Soft-Real Time, Cooper ative Negotiation for Distributed Resource Allocation

Roger Mailler, Regis Vincent, Victor L esser

Jiaying Shen
University of Massachusetts
Department of Computer Science
Ambherst, MA 01003

{mailler, vincent, lesser, jyshen}@cs.umass.edu

Abstract

In this paper we describe an approach to cooperative negoti-
ation that uses a combination of techniques to allow our dis-
tributed resource allocation negotiation protocol to conform
to soft real time constraints while obtaining reasonable solu-
tion quality. Amongst these techniques are the ability to re-
solve conflict in the allocation of resources on multiple levels,
temporarily binding and incrementally improving the qual-
ity of the solution (a form of distributed hill climbing) given
time constraints providing for an anytime characteristic, and
restricting the context of negotiations to only use local infor-
mation with extended meta-level information to generate and
propose possible solutions to the problem. We describe the
implementation of a simulator for the protocol and experi-
mental results.

Keywords: Multi-Agent Systems, Negotiation

I ntroduction

Resource allocation is a classical problem that has been stud-
ied for years by Multi-agent Systems researchers (Smith
1980). The reasons for this is that resource allocation is
difficult and time consuming to do in a centralized manner
when the environment is dynamic and the time or cost of
centralizing the information needed to generate a solution
is considerable. Negotiation, a form of distributed search
(Moehlman, Lesser, & Buteau 1992), has been viewed as a
viable alternative to handling this complex search through
a solution space that includes multi-linked interacting sub-
problems.(Conry et al. 1991) Researchers in this do-
main have focused primarily on resource allocation prob-
lems formulated as distributed constraint satisfaction prob-
lems('Yokoo 1998). In this work, we extend this classic for-
mulation in two ways. First, we introduce dynamic soft-real
time constraints which requires the negotiation protocol to
adapt to the available time left. This estimation is deter-
mined dynamically as a result of emerging environmental
conditions. Second, we reformulate the resource allocation
problem as an optimization problem in which there are a
range of acceptable solutions with varying preferences.

In this paper, we present a negotiation protocol that ex-
ploits the fact that the agents within the system are coopera-
tive and have the ability to resolve conflicts internally. This
means that conflict can be left unresolved as a result of ne-
gotiation, but the agent faced with the conflict must resolve

Tim Middlekoop
University of Massachusetts
Department of Mechanical and
Industrial Engineering
Amherst, MA 01003
mtim@farm.ecs.umass.edu

it based on its local perspective. We are not making the as-
sumption that these internally based solutions obtain the best
possible results, but that they are capable of providing some
measure of utility while a better solution is obtained. The
ability to create temporary solutions and incrementally im-
prove them both locally and globally forms a distributed hill
climbing search through the solution space that optimizes
based on the demands of a soft real-time environment. In
this context, soft real time should be interpreted as soft dead-
line, which means that finishing a task a bit early or late does
not result in detrimental effects.

Our negotiation protocol is based on three major princi-
ples which allow it to accomplish the previously mentioned
goals. First, we limit the context of the negotiation such
that allocation problems are always resolved locally with
only limited information about interacting subproblems be-
ing considered. After local negotiation is finished, each of
the agents can choose to propagate the negotiation in an
attempt to resolve conflict that may have been created as
a result of the originating negotiation. Viewing this activ-
ity from the perspective of the global problem, each of the
agents that propagates the negotiation is in essence locally
optimizing in an attempt to reach a global optimum which is
form of distributed hill climbing. Second, local negotiations
are conducted at multiple levels of abstraction. Agents can
choose to resolve the conflict at different granularities and
if they are unable to resolve it at one level, because of lim-
ited time, can leave it to be handled at lower levels. Lastly,
we have designed the negotiation protocol to exploit the pre-
viously mentioned techniques to have an anytime flavor. By
having the ability to take solutions that may have unresolved
conflict and still obtain some quality, we can actually bind
temporary solutions while attempting to resolve the conflicts
at a lower level. Clearly in a dynamic domain this has the
ability to “buy some time” so that a good solution can be ob-
tained while not completely abandoning processing that has
some value in the mean time.

