some common resources, e.g., commu-
nication channels and CPU times, and can mutually benefit from one another
by cooperatively scheduling the resources. For these problems, agents only
have the information about their local tasks and resources. They gradually be-
come aware of the global information through negotiation and solve the global
problem by individually solving sub-problems and integrating the solutions to
sub-problems into a globally consistent solution [Lesser, 1990]. For some ap-
plications, agents may also need to assess and refine the global solutions into
global optimal solutions to make the best use of common resources.

However, global optimal solutions are very hard to achieve through coop-
erative negotiation in a distributed setting, due to its computational and com-
municational complexity. Furthermore, most existing negotiation protocols are
complex and their features are difficult to characterize. To our knowledge, we
have not seen a published work that analyzes a negotiation protocol in depth to
understand important issues of a negotiation method, such as its completeness,
complexity and scalability.

In this paper, we propose an experimental approach to analyzing negotiation
methods. Our strategy consists of two steps. In the first step, we formulate the
distributed problems solved by a negotiation method by distributed constraint
satisfaction/optimization problems, and capture the negotiation protocol as a
distributed constraint search. In the second step, we study the properties of the
negotiation protocol by analyzing the derived search algorithm. Note that to a
larger extent, the idea of viewing negotiation as distributed search is not com-
pletely new. Indeed, it has been suggested that distributed AI can be viewed as
distributed search [Lesser, 1990]. Nevertheless, we not only view negotiation
as distributed search in this research, but take this view one step further and di-
rectly apply a search algorithm to capture the essential features of a negotiation
protocol and analyze its properties and performance.

In this research, we specifically focus on a resource allocation problem un-
derlying a mobile object tracking problem using distributed sensors and a re-
cently developed negotiation protocol, Scalable Protocol for Anytime Multi-

¦Y§D¨N©«ª¬l®}¯c¨]° ±
level negotiation (SPAM) [Mailler et al., 2001; ?], for this problem. The SPAM
negotiation protocol has been successfully used to manage a set of distributed
sensors to solve the problem of tracking multiple targets. Specifically, a set of
networked sensors cooperatively detect and localize a set of moving targets by
taking local measurements and exchanging information. Since a sensor is only
capable of measuring the distance from a target to the sensor as well as the
speed of the target, in order to estimate the location of the target, multiple sen-
sors have to detect at the same time and combine their measurements. Having
measurements from more sensors at the same time or getting the measurements
more frequently will produce a higher quality tracking.

The primary objective of this multiple target tracking problem is to allo-
cate the sensors to the targets so as to maximize the tracking quality. The
SPAM protocol is designed for solving this problem with distributed negotiat-
ing agents. Each sensor is associated and managed by an agent. Whenever a
new target is detected, an agent may also play the role of managing the task of
keeping track of the target, i.e., determining which sensors to use for tracking
and making schedules for the available sensors. Such an agent is also called a
track manager in the protocol. When more than one target enters the system,
conflicts on the demand of sensors exist, and track managers may need to ne-
gotiate with one another to resolve the conflicts on their local schedules and/or
cooperatively produce a global schedule to attempt to maximize the overall
tracking quality. The key idea of the SPAM protocol is to select one of the
conflicting track managers as a mediator to resolve the conflicts and generate
partial solutions for the conflicting managers involved. This conflict resolu-
tion process may propagate to multiple negotiation threads. An experimental
study showed that the SPAM protocol works very well for this real-time sensor
tracking problem [Mailler et al., 2001; ?]. However, the SPAM protocol is too
complex to be amenable to a thorough theoretical analysis, and almost all of
its important features, such as completeness and convergency, have not been
analyzed.

In addition to developing a general experimental approach of analyzing ne-
gotiation strategies, another objective of this research is to elucidate the proper-
ties of SPAM, including its completeness, convergence, complexity and robust-
ness. To this end, we view the resource (sensor) allocation problem for target
tracking as a distributed constraint satisfaction/optimization problem and trans-
form the SPAM protocol into distributed search algorithms. We then charac-
terize many important features of the SPAM protocol by analyzing the derived
search algorithms.

The paper is organized as follows. We briefly describe the sensor tracking
problem and the SPAM negotiation protocol in section 2. We formulate the
cooperative negotiation problem as a multi-agent constraint problem in section
3. In section 4, we describe our strategy to characterizing the negotiation as

²
distributed constraint search, and further generalizing and extending the SPAM
protocol as two distributed constraint search algorithms. In section 5 we ap-
ply the derived search algorithms to experimentally analyze some essential
features of the negotiation protocol. Finally we conclude and summarize our
results in section 6.

³�� ´µ���Q¶�£¥�·´��Q����¸Z�r��¶¹���e�3�CºZ£/»�¼µ½8¾ ¼¿�C���Y���V��À
The application we consider is the tracking of multiple moving targets using

a network of loosely coupled sensors. This application has also motivated the
SPAM negotiation protocol. We will briefly describe the problem in section
2.1 and the protocol in section 2.2.

³��r� ´��Q����¸Z�r��¶,ÁÂ��Ào�C��Ã�Àx£Ä�
���C¶�£Å�QÆ
In this problem, a set of Doppler sensors are scattered with varying orienta-

tions throughout a tracking area. Each sensor is able to detect an object within
a fixed radius. However, the overall detection area of a sensor is divided into
three equal sectors, and the sensor can only operate in one sector at any given
time. The Doppler sensor is only capable of detecting the distance between a
target and the sensor by measuring signal amplitude as well as the speed of the
target based on signal frequency. In order to track a target, at least three sen-
sors are required to sense at the same time and triangulate the location of the
target. Having more sensors tracking at the same time or taking measurements
more frequently will produce a higher quality tracking.

