
A Heuristic Real-Time Parallel Scheduler
Based on Task Structures

�

Qiegang Long and Victor Lesser
Department of Computer Science

University of Massachusetts
Technical Report 95-92

Abstract

The development of networks and multi-processor computers has allowed
us to solve problems in parallel. The task of efficiently coordinating parallel
processors is formidable. This paper presents a heuristic parallel real-time
scheduler that analyzes the interactions among the tasks, and builds a paral-
lel schedule that tends to take advantage of those interactions.

�
This work is supported by NSF grant IRI9321324.

1



1 Introduction

The development of networks and multi-processor computers has allowed us to
solve problems in parallel. The task of efficiently coordinating parallel proces-
sors is formidable. It requires a scheduler to specify which processor to allocate
for what problem and when. Existing parallel schedulers can be divided into three
categories [1]: graph-theoretic [2] [3], integer 0-1 programming approach [4] and
the heuristic approach [5] [6]. Many of these methods use the cost of computation
and communications as the schedule objective function, assuming that the duration
of executing a task and its result quality are independent of the order of task exe-
cution. However, this assumption does not hold if there are complex interactions
among tasks.

It has been observed that the tasks needed to solve a problem are often related
to each other. The two most obvious relationships are subtask and dependency.
A reasonable parallel schedule can be generated only if the scheduler has taken
into account these relationship. For example, if there is a dependency relation-
ship between two tasks, the dependent task cannot be executed before the other is
done. Decker and Lesser [7] have identified several kinds of other task relation-
ships which also affect the quality of a schedule. Among them, there are two that
are most relevant here:

Facilitates Task A facilitates Task B, if execution of Task A will decrease the du-
ration of executing Task B, or increase its quality.

Hinders This is the negative form of Facilitates relationship. Task A hinders Task
B, if execution of Task A will increase the duration of executing Task B, or
decrease its quality.

These kinds of relationships exist frequently in real-life applications. For example,
to construct a track from a set of acoustic signals caught by a sensor monitoring
traffic, we can start building and extending the track from any signal. But since
the signal qualities vary due to noise or the distance between the vehicle and the
sensor, it may be preferable that we interpret the strong signals first so that we can
quickly get a rough track. This rough track can help us to identify what weak sig-
nals are pure noise (like those far away from the draft track), and what are the real
signals from the vehicle with poor quality. In this case, it is clear that interpreting
strong signals facilitates the task of interpreting weak ones by reducing the needed
interpretation time. Exploiting these task relationships is crucial to building high

2



quality schedules, but it makes scheduling even more challenging and computa-
tionally expensive for these reasons:

� Facilitates and hinders task relationships introduce the variable duration of
executing a task and its result quality.

� With more task relationships taken into account, any small change in the
schedule can affect many tasks.

� How to choose task relationships to exploit becomes an important issue. For
example, it is not always possible or desirable to take advantage of all the
available facilitates relationships to get higher schedule quality. This is espe-
cially true for parallel scheduling. Suppose that two tasks can be executed in
parallel, but if they are scheduled to be executed sequentially to benefit from
the facilitates relationship, the beneficiary may not be able to finish before
its deadline. Thus, the scheduler has to decide which task relationship can
be exploited in view of the overall schedule quality.

In this paper, we present a heuristic parallel real-time scheduler which is based
on the design-to-time algorithm developed by Garvey and Lesser [8]. Our sched-
uler builds schedules incrementally. It uses a near-greedy algorithm to construct
a draft schedule first, and then employs a iterative repairing procedure to focus on
the task relationships that have not been exploited. This parallel scheduler demon-
strates two important issues: how to exploit available task relationships and how
to do it without excessive computational effort.

In the following section, we begin by introducing our scheduling task environ-
ment and our assumptions. Section 3 presents the overview of our algorithm, fol-
lowed by a detailed description of the parallel scheduling algorithm in section 4 and
the approach we use to incrementally refine the schedule in section 5. Throughout
the paper, we will use examples to explain how each algorithm works. Section 7
reviews related work, and section 8 analyzes our approach and offers suggestions
for future research.

2 Environment and Assumptions

Our scheduler works in a modified TÆMS environment [7]. The scheduler is given
a set of task groups that are represented in TÆMS task structure, as shown in Fig.