In the remaining sections of this paper, we introduce a
distributed monitoring and tracking application which mo-
tivated the development of our protocol. Next, we de-
scribe the Scalable Protocol for Anytime Multi-level nego-
tiation(SPAM). In the results section of the paper, we will
describe an abstract model of the task environment that was
used to develop and test SPAM in addition to some of the

Track

[=[=]=]=

Sensor Level

Manager
View

T1 T1 T1 | TUT2| T1

T1 ‘

T1

Schedule Abrstraction

T1
Level

T1 T1 | TUT2| TUT2

Sensor
View

Track | Track
Head 1

Setup
Head 2

Resource L evel

Head 1 Head2 | Head2

Track ‘ Track ‘

Figure 1: The three level of abstraction used to negotiate when tracking a target. The top level shows track manager T1’s sensor
level abstraction wanting to use sensors S1, S2, S3, and S4. All conflict could not be resolved at a higher level so sensors S2
and S4 are left to resolve the conflict between T1 and T2 at the next lower level. Sensor S4 chooses to resolve its conflict at the
resource level by squeezing in two track tasks from T1 followed by two from T2.

early results we have obtained. The last section of the paper
will present conclusions and future directions for this work.

Domain

The problem that we are exploring is that of allocating sen-
sor time to the task of tracking targets. In this problem,
multiple sensors platforms are distributed with varying ori-
entations throughout a real time environment (Horling et
al. 2001). These platforms have three radar based sen-
sors each with a viewable 120 degree arc, which are capa-
ble of taking amplitude (measuring distance from the plat-
form) and/or frequency (measuring the relative velocity of
the target) measurements. In order to track a target, and
therefore obtain utility, at least three of the sensor platforms
must take a coordinated measurement of the target which is
then fused to triangulate the target’s position. Having more
sensor heads, taking measurements more often, or having
tighter relative synchronization of the measurements yields
better overall quality in estimating the targets location and a
more optimal result. The sensor platforms are restricted to
only taking measurements from one sensor head at a time
which is the key restriction forming the basis of the resource
allocation problem.

Each of the sensor platforms has some limited computa-
tional ability and in our system is populated by a single agent
which may take on multiple organizational roles in addition
to managing its local sensor resources. Each of the agents
in the system maintain a high degree of local autonomy, be-
ing able to make trade-off decisions about competing tasks
using our Soft Real Time Architecture (SRTA pronounced
Serta)(Vincent et al. 2001).

One notable role that an agent may take on is that of track
manager. As a track manager, the agent becomes responsible
for determining which sensor platforms and which sensor
heads are needed now and in the future for tracking a single
target. Track managers also act to fuse the measurements
taken from the individual sensor platforms into a single lo-
cation. Because of this, track managers act as the focal point
of negotiation that take place as part of solving any resource
contention that may arise while tracking the target.

To lend to the real time characteristics of this problem,
targets continuously moves through the environment as a
scenario unfolds. This means that during the course of a
run, targets move from the viewable range of some sensors
to others. This, of course, means the actual allocation prob-

lem changes in structure during the course of a run as the
track managers alter their resource requirements due to the
discovery of new targets and the movement of existing ones.

Contention is introduced when more than one target en-
ters the viewable range of a single sensor platform. Because
of the time it takes to perform a measurement and the one
measurement at a time restriction, track managers have to
come to some sort of agreement about how to split the re-
source while still being able to track their target. This lo-
cal agreement can have profound global implications, how-
ever, what if as part of the local agreement one track man-
ager completely relinquished control of a sensor platform
and takes another instead? This may introduce contention
with another track manager which could propagate through
the entire environment.

Abstraction

The actual resource allocation problem that is created by this
environment can be view at different levels of abstraction
(see figure 1). At the highest level is the sensor level. This
level is maintained by the individual track managers and
strictly focuses on which sensors are needed and desired to
track the target. Solutions created at this level ignore the de-
tails of the individual sensors’ schedules in making choices
of how to allocate resources and simply choose based on
the track managers internal requirements. Of course, since
these solutions are created without information about what
the sensors are actually doing, they are almost never free of
conflict.

