A Heuristic Real-Time Paralde Scheduler
Based on Task Structures

Qiegang Long and Victor Lesser
Department of Computer Science
University of Massachusetts
Technical Report 95-92

Abstract

Thedevel opment of networksand multi-processor computershasallowed
usto solve problemsin parallel. Thetask of efficiently coordinating parallel
processors is formidable. This paper presents a heuristic parallel real-time
scheduler that analyzes the interactions among the tasks, and builds a paral-
lel schedulethat tendsto take advantage of thoseinteractions.

*Thiswork is supported by NSF grant IR19321324.

1

1 Introduction

The development of networks and multi-processor computers has allowed us to
solve problems in parallel. The task of efficiently coordinating parallel proces-
sorsisformidable. It requires a scheduler to specify which processor to allocate
for what problem and when. Existing parallel schedulers can be divided into three
categories[1]: graph-theoretic[2] [3], integer 0-1 programming approach [4] and
the heuristic approach [5] [6]. Many of these methods use the cost of computation
and communications as the schedul e obj ectivefunction, assuming that the duration
of executing atask and its result quality are independent of the order of task exe-
cution. However, this assumption does not hold if there are complex interactions
among tasks.

It has been observed that the tasks needed to solve a problem are often related
to each other. The two most obvious relationships are subtask and dependency.
A reasonable parallel schedule can be generated only if the scheduler has taken
into account these relationship. For example, if there is a dependency relation-
ship between two tasks, the dependent task cannot be executed before the other is
done. Decker and Lesser [7] have identified severa kinds of other task relation-
ships which also affect the quality of a schedule. Among them, there are two that
are most relevant here:

Facilitates Task A facilitates Task B, if execution of Task A will decrease the du-
ration of executing Task B, or increase its quality.

Hinders Thisisthe negativeform of Facilitatesrelationship. Task A hinders Task
B, if execution of Task A will increase the duration of executing Task B, or
decrease its quality.

These kindsof relationshipsexist frequently inreal-lifeapplications. For example,
to construct atrack from a set of acoustic signals caught by a sensor monitoring
traffic, we can start building and extending the track from any signal. But since
the signal qualities vary due to noise or the distance between the vehicle and the
sensor, it may be preferablethat we interpret the strong signalsfirst so that we can
quickly get arough track. This rough track can help usto identify what weak sig-
nals are pure noise (like those far away from the draft track), and what are the real
signals from the vehicle with poor quality. Inthiscase, it is clear that interpreting
strong signalsfacilitatesthetask of interpreting weak ones by reducing the needed
interpretation time. Exploiting these task relationshipsis crucial to building high

2

quality schedules, but it makes scheduling even more challenging and computa-
tionally expensive for these reasons:

¢ Facilitates and hinderstask relationshipsintroduce the variable duration of
executing atask and itsresult quality.

¢ With more task relationships taken into account, any small change in the
schedul e can affect many tasks.

e How to choose task relationshipsto exploit becomes an important issue. For
example, it is not always possible or desirable to take advantage of all the
availablefacilitatesrel ationshipsto get higher schedulequality. Thisisespe-
cialy truefor parallel scheduling. Supposethat two tasks can beexecutedin
parallel, but if they are schedul ed to be executed sequentially to benefit from
the facilitates relationship, the beneficiary may not be able to finish before
its deadline. Thus, the scheduler has to decide which task relationship can
be exploited in view of the overall schedule quality.

In this paper, we present aheuristic parallel real-time schedul er which isbased
on the design-to-time algorithm devel oped by Garvey and Lesser [8]. Our sched-
uler builds schedules incrementally. It uses a near-greedy algorithm to construct
adraft schedule first, and then employs aiterative repairing procedure to focus on
thetask relationshipsthat have not been exploited. This parallel scheduler demon-
strates two important issues. how to exploit available task relationships and how
to do it without excessive computational effort.

In the following section, we begin by introducing our scheduling task environ-
ment and our assumptions. Section 3 presents the overview of our algorithm, fol-
lowed by adetailed description of the parallel scheduling algorithminsection4and
the approach we use to incrementally refine the schedule in section 5. Throughout
the paper, we will use examples to explain how each algorithm works. Section 7
reviews related work, and section 8 analyzes our approach and offers suggestions
for future research.

2 Environment and Assumptions

Our scheduler worksinamodified TAMS environment [7]. The scheduler isgiven
a set of task groupsthat are represented in TAMS task structure, as shown in Fig.