The problem can thus be described as follows. Given Ç sensors and È tar-
gets, develop a schedule for all the sensors to track the maximal number of
targets as accurately and frequently as possible over a period of time. The
complication of the problem stems in at least two factors. First, multiple tar-
gets can exist and conflicts on allocating a sensor to multiple targets may be
unavoidable, especially when the number of sensors is not sufficient. Second,
an agent has partial knowledge of the overall problem but needs to act using
local information and information from its neighboring agents.

From utility theoretical point of view, the problem can be considered as a
problem of maximizing a utility function of the targets being tracked over a
period of time. If the number of sensors allocated to a particular target is less
than three, no reliable estimation to the location of the target can be obtained.
On the other hand, even though having more than three sensors allocated to a
target will give rise to better tracking result, the tracking quality is not linear
of the number of sensors used and the quality improvement will be negligibly
small after a specific number of sensors. For example, the utility function of
tracking a set of È targets can be defined as the total sum of the utility of track-
ing individual targets, each of which can be defined as ÉÅÊÌËÍÏÎ ÐÒÑ�ÓLÔ if Ñ sensors

¦Y§D¨N©«ª¬l®}¯c¨]° Õ
are allocated to a target during a period time É . This utility function could be
more complicated if it takes into account the location and the orientation of
each individual sensor with respect to the target being tracked.

³��o³ ´Lº�£/»_¼µ½8¾ Ã��Q���Y���V��À
The SPAM protocol is designed with many considerations on real-time per-

formance and dynamic issues. The protocol is divided into three stages or
abstraction levels to cope with three levels of real-time constraints. In the low-
est or sensor level, the system is required to respond immediately so that the
problem is solved without any information on each local sensor. At the end of
this stage, many conflicts over the allocation of the sensors may exist. At the
second abstraction level, the problem is solved with knowing the schedule on
each local sensor. At the end of this stage, all the local conflicts can be solved,
but some non-local conflicts may be introduced due to missing the global infor-
mation. At the third or the resource level, the conflicting agents negotiate over
their local schedules through a mediator who generates partial solutions for all
these agents and tries to solve non-local conflicts. As long as conflicts exist in
the system, some agent will become a mediator and propagate the negotiation.
A brief description of these three stages are given below.

Protocol 1 SPAM Protocol Stage 0
Evaluate and order the usable resources
Decides an initial objective level
if (have more time) then

Go to Stage 1
else

Choose a solution maximizing the local utility
Bind the solution and exit

end if

Both simulation and hardware experiments show that the SPAM protocol
works very well for the real-time moving target tracking problem. However,
since the protocol itself is too complex to analyze, some important features
of the protocol are still unclear. We are especially interested in the following
properties of the protocol: completeness, time complexity, rate of convergence,
and scalability. In order to capture these properties, we will transform the pro-
tocol into succinct distributed constraint search algorithms. By analyzing these
search algorithms, we can characterize many important features of the proto-
col. Before we launch onto search algorithms, we first describe the constraint
formulation of the tracking problem, the topic of the next section.

Ö
Protocol 2 SPAM Protocol Stage 1

Collect the local information from all usable resources
Generate the set of local solutions
if (have solution without conflicts) then

Choose the solution with the maximum local utility
Bind the solution

else
Choose a solution which both minimizes the conflicts and maximizes the
local utility
Bind the solution and exit
if (have more time) then

Go to Stage 2
end if

end if

Protocol 3 SPAM Protocol Stage 2
Mediator detects the oscillation by checking the history of negotiation
if (have oscillation) then

Lower the objective level
end if
Request meta-level information from the conflicting agents
while (have no solution) do

Generate partial solutions for all these agents
if (all agents are at their lowest objective level) then

Choose a solution at the lowest objective level with min-conflicts
Exit

else
Lower the objective level of one agent

end if
end while
Mediator sends all the partial solutions to the other agents
The other agents evaluate and rank the solutions
Mediator chooses a consistent solution according to the feedback
All the agents bind their solutions
Some agent propagates the negotiation if having conflicts

×_� Ø����eÆÏ�Y�Q���r�c�Ù¼¿�C�jÚ�Àx£&Á,ÆÙ�r��Ø��_�jÃ�£��Q�Û�C�x¢j£Ü £¥¶j���C�x�Û�Q�x�c�
A distributed problem that can be solved by cooperative negotiation nor-

mally involves a set of agents, each of which has some tasks to be scheduled

¦Y§D¨N©«ª¬l®}¯c¨]° Ý
using a set of shared resources. Given a set of Ç agents over È resources, a
cooperative negotiation problem can be formally represented as Þ�ßáàlâ�ã , whereßåä*æ{ç Ë àlç Í à]è]è]èÅàlçÏé�ê is the set of Ç agents and â"ä*æ�É Ë àhÉ Í à]è]è]è�àhÉNë�ê the set
of È resources. An agent, ç
ì , is represented by a tuple:

ç ì ä5Þ�â ì àîí ì àrï ì ãîà
where â ì , â ìñð â , is a set of resources that can be used by agent ç ì , í ì
represents a task to be scheduled by ç ì , and ï ì is the weight assigned to taskí ì .

The task of í ì may also consists of a set of sub-tasks ò ì ä"æ]ò�ó ìRôË à�òõó
ìRôÍ à]è]è]è¥à

ò ó ìRôöR÷ ê , and Þ�òVìxàlâeìuã constitutes a local sub-problem that can be internally solved
by agent ç ì . In other words, Þ�ò ì àlâ ì ã is local to ç ì and is unknown to the other
agents. The overall task í ì requires a certain number of resources, and this
number, represented by ø ì , is called the objective level. Given the set of usable
resources â ì and the objective level ø ì of the agent ç ì , there are Ñ ì = ùlú û ÷ úü ÷Åý
alternative solutions. Then task í_ì can be represented by

í ì ä
þ ÷ÿ
��� Ë

� ì �
where

� ì � represents one possible solution for the agent ç ì to the task í ì . And� ì = æ � ì Ë , � ì Í , è]è]è , � ì þ ÷ ê constitutes the solution space for the sub-problem í ì
on agent ç ì . Given the objective level ø ì , � ì � can be further represented by

� ì � ä
ü ÷�
ë � Ë
Þ�� ì �ë ä��xã

where � ì �ë
	 â ì . Here � ì �ë = � means that the resource � ì �ë is allocated to task í ì .
Moreover, in order to make í ì true, at lease one solution É�ø Ñ ì = ü

÷�
ë � Ë (�

ìë ä��),
É{ø Ñ ì 	 � ì , must be true; therefore, all the resource � ìë should be allocated toí ì . We call É{ø Ñ ì the local sub-solution for the sub-problem í ì on agent ç ì .