The next level of abstraction is the schedule abstract level.
At this level, tasks can be viewed as periodic (which track-
ing is) and resource schedules can be viewed at a course slot
based granularity (all measurements take approximately the
same amount of time). Within the sensors platforms, our
agents maintain the schedule abstraction level by using the
Periodic Task Controller(PTC). The PTC is a slot based, pe-
riodic scheduler that feeds SRTA with tasks at times that are
appropriate to its schedule. The PTC is capable of resolving
conflict by using one of several techniques including shifting
slot boundaries, selecting tasks to execute based on impor-
tance level, or temporarily shifting a task to empty slots in
its schedule. It is easy to see that if a negotiation ends in un-
resolved conflict, which we call a co-binding, that the PTC
has some capability to resolve the conflict. For instance, if
two track managers T1 and T2 are in conflict over sensors

15+

Utility
N

05

L L L
2 3 4 5 6
Sensors

Figure 2: Utility of taking a single measurement from T,
Sensors.

S4, they may, due to time constraints, be unable to resolve
the issue and may leave one of the slots of S4 co-bound.
This means that when the PTC in S4 attempts to schedule
that slot, it is forced to make the local determination as to
which of the track managers gets the slot for that period.

At the lowest level, the resource level, all of the minute
details of task execution and resource usage within the sen-
sors is scheduled using SRTA. If scheduling conflicts reach
this level of abstraction the Partial Order Scheduler(POS), a
component of SRTA, can shift the task execution to try to
eliminate any remaining conflict. Conflicts at this level can
be created because the sensor is working on a non-tracking
task that is not explicitly reasoned about at the schedule ab-
straction level.

During the course of negotiation, due to time constraints,
the track manager can choose to operate at either the sensor
or schedule abstraction level of negotiation. Leaving unre-
solved conflict at these levels of abstraction, though, intro-
duces a great deal of uncertainty about the exact nature of
the final solution. The deeper the track manager is able to
go and resolve conflict, the greater the guarantee about the
solution quality obtained in the end.

Utility

To help clarify what our protocol is attempting to achieve
it helps to see how utility is measured in the tracking do-
main. As mentioned previously, tracking involves coordi-
nating measurements from three or more sensors which are
then fused together to form an estimated position of the tar-
get. Increasing the number of sensors improves the quality
of the estimate by the function given in figure 2. Increasing
the measurements taken in a given period of time yields a
linear increase in the overall quality of the track.

If we say that T, is the number of sensors that took mea-
surements leading to the positional estimate and T is the
number of times they are taken in a given period of the ab-
stract periodic schedule, then we can quantify this relation-
ship by the following formula:

Util(Track) = Util(T,) x Ts

In fact, track managers within the system use this mea-
surement as the basis for the objective levels assigned to a
track. We will often denote the objective level as D, x D,
denoting the number for agents desired for the number of
slots in the schedule abstraction level. For example, a track
manager may wish to have three agents for two slots of the
schedule abstraction level denoted 3 x 2. For this domain, we
typically set the number of slots at the schedule abstraction

Local with

Information None Local Only Meta-level

Stage 0 Stage 1 Stage 2

Level Sensor Schedule Abstraction

Figure 3: The three stages of SPAM showing the informa-
tion that is available and the level of abstraction the track
manager uses in generating possible solutions.

level to match the number of sensor heads on each platform
which is three.

Looking at this utility function it should be noted that
co-binding can have a profound effect on the quality of a
track. In fact, because the sensors make the decision about
which track to satisfy on each period of their periodic sched-
ule, having more than one sensor bound for a particular slot
causes a near random occurrence of synchronization. For
example, if a track manager T1 uses sensors S1, S2, S3, and
S4 each for one slot of their schedule and sensors S2 and S4
are co-bound on that slot with one other track manager, it is
easy to see that T1 has a 25 percent chance of getting four
sensors for the slot and a 50 percent chance of getting three
sensors for that slot during any given period. This relation-
ship can be seen in the following formula. Here S is the set
of slots in the abstract schedule level and 777 is the number
of actual measurements that are taken during a given slot s .