3



1. The leaves in a task structure are the executable methods. The other non-leaf
nodes act as quality accumulation functions; they represent tasks that achieve qual-
ity from their subtasks (e.g., sum function denotes that the quality of

�����
is the to-

tal quality of its subtasks). Each task group denotes an independent problem that
needs to be solved. Subtask relationship is represented in black line, it links a par-
ent node to its children. Any other links (dotted lines with arrows) represent task
interactions like enables, facilitates or hinders.

TG1 TG2

Ta

m1 m2

Tb Tc Td Te

m3 m4 m5 m6 m7 m8 m9 m10

deadline:25deadline:40

sum

q:23
d:17

q:57
d:34

q:37
d:2

q:59
d:4

q:74
d:2

q:149
d:4

q:39
d:5

q:78
d:9

q:12
d:1

q:25
d:2

Figure 1: Task groups and TÆMS task structure.

There are a fixed number of agents (or processors) existing in the environment.
The objective of the scheduler is to choose appropriate methods, and to allocate
them to the agents so that the agents as a whole can achieve a higher total result
quality for the given task groups in a shorter duration. We use three criteria to eval-
uate the parallel schedule:

1. the deadline of every task group is satisfied; and

2. the higher qualities of the task results are, the better the parallel schedule is;
and

3. if two schedules achieves the same quality, the shorter the schedule duration
is the better the schedule.

3 General Algorithm Description

The design-to-time algorithm consists of three stages. Since there may be more
than one method to achieve an individual task (e.g., there are two methods ��� and
� � for task

�	�
in Fig. 1), the scheduler first identifies a set of alternative ways to

achieve all independent task groups. Each alternative is a set of methods, all the

4



task groups (independent problems) are achieved if every method in an alternative
is successfully executed. Thus, an alternative represents what needs to be done.
After generating alternatives, the scheduler then proceeds to actually schedule each
alternative for the computational agent to execute. This stage decides when to exe-
cute what method. After this stage, the scheduler uses an iterative process to repair
and refine the generated schedule. The best schedule is then given to the compu-
tational agent to execute.

The design-to-time algorithm is a heuristic approach. At each stage, there are
domain-independent heuristics that are used to limit the number of options ex-
plored. These heuristics are mainly based on the task relationships, quality accu-
mulation functions and task parameters, such as deadline or earliest-start-time. To
schedule the alternative which is generated at the first stage, the scheduler uses a set
of heuristics which includes enforce enables, enforce hard deadlines, enforce ear-
liest start time, prefer facilitators, delay facilitates, prefer increased quality, avoid
violating commitments, prefer satisfying commitments and prefer earlier deadlines.
The detailed description of these heuristics can be found in [8]. With these heuris-
tics, the scheduler uses a simple evaluate-choose loop: rate each method in the
schedule against the heuristics, select the one with the highest nonnegative rating
and then add it to the existing schedule. If there is no nonnegative rating, add some
idle time at the end of the schedule. This process continues until all the methods in
the alternative have been added to the schedule, or a failure has been recognized
because some remaining method cannot meet its deadline.

Our parallel scheduler uses a similar three stages. The alternative generation
stage is borrowed directly from the design-to-time scheduler. At the second stage,
we also use the set of rating heuristics but extend the scheduling process so that
it can generate parallel schedules for multiple processors/agents. The number of
processors to schedule for is an external parameter to this process � . Due to the na-
ture of parallel schedule, we also use a new iterative process to refine the schedule
in the third stage.

�

One possible future direction of this work is for the scheduler to decide how many processors
are cost-effective for the given set of task structures. In order to make this decision, some model
is necessary to relate cost of using a processor to value achieved by task structure.

5



4 Generating parallel scheduling

One of the most important factors that distinguishes one schedule from another
is the order that a method appears in the schedules. This order is determined by
the heuristics which are based on the task interactions, quality accumulation func-
tions and some task parameters. When there is more than one computation agent,
the order of a method in the parallel schedules may be different. For example, if
there are two independent methods, and both can be started now, in parallel, we
can allocate a free agent for each method, thus both method orders are

�
. In the

single agent case, it is clear that one method can be started only after another has
been done. However, since the heuristics encourage or tend to take advantage of
task relationships to increase schedule quality, it can be expected that using the
same set of heuristics in the parallel scheduler would result in a compatible parallel
schedule. By compatible schedules, we mean that the method order in one does not
violate that of the others. For example, the parallel schedule ��� � ��� �����	� � � � ��
��	�
for two agents is compatible with a single agent’s schedule � � ��� � � � ��
 � ����� , but
��� � � � � ��	� � 
 � � � �	� is not since method � � is executed before � � in one agent’s
schedule.

