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Abstract

Coordination of large groups of agents or robots is
starting to reach a level of maturity where prototype sys-
tems can be built and tested. This process of going from
theory or simple simulation to actual implementation of
large scale coordination is revealing new issues and en-
couraging new approaches. However, the field is so new
that the central problems and key issues are not yet well
known. In this paper, we look at three implementations
of large scale coordination to find common issues, ap-
proaches and open problems with the aim of setting an
agenda for future research.

1. Introduction

In the past few years there have been a small number
of systems where large numbers of coordinated agents
or robots have been required to perform some com-
plex task. These applications have required completely
new techniques to be developed to deal with the com-
plexity that comes about due to the sheer scale of the
group. In this paper, we look at three successful ap-
proaches to coordination to find commonalities and dif-
ferences in the techniques used. The aim is to identify
ideas that generalize across approaches as well as is-
sues that appear to come up regardless of the approach
used.

Each of the applications involves at least one hun-
dred completely unselfish and cooperative group mem-
bers. The group members were relatively homogeneous,
although there was always heterogeneity due to loca-
tion, thus despite being relatively homogeneous in de-
sign the agents were not easily interchangeable. The
complex tasks on which the teams were working were
relatively decomposable, although constraints (either
resource or spatial or both) existed between the de-
composed subtasks. In all cases, the coordination algo-
rithms had to deal with many of the issues faced by
any multi-agent system, as well as complications due
to scale.

Two interesting commonalities were seen between
the three approaches. The first commonality was that

each approach used some form of dynamic, partial cen-
tralization to reduce the overall complexity. Specifi-
cally, some decision-making responsibility for a small
group of agents was dynamically assigned to an agent
particularly able to make those decisions. The form of
the centralization varied greatly, from dynamic sub-
teams to dispatchers to mediation. In each case, only
a small subset of the team was involved in the central-
ization and the agents involved, as well as the “cen-
ter”, was not chosen in advance. We conclude that
completely centralized coordination is infeasible but
that dynamic and localized centralization is a feasi-
ble method for large scale coordination.

Likely related to the dynamic localized centraliza-
tion, the second notable commonality between the
three approaches was that the coordination was nei-
ther simple and relying on emergent properties nor
highly structured with top-down guidance. While this
was at least partially due to the way the tasks de-
composed into relatively independent pieces, there was
more structure in the coordination than in the task.
Interestingly, none of the approaches were inspired by
any particular organizational theory, human or biolog-
ical. We hypothesize that some structure is required in
order for the developers to be able to manage the com-
plexity of the team, but too much structure unreason-
ably limits the flexibility of the group.

In contrast to the high degree of commonality be-
tween the approaches used, the problems encountered
and the major open problems were varied. In two of
the approaches, determining appropriate parameters
for heuristics was identified as a problem. In two ap-
proaches there was unwanted emergent behavior. In
one approach, sharing information was a problem. It
does not appear that any of the approaches are im-
mune to the problems encountered by the others, only
that the specific problems were not induced by the spe-
cific applications. While all approaches found the prob-
lem of debugging to be time consuming and ungainly,
it was achieved with sufficient effort. Though, in what
we can perhaps attribute to the newness of the appli-
cation areas and approaches, in several cases develop-
ers did not know there were significant bugs in the code



for some time.

In the remainder of this paper, we briefly describe
the way each of the three approaches addresses a vari-
ety of problems.

2. Applications and Assumptions

In this section we describe the scope of applications
and assumptions for each of the approaches. Each of
the applications involves at least 100 cooperative enti-
ties and has been tested either in hardware or realis-
tic simulation of hardware. Although specific commu-
nication restrictions differ, communication is identified
as a much bigger limitation than computation. None
of the applications requires optimal performance, in-
stead the focus is on doing a large task robustly.

2.1. Teamwork and Machinetta

Machinetta software proxies are used to develop
teams where the team members are assumed to be
completely cooperative and willing to incur costs for
the overall good of the team[11]. Typically team mem-
bers will be highly heterogeneous, ranging from sim-
ple agents and robots to humans. While the team will
be able to leverage reasonably high bandwidth com-
munication channels, we assume the bandwidth is not
sufficiently high to allow centralized control. The team
will need to achieve complex goals in a complex, dy-
namic domain. We assume that some decomposition of
the complex task into relatively independent sub-tasks
can take place.