Util(Track) = > Y Prob(T{ = a)Util(T})
s€ES a=3

Finally, the global utility can be calculate from the fol-
lowing formula which just says that the overall utility is the
sum of the utilities for the individual tracks (one track per

target).
Utility = >

Track€Targets

Util(Track)

Protocol

To meet the objectives of the environment and to incorporate
the techniques that were discussed in the previous sections,
the Scalable Protocol for Anytime Multi-level (SPAM) ne-
gotiation is divided into three stages. As the protocol transi-
tions from stage to stage, the agent acting as the track man-
ager gains more context information and therefore is able to
improve the quality of its overall decision. After each stage
or at anytime during stage 2, the track manager can choose to
stop the protocol and is ensured to have a solution albeit not
necessarily a good one (not optimal and not necessarily con-
flict free). Figure 3 shows the amount of information that the
track manager has at each stage of the protocol. The figure
shows that as the amount of information obtained increases,
the track manager is able to shift its negotiation abstraction
level. This means that if the track manager chooses to termi-
nate the protocol before stage 1, it acts at the sensor level of
abstraction (deciding on only which sensors it desires) and
leaves the decision of how to handle the actual scheduling
to the sensors themselves as was discussed in the previous
sections.

Rank order the sensors
based on suitablity to
tracking the target

i

Set aninitial objective
level Dg(DS

!

Do we have enough time Choose the best A
to communicate to gain |NO_| sensorsandbindthem | Finish
local infomration? for Sdlots

Vs

Goto Stage 1

Figure 4: Stage 0 of the SPAM negotiation protocol. Termi-
nating at this stage forces the sensors to resolve unhandled
conflicts leading to potential lower solution quality.

Stage O

On target detection, stage O (see figure 4) of the negotiation
protocol is activated. Stage 0 is primarily responsible for
viewing the problem at the sensor level of abstraction. Be-
cause of this, each of the sensors that have the potential to
track the target are evaluated and ordered. In this stage, the
track manager also assigns an initial objective level to the
track. Objective levels in general are derived from the track
managers objective function. This function, which may be
different for every track manager, defines the order of the
objective levels, the initial objective level for a track, and a
lower bound of the objective level before giving up on an un-
conflicted solution. Changing these parameters can alter the
characteristics of the search process to make it faster (start
at a lower objective level) or better (start at the best possible
objective level).

The actual activity of choosing a solution at this level of
abstraction is primarily domain specific. For example in the
tracking domain, criteria for solution choice might be the
relative proximity of the target to the sensor, whether the
target is moving toward or away from the sensor, etc. The
solution choice, however, is based on internal information
only.

As you can see from figure 4 the protocol maintains its
anytime characteristic by determining whether enough time
exists to go on to the next stage and down to the next level of
abstraction. If time is limited then the negotiation session is
terminated leaving it at a high level of abstraction. Any re-
sulting conflict is left to be resolved by the agents that reside
in the sensor platforms.

If enough time is available, the track manager can tran-
sition to stage 1 of the protocol. It should be noted that
although we don’t bind a temporary solution at the sensor
level of abstraction, it doesn’t mean we couldn’t. By gain-
ing some abstract schedule information from the sensor plat-
forms in the beginning of stage 1, we are able to bind a con-
siderably better solution temporarily and avoid wasting a set
of bind messages to the sensor platforms.

Schedule

Request schedules Request Messages

from all appropriate
sensors

K Generate the set of

solutions given the
schedules

Schedule
Reply Messages

Are there any solutions | yes C_ht‘:’tf l:;g)l ution
with the

that have no conflict? [——= -
combination of

sensors and bind it

—=Finish

$ No
Choose the solution
which both minimizes
conflict and has the
best combination of
sensors

¢ No
Timeto start stage 2? ~Finish

$ Yes
Goto Stage 2

Figure 5: Stage 1 of the SPAM negotiation protocol attempts
to resolve conflict locally at the schedule abstraction level.