With the scheduling heuristics from the design-to-time algorithm, our sched-
uler uses this process to generate a parallel schedule:

1. Initialize an empty schedule for each computation agent.

2. Use all the heuristics to rate each method which has not yet been scheduled
against every agent. This rating procedure results in a set of tuples in the
form of ����������� � ����������� ��� ���! "�#��� . If there is a tuple whose rating is non-
negative, go to the next step. Otherwise, skip step 3.

3. Select the best tuple, add the method to the end of the agent’s schedule. Go
to step 2.

4. If there are methods that are not yet scheduled but none of them gets non-
negative rating, signal failure and stop. Negative rating for a method means
that it is inappropriate to add the method to the schedule because its execu-
tion adds no value to the computation.

To rate a method against an agent, the scheduler considers what change of the
parallel schedule quality can be expected if appending that method directly to the
end of the agent’s schedule. It should be noted that at this step the scheduler is

6



searching only in a two-dimension space of methods and agents to find the “best”
match. For each pair, the scheduler does not try to figure out when is the best time
for the agent to execute the method. The method is simply added to the agent’s
schedule so that it can be executed immediately after the previous one is done. In
some situations, however, it might be better to add some idle time at the end of
the schedule before adding the method so it can benefit from the task relationships
like enables or facilitates resulting from the execution of a method at another agent.
The reason that the scheduler does not allocate any idle time at this moment is be-
cause it is hard to make the decision about what the effect of this idle time would
be on the ability to schedule other methods necessary for completing the whole
computation

�
. If too much idle time is allocated, the scheduler may later find that

some methods cannot be scheduled to meet their deadlines. There are at least two
variances that make such predication difficult:

1. If a method is enabled by some other method, the scheduler cannot guarantee
that method will be executed eventually since the enabling one may not get
scheduled. Thus the number of the methods that will be actually executed is
uncertain.

2. The execution time of a method may be uncertain since the scheduler does
not know whether it will be facilitated and to what extend.

We use the task groups in Fig. 1 to illustrate our schedule generation process.
Assume there are two computational agents

�
� and

� �
, and all the gray lines in the

figure represent facilitates relationship. For simplicity, we further assume that the
earliest-start-time of each method is NOW (which means no time requirement on
when a method can be executed), and the deadline of each method is that of the task
group it belongs to. The scheduler starts by generating a set of alternatives. Among
them, alternative � � � � � � ��� � ��� � � ��� is very promising since it returns maximum
quality. Now consider this alternative. Methods � � and ��� will get a low rate ( � )
because of heuristic delay facilitates (meaning that they cannot benefit from the
facilitate relationships). The scheduler will find that method ��� gets the highest
rating for both agents (they have the same empty schedule at this time) since it has
a high quality and it facilitates ��� (heuristic prefer facilitators increases the ratings
of facilitating methods). Thus the scheduler randomly assigns �	� to an agent, say


However, in the case the facilitates relationship saves some execution time, it would seem that

this saved time should be allocated.

7



�
� . Now the scheduler considers the remaining four methods � � � � � � � � � � � � .

Since � � is already in
�
� ’s schedule, heuristic delay facilitates will no longer give

low rating to method � � if it is assigned to agent
�
� this time (but obviously it

will still give low rating for � � and agent
� �

). Heuristic prefer facilitators also
increases the rating of � � for agent

�
� . Thus, this pair is chosen and the scheduler

puts � � at the end of
�
� ’s schedule. There are three methods left. Again due to the

same heuristic delay facilitates, method � � will not get high rating with either of
the agents. Heuristic enforce hard deadline will give the pair � � and

�
� negative

rating since the deadline cannot be met. If method � � � dramatically increases the
quality of method � � because of the facilitates relationship, � � � and agent