Given the complexity of the domains, tasks and het-
erogeneity of the team, we typically assume that opti-
mality is not an option. Instead we look for satisfic-
ing solutions, that can achieve the goals rapidly and
robustly. The assumption is that doing something rea-
sonable is a very good start. For example, in a disas-
ter response domain, we assume it is better to have fire
trucks on reasonable routes to fires, than to delay de-
parture with computationally expensive optimization.
To date we have demonstrated teams of 200 software
agents[12], both in a UAV simulation[10] and a disas-
ter response simulation, but teams of up to 200,000
agents are envisioned.

2.2. Centibots dispatching

Funded by DARPA, the CENTIBOTS project is
aimed at designing, implementing, and demonstrat-
ing a computational framework for the coordina-
tion of very large robot teams, consisting of at least
100 small, resource limited mobile robots (see Fig-
ure 1), on an indoor search and rescue task. In this

Figure 1. 100 Robots used during the Januaray
2004 evaluation.

project, communication was limited and unreliable,
any coordination mechanisms had to deal with the lim-
itations. There are only two types of agents in the
Centibots system, hence heterogeneity is not an is-
sue. Similarily, optimality is infeasible, so having
a reactive, “good enough” system was the pri-
mary aim.

In the scenario, the CENTIBOTS are deployed as an
search and rescue team for indoor missions. A first
set of mapping capable CENTIBOTS survey the area of
interest to build and share a distributed map which
highlights hazards, humans, and hiding places. A sec-
ond wave of robots, with the capability to detect an
object of interest (biochemical agents, computers, vic-
tims, etc.), is then sent out. The key goal the second
wave is to reliably search everywhere and report any
findings to the command center. These robots are then
joined by a third wave (possibly being the same robots
used during the second wave) of tracking robots that
deploy into the area, configuring themselves to effec-
tively sense intruders and share the information among
themselves and a command center [5].

Communications is done using an adhoc wireless
network, which has a maximum shared bandwith of
1Mpbs. Communications is not guaranteed because as
the robots move to achieve their own missions, links
between the agents are created and lost. Because the
robots fail, break, and get lost, planning the entire mis-
sion ahead of time is not possible. In practice, it is never
the case that all robots complete the mission. In addi-
tion, resources (i.e.robots) and goals can be added, re-
moved, or disabled at anytime making an adaptable
system crucial.



2.3. Cooperative Mediation

Scalable, Periodic, Anytime Mediation (SPAM) [6]
is a cooperative mediation based algorithm that was de-
signed to solve real-time, distributed resource alloca-
tion problems (RTDRAP). SPAM was developed to co-
ordinate the activities of agents controlling radar based
sensor platforms in order to track targets within a real-
time environment (see figure 2). Other than controlling
their individual sensors, each of the agents is able to
take on one or more organizational roles within the sen-
sor network. One of these roles is that of the track man-
ager.

As the track manager, an agent coordinates the ac-
tivities of enough sensor resources to repeatedly trian-
gulate the position of their target. However, the sen-
sors can only sense one target at a time and they are
shared, so the track managers must come to an agree-
ment about which of the sensors they get.

Adding to the complexity of this problem, com-
munications varies from 100 Mbps TCP-based wired
networks to 14.4 Kbps half duplex, RF-based, multi-
channel wireless communications. In the latter, mes-
sage passing was very unreliable and loss rates of 50%
are not uncommon. The communication restrictions
combined with the real-time coordination needs makes
complete centralization out of the question and tradi-
tional distributed techniques inadequate.

SPAM has been tested in real-world hardware envi-
ronments with 36 sensor agents and in simulated envi-
ronments with over 500 sensor agents.

3. Key Algorithms

In this section, we describe the key algorithms and
principles underlying each of the approaches. Although
distinct approaches are used, teamwork, hierachical
dispatching and cooperative mediation, each approach
imposes some limited, flexible structure on the over-
all group. Notice that a central aim of each approach
is to efficiently, robustly, and heuristically allocate and
reallocate tasks and resources.