Stage 1

Stage 1 of the SPAM protocol begins by obtaining abstract
schedule information from the PTC in each of the sensor
agents. This information is used in two ways. First, if a so-
lution at the current objective level can be obtained, the track
manager can bind the solution and avoid a more costly track
manager-to-track manager negotiation process. We discuss
how possible solutions are generated in a later section. Sec-
ond, if a solution cannot be found at the current objective
level, the track manager has enough information to bind a
good solution which minimizes the amount of unresolved
conflict and maximized the track manager’s local objective
level. Like stage 0, the negotiation session can be termi-
nated at the end of stage 1 if enough time is not available to
continue.

Solutions in stage 1 are only considered at the original
objective level set forth in stage 0. The reason for this is
that if the track manager were to lower its objective func-
tion without considering additional information then in all
likelihood it would end up with a utility that was lower than
it should have been. For example, consider the following
scenario. Track manager T2 is assigned the role of track-
ing a target M2. T2 determines during stage O that it wishes
to have sensors S1, S2, S3, and S4 to track the target and
assigns an initial objective level of 4 x 3. After obtaining
the abstract schedule of all four sensors the track manager
finds that this solution is not possible because manager T1
has all three slots of sensor S4 assigned. Now, as the pro-
tocol stands now, T2 would bind a temporary solution and
move into stage 2 to begin negotiation with T1. Clearly if
T2 had lowered its objective function to 3 x 3 a solution (S1,
S2, S3) with no conflict could have been obtained without
expending time by going into stage 2. From a utility per-
spective, say that the other track manager, T1, was actively
using a 5 x 3 objective level in tracking its target. If T2 ac-

Mediating Track Manager

Isthisan oscillation? 1O

Lower my solution
quality to stop it.

Conflicting Track Managers

Send metarlevel
| information about
7 | thetrack

-
-

4 -

Evaluate the solution
| based on number

Request meta-level P . - 7’ of conflicts created
information fromthe ¢* P . 4
conflicting managers - -’ -

Phe L’ Order the solutions

* s and send the ordering
Generate the legal back
solutions given the Solutions | Send pm'a 5?' ution —
current objective set to conflicting -
levels track managers _- e
¢ No Solutions e
- "

Lower the objective e Enact the solution
level of one track . - . »| areed upon
manager - -

Was conflict conflict | o

Choose aglobally P -, created by this —= Finish
consistent solution [~ Pid solution?
from the orderings s

< Yes

I .
Send the solution to Phe Propagate the
each track manager ~ [* negotiation

Finish

Figure 6: Stage 2 of the SPAM negotiation protocol resolves
all local conflict at the schedule abstraction level through
negotiation with conflicting track managers.

cepts a 3 x 3 then the global utility would be around 8.2.
If, however, T2 co-binds, while negotiating, then both man-
agers obtain a 4 x 3 configuration with a global utility of
about 8.5. Although the difference seems minimal, our be-
lief is that in order to maintain the hill climbing nature of
the search, agents must always try to locally maximize their
utility until such a time where it is determined that to do so
actually harms the global utility.

Stage 2

Stage 2, the final stage of SPAM, is the heart of the nego-
tiation protocol (See figure 6). Stage 2 attempts to resolve
all local conflict that a track manager has by elevating the
negotiation to the track managers that are in direct conflict
over the desired resources. To do this, the originating track
manager takes the role of the negotiation mediator for the
local conflict (multiple negotiations can occur in parallel in
the environment). As the mediator, it becomes responsible
for gathering all of the information needed to generate al-
ternative solutions, generating possible solutions which may
involve changes to the objective levels of the managers in-
volved, and finally choosing a solution to apply to the prob-
lem. Because the solutions are generated without full global
information, however, the final solution may lead to newly
introduced non-local conflict. If this occurs, each of the
track managers can choose to propagate the negotiation in
order to resolve this conflict if they have the time. So, what
started out as a new target or resource requirement, may lead
to the negotiation propagating across the problem landscape.