1. Theleavesin atask structure are the executable methods. The other non-1eaf
nodes act as quality accumulation functions; they represent tasks that achieve qual-
ity from their subtasks (e.g., sumfunction denotesthat the quality of 7'GG, istheto-
tal quality of its subtasks). Each task group denotes an independent problem that
needs to be solved. Subtask relationship isrepresented in black ling, it links a par-
ent node to its children. Any other links (dotted lines with arrows) represent task
interactions like enables, facilitates or hinders.

deadl i ne: 40

q: 23 q: 57 q: 37 q: 59 q:74 g:149 q:39 q: 78 q: 12 q: 25
d: 17 d: 34 d: 2 d: 4 d: 2 d: 4 d:5 d: 9 1 d:

Figure 1. Task groups and TAMS task structure.

There are afixed number of agents (or processors) existing in the environment.
The objective of the scheduler isto choose appropriate methods, and to allocate
them to the agents so that the agents as a whole can achieve a higher total result
quality for thegiventask groupsin ashorter duration. We usethreecriteriato eval-
uate the paralel schedule:

1. thedeadline of every task group is satisfied; and

2. thehigher qualities of the task results are, the better the parallel scheduleis;
and

3. if two schedul es achieves the same quality, the shorter the schedule duration
isthe better the schedule.

3 General Algorithm Description

The design-to-time algorithm consists of three stages. Since there may be more
than one method to achieve anindividual task (e.g., there aretwo methods ., and
mo for task 7, in Fig. 1), the scheduler first identifies a set of alternative waysto
achieve all independent task groups. Each alternative is a set of methods, al the

4

task groups (independent problems) are achieved if every method in an aternative
is successfully executed. Thus, an aternative represents what needs to be done.
After generating aternatives, the schedul er then proceedsto actually schedule each
alternativefor the computational agent to execute. This stage decideswhen to exe-
cutewhat method. After thisstage, the scheduler usesan iterative processto repair
and refine the generated schedule. The best schedule is then given to the compu-
tational agent to execute.

The design-to-time algorithm is a heuristic approach. At each stage, there are
domain-independent heuristics that are used to limit the number of options ex-
plored. These heuristics are mainly based on the task relationships, quality accu-
mulation functions and task parameters, such as deadline or earliest-start-time. To
schedulethealternativewhichisgenerated at thefirst stage, the schedul er usesa set
of heuristics which includes enforce enables, enforce hard deadlines, enforce ear-
liest start time, prefer facilitators, delay facilitates, prefer increased quality, avoid
violating commitments, prefer satisfying commitmentsand prefer earlier deadlines.
The detailed description of these heuristics can be foundin [8]. With these heuris-
tics, the scheduler uses a smple evaluate-choose loop: rate each method in the
schedule against the heuristics, select the one with the highest nonnegative rating
and then add it to theexisting schedule. If thereisno nonnegativerating, add some
idletime at the end of the schedule. This process continuesuntil all the methodsin
the alternative have been added to the schedule, or afailure has been recognized
because some remaining method cannot meet its deadline.

Our pardlel scheduler uses a smilar three stages. The aternative generation
stageis borrowed directly from the design-to-time scheduler. At the second stage,
we also use the set of rating heuristics but extend the scheduling process so that
it can generate paralel schedules for multiple processors/agents. The number of
processors to schedule for is an external parameter to this process'. Dueto the na-
ture of parallel schedule, we also use anew iterative process to refine the schedule
in the third stage.

! One possible future direction of thiswork isfor the scheduler to decide how many processors
are cost-effective for the given set of task structures. In order to make this decision, some model
isnecessary to relate cost of using a processor to value achieved by task structure.

4 Generating parallel scheduling

One of the most important factors that distinguishes one schedule from another
is the order that a method appears in the schedules. This order is determined by
the heuristics which are based on the task interactions, quality accumulation func-
tions and some task parameters. When there is more than one computation agent,
the order of a method in the parallel schedules may be different. For example, if
there are two independent methods, and both can be started now, in parallel, we
can alocate a free agent for each method, thus both method ordersare 1. In the
single agent case, it is clear that one method can be started only after another has
been done. However, since the heuristics encourage or tend to take advantage of
task relationships to increase schedule quality, it can be expected that using the
same set of heurigticsin the parallel scheduler would result inacompatible parallel
schedule. By compatible schedul es, we mean that the method order in one does not
violatethat of the others. For example, the parallel schedule { (11, m4)(ma, ms)}
for two agents is compatible with asingle agent’s schedule (m, my, ms, my4), but
{(mz, my)(ms, m4)} isnot since method m, is executed beforem, in one agent’s
schedule.