3.1. Machinetta and Teamwork

Teamwork is operationalized by STEAM which in
turn is based on the principles of joint intentions. A
key principle in STEAM is that agents both have mod-
els of teamwork and models of other team members.
These models are used to reason about which actions
to take to achieve team goals. Having explicit models
with which the agents can reason, leads to more ro-
bustness and flexibility than fixed protocols. The team
executes Team Oriented Plans, which break complex

tasks down into individual roles, with constraints be-
tween the roles. Typically, a large team will be execut-
ing many team oriented plans at any time. Dynami-
cally changing sub-teams form to execute each of the
plans. Limited amounts of communication occur across
sub-teams, to ensure that sub-teams do not act at cross
purposes or duplicate efforts.

The algorithms required to perform the teamwork
have been designed with two key ideas in mind. First,
we use probabilistic models in all key algorithms. This
actually leverages the size of the team because the
probabilistic models tend to be more reliable with a
large number of agents, since local variation gets can-
celed out more effectively. The teamwork algorithms
are designed to leverage the probabilistic models to
make very rapid decisions that are likely to be at least
“reasonable”. Second, we note that when there are very
many team members, Murphy’s Law! applies, simply
due to the fact that everything happens so many times.
Creating efficient, lightweight software that is simple
enough to be implemented reasonably quickly, yet ro-
bust enough to be used in teams with thousands of
agents, is as much a function of the algorithms as it is
of the actual code. Significant emphasis must be placed
on designing algorithms that are sufficiently simple to
be straightforward to implement in a very robust man-
ner. These two principles are embodied in the role al-
location process, which uses a probabilistic model of
the current capabilities and tasks of the team to cal-
culate a threshold capability level that a team member
for performing a role would have in a good overall allo-
cation. A token representing the role moves around the
team until an available team member is found with ca-
pability above the threshold[3].

3.2. The Centibots dispatching

Once the Centibots have produced a map as a
bitmap image, an abstraction is needed so search goals
can be created to ensure all space is searched. The ab-
straction is done by building a Voronoi diagram from
the map and then the voronoi skeleton is abstracted
into a graph. This abstraction is solely based on the
sensor capabilities of a robot. Once we have all the goals
generated, coordination is required to allocate them to
a pool of robots.

To coordinate the robots’ activities, we use a hier-
achical dispatching system, where robots can register
with multiple dispatching agents, one of which is consid-
ered “preferred”. Teams of robots are formed by a com-
mander, and for each team, a manager or dispatcher is

1 Anything that can go wrong will go wrong.



Figure 2. Researchers work on a demonstration involving 36 sensors and 3 mobile targets.

selected. The commander assigns a set of goals to each
team and the teams’ dispatchers assign these to indi-
viduals robots. When a robot has finished its assigned
goals, it notifies the dispatcher, marking itself avail-
able, and asks for a new goal.

A key problem for Centibots was the strategy used
by a dispatcher to assign goals to robots. Since all
robots started from the same starting position, the
problem is to minimize the search time. This alloca-
tion is in theory similar to a multiple travel salesman
problem except that there is no a priori notion of how
many salesman you might have and salesman can fail at
anytime during the travelling. Given these constraints,
we found, after trying several techniques, that the best
strategy for the dispatcher is to send the robot the
farthest away for the first goal and then minimize its
movement by taking the closest goals after the first one.

3.3. Cooperative Mediation

SPAM works by having one or more agents concur-
rently take on the role of mediator. An agent decides
to become a mediator whenever it identifies a conflict
with a neighbor (both scheduled a sensor for use at the
same time) or it recognizes a sub-optimality in its allo-
cation (it could achieve higher utility if it changed its
sensor assignment). As a mediator, an agent solves a
localized portion (or subproblem) of the overall global
problem. In SPAM, this subproblem entails the agents
with which the mediator shares sensor resources. As
the problem solving unfolds, the mediator gathers pref-
erence information from the agents within the session
which updates and extends its view and overlaps the
context that it uses for making its local decisions with
that of the other agents. By overlapping their context,
agents understand why the agents within the session
have chosen a particular value which allows the sys-
tem to converge on mutually beneficial assignments.

This technique represents a new paradigm in dis-
tributed problem solving. Unlike current techniques
which attempt to limit the information the agents use
to make decisions in order to maintain distribution
[16, 15], SPAM and more generally cooperative me-
diation, centralizes portions of the problem in order to
exploit the speed of centralized algorithms.