Stage 2 starts in the oscillation detection phase. Oscilla-
tion occurs because, as previously mentioned, conflicts are
resolved locally without regard to the global context. For

example, say that track manager T1 originates a negotiation
with track manager T2. In addition let’s say that T2 had pre-
viously resolved a conflict with manager T3, that terminated
with neither T2 or T3 having unresolved conflict. Now when
T1 negotiates with T2, T1 in the end gets a locally uncon-
flicted solution, but in order for that to occur, T2 ended up in
conflict with T3. It is possible that when T2 propagates the
negotiation, that the original conflict between T1 and T2 is
reintroduced leading to an oscillation.

To prevent this from happening, each track manager main-
tains a history of the sensor schedules that are being negoti-
ated over whenever a negotiation terminates. By doing this,
managers are able determine if they have previously been in
a state which caused them to propagate a negotiation in the
past. To stop the oscillation, the propagating manager low-
ers its objective level to force itself to explore different areas
of the solution space. It should be noted that in certain cases
oscillation may be incorrectly detected using this technique
which can result in having the track manager unnecessarily
lower its objective level.

After the mediator concludes the oscillation detection
phase, it begins the solution generation phase by requesting
meta-level information from all of the track managers that
are involved in the resource conflict. The information that
is returned includes the current objective level that the track
manager is using, the number of sensors which could possi-
bly track the target, the names of the sensors that are in direct
conflict with the mediator, and any additional conflicts that
the manager has. Using this information, the mediator can
begin to generate possible solutions to the problem. As you
can see in figure 6, the mediator enters a loop that involves
attempting to generate solutions followed by lowering one
of the track manager’s objective levels. This loop is termi-
nated under one of two conditions. First, if given the current
objective levels for each of the track mangers, a set of uncon-
flicted solutions is available (the next section explains how
solutions are generated), the negotiation enters the solution
evaluation phase. Second, the objective levels of the track
managers cannot be lowered any further. Under this condi-
tion, the negotiation session is terminated and the mediator
takes a solution at the lowest objective level that minimizes
the resulting conflict conceding that it cannot find an uncon-
flicted solution.

During the solution evaluation phase, the mediator sends
each of the track managers the set of possible alternative
solutions for the sensors that are in conflict between the me-
diator and the track manager. The track manager, using this
information and the proposed objective level, can then de-
termine what solutions, if any, are acceptable. The evalua-
tion phase ends in having an order assigned for the solutions
from each of the track managers. The mediator can then
choose what overall solution to apply by choosing the high-
est ranked solution from each of the managers which leads
to a consistent solution. The order by which each manager
gets picked is determined by the amount of additional con-
flict the track manager has. For example, say T1, T2, and
T3 were in negotiation and T1 was acting as the mediator.
When T2 and T3 return their meta-level information, it is
determined that T3 has external conflict for two of its possi-

ble sensors which are not in direct conflict with T1. During
the solution evaluation phase, T1 will pick a consistent so-
lution by choosing T3’s highest ranked solution, then T2’s
highest ranked solution that is consistent with T3’s choice,
and finally the solution that applies to itself. By allowing T3
first choice, it improves the possibility that T3 will not have
to propagate the negotiation because it may end up with an
unconflicted solution.

The next phase of the protocol is the solution implemen-
tation phase. Here, the mediator sends the results to each of
the track managers, who in turn implement their solutions.
In addition, the state of the sensors is stored for future os-
cillation detection. At this point, the track managers can
determine if the solution that has been selected leads to new
conflict. As it currently stands any track manager that has
unresolved conflict, will propagate the negotiation. In future
versions, it is our hope that utility and not conflicts will form
the basis for determining when to propagate.