With the scheduling heuristics from the design-to-time algorithm, our sched-
uler uses this process to generate a paralel schedule:

1. Initialize an empty schedule for each computation agent.

2. Useadll the heurigtics to rate each method which has not yet been scheduled
against every agent. This rating procedure results in a set of tuplesin the
form of (agent, method, rating). If thereis a tuple whose rating is non-
negative, go to the next step. Otherwise, skip step 3.

3. Select the best tuple, add the method to the end of the agent’s schedule. Go
to step 2.

4. If there are methods that are not yet scheduled but none of them gets non-
negative rating, signal failureand stop. Negative rating for amethod means
that it isinappropriate to add the method to the schedul e because its execu-
tion adds no value to the computation.

To rate amethod against an agent, the scheduler considers what change of the
parallel schedule quality can be expected if appending that method directly to the
end of the agent’s schedule. It should be noted that at this step the scheduler is

6

searching only in atwo-dimension space of methods and agents to find the “ best”
match. For each pair, the scheduler does not try to figure out when is the best time
for the agent to execute the method. The method is ssimply added to the agent’s
schedule so that it can be executed immediately after the previous oneis done. In
some situations, however, it might be better to add some idle time at the end of
the schedul e before adding the method so it can benefit from the task relationships
likeenablesor facilitatesresulting from the execution of amethod at another agent.
The reason that the scheduler does not allocate any idletime at this moment is be-
cause it is hard to make the decision about what the effect of thisidle time would
be on the ability to schedule other methods necessary for completing the whole
computation?. If too much idletimeis allocated, the scheduler may later find that
some methods cannot be scheduled to meet their deadlines. There are at least two
variances that make such predication difficult:

1. If amethodisenabled by some other method, the scheduler cannot guarantee
that method will be executed eventually since the enabling one may not get
scheduled. Thusthe number of the methodsthat will be actually executed is
uncertain.

2. The execution time of a method may be uncertain since the scheduler does
not know whether it will be facilitated and to what extend.

We use the task groupsin Fig. 1 to illustrate our schedule generation process.
Assumethere are two computational agents A, and A,, and all thegray linesinthe
figure represent facilitates relationship. For simplicity, we further assume that the
earliest-start-time of each method is NOW (which means no time requirement on
when amethod can be executed), and the deadline of each method isthat of thetask
groupit belongsto. Thescheduler startsby generatingaset of alternatives. Among
them, aternativem,, my, mg, ms, mqq iISVery promising sinceit returns maximum
quality. Now consider thisaternative. Methods ., and mg will get alow rate (0)
because of heuristic delay facilitates (meaning that they cannot benefit from the
facilitate relationships). The scheduler will find that method m s gets the highest
rating for both agents (they have the same empty schedule at thistime) sinceit has
ahigh quality andit facilitatesmg (heuristic prefer facilitatorsincreasestheratings
of facilitating methods). Thus the scheduler randomly assigns m g to an agent, say

ZHowever, inthe case thefacilitatesrel ationshi p saves some execution time, it woul d seem that
this saved time should be alocated.

A;. Now the scheduler considers the remaining four methods 4, my4, me, mo.
Sincemg isaready in A;’sschedule, heuristic delay facilitateswill no longer give
low rating to method my if it is assigned to agent A, this time (but obvioudly it
will still give low rating for mg and agent A,). Heuristic prefer facilitators also
increasestherating of m¢ for agent A,. Thus, thispair is chosen and the schedul er
putsmg at theend of A;’sschedule. There arethree methodsleft. Again dueto the
same heuristic delay facilitates, method 4, will not get high rating with either of
the agents. Heuristic enforce hard deadline will give the pair m, and A, negative
rating since the deadline cannot be met. If method m, dramatically increases the
quality of method m, because of thefacilitatesrelationship, m o and agent A, will
get a higher rating than method m, and A,. But let’sassume that facilitationis not
that strong. Som; isputinto A,’sschedule. Next, method m, will be assigned to
A1, and then method m 4 (clearly neither will be assigned to A, since A; can start
executing them earlier). The schedule isshown in Fig. 2 (dotted lineswith arrows
represent those facilitates relationships that have been taken advantage of), and
Table 1 shows the method ratings at each step. 1t should be noted that in this case
the schedule we generated isthe optimal. In other cases, the scheduler must use a
third stage to improve schedule quality.