The key principle that allows SPAM to be scalable
is the heuristic restriction of the size of the subproblem
that the mediators are able to centralize. Mediators in
SPAM are only allowed to conduct sessions which in-
clude agents that they directly share resources with.
Although, this prevents the search from being com-
plete, in all but the most tightly constrained problem
instances, this technique limits the amount of commu-
nication and computation that must occur within any
single mediator. However, because mediators use such
a myopic view of the overall problem, they often are
unaware of the consequences of their actions on other
agents. To combat this effect, SPAM incorporates the
use of conflict propagation and conflict dampening.

Conflict propagation works by allowing any agent to
take the role of mediator when they have an unresolved
resource conflict or wish to improve the utility of their
task. Whenever a mediator causes a problem for an-
other agent outside of its local view, that agent gets to
take over as the mediator.

Conflict dampening is very similar to the min-
conflict heuristic presented in [7]. When an agent me-
diates, it gathers information about the impact of par-
ticular assignments from each of the agents involved in
the session. This allows the mediator to choose solu-
tions that minimize the effect of their decision making
on agents outside of its view. Overall the effects of con-
flict propagation and dampening can be visualized as
ripples in a pond that eventually die down due to the
effects of friction and gravity.



4. Software

In this section, we describe the major pieces of tech-
nology, specifically software, that are used for the co-
ordination in each of the approaches.

4.1. Machinetta and Teamwork

The teamwork algorithms are encapsulated in soft-
ware prozies. Each member of the team works closely
with its own proxy. The proxy handles all the routine
coordination tasks, freeing the agent to focus on spe-
cific domain level tasks. The proxy communicates with
the domain level agent (or robot or person) via an agent
specific, high level protocol. Adjustable autonomy rea-
soning is applied to each decision, allowing either the
agent or the proxy to make each coordination decision.
Typically, all decisions are made by the proxy on be-
half of agents or robots, but when the proxy is work-
ing with a person, key decisions can be transferred to
that person. The current version of the proxies is called
Machinetta and is a lightweight Java implementation
of the successful SOAR-based TEAMCORE proxies.
The proxies have been successfully tested in several
domains including coordination of UAVs, disaster re-
sponse, distributed sensor recharge and personal assis-
tant teams. The proxy code can be freely downloaded
from the web. The application dependent aspects of
the proxies, specifically the communication code and
the interface to the agents, are implemented as “plug-
gable” modules that can be easily changed for new do-
mains, thus improving the applicability of the proxies.

4.2. Centibots

The Centibots software makes an extensive use of
the Jini[13] architecture. Each robot and each key al-
gorithm is a network service that register, advertise
and interact independently of its physical location. We
have services like the map publisher which aggregates
data from the mappers and publishes a map for the
other robots, like the dispatcher which allocates task
to robots or even the user interface. The result is very
modular, scalable infrastructure. Each robot has its
own computer where it runs localization, navigation,
path planning and vision processing algorithms.

4.3. Cooperative Mediation

The SPAM protocol is implemented both within
simulation and as part of more complex agents de-
signed to work on sensor hardware. The protocol it-
self is composed of several finite state machines (FSMs)

that are written in Java. Each state in the FSM encap-
sulates a non-decomposable decision point within the
protocol. Transitions between states are event-driven
and allow to protocol to specify state transitions based
on time-outs, message traffic, specific execution condi-
tions, etc. This allows to protocol to be time and re-
source aware, modifying its behavior based on the cur-
rent environmental conditions.

SPAM is currently being considered for use in a
number of domains including real-time airspace decon-
fliction and the control of sensors for severe weather
tracking.

5. Key Unexpected Challenges

In this section we describe the challenges that were
encountered during development but were not expected
at the outset. Interestingly, each approach ran into dif-
ferent, unexpected problems, ranging from sharing in-
formation to controlling oscillations.

5.1. Machinetta and Teamwork

Two main unexpected challenges occurred during
the development of large teams. First, it is often the
case that some team member has information that may
be relevant to some other member of the team, but it
does not know to which other team member the infor-
mation is relevant. For example, in a disaster response
domain, the agent may get information about chemi-
cals stored in a particular factory, but not know which
fire fighters will be attending that fire. Encapsulating
knowledge of current activities to within a subteam re-
duces the ability of other team members to provide
potentially relevant information. Previous approaches,
including blackboards, advertisement mechanisms and
hierarchies, do not immediately solve this problem in
a manner that can effectively scale.