� �
will

get a higher rating than method � � and
� �

. But let’s assume that facilitation is not
that strong. So � � is put into

� �
’s schedule. Next, method � � � will be assigned to�

� , and then method � � (clearly neither will be assigned to
� �

since
�
� can start

executing them earlier). The schedule is shown in Fig. 2 (dotted lines with arrows
represent those facilitates relationships that have been taken advantage of), and
Table 1 shows the method ratings at each step. It should be noted that in this case
the schedule we generated is the optimal. In other cases, the scheduler must use a
third stage to improve schedule quality.

scheduled methods (
�
�
� � �

) � � � � � � ��� � � ���� � ��� �
�
� �

�
� � �

�
� � � �

� � �
� ��� � � ��� � ��� � ��� �

�
� ���	� � � � � �

� � �
� ��� � � ��� � ��� � ��� � ��� �

�
� � � �

� � �
� ��� � � ��� � � � � � �

�
� � �

�
� � �

� � � � � ��� � � � � � � � � � ��
 � � �	


� ��� � � � � � � � � � � � � � � � �
Table 1: Method ratings. A method is rated against each agent, thus � ��� � ���

for
method 

�
means it gets rating of

���
if executed by agent

� �
, and less if executed

by
�
� . Less is used when the quality against each agent is the same, but the method

will be executed later. For simplicity, a method gets
� � percent increase of quality

for each method it facilitates. The actual heuristic prefer facilitators used in our
implementation is a bit more complicated.

8



A1

A2

m2

m10m8 m6 m4

10 Time200

Figure 2: A schedule.

5 Repairing schedule

The objective function of our parallel schedule is based on schedule result qual-
ity and schedule duration. Informally, this function describes two ordering prefer-
ences:

1. As long as all the task deadlines are met, the schedule which derives higher
overall task qualities is preferred.

2. If two schedules derive the same task qualities, the one with shorter total
execution time is preferred.

After a schedule is created, the parallel scheduler uses a repairing stage to im-
prove its quality. Some improvement can be expected in most cases since the sched-
uler at the generation stage was mainly concerned with how to distribute methods
among agents, and did not try to find the optimal time to execute a method. A new
method was simply appended to an agent’s schedule so that the agent would ex-
ecute it as soon as possible. The scheduler did not consider what would happen
if the agent waits some time and then starts the method to take advantage of the
possible facilitates relationship.

The parallel scheduler uses two mechanisms to repair a schedule: postpone
and switch. Postponing a method in an agent’s schedule means to insert some idle
time so that there is a delay before the agent executes that method. Switching a
method means that to locate another agent so that the method can execute earlier.

9



The scheduler uses these two mechanisms to search for a good starting time for
each method.

The repair procedure is the following.

1. Find all methods in the parallel schedule, put them into a list
�

. Sort the list
by each method’s start-time in non-increasing order, thus the one which has
the last starting time is at the beginning of list

�
.

2. For each method  in
�

, the scheduler performs one of the three actions:

(a) If method  can be postponed for some time to increase the parallel
schedule quality, postpone it. Then consider the next method in list

�
.

We will describe how the scheduler determines whether to postpone a
method in section 5.1.

(b) If method  cannot be postponed in one agent’s schedule, but if switch-
ing it to another agent would increase the parallel schedule quality, try
to switch it. Then consider the next method in list

�
. It should be noted

that postpone and switch represents two distinctive ways of refining the
parallel schedule. The former adjusts the starting time of some meth-
ods from the local view of each agent. During this process, the method
order of each agent’s schedule will not be changed. The latter one, on
the other hand, considers the parallel schedule as a whole. Particularly,
it may switch a method from one agent to another so that this method
is executed before the one which was in front of it in the old agent’s
schedule is finished. In this case, the method order is changed but only
if the overall quality of the parallel schedule increases. We will discuss
switch repairing approach in section 5.2.

(c) Otherwise, skip the current method  and consider the next one in list
�

.