Here, an agent is a track manager, and a resource corresponds to a sen-
sor in the SPAM protocol. With the restriction that a resource can only be
used by one task at any time, each resource should have a consistent allocation
or assignment in the local sub-solution of each task íZì , which constitutes a
constraint among tasks. Note that each task í ì is distributed among a set of
agents. Therefore, we can formulate the cooperative negotiation problem as
the following distributed constraint satisfaction problem: Given a constraint

problem Þ�ßáàlâ�ã , is there an assignment of resources â� ð â such that
é�
ì � Ë í ìis satisfied?

�

As discussed in Section 2.1, an agent ç ì can have a utility function � ì�� � ì����
that can be used to discriminate alternative local solutions. Furthermore, the

overall goal of the negotiation problem is to find a globally consistent solution
with maximal global utility among all the solutions. Therefore, since íeì has a

weight ï ì , the global utility can be simply defined as ����� Ñ ö ü ö�� þ ä é�ì � Ë ï ì è������
Ñ ì ,

where ����� Ñ ì¥ä���ìrÞ}É{ø Ñ ì}ã is the utility of the agent çYì with the local sub-solutionÉ{ø Ñ ì . With the extension, the agent ç ì is represented by Þ�â ì àîí ì àrï ì à�� ì ã , and
we can formulate the cooperative negotiation problem as the following con-
straint optimization problem: Given a constraint problem Þ�ßáàlâ�ã , what is the

assignment of resources to agents such that the constraint
é�
ì � Ë í ì is true and the

utility function � ö ü ö�� þ is maximized?

�Z� Ü £¥¶j���C�x�Û�Q�x�c�3¼¿�Q���Y���V��À���Æ8»_£¥���C��º3½ÄÀx¶��j���o�Qº�Á,Æ
The problems solved by cooperative negotiation can be formulated as dis-

tributed satisfaction or optimization problems. A negotiation protocol can be
viewed as a distributed search process. In this section, we propose to charac-
terize the negotiation protocol by a distributed search algorithm.

�Z�r� Ü £�¶����Q�x�Û�C�x���.��Æ ����ÆÏ�Q�>��Ú����Y£��3Æ
£¥���>��º
Negotiation and search are fundamentally different. The former is natu-

rally a multi-agent problem solving method in which information may not be
shared among agents. Thus, negotiation is generally harder than search, since a
global view of a problem may never be constructed. In such a situation, it may
become difficult for an agent to even determine whether the current variable
assignments are in a better state than the previous ones. Moreover, a negoti-
ation process may be trapped in an infinite negotiation loop in which all the
agents revisit some previously encountered global solutions endlessly. Fur-
thermore, negotiation may have more restrictions than search. For example,
time or some other parameters can become a factor when evaluating the results
of the negotiation. Thus, the negotiation is normally more complicated in the
sense of searching for a solution.

Although negotiation and search are different approaches to problem solv-
ing, they both search for assignments to variables of a problem which consti-
tute solutions. Search can also be an ingredient of negotiation. In a negotiation
problem, a task of an agent can be viewed as a variable. It can be assigned any
values (sub-solutions) in its solution space. The sub-solutions of different vari-
ables may conflict with one another due to the inter-agent constraints. When
an agent assigns a value to its task, it also needs to make it consistent with the
assignments of other agents which is similar to what a normal constraint search

¦Y§D¨N©«ª¬l®}¯c¨]°

algorithm does. An agent’s assignment, when communicated to other agents as
a proposal in the negotiation, can be rejected by the other agents. Other agents
may provide counter-proposals. Thus a negotiation is just a search process, in
which the agents try to assign values or revise values to their tasks to satisfy
all the inter-agent constraints.

Generally, a negotiation may have two primary goals, to search for consis-
tent solutions and to search for a consistent solution of a maximal utility. The
first goal focuses on the conflict resolution, which is a problem solved rou-
tinely by constraint satisfaction search algorithms. In this regard, negotiation
can thus be viewed as a constraint satisfaction method. The second goal of
finding a consistent solution of a maximum utility is simply an optimization
problem, a harder search problem. Note that a task of an agent can be a com-
plicated subproblem, and the solution space of the subproblem itself may be
large. All agents need to search, cooperatively, to find the best possible global
solutions.

In short, negotiation can be viewed as a mechanism for solving distributed
constraint satisfaction and constraint optimization problem. Taking this view,
we propose to use search algorithms as tools for analyzing negotiation proto-
cols.

�Z�o³ »�¼µ½8¾ Ã��Q���
���V�cÀµ��Æ Æ
£¥���>��º.��Àx¶����>�o�CºeÁ,Æ
The original SPAM protocol [Mailler et al., 2001; ?] has many features

to handle real-time and dynamics issues. Although these features are very
necessary and important to deal with real-world applications, they are hardly
amenable to a thorough analysis. It seems to be very difficult to design an ab-
stract model of such a complicated protocol for a theoretical analysis. There-
fore, it is difficult to understand, through an analytical approach, some primary
properties of the protocol, such as completeness, rate of convergence, com-
plexity and scalability.