Generating Solutions

Generating potential solutions for the domain described ear-
lier involves taking the limited information that was pro-
vided through communications with the conflicting track
managers and assuming that the sensors which are not in
direct conflict, are freely available. In addition, because
the track manager that is generating potential solutions only
knows about the sensors which are in direct conflict, it only
creates and poses solutions for those sensors. The formula
below gives the basic form for how solutions are generated
for a single track manager. Here, A, is the number of slots
that is available in the schedule abstraction layer, D, is the
number of slots that are desired based on the objective level
for the track manager, A, is the number of sensors available
to track the target (those that can see it), D, is the number
of sensors desired in the objective function, and finally C,
is the number of sensors under direct consideration because
they are conflicting.

D,
min(Ca,Da)

. A Co
Solutions = (D,) Z (;)
i=maz(0,D,—Aa+Ca)

As can be seen by this formula, every combination of slots
that meets the objective level is created and for each of the
slots, every combination of the conflicted sensors is gener-
ated such that the track manager has the capability of meet-
ing its objective level using the sensors that are available.
For instance, let’s say that a track manager has four sensors
S1, S2, S3, and S4 available to it. The track manager has
a current objective level of 3 x 2 and sensors S2 and S3
are under conflict. The generation process would create the

;’ combinations of slot possibilities and then for each

possible slot, it would generate the combination of sensors
such that three sensors could be obtained. The only possible
sensor combinations in this scenario would be that the track
manager gets either S2 or S3 (assuming that the manager
will take the other two available sensors) or it gets S2 and
S3 (assuming it only takes one of the other two). Therefore,
a total of 27 possible solutions would be generated.

It is interesting to note that we use this same formula for
generating local solutions in stage 0 and 1 of the protocol.
This special case generation is actually done by simple set-
ting C, = A,. The formula above, in this case reduces to

D
. Ag A, ¢
Solutions = (D,) (D,)

We can also generate solutions when there are number
of pre-existing constraints on the use of certain slot/sensor
combinations. Simply by calculating the number of avail-
able sensors for each of the slots and using this as a basis for
determining which slots can still be used we can reduce the
number of possible solutions considerably.

Using this ability, we are able to generate potential solu-
tions for the track managers in stage 2. By ordering the track
managers based on their external constraints we can gener-
ate solutions for them one at a time using the results from
higher precedence track managers as constraints for lower
precedence ones. For example, three track managers T1, T2,
and T3 are in conflict and T1 is acting as mediator. In addi-
tion, say that T2 has two conflicts and T3 has one conflict.
When the potential solutions are generated, T1 generates so-
lutions for manager T2 first. T1 then uses the results from
this as constraints on the creation of solutions for T3. The
resulting solutions (now with solutions for T2 and T3) are
used as constraints for generating the solutions for T1.

This process forms the basis of a search for solutions to
the local conflict. You can view this as a tree based search
where the top level of the tree is the set of possible solutions
for the most constrained track manager. Each of the nodes at
this level may or may not have a number of children which
are the solutions available to the second most constrained
track manager and so on. The lowest level of the tree is the
set of solutions available to the mediating track manager,
who never has external conflict. Only branches of the tree
that have leaf nodes at the mediating track manager level
are considered as complete and are passed to the other track
managers to rank. If there are no solutions at the lowest
level, then the problem is considered over constrained.

To evaluate the SPAM protocol, we developed a simulator
that uses a model of the tracking environment described ear-
lier in the paper (see figure 7). In this simulator, we concen-
trated on evaluating primarily stage 1 and 2 of the protocol.
To do this, the simulation was constructed using two major
pieces, the environmental simulator and the track managers
themselves. The environmental simulator manages the state
of the sensors, spawns the track managers, introduces new
targets, and manages propagation requests from the track
managers. The track managers, which are defined by a set
of sensors that they desire once they are given a target, han-
dle any incoming negotiation requests from other track man-
agers, spawn new negotiations when assigned a target, and
request to be placed on the propagation list when they have
unresolved conflict.

Using the environment in figure 7, we ran every possible
configuration of targets and every possible order of target in-
troduction in order to test the convergence, communication
and, utility properties of the algorithm. In this environment,
that equates to 9! = 362,880 tests.