3. If step 2 results in a change of parallel schedule quality, go back to step 1.
Otherwise, stop repairing procedure.

It is clear that our repairing algorithm is an incremental process. Step 2a and 2b
guarantees that the new parallel schedule has a higher quality than the old one. As a
matter of fact, the algorithm is a form of hill-climbing, it stops whenever it reaches
a local maximum. This seems rather disappointing, and especially if the original

10



parallel schedule had very poor quality. However, since the parallel schedule pro-
duced at the generation stage is compatible with that from the design-to-time al-
gorithm, we believe that its quality is already acceptable. Thus any improvement
by reaching a local maximum is still statistically significant (i.e., the improvement
is not due to a floor effect). In fact, since the postpone and switch mechanisms di-
rectly address the key problem which may affect the parallel schedule quality, a
good improvement can be expected.

In the following two subsections, we will describe how postpone and switch
mechanisms work, and how the scheduler chooses one from the two.

5.1 Postpone a method

The reason to postpone a method in an agent’s schedule is simple — it starts too
early to take advantage of facilitates task interactions. Thus, for a method  in
list

�
, the scheduler first decides whether it can be facilitated by any other methods

in the parallel schedule. This can be easily done in the TÆMS environment since
all the task relationships are explicitly represented. If there exists facilitates rela-
tionship from which  can be benefited, the scheduler then determines how much
delay

�
is needed. The calculation is simple, since for each method the scheduler

knows its current scheduled start-time and its execution duration. This information
allows the scheduler to find out the earliest start-time for method  , which is the
time when all the facilitating methods are expected to have finished. The delay

�

of  is just the difference between the earliest start-time and its current scheduled
start-time.

Before the scheduler actually postpones  for
�

time, it must decide whether
such a change will increase the parallel schedule quality. This requires the sched-
uler to find out what methods in the parallel schedule would be affected by the de-
lay of  . Clearly, the methods that are directly affected are those in

�
which take

advantage of the facilitates relationships from  , and those that are in the same
agent’s schedule with  and but start after it finishes. Finding those facilitated
methods is not difficult, the scheduler can check each of the facilitates relation-
ships from  and see whether its beneficiary is in list

�
. However, to identify all

the methods in
�

which are affected by the delay of  requires the scheduler to
recursively consider each that has been identified. This might be very computa-
tionally expensive. Furthermore, for each affected method the scheduler wants to
know whether it can be postponed accordingly so that it can continue to benefit
from the facilitates relationship, or at least to meet its deadline if there is no facil-

11



itates relationship between it and method  . Clearly, if there are some methods
that benefited by  but are not any more, or if some can no longer meet their dead-
lines, the quality loss resulted should be subtracted from the gain by the delay 
to get the parallel schedule quality. To reduce the computation cost, we use this
algorithm to identify those methods which are affected by the delay of method  ,
and more importantly, to split them into two groups — one that can be delayed and
continue to benefit from method  , and one that cannot delayed.

1. Initialize two lists
�

and
�

.
�

is a set of methods that can be delayed with
 , while

�
is a set which cannot be delayed with  . � is the other list

used, it denotes a set of methods in consideration and is initialized with all
the methods which are directly affected by  in list

�
.

2. Consider each method � in � .

(a) If � is also in list
�

, return the status that it can be delayed.

(b) If � is also in list
�

, return the status that it cannot be delayed.

(c) If � currently does not facilitate any method (i.e., there is no facilitates
relationships from it, or all the beneficiaries are expected to start before

� finishes), put � into list
�

if delay
�

will not violate its deadline,
or put � into list

�
if the delay will violate its deadline. Return the

corresponding status, and the changed set
�

or
�

.

(d) If � is expected to facilitate some method in the parallel schedule, put
all those that are directly affected and are neither in list

�
nor

�
at the

beginning of list � . Then recursively consider each of them.

(e) If � is expected to facilitate some method in the parallel schedule, and
all of those methods that are directly affected are either in

�
or

�
, then

consider if the gain of delaying  will offset the loss of facilitating
benefits of those in

�
. If so, and if � will meet its deadline even with

the delay
�

, put � into list
�

. Otherwise, put it into list
�

. Return the
status of whether it can be delayed or not, and the new list of

�
or

�
.