The difficulty for a theoretical analysis suggests that an experimental anal-
ysis is in demand. Here, we propose to use search algorithms to capture a
negotiation protocol so as to characterize the important features of the protocol
through analyzing the search algorithms. Once a negotiation protocol is trans-
formed to search algorithms, whenever a theoretical analysis is possible for the
search algorithms, such an analysis can also be translated back to the original
negotiation protocol.

Another difficulty for analyzing a distributed negotiation protocol comes
from the distributed nature of the applications to which the protocol is ap-
plied. First, it is usually difficult to set up distributed experiments with a large
number of agents and resources using a sufficient number of hardware, while
still being able to collect enough accurate experimental data for an evaluation.

H"!
Second, most experiments in a distributed environment are not repeatable. A
distributed negotiation protocol is in essence nondeterministic. There are in-
deed many factors, for instance the synchronization among agents, that can
change experimental results from one run to another.

Therefore, caution must be taken in the experimental analysis. In this sec-
tion, we will first transform the SPAM protocol to a sequential search algo-
rithm, called sequential SPAM. Here, sequential search does not necessarily
mean centralized search. The search process in the sequential SPAM can still
be distributed among different agents, but in each step only one agent, chosen
arbitrarily, is allowed to change its local values. One run of such a sequen-
tial algorithm corresponds to one possible execution of the original negotiation
protocol. Introducing sequential execution is expected to have little impact on
the effects of the protocol while making the analysis easier. The sequential
search algorithm is designed to represent the features of the original protocol
as close as possible, so that the results from the search algorithm is expected
to shed some light on the original protocol.

We will then modify the SPAM protocol to construct a synchronous search
algorithm, called synchronous SPAM. In this version, the agents negotiate in
a more tightly cooperative manner. The agents are dynamically ordered dur-
ing the negotiation. The agent that revises its local assignment earlier has a
higher priority. This modification is introduced to make the protocol complete,
since the original protocol cannot guarantee the completeness of a negotia-
tion process, as we will see in the next section. Note that completeness is
not the same as optimization. If a constraint problem is not satisfiable, the
synchronous SPAM algorithm is expected to give an answer of ‘NO’. Using
synchronous SPAM, we are able to evaluate the completeness of the original
protocol. Moreover, we also expect to understand how to improve the original
protocol by analyzing the synchronous search algorithm.

#%$'&($�) *,+.-(/0+.13254�6879*(:<;>=?$
We now characterize the SPAM pro-

tocol as a sequential search algorithm in which only one agent is allowed to
change its local values. The protocol is viewed as the following search algo-
rithm, shown in Figure 1.1.

Similar to the SPAM protocol, this algorithm is divided into three stages. In
stage 0, each agent chooses a solution for its local problem without knowing
any information about the current schedule of each resource. In stage 1, each
agent collects the information of all the resources that can be used. Then one of
these agents with conflicts with other agents, chosen randomly, tries to resolve
the conflicts locally by searching for a solution in its local solution space. If
there exists a local solution that does not conflict with all the other agents, the
agent will change to such a non-conflict solution with the best utility.

¦Y§D¨N©«ª¬l®}¯c¨]° HDH

if no conflcits
among these agents

all agents choose a
solution

choose one agent which
has conflcits

the agent tries to solve
the conflicts locally
with all the solutions

if has solution

change to new solution
with the best utility

STAGE 1

NO

YES

STAGE 0

if it’s an
oscillation

YES
done

no
solution

YES

request meta-level information
from conflicting agents

generate solutions for
these agents

if has solution

change to the new solutions
according to the heuristic

YES

NO

no
solution

NO

STAGE 2
NO

@8ACBEDGFIHKJ�LMJEL
Sequential SPAM

If there exists no non-conflict solution, the agent will choose a solution
which minimizes the conflicts with the other agents and moves on to stage 2.
In other words, this agent becomes a mediator to resolve the conflicts in which
it is involved. In stage 2, the agent requests meta-level information from the
conflicting agents. It then tries to generate solutions for these agents. If there
exist non-conflict solutions, these agents will change to non-conflict solutions
based on the heuristic that the most constrained agent chooses a solution first.

If there is still a conflict among agents, a neighboring conflicting agent will
attempt to resolve the conflict by propagating the negotiation. To avoid an
infinite negotiation loop, each agent records the history of its previous nego-
tiations. If an oscillation is detected, the algorithm terminates or the agent’s
objective level is reduced (meaning that more resources to be used) to lower
the constrainedness of the conflicts. However, as we will see later, this termi-
nation condition will make the algorithm lose possible solutions or solutions

H�b
with higher objective levels. Therefore, the completeness of the algorithm or
the protocol can not be guaranteed.

#%$'&($�& *3N%10OQP%RTS,1%S,/%UV*(:W;X=?$
The synchronous SPAM search al-

gorithm is not exactly the same as the original SPAM protocol. It simulates the
original protocol as close as possible and ensures completeness. The algorithm
is shown in Figure 1.2.

if no conflcits
among these agents

all agents choose a
tentative solution

choose one agent which
has conflicts

the agent tries to solve
the conflicts locally
with partial solutions
(committed solutions
by some other agents)

if has solution

commit the solution
(add the solution to
the partial solutions)

if there are multiple
solutions, choose the
solution that minimize
the conflicts with the
tentative solutions

STAGE 1

NO

YES

STAGE 0

if partial
solution
is empty

YES
done

no
solution

YES

record the partial solution as a new
constraint, uncommit the partial

solutions as the tentative solutions

request meta-level information
from conflicting agents

generate solutions for
these agents

if has solution

commit the solutions
(add to the partial solutions)