The second key problem is that there are many al-
gorithm parameters that interact with one another in
highly non-linear ways. Moreover, slightly different sit-
uations on the ground require substantially different
configuration of the algorithm parameters. Currently,
determining appropriate values for all parameters for a
given domain is as much art as science and typically re-
quires extensive experimentation. When the situation
changes significantly at runtime, an initially appropri-
ate configuration of algorithm parameters can end up
being poor. Techniques that allow the team to recon-
figure these parameters online is a major open prob-
lem.



5.2. Centibots challenges

The two main challenges we had to face are the
instability of the communications and the number of
goals to be assigned per agent. In this project, the com-
munication was coordinated assuming a very conser-
vative range for the wireless network. Unfortunately
we have encountered more than once part of buildings
where this conservative distance was not working. In
this case, any robot who enters this communication
dead zone will not be able to contact the centralized
dispatcher. Our solution was to have the dispatcher liv-
ing on robots close-by, which was a good improvement
but didn’t completely solve the problem. As a result,
we had to implement a low-level behavior where the
robot, after waiting a known timeout, will return to its
original starting position if it couldn’t contact the dis-
patcher. In this case, at least we would retrieve them.

The second challenge was to determine the number
of goals to assigned to a robot. There was no way to
know a priori how many robots would be part of the
mission, therefore a fair division of the number of goals
was not possible. We have seen in section 4.2 we have
shown that the most effective dispatching would re-
quire an assignment of several close-by goals, the key
question is how many. Since the number of robots as-
signed to the mission is unknown (robots assigned will
break and the commander may reassign others in the
middle of the mission), the solution we use is an empir-
ical function. The number of goals assigned vary (be-
tween 7 to 1) depending of the number of goals left
to assigned. At the end of each run we collect the
number of goals fulfilled by each robot and we collect
each ending time, if there is a large variation (mean-
ing some robots were under-utilized and others were
over-utilized) we vary the total number of goals to be
assigned.

5.3. Cooperative Mediation

Because the SPAM protocol operates in a local man-
ner, a condition known as oscillation can occur. Oscilla-
tion is a condition that is caused by repeated searching
the same parts of the search space because of the lim-
ited view that the agents maintain through the prob-
lem solving process.

We explored a method in which each mediator main-
tained a history of the sensor schedules that were being
mediated over whenever a session terminated. By do-
ing this, mediators were able determine if they have
previously been in a state which caused them to prop-
agate in the past. To stop the oscillation, the propa-
gating mediator lowered its solution quality to force it-

self to explore different areas of the solution space. It
should be noted that in certain cases oscillation was in-
correctly detected using this technique, which resulted
in having the mediator unnecessarily lower its objec-
tive level.

This technique is similar to that applied in [8], where
a nogood is annotated with the state of the agent stor-
ing it. Unfortunately, this technique does not work well
when complex interrelationships exist and are dynam-
ically changing. Because the problem changes contin-
uously, previously explored parts of the search space
need to be constantly revisited to ensure that an in-
valid solution has not recently become valid. Currently,
we allow the agents to enter potential oscillation, main-
taining no prior state other than objective levels from
session to session and rely on the environment to break
oscillations through the movement of the targets, asyn-
chrony of the communications, timeouts, etc.

6. Key Novel New Ideas

In this section we describe the new ideas that were
required specifically to scale up the number of agents
involved in the coordination. Specifically, we show the
ideas that were required to overcome weaknesses in the
principles as approaches were scaled from small num-
bers of agents to large numbers.

6.1. Machinetta and Teamwork

There are a variety of novel ideas in the Machinetta
proxies. To maintain cohesion and minimize conflicted
effort, the whole team is connected via a static, scale
free associates network[12]. As well as obligations to
communicate information to members of their dynam-
ically changing sub-team, an agent must keep its neigh-
bors in the associates network appraised of some key
information. The network allows most conflicted or du-
plicated efforts to be quickly and easily detected and
resolved. Movement of information around the team,
when team member(s) requiring the information are
not known in advance, also leverages the associates net-
work. Every time information is communicated, the
agent receiving the information updates a model of
where it might send other information, based on in-
formation received to date. Because of a phenomena
known as small worlds networks, information passed
around a network in this manner can be efficiently sent
to the agent(s) requiring the information.