This algorithm can be implemented in two procedures, with step
�

and
�

con-
stituting the first, and

� � to
� � making up another. Both can be implemented re-

cursively, with the second one always passing back the status and the changed new
list � ,

�
or

�
. This algorithm is like a depth-first search, but to avoid redundant

computations, the nodes that have been visited are kept in list
�

or
�

so that the

12



search can later reuse any previous results. Since the top level repairing procedure
may apply this algorithm to the same method many times, we also build and use
a table to remember the maximal delay a method can bear without decreasing the
whole parallel schedule during this process. Thus if the scheduler later needs to
know whether a method can be further postponed, it can quickly get the answer
by comparing the maximal and the desired delay time. Caching results can greatly
reduce the computation cost in our application domain, since one method (or task)
can be facilitated by many others. For example, task

� � is facilitated by both
���

and
���

.
After the scheduler has determined that it is beneficial to postpone method  ,

the scheduler will use a similar algorithm to visit all the affected methods in the
parallel schedule. But this time it will postpone the start-time of each methods in
list
�

to reflect the delay of  .
We still use the task groups in Fig. 1 as our example to illustrate this postpone

repairing mechanism. Since the scheduler gets the optimal schedule (see Fig. 2)
at the generation stage, we make a small change here. We assume that method
�
�

only needs
� �

instead of
���

time units for execution. This change will result
in a new schedule (shown in Fig. 3), since now � � � can be finished earlier if it is
executed by agent

� �
than by

�
� . The postpone mechanism starts by identifying

A1

A2

m2 m10

m8 m6 m4

0 10 Time20

Figure 3: Method  � needs to be postponed.

those methods that do not benefit from all of the facilitates relationships. It can
be seen from Fig. 3 that method � � is the one since it is executed before � � � is
finished. Clearly,

�
time unit delay is what � � needs. The scheduler then checks

if such delay would affect the other methods in the schedule. Since � � is the last

13



one to be executed, the scheduler cannot find any. Thus a
�

unit idle time is inserted
into agent

�
� ’s schedule, as shown in Fig. 4. Clearly, this is also an optimal quality

parallel schedule.

A1

A2

m2 m10

m8 m6 m4

0 10 Time20

Idle time

Figure 4: Postponing a method.

5.2 Switch agent

From Section 5.1, it can be seen that postponing a method  in one agent’s sched-
ule to take advantage of the task relationships is not always beneficial to the parallel
schedule quality. The reasons can be any combination of the following two cases:

1. Some methods which benefited from the facilitates task relationships from
method  no longer do so due to the delay of  , or they can no longer meet
their deadlines.

2. Some methods which do not benefit from the execution of method  can no
longer meet their deadlines due to the delay. These methods are those behind
method  in the agent’s schedule.

In any case, if the quality loss is greater than the gain, the scheduler will not try to
postpone  .

But if the sole reason not to postpone method  is some methods behind it
cannot meet their deadlines any more, and these methods are not expected to take
advantage of the facilitates relationships from  in the current schedule of the
agent, switching  to another agent so that it will start later may be possible. In

14



this way, there will be no change to any method behind  in the same agent’s
schedule.

The simplest way to switch another agent for a method  is to let the parallel
scheduler to reschedule the method. That is, the scheduler considers  in the pres-
ence of the current parallel schedule with  removed. If the new parallel schedule
results higher quality, replace the current one with the new.

To illustrate how the two repairing mechanisms work together, we modify the
previous example shown in Fig. 1 and Fig. 3 (see Section 5.1). But increasing the
duration to execute method � � � to

�
time units. Furthermore, we add a new task�

� to the task group TG2 in Fig. 1, and assume there is only one method ��� � (with
��� ���

, � � �
) to achieve this task. Suppose

�
� is enabled task

���
, meaning that

it can be executed only after
� �

is done. Fig. 5 shows the initial parallel schedule
before any repairing is done. Method � � � is assigned to agent

�
� instead of

� �

A1

A2

m2 m10

m8 m6 m4

0 10 Time20

m11

Figure 5: Needs switch agent and postpone.

since it can be executed earlier. Similar to the previous example, the scheduler
will try to postpone method � � for

�
time units to take advantage of the facilities

relationship from � � � . But by checking the schedule of agent
�
� , the scheduler

finds method � � � won’t be finished in time if such delay happens. Since � � � is
not required or desired to be executed after � � because of task relationships, the
scheduler will try to assign it to another agent.

� �
is the only choice. After the

switching, the scheduler can then postpone � � . The final schedule is shown in
Fig.6.