YES

NO

no
solution

NO

STAGE 2

NO

@8ACBYDGFZHKJ�L\[GL
Synchronous SPAM

In the synchronous SPAM algorithm agents negotiate in a more tightly co-
operative manner. The algorithm has additional features, such as priority and
commitment, to guarantee the completeness. In this algorithm, each agent has
a tentative initial solution for its local problem. The tentative solution is re-
vised when the agent commits its solution. All the committed sub-solutions

¦Y§D¨N©«ª¬l®}¯c¨]° H ±
constitute a partial solution to the overall problem. The revised solutions must
satisfy all the constraints with the sub-solutions. If there exist multiple solu-
tions, a min-conflict heuristic [Minton et al., 1992] is used to minimize as many
conflicts with tentative solutions as possible. If no solution exists, the partial
solutions will be added as a new constraint, and all the committed solutions
will be uncommitted and become tentative solutions again. Here the idea is
borrowed from weak-commitment search algorithm [Yokoo, 1998] which has
proved to be more efficient than backtracking algorithms in many cases. After
the partial solution is uncommitted, the agent will request meta-level informa-
tion from the other conflicting agents and try to generate solutions for all of
these agents. If no solution exists, the whole problem will have no solution at
the current objective level. As a result, some agents must lower their objective
levels, i.e., reduce some constraints of their local problems. Otherwise, these
agents will just commit the solutions. Note that when there is no solution, the
algorithm will not try to minimize the number of violated constraints. Thus
this algorithm is for solving constraint satisfaction not optimization.

As we will see in the next section, this algorithm can guarantee complete-
ness. It can also be easily modified into an asynchronous version in which
multiple agents can search in parallel but still guarantee the completeness.

]�� ^`_�Ã�£��>�rÁ/£&�c�
��À½Ä����Àba�ÆQ��Æ ���e�dc £�ÆQ��Ào�YÆ
To reveal the properties of the SPAM protocol, we now analyze the com-

pleteness, convergence rate, complexity and scalability of sequential and syn-
chronous SPAM algorithms. Here, the completeness of a protocol is the ca-
pability of finding a solution if one exists; the convergence rate concerns the
number of negotiation steps required to reach a solution; the complexity mea-
sures the total number of steps taken before a protocol terminates; and the
scalability considers how the properties of a protocol change as the size of a
system increases.

]��r� Ø���Á,Ã�Àx£Å�Y£&��£&Æ
Æ
The synchronous SPAM protocol can be proved complete. Since the algo-

rithm records the abandoned partial solutions as new constraints, the algorithm
will not create the same partial solution twice. Therefore, the completeness of
the protocol is guaranteed, because there are a finite number of partial solu-
tions to be enumerated. The worst-case time complexity of this protocol is ob-
viously exponential in the number of agents. Assuming that there are Ç agents,
and each agent has a solution space of size

�
, the worse case time complexity

will be e�Þ � é ã . Since the problem itself is NP-complete, this result seems in-
evitable. The worst case space complexity of this protocol is also exponential
in the number of agents since if there is no solution for the whole problem, all

H ²
the partial solutions will be added as new constraints. However, unlike most
of the tree search algorithms, the synchronous SPAM changes the search order
flexibly, which makes it more efficient since it avoids exhaustively searching
all the bad solutions when previous values are set wrong.

@8ACBEDGFIHKJ�Lgf�L
An example for incompleteness

The sequential SPAM protocol is not complete. This is simply because that
the agents in this algorithm do not follow any ordering of assignments during
the search. This will cause some agents to cycle through some sub-solutions
and fall into an infinite search or negotiation loop. In principle, the algorithm is
similar to a local search and can step on a loop in search space or be trapped by
local minima. To avoid such an infinite loop or local minimum, the protocol
simply gives up the current search by lowering the current objective level if
an oscillation is detected. This makes the algorithm incomplete to find some
possible solutions.

Figure 1.3 gives a simple example of incompleteness where four agents
(track managers) try to utilize eight resources (sensors) for target tracking. The
problem has a solution which gives each agent a maximum objective level of
two. The synchronous SPAM algorithm can find the solution after several

¦Y§D¨N©«ª¬l®}¯c¨]° H Õ
steps given the initial assignment shown in the Figure 1.3, while the sequential
SPAM fails to find such a solution, due to oscillations in search processes.

@8A BEDGFZHKJEL h5L
Execution of sequential SPAM on the example

Figure 1.4 illustrates an example of execution steps of sequential SPAM. For
the initial assignments (after stage 0), ç Ë and ç Í have conflicts on the resourceÉ Ë . ç Ë searches locally but finds that there is no local solution to resolve the
conflicts (after stage 1). It then goes into stage 2 to negotiate with ç Í . It finally
finds a partial solution (assign Þ}ÉjiÒàhÉ"k{ã to ç Í and Þ}É Ë àhÉ5l]ã to ç Ë) for both ç Ë andç Í which resolves conflicts. So in step 2, new values are assigned. Since ç Í
and ç i still have conflicts on É i , ç Í propagates the negotiation. But note thatç i has only two resources available, the only partial solution for ç Í and ç i is to
assign Þ}É Í àhÉ i ã to ç i and Þ}É Ë àhÉ k ã to ç Í . So in step 2, new values are assigned.
Now, if ç Ë is to propagate the negotiation, it will find that the same situation in
step 2 as in step 0. An oscillation is detected which makes the algorithm exit
without finding the possible solution.

Although sequential SPAM is not complete, our experiments show that the
possibility for the algorithm to be complete is very high, especially in under-
constrained situations. The experiment is set up with 10 agents and 20 agents.
The number of resources are 30 and 60 respectively. Each task has a fixed
objective level of 3, which is the best possible in both situations. The availabil-
ity of resources to agents varies from 0.1 to 0.9. The availability here simply
means the probability that any resource can be used by an agent. For example,
in our experimental setting of 10 agents and 30 resources, when availability
equals 0.5, on average each agent will have 15 resources to use. This implies
that when the availability increases, the constrainedness of the problem de-
creases. Given a set of agents, a set of resources, and the availability m , each
problem instance in our experiment is generated by randomly adding an edge
between an agent and a resource with the probability m . An edge between an
agent and a resource simply means that the resource is available to the agent.