Allocating roles in team oriented plans to best lever-
age the current skill set of the team is accomplished by
a novel algorithm called LA-DCOP|[3]. LA-DCOP ex-
tends distributed constraint optimization techniques in
several ways to make it appropriate for large, dynamic



teams. Most importantly, LA-DCOP uses probabilistic
models of the skills of the team and the current roles
to be filled to estimate the likely skill of an agent fill-
ing a role in a “good” allocation. To take advantage
of human coordination reasoning, when it is available,
we represent all coordination tasks explicitly as coordi-
nation roles and allow the proxy to meta-reason about
the coordination role[11]. For example, in a disaster re-
sponse domain, there may be a role for fighting some
particular fire that no fire fighter is able to fill, the prox-
ies can recognize this and send the role to some per-
son and allow that person to determine what action to
take.

6.2. Centibots

The hierarchical dispatching model offers two key
interesting qualities. On the positive side, the commu-
nication is minimal since the dispatcher is eavesdrop-
ping on the status message. Assuming the status mes-
sage is required then using a centralized dispatching
will outperform any distributed methods. The draw-
back is the need of communication between the team
of robots and the dispatcher. We assume that the dis-
patcher is a network service that reside physically any-
where on the network, the dispatcher can be running
on any team member and would only require local com-
munication. In this configuration, we could have a hier-
archy of dispatcher, each responsible for an area of the
map, using a sub team of robots. Each robot can al-
ready subscribe to several dispatchers. If a dispatcher
has completed all its goals, then it can release its as-
sets for other dispatchers to use.

6.3. Cooperative Mediation

The SPAM algorithm has several key features that
deal specifically with the question of scale. The first is
to limit the scope of the problems that the agents work
on. Although not a new idea, by restricting the context
that agents use to make decisions, their problem solv-
ing becomes more focused.

The second is to the use of conflict propagation and
dampening. When combined together, the effects of
making local changes travel a very short distance from
the source. This focuses of the problem solving effort
within the areas that have interdependencies that can
benefit the most.

SPAM also incorporates a number of resource-aware
mechanisms which prevent it over-utilizing communi-
cations. In particular, SPAM monitors the state of the
communications links between itself and other agents
and when it notices that one of the agents in the ses-

sion has become over-burdened, it is dropped from the
session. In fact, if the mediator notices that it has be-
come a communication hot-spot, then it avoids going
into session entirely.

7. Open Problems

In this section we describe the key open problems for
each of the approaches. As with the unexpected prob-
lems, each approach has different open problems. Im-
portantly, even though most of the problems appear to
be reasonably approach independent, e.g., traffic con-
trol in Centibots, neither of the other approaches has
specific solutions to that problem, suggesting that the
problems may be general ones.

7.1. Machinetta and Teamwork

Despite its successes, Machinetta has some criti-
cal limitations. Most critically, Machinetta relies on
a library of pre-defined team oriented plan templates.
While some constructs exist for expressing very limited
structure in the plans, these constructs are hard to use.
In practice, to write successful Machinetta plans, the
domain must be easily decomposable into simple, rela-
tively independent tasks. The ability to write and exe-
cute more complex plans is a pressing problem.

While the probabilistic heuristics used by Ma-
chinetta are typically very effective and efficient, oc-
casionally an unfortunate situation happens and the
resulting coordination is very poor. Sometimes the co-
ordination will be unsuccessful or expensive because
the situation is particularly hard to handle, but some-
times it will be that the particular heuristic being
used is unsuited to the specific situation. Criti-
cally, the agents themselves cannot distinguish be-
tween a domain situation that is difficult to handle
and a case where the coordination is failing. For ex-
ample, it is difficult for a team to distinguish between
reasonable role allocation due to a dynamic and chang-
ing domain and “thrashing” due to a heuristic not
being suited to the problem. While individual prob-
lems, such as thrashing, can be solved on an adhoc
basis, the general problem of having the team de-
tect that the coordination is failing is important
before deploying teams. If such a problem was de-
tected, the agents may be able to reconfigure their
algorithms to overcome the problem. However, as men-
tioned above, determining how to configure the algo-
rithms for a specific situation, is also an open prob-
lem.