15



A1

A2

m2 m10

m8 m6 m4

0 10 Time20

m11

Figure 6: After switching � � � and postponing � � .

5.3 Compact schedule

When a method is switched from one agent to another, the time slot it occupied
in the schedule of the former agent becomes idle time. In order to keep schedule
duration short, the scheduler needs to check whether it is possibile to utiltize this
idle time by shift some methods forward to execute them earlier. It is clear that
only the method that immedately follows the idle time should be considered at first.
This method  is then moved forward as far as it does not lose any benifit already
taken from the task relationships. Any movement of this method  , however, can
result in a list

�
of method that starts after the original idle time slot, and follows

some amount of idle time (so it is move-able) in the parallel schedule. To consider
how to shift foward the methods in list

�
, three heuristics are used in order.

1. Any shift of a method cannot result in any lose of the benefits it has taken
from any task relationships.

2. If more than one can be shifted forward, the one that causes the largest move-
ment in the longest schedule is preferred. That is, the scheduler perfers to re-
duce the duration of the whole parallel schedule, instead of a local schedule
of some agent.

3. The method that starts earlier is preferred.

Of course, the new method is put into
�

whenever its predecessor is shifted for-
ward. The scheduler repeatedly use the three heuristics to move methods in

�
till

no shift can be made.

16



6 Experiment

We have implemented our parallel scheduler on TÆMS testbed. The testbed allows
us to adjust various parameters, such as the number of computational agents, the
number of the task groups, the chance that each kind of task relationship can occur.
Since we haven’t implemented an exclusive-search scheduler to generate optimal
parallel schedules, it is unclear at this moment how our scheduler performs statis-
tically. In a number of (relatively simple) randomly generated tests whose optimal
schedules are known, our scheduler performs very well. We are undergoing more
experiments to analyze the performance of the scheduler with or without the re-
pairing stage.

7 Related work

Our scheduling problem would be quite like the ones that are widely studied if there
are no task relationships that would affect task execution durations or their result
qualities[1, 5, 6]. The presence of these task relationships imply that not only all
the methods need to be scheduled so that they can be executed before their dead-
lines, they should also be ordered in a way to achieve shorter schedule duration
and better overall result qualities. Below we describe the related work that does
consider some relationships between tasks, but none as realistic and the ones we
use.

Fox and Smith treats scheduling as a constraint-directed search. Their system
ISIS [9] implements a hierarcial scheduling approach. Orders (tasks) are selected
one by one to have their operations (methods) scheduled according to their priority.
Decisions regardsing the selection of resources (like computational agents) simply
attempt to satisfy the constraints relating to the order (to properly sequence the op-
erations and meet the deadlines). Their constraints are different from the ones that
result from the facilitates or hinders task relationships, in the sense theirs must be
satisfied in a good schedule while ours can be violated if it is impossible to satisfy
them. If not all the constraints can be satisfied, the flexibility from task relation-
ships thus requires the scheduler to decide what constraints should pursue.

Hildum implements a knowledge-based system for solving dynamic resource-
constrained scheduling problems in [10]. His scheduling algorithm expliots the
flexibility properties (like earliest-start-time) of tasks to allow the schedule to be
adaptable to the changing environment (like the arrival of some new tasks). It uses

17



least-commitment decision making technique to preserve maneuverability by ex-
plicitly incorporating slack time into the developing schedule. The preserved slack
time can be used (e.g., shifting task) later to adjust the schedule. Our scheduler
does not preserve slack time in the schedule, it inserts them only when necessary.

GERRY [11] developed by Zweben et al. uses constraint-based iterative repair
to schedule and reschedule the tasks of a plan according to temporal constraints,
milestones, resource constraints and state constraints. Some of their constraints
are similar to or can be represented as our task relationships. Their scheduling and
repairing algorithm iteratively modifies the schedule via some basic actions like
inserting an achiever, shifting a task forward or backward. Our work employs a
constructive method to build draft schedule. This reduces the amount of iterative
modifications needed at the repairing process.

Ramamritham and Stankovic in [12] uses a heuristic incremental approach to
build schedule for multiprocessor systems. Their work focuses on how to guaran-
tee that all the tasks meet their deadlines. Their assumption that tasks are indepen-
dent is different from ours, though we believe that their heuristics (based on task
arrival time, deadline, worst case processing time) can be used to generate some
meta-level information (like what is the maximal load for an agent) for our sched-
uler.