Figure 1.5 shows the ratio of the problems solved by sequential and syn-
chronous SPAM algorithms over 10,000 problem instances, with different re-

H Ö

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability of resource to the agent

R
at

io
 o

f p
ro

bl
em

s
w

ith
 s

ol
ut

io
ns

SynSPAM 10 agents
SeqSPAM 10 agents
SynSPAM 20 agents
SeqSPAM 20 agents

@8ACBYDGFZHKJ�Lgn�L
Number of problems solved by each algorithm

source availability. Since the synchronous SPAM algorithm is complete, the
results of synchronous SPAM give a baseline for sequential SPAM. The result
for the 10 agents case shows that when the resource availability is bigger than
0.4, most of the problems are solvable; whereas when the resource availability
is less than 0.2, most of the problem are unsolvable. As with other CSPs, it is
expected that the hardest instances of this negotiation problem are more likely
to occur when the resource availability is between 0.2 and 0.4, where around
half of the problems are solvable. Notice that when the problem size increases
to 20 agents, the transition from the region with most unsolvable problems
to the region with most solvable problems is even sharper. We suspect that a
phase transition may exist in the negotiation problem.

Figure 1.6 shows the ratio of completeness of the sequential SPAM algo-
rithm as the resource availability of the problem increases or the constrained-
ness of the problem decreases. This figure comes from the same results plotted
in Figure 1.5. Each data point equals to the number of problems solved by the
sequential SPAM algorithm divided by the number of problems solved by the
synchronous SPAM algorithm. Since synchronous SPAM is a complete algo-
rithm, the ratio directly reflects the ratio of completeness of sequential SPAM.
The result shows that as the resource availability increases, the completeness
of sequential SPAM increases as well. For the 20 agents problem, when the
availability is greater than 0.4, the completeness ratio of sequential SPAM is
more than half. When the resource availability increases beyond 0.6, more than
80% of the solvable problem instances are solved by the sequential SPAM al-
gorithm. This simply indicates that the original SPAM protocol is well suited
for under-constrained problems, having a very high possibility to be complete.

¦Y§D¨N©«ª¬l®}¯c¨]° H Ý

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability of resource to the agent

R
at

io
 o

f c
om

pl
et

en
es

s
10 agents
20 agents

@8A BEDGFZHKJELpoEL
The rate of completeness for sequential SPAM

]��o³ ´L�rÁ/£"�V�cÁ,Ã�Àx£%_e�o�Qa
The sequential SPAM algorithm sacrifices completeness for computation

time, as to be verified by experiments. Again, we run both sequential and
synchronous SPAM algorithms on 10,000 problem instances with different re-
source availabilities. The problem settings are still 10 agents with 30 resources.
Figure 1.7 plots the average total CPU time of each algorithm for these 10,000
instances in second. Both experiments were on a linux machine with 756 MB
memory and an AMD 1.4GHZ processor.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

Availability of resource to the agent

C
P

U
 ti

m
e

of
 1

00
00

 r
un

s

CPU time of SynSPAM
CPU time of SeqSPAM

@qACBEDGFIHrJELtsuL
The CPU time of each algorithm

H �
The result of the synchronous SPAM algorithm shows a phenomenon sim-

ilar to that of phase transitions. It takes more CPU times on problems with
resource availability at 0.3 and 0.4 than the problems in the other resource
availability. The results here are consistent with the results in Figure 1.5 which
shows that the problems around 0.3 and 0.4 availability are located in the mid-
dle of a phase transition on solubility, and thus are harder to determine quickly
if they are solvable or not.

However, the result of the sequential SPAM algorithm does not show any
phase-transition phenomenon. Its CPU time smoothly increases with the re-
source availability. Under all the availability settings we considered, the se-
quential SPAM algorithm takes less CPU time than the synchronous SPAM
algorithm. One explanation is that the sequential algorithm is able to give up
searching for a solution sooner on hard problems than the synchronous algo-
rithm so that the former finishes faster than the latter. Another, minor reason is
that the sequential SPAM algorithm has a lower overhead in each step.

One simple implication of these results is that there exists a tradeoff be-
tween the completeness and time complexity of a protocol. Adding additional
features such as those we introduced in the synchronous algorithm may make
a protocol complete, but meanwhile may decrease the time performance of the
protocol. For many soft-constrained problems in practice where the complete-
ness is not crucial, using incomplete algorithms or protocols such as the SPAM
protocol seems to be the right choice.

]�� × Ø����_¢j£&�Q¶�£Û���3a+���e� Ã�£��wv �j��Á¹���e�V£

1 10 100

2

4

6

8

10

12

14

10 Agents 30 Resources Availability = 0.2

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s
ov

er
 1

0,
00

0
ru

ns

SynSPAM deviation
SynSPAM mean
SeqSPAM deviation
SeqSPAM mean

1 10 100

0

2

4

6

8

10

12

14
10 Agents 30 Resources Availability = 0.5

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s
ov

er
 1

0,
00

0
ru

ns

SynSPAM deviation
SynSPAM mean
SeqSPAM deviation
SeqSPAM mean

@8ACBYDGFZHKJ�Lyx�L
The convergency speed of two algorithms

The sequential and synchronous algorithms cannot guarantee to always turn
the current state into a better one after each step of negotiation. For asyn-
chronous SPAM, during the stage 1, when an agent commits a local solution

¦Y§D¨N©«ª¬l®}¯c¨]° H
that has no conflict with partial solutions, this new solution may introduce more
conflicts with tentative solutions than the conflicts it can reduce. Consequently,
the overall conflicts are increased after one step of negotiation. Similar exam-
ple can also be found in stage 2 of the sequential SPAM algorithm. However,
both algorithms are able to terminate after a finite number of steps. There-
fore, both algorithms will finally converge to some specific values. For the
synchronous SPAM algorithm, this value is 0 if the problem is solvable as the
algorithm is complete, while for the sequential SPAM algorithm, this value
may not necessarily be 0.