7.2. Traffic Control in Centibots

Linked to the goal assignment, traffic control for sev-
eral dozen of robots in a small environment is a huge
challenge. The assignment should take into considera-
tion the schedule in which each robot will do their tasks
to prevent deadlocks. For a robot, a doorway is a very
narrow choke-point and only one robot can go through
at one time. When more than two robots try to en-
ter and exit the same room at the same time, you have
a conflict. Currently we are not managing this problem,
luck and local avoidance is how we solve it. We have
seen in our dozen of real life experimentation some con-
flict becoming literally traffic jam and blocking perma-
nently one access of the area. The only reasonable way
is to reason about the choke point as resources and

solve the conflict during the assignment using meth-
ods like SPAM.

7.3. Cooperative Mediation

The most interesting open questions for the SPAM
protocol deals with the when, why, and whom for ex-
tending the view of the mediators given different levels
of environmental dynamics and interdependency struc-
tures. Because the optimality and scalability of the pro-
tocol is so strongly tied to the not only the size, but the
characteristics of the subproblem that the mediators
centralize, a detailed study needs to be conducted in or-
der to understand the relationship between these two
competing factors. Some work has already been done
that preliminarily address these questions. For exam-
ple, the whom and why to link questions were in part
addressed in the texture measures work of Fox, Sadeh,
and Baycan [4]. In addition, recent work on phase tran-
sitions in CSPs [1, 2, 9] in part addresses the question
of when. It is clear that a great deal of work still needs
to be done.

8. Evaluation and Metrics

In this section, we describe the techniques for eval-
uating our algorithms and the metrics used to mea-
sure performance. All authors agree this is an imma-
ture and difficult science. Clearly, useful and compara-
ble metrics will need to be developed, if sensible com-
parison is to be performed.

8.1. Machinetta and Teamwork

Evaluating teamwork is a very difficult task. While
success at some particular domain-level task is clearly
a good sign, it is a very coarse measure of coordina-
tion ability and thus, it is only one aspect of our eval-

uation. To ensure that we are not exploiting some fea-
ture of the domain, we have endeavored to use at least
two distinct domains for testing. Typically it is infea-
sible to test head-to-head against another approach,
hence we are limited to varying parameters in the prox-
ies. For the larger teams, a single experiment takes on
the order of an hour, severely limiting the number of
runs that can be performed. Unfortunately, due to the
sheer size of the environment and the number of agents,
there tends to be high variation in performance, imply-
ing that many runs need to be performed to get statisti-
cally significant results. Even determining what to mea-
sure in an experiment is a difficult decision. We mea-
sure things like number of messages, number plans cre-
ated, roles executed and scalability, although it is not
clear how some of these numbers might be compared
to other algorithms. Typically, we measure global val-
ues, such as the overall number of messages rather than
local values such as the number of messages sent by a
particular agent.

Since there are not modeling techniques available
for mathematically analyzing the algorithms perfor-
mance, we have developed a series of simple simula-
tors that allow specific algorithms to be tested in iso-
lation and very quickly. These simulators typically also
allow comparison against some other algorithms. Cur-
rently we have simple simulators for role allocation,
sub-team formation and information sharing. Perform-
ing very large numbers of experiments with these sim-
ulators we are able to understand enough about the
behavior of the algorithms to perform much more fo-
cused experimentation with the complete Machinetta
software.

8.2. Centibots evaluation

This project was driven by the challenge problem
set by DARPA and in this sense the evaluation was in-
dependently done by a DARPA team that has mea-
sured the behaviors of the Centibots software to solve
the search and rescue mission not purely the coordina-
tion. For a week in January 2004, the Centibots were
tested at a 650m? building in Ft. A.P. Hill, Virginia.
We were tested under controlled conditions, with a sin-
gle operator in charge of the robot team.

For searching, the evaluation criteria were time to lo-
cate OOI(s), positional accuracy, and false detections.
There were four evaluation runs, and the results are
shown in the Table 1. They show that the team was
highly effective in finding the object and setting up a
guard perimeter. Note that we used very simple visual
detection hardware and algorithms, since we had lim-
ited computational resources on the robots — false and



missed detections were a failure of these algorithms,
rather than the spatial reasoning and dispatching pro-
cesses.

The results were not focused on the coordination
portion but measured the overall performance of the
system to solve the search and rescue mission. As ex-
plained in the next section, extracting meaningful data
from such system is not an easy task.