8 Summary

This paper presented a heuristics parallel scheduler based on task structures. We
believe identifying task relationships and exploiting them is crucial in building
high quality schedules for real-life applications. Since in most cases task rela-
tionships can be rather complicated, a scheduler can be easily trapped into a large
amount of backtracking in order to find a good schedule. Our scheduler avoids
such traps by using a conservative non-backtrack heuristic search at the genera-
tion stage. It is conservative, since at this stage it only encourages the benefits of
task interactions but does not aggressively enforce (enables relationship is an ex-
ception) them, like the examples illustrated in Fig. 3 and Fig. 5. This allows our
scheduler to quickly generate a draft schedule. The two mechanisms postpone and
switching agent that our scheduler uses to refine a draft schedule focus on how to
take advantage of those task relationships that have not yet been taken.

We did not specify what to do if a given set of methods (alternative) cannot
be scheduled to meet the desired quality. It is expected that the repairing approach

18



developed by Garvey and Lesser in [8] can be used in this parallel scheduler. Their
approach allows the scheduler to regenerate the alternative by switching some meth-
ods that causes the failure or the low quality of the schedule. For example, if the
scheduler finds that if method � ��� (in Fig. 1) had used fewer computation time the
overall quality of the parallel scheduler could be increased by

� � . Then the sched-
uler will use method � � to replace � � � since they achieve the same task

� �
.

The performance of our scheduler can also be improved by exploiting meta-
level information. More specifically, we expect that the scheduler can estimate
what is the most promising change (or what is the worst point) in the schedule be-
fore it actually starts the repairing process. It is clear such information will allow
the scheduler to quickly get a good schedule, and to compare it with other sched-
ulers working in a similar environment.

9 Acknowledgment

We appreciate the valuable reviews from Kathryn McKinley. Our experiment is
based on the testbed developed by Keith Decker and Alan Garvey. Alan Garvey
has also helped us to form and implement the ideas.

References

[1] Wesley W. Chu and Lance M-T. Lan. Task allocation and precedence rela-
tions for distributed real-time systems. IEEE Transactions on Computers,
c-36(6):667–679, June 1987.

[2] S. H. Bokhari. Dual processor scheduling with dynamic reassignment. IEEE
Transactions on Software Eng., SE-8:401–412, July 1979.

[3] G. S. Rao, H. S. Stone, and T. C. Hu. Assignment of tasks in a distributed
processing system with limited memory. IEEE Trans. Comput., C-28:291–
299, April 1979.

[4] P. Y. R. Ma, E. Y. S. Lee, and M. Tsuchiya. A task allocation model for
distributed computing systems. IEEE Trans. Comput., C-31:41–47, January
1982.

19



[5] Gilbert C. Sih and Edward A. Lee. Declustering: A new multiprocessor
scheduling technique. IEEE transactions on Parallel And Distributed Sys-
tems, 4(6):625–637, June 1993.

[6] Gilbert C. Sih and Edward A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE
Transactions on Parallel and Distributed Systems, 4(2):175–186, February
1993.

[7] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex
computational task environments. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 217–224, July 1993.

[8] Alan Garvey and Victor Lesser. Design-to-time scheduling with uncertainty.
Technical Report TR95-03, Department of Computer Science, University of
Massachusetts, January 1995.

[9] Mark S. Fox and Stephen F. Smith. Isis—a knowledge-based system for fac-
tory scheduling. Expert Systems, 1(1):25–49, 1984.

[10] David W. Hildum. Flexibility in a knowledge-based system for solving dy-
namic resource-constrained scheduling problems. Technical Report Umass
CMPSCI TR94-77, University of Massachusetts, September 1994.

[11] Monte Zweben, Brian Daun, and Michael Deale. Scheduling and Reschedul-
ing with iterative repair, pages 241–256. Morgan Kauffman, 1994.

[12] Krithi Ramamritham and John A. Stankovic. Efficient scheduling algorithms
for real-time multiprocessor systems. IEEE Transactions of Parallel and Dis-
tributed Systems, 1(2):184–194, April 1990.

20