1 10 100

0

5

10

15

20

25
20 Agents 60 Resources Availability = 0.2

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s
ov

er
 1

0,
00

0
ru

ns

SeqSPAM deviation
SeqSPAM mean
SynSPAM deviation
SynSPAM mean

1 10 100
0

5

10

15

20

25

30

35

40
30 Agents 90 Resources Availability = 0.2

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s
ov

er
 1

0,
00

0
ru

ns

SynSPAM deviation
SynSPAM mean
SeqSPAM deviation
SeqSPAM mean

@8ACBYDGFZHKJ�Lyz�L
The convergency speed of two algorithms

Here, we are particularly interested in the rate of convergence of these two
algorithms, which basically measures how fast the protocols improve solu-
tion quality. Figure 1.8 shows the experimental results with 10 agents and 30
resources averaging over 10,000 problem instances, indicating that the con-
vergency speed of the sequential algorithm is normally better than that of the
synchronous algorithm. This result is not surprising. If we compare the two
algorithms, we will find that in each step, the synchronous SPAM algorithm
tries to resolve the conflicts with only partial solutions, whereas the sequential
SPAM tries to resolve the conflicts with all the solutions. This means that in
each step, the sequential SPAM is likely to resolve more conflicts than the syn-
chronous SPAM, so that its convergency speed may be faster. Figure 1.9 also
shows the results on some larger problems with 20 agents and 30 agents.

Based on these results, we find the following interesting facts. Despite its
incompleteness, when the sequential SPAM algorithm terminates, the final so-
lutions are almost always near optimal. Specifically, the average solutions
from sequential SPAM are only a few conflicts more than that of synchronous
SPAM, especially in the under-constrained situations. This is summarized in
Table 1.1, which shows the performance results of two algorithms on tracking
problems with different problem sizes and resource availabilities. Each data

bQ!
{"|�}b~CH<JELMJEL

Mean Conflicts Over 10,000 problem instances After 100 Steps

size algo. resource availability
0.2 0.3 0.4 0.5 0.6 0.8

10 agents Syn. SPAM 4.2956 0.8491 0.1761 0.0173 0.0016 0
Seq. SPAM 5.9764 3.0456 1.3994 0.6950 0.2799 0.0409

20 agents Syn. SPAM 0.7201 0.0377 0.0016 0 0 0
Seq. SPAM 5.9953 1.9827 0.8805 0.4009 0.1965 0.0342

point in the table shows the average number of conflicts unsolved after 100
step execution of the algorithms, averaged over 10,000 random problem in-
stances. Based on the table, most of the results of the sequential algorithm are
comparative to the synchronous algorithm, especially in the under-constrained
cases. For 10-agent problems, the biggest performance gap occurs when the
resource availability is equal to 0.3, which is located near the middle of a phase
transition on solubility. For 20 agent problems, the phase transition point shifts
to the availability of 0.2, and correspondingly the biggest performance gap
shifts as well. In all other regions apart from phase transition, the performance
differences between the two algorithms are trivial.

In light of all the above results and the results on the completeness, we can
conclude that for many real-time applications, it is reasonable to give up the
total completeness of SPAM protocol in favor of a faster convergency to a good
enough solution.

]��I� »��V��Àx��Ú��rÀr�o�Qa

5

10

15

20

25

6 9 12 15 18 21 24 27 30 6

0

20

40

60

80

Number of Agents

Number of resources available to each agent

N
um

be
r

of
 s

te
ps

 to
 fi

nd
 s

ol
ut

io
n

@8A BEDGFZHKJ�LgJ��EL
Synchronous SPAM scalability

¦Y§D¨N©«ª¬l®}¯c¨]° bYH
Another important aspect of performance analysis of a protocol is the study

of how the performance varies as problem size increases, i.e., how the protocol
scales. This feature is particularly important in applications such as sensor net-
works, since such systems can easily have hundreds or thousands of sensors.
A good scalability means that system performance does not degrade dispro-
portionally with the size of the system or does not degenerate at all when the
number of components increases. Here we are interested in answering the
following question: will the number of negotiation steps that SPAM protocol
takes to find a solution dramatically increase as the number of agents increases?

Figure 1.10 shows the experimental results for the synchronous SPAM pro-
tocol, in which the number of agents varies from 5 to 25, and the average
number of resources available to each agent varies from 6 to 30. The total
number of resources is three times of the number of agents in each of 1,000
random problem instances. In other words, the objective level for each agent is
set to 3. Note that for the 5-agent problems, the maximum number of resources
available to each agent is 15. We simply extend the data on 15 to 30 in the 5-
agent case to make the results easy to show. In Figure 1.10, each data point
represents the average number of steps over the solvable problems of 1,000
runs. From the results, we can see that the scalability of synchronous SPAM is
super linear. Particularly around the phase transition area, the performance of
the protocol substantially degrades.

5

10

15

20

25

6 9 12 15 18 21 24 27 30

20

40

60

80

Number of agents

Number of resources available to each agent

N
um

be
r

of
 s

te
ps

 to
 fi

nd
 s

ol
ut

io
n

@8ACBYDGFZHKJ�LgJ�J�L
Sequential SPAM scalability

Figure 1.11 shows the experimental results on the sequential SPAM protocol
with the same experiment setup as above. Again each data point represents the
average result over the 1,000 solvable problem instances. Comparing to the re-
sults in Figure 1.10, Figure 1.11 shows that the scalability of sequential SPAM

bDb
is better than the scalability of synchronous SPAM. However, based on these
results, we are unable to affirm that the scalability of sequential SPAM is lin-
ear. Nevertheless, the results indicate that the sequential SPAM algorithm does
not seems to have a substantial degrading region around the phase-transition
area similar to the synchronous SPAM algorithm. We should also note that
at each point in Figure 1.11, fewer problems are completely solved than the
corresponding point in Figure 1.10.