8.3. Cooperative Mediation

The SPAM protocol was implemented and tested
within a working sensor network but, most the devel-
opment and analysis of the protocol has been done in
simulation.

The primary metrics used to measure SPAM were
the number of targets being effectively tracked during
a fixed period of time, the number of messages being
used per agent, and the social utility being obtained.
For this problem, social utility is defined as the sum
of the individual utilities for each target with penalties
assigned for ignoring objects.

We implemented two alternative methods for com-
parison. The first, we called greedy, involved have each
agent request all possible sensing resources to track
its target potentially overlapping with the requests of
other agents. The utility calculation treated these over-
laps as subdivided sensor time for each of the tracks.
We also implemented algorithms to calculate the op-
timal utility and optimal number of tracks. Because
these algorithms took so long to find the optimal so-
lution however, we were forced to restrict the size of
the problems to under 10 targets. Overall, SPAM per-
formed nearly optimally under various amounts of re-
source contention. Independent analysis of the proto-
col was also conducted in [14] which verified our find-
ings.

9. Testing and Debugging

In this section we describe some of the practical is-
sues related to testing and debugging the approaches.
This area is perhaps the most unexpectedly difficult
area, despite the sophisticated basic approaches and
the relatively straightforward algorithms used, debug-
ging always degenerated into a process of poring over
logfiles, which is clearly inappropriate if such systems
are to be widely used.

9.1. Machinetta and Teamwork

Testing and debugging Machinetta teams is ex-
tremely difficult. Probabilistic reasoning and complex,

1 Caused by a misconfigured tracking filter, fixed before the next
run.

dynamic domains lead to occasional errors that are
very hard to reproduce or track down. We have ex-
tensive logging facilities that record all the decisions
the proxies make, but without tool support determin-
ing why something failed can be extremely difficult and
time-consuming. Simple simulators play a role in allow-
ing extensive debugging of protocols in a simplified en-
vironment, but the benefit is limited. We believe, de-
velopment tools in general, and testing and debugging
support specifically, may be the biggest impediment to
the deployment of even larger teams.

9.2. Centibots

Debugging is especially difficult because overall the
system can appear to be behaving correctly, although
it is not. In one experiment, we had 66 robots in use
at one time producing over 1 megabyte of logs and de-
bug information per minute. We ran our experiment
for more than 2 hours. In Centibots we have a very so-
phisticated logging mechanism that write every events,
messages and informations in a SQL database. Using
the database is possible to replay entirely the exper-
imentation. We also built some SQL script that will
extract statistics like average running time per robot,
average traveling time per robot, number of goals ful-
filled per robot that were helpful to debug. Unless the
system is really performing strangely noticing the pres-
ence bugs is extremely hard.

9.3. Cooperative Mediation

Even with specialized simulation environments, test-
ing and debugging coordination protocols that operate
in the large is very difficult. Even on reasonably small
problems involving 10’s of agents, non-critical problems
often go unnoticed for long periods of time. We encoun-
tered a number of problems trying to debug and test
SPAM.

In the end, countless hours were spent pouring over
many, large log files, adding additional debugging text,
rerunning, etc. We did develop several graphical dis-
plays that helped to identify pathologies (or emergent
behaviors) that could only be witnessed by viewing the
system’s performance from a bird’s eye perspective. It’s
fairly clear that a combination of macro and micro de-
bugging methods are essential to developing systems of
this type.

10. Conclusion

Applications that involved hundreds or thousands of
agents are starting to appear as working prototype sys-
tems. This paper presents three such systems, each us-
ing a novel approach to deal with problems that oc-



Run Mapping Time Map Search Search Time Position Error /
Area Robots False Pos Topo Error
1 22 min 96% 66 34 min / 0 11 cm / none
2 26 min 97% 55 76 min / 1 24 cm / none
3 17 min (2 robots) | 95% 43 16 min / 0 20 cm / none
4 19 min (2 robots) | 96% 42 Missed / 2 NA
Avg. 21 min 96% 51 30 min / 0.75 14 cm / none

Table 1. Results of the 4 evaluation runs.

cur as coordination is scaled up. While the approaches
has some similarities, particularly the use of dynamic,
partial centralization, they also have significant differ-
ences. The common problems encountered by the three
approaches, provide something of a look at the key
open problems for scaling coordination. One surpris-
ing, key issue was the critical need for new testing and
debugging techniques.
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