-
-

-
=
5
e

s13 s14 si5 s16
N N

Figure 7: The environmental layout used for testing the
SPAM protocol. Track managers were defined by the sen-
sors they needed to track targets in their region. In this
figure, circles represent sensors, triangles represent targets
and squares represent track manager regions.

Results

We have done some preliminary analysis of the results which
can be seen in the graphs in figure 8. These graphs show the
average number of propagations and communications that
occur at various degrees of difficulty (measured by the num-
ber of targets in the environment). As you can see, the SPAM
protocol, when going from 0 to 9 targets, converges on a
solution in an average of 18 discrete negotiation sessions
which includes the 9 original local negotiations that take
place due to target introduction. In addition, although not
included in the graphs, on average each track manager ob-
tains a local objective level of better than 3 x 1 and receives
a utility of approximately 3.61. On average, the overall so-
lution has less than 1 unresolved conflict. Communication
cost is dominated by track manager to sensor communica-
tions. On average to complete a 9 target problem, it takes
163 sensor schedule requests and 155 bind messages. These
numbers may appear large, but considering that the activity
is being done in parallel, the bind message counts include
the temporary bind messages sent out at the end of stage 1,
and that schedule requests occur in several place during the
protocol, these numbers seem very reasonable.

Conclusion and Future Directions

In this paper, we have described the SPAM protocol which
was built to solve coordinated resource allocation problems
in a soft-real time environment. The protocol exploits the
fact that agents within the environment are both cooperative
and autonomous and employs a number of techniques to op-
erate in highly dynamic environments.

Much work remains to be done on this protocol. Most im-
portantly, work needs to be done on adapting the protocol to
work in other domains. In addition, we’d like to explore the
protocol from a more formal perspective and try to obtain
provable bounds on the utility obtained and the time to con-
vergence under different time constraints and levels of sub-
problem interaction. Finally, we plan to migrate the protocol
into the tracking environment described in the paper which
is based on actual hardware. In this way, we can obtain em-
pirical evidence that the protocol can meet the demands of a
soft-real time, uncertain, dynamic environment.

Negaiaions Commuicafions
2 0 18“ Bind Messages
18 160 .
16 140. P4
u 120 /
%S 100 //
B B 28 Z
¢ —
4 | 4 7 4
9 20
0 n 1 1 1 1 1 1 1 1

1234567189
Problem Size

123456789

Problem Size

Figure 8: Results of testing SPAM in the scenario in figure
7. These graphs represent the averages over 362,880 runs.

Acknowledgments

The effort represented in this paper has been sponsored by
the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-99-2-
0525 and the National Science Foundation under grant num-
ber 11S-9812755. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), Air Force Research
Laboratory, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon.

Thanks to Sun Microsystems for donating the Enterprise
3500 system under their Academic Equipment Award Pro-
gram #EDUD-7824-000438-US, that was used to conduct
the test runs of our protocol presented in this paper.

References

Conry, S. E.; Kuwabara, K.; Lesser, V. R.; and Meyer, R. A.
1991. Multistage negotiation for distributed constraint sat-
isfaction. IEEE Transactions on Systems, Man, and Cyber-
netics 21(6).

Horling, B.; Vincent, R.; Mailler, R.; Shen, J.; Becker, R.;
Rawlins, K.; and Lesser, V. 2001. Distributed sensor net-
work for real time tracking. In Proceedings of the Fifth In-
ternational Conference on Autonomous Agents, 417-424.
Moehlman, T.; Lesser, V.; and Buteau, B. 1992. Decentral-
ized negotiation: An approach to the distributed planning
problem. Group Decision and Negotiation 1(2):161-192.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Transctions on Computers 29(12):1104-1113.
Vincent, R.; Horling, B.; Lesser, V.; and Wagner, T. 2001.
Implementing soft real-time agent control. In Proceed-
ings of the Fifth International Conference on Autonomous
Agents, 355-362.

Yokoo, M. 1998. Distributed Constraint Satisfaction.
Springer Series on Agent Technology. Springer.