]��b] »Z��Á,Á/����a
In this section, we experimentally analyze the properties and performance

of two distributed search algorithms derived from a recently developed coop-
erative negotiation protocol for resource allocation in networks of distributed
sensors. The sequential version simulates the protocol as close as possible,
while the synchronous version adds some additional features to ensure the
completeness. The experimental results on these algorithms help us under-
stand the properties of the original protocol. Specifically, our results show that
the SPAM protocol is not complete in terms of finding a solution. However it
has a high probability of finding a solution if one exists, especially in under-
constrained situations. The SPAM protocol is able to give up sooner on the
hard problems so as to finish faster than the complete protocols. The protocol
converges well in the sense that it can find good low-conflict solutions within
a small number of steps. The solution quality is comparative to the complete
protocol in most of the cases. The protocol seems to scale very well as the
number of agents and the number of resources increase.

With all these results above and the fact that the SPAM protocol is normally
used in a dynamic environment, it is reasonable to give up the completeness
of the protocol in favor of computational complexity, convergency speed, and
scalability. Note that in a dynamic environment, even if the protocol finally
finds the optimal solution with a complete search, the problem could have al-
ready changed and the optimal solution may no longer be relevant. Therefore,
making the right tradeoff between solution quality and computational time is
critical, and the SPAM negotiation protocol seems to make such a tradeoff very
well for real-time moving target tracking.

�_� Ø����e�ÅÀr�eÆY�x�c�������d�%��ÆY�Å�eÆYÆQ�x���eÆ
Motivated to understand the properties of a recently developed cooperative

negotiation protocol, we proposed an approach to analyzing distributed negoti-
ation methods. In this approach, we view and formulate a negotiation protocol
as a distributed search, and then experimentally investigate the properties and
performance of the search algorithms to help draw conclusions on the original
protocol. We demonstrated this approach on the Scalable Protocol for Any-

¦Y§D¨N©«ª¬l®}¯c¨]° b ±
time Multi-level (SPAM) negotiation protocol for allocating resources among
a set of cooperative distributed sensors. In addition to the contribution on a
negotiation protocol itself, we substantially extended the well known notion
of distributed AI as distributed search [Lesser, 1990]. We not only viewed a
distributed cooperative negotiation as a distributed search, we also proposed to
use search as a simulation tool to analyze negotiation protocols. As we demon-
strated in this paper, this approach can overcome many difficulties inherent to
a negotiation protocol that is hard to investigate analytically. We believe that
this approach is general and can be carried over to analyzing other distributed
problems and strategies.

In reflecting on the experimental results on the performance of the SPAM
negotiation protocol obtained in this paper, it seems that high-quality global
solutions to a distributed problem can be achieved without a global control but
with a negotiation protocol in which agents rely on information restricted to
their small neighborhoods. With a small locality of information sources, any-
time performance of a system can also be significantly improved. The results
in this paper and those on distributed stochastic search presented in [?] suggest
that propagating information among neighboring agents and using information
in a small neighborhood vicinity may be a good general strategy for distributed
problem solving.

½7��¸Z���Û¤·Àx£��e¶�Á/£&�c�YÆ
This research was supported in part by NSF grants IIS-0196057 and ITR/

EIA-0113618, and in part by DARPA Cooperative Agreements F30602-00-2-
0531 and F33615-01-C-1897. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the U.S.
Government. Thanks to Sharlee Climer for reading a draft of this paper and
Milind Tambe for suggestions to an early version.

)����j�������`�W���

Adler, M. R., Davis, A. B., Weihmayer, R., and Worrest, R. W. (1989). Conflict-
resolution strategies for nonhierarchical distributed agents. In Distributed
Artifical Intelligence, volume 2, pages 139–162.

Cammarata, S., McArthur, D., and Steeb, R. (1983). Strategies of cooperation
in distributed problem solving. In Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, pages 767–770.

Conry, S. E., Meyer, R. A., and Lesser, V. R. (1988). Multistage negotiation in
distributed planning. In Readings in Distributed Artifical Intelligence, pages
367–384.

Durfee, E. H. and Lesser, V. R. (1989). Negotiation task decomposition and
allocation using partial global planning. In Distributed Artifical Intelligence,
volume 2, pages 229–244.

Durfee, E. H. and Montgomery, T. A. (1990). A hierarchical protocol for co-
ordinating multiagent behaviors. In Proceedings of the Eight National Con-
ference of Artificial Intelligence, pages 86–93.

Lander, S. E. and Lesser, V. R. (1992). Customizing distributed search among
agents with heterogeneous knowledge. In Proceedings of the First Inter-
national Conference on Information and Knowledge Management, pages
335–344.

Lesser, V. R. (1990). An overview of dai: Viewing distributed ai as distributed
search. Journal of Janpanese Society for Artificial Intelligence-Special Issue
on Distributed Artificial Intelligence, 5(4):392–400.

Mailler, R., Vincent, R., lesser, V., Shen, J., and Middlekoop., T. (2001). Soft-
real time, cooperative negotiation for distributed resource allocation. In AAAI
Fall Symposium on Negotiation Methods for Autonomous Cooperative Sys-
tems.

Minton, S., Philips, A., Johnston, M. D., and Laird, P. (1992). Minimizing
conflicts: a heuristic repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58(1-3):161–205.

Yokoo, M. (1998). Distributed Constraint Satisfaction. Springer.

b Õ