scheduled methods (A;/A) ™Mo my me ms mio
57757 | 0/0 | 0/0 | 85/85 | 28/28

(ms} /0 <57/57 | 0/0 | 165/0 < 28/28

(s, ms} /1) <57/57 | 0/0 < 28/28

{ms, me}/{m2} 0/0 28/ < 28

{ms, me, mio}/{ma} 59/ < 59

{m87m67m107m4}/{m2}

Table 1: Method ratings. A method is rated against each agent, thus < 57/57 for
method M, meansit getsrating of 57 if executed by agent A,, and less if executed
by A;. Lessisused when the quality against each agent isthe same, but the method
will be executed later. For ssimplicity, amethod gets 10 percent increase of quality
for each method it facilitates. The actual heuristic prefer facilitators used in our
implementation is abit more complicated.

mg Mg Mip Ty
A,
mp
| | -~
0 10 20 Time

Figure2: A schedule.

5 Repairing schedule

The objective function of our parallel schedule is based on schedule result qual-
ity and schedule duration. Informally, thisfunction describes two ordering prefer-
ences:

1. Aslong asall thetask deadlines are met, the schedule which derives higher
overall task qualitiesis preferred.

2. If two schedules derive the same task qualities, the one with shorter total
execution timeis preferred.

After ascheduleis created, the parallel scheduler uses arepairing stageto im-
proveitsquality. Someimprovement can be expected in most cases sincethe sched-
uler at the generation stage was mainly concerned with how to distribute methods
among agents, and did not try to find the optimal timeto execute amethod. A new
method was ssimply appended to an agent’s schedule so that the agent would ex-
ecute it as soon as possible. The scheduler did not consider what would happen
if the agent waits some time and then starts the method to take advantage of the
possible facilitates relationship.

The parale scheduler uses two mechanisms to repair a schedule: postpone
and switch. Postponing a method in an agent’s schedule meansto insert someidle
time so that there is a delay before the agent executes that method. Switching a
method means that to locate another agent so that the method can execute earlier.

The scheduler uses these two mechanisms to search for a good starting time for
each method.
The repair procedureis the following.

1. Find all methodsin the parallel schedule, put themintoalist L. Sort thelist
by each method's start-timein non-increasing order, thus the one which has
the last starting timeis at the beginning of list L.

2. For each method M in L, the scheduler performs one of the three actions:

(@) If method M can be postponed for some time to increase the parallel
schedule quality, postponeit. Then consider the next method inlist L.
We will describe how the scheduler determines whether to postpone a
method in section 5.1.

(b) 1f method M cannot be postponed in oneagent’sschedule, but if switch-
ing it to another agent would increase the parallel schedule quality, try
to switchit. Then consider the next methodinlist Z.. It should be noted
that postpone and switch representstwo distinctive ways of refining the
parallel schedule. The former adjusts the starting time of some meth-
odsfromthelocal view of each agent. During this process, the method
order of each agent’s schedule will not be changed. The latter one, on
the other hand, considersthe parallel schedule asawhole. Particularly,
it may switch a method from one agent to another so that this method
is executed before the one which was in front of it in the old agent’s
scheduleisfinished. Inthis case, the method order ischanged but only
if theoverall quality of the parallel scheduleincreases. Wewill discuss
switch repairing approach in section 5.2.

(c) Otherwise, skip the current method A and consider the next oneinlist
L.

3. If step 2 results in a change of paralel schedule quality, go back to step 1.
Otherwise, stop repairing procedure.

Itisclear that our repairing algorithmisan incremental process. Step 2aand 2b
guaranteesthat the new parallel schedulehasahigher quality thantheold one. Asa
matter of fact, theagorithmisaform of hill-climbing, it stopswhenever it reaches
alocal maximum. This seems rather disappointing, and especialy if the original

10

parallel schedule had very poor quality. However, since the parallel schedule pro-
duced at the generation stage is compatible with that from the design-to-time al-
gorithm, we believe that its quality is aready acceptable. Thus any improvement
by reaching alocal maximum isstill statistically significant (i.e., theimprovement
isnot due to afloor effect). In fact, since the postpone and switch mechanisms di-
rectly address the key problem which may affect the paralel schedule quality, a
good improvement can be expected.

In the following two subsections, we will describe how postpone and switch
mechanisms work, and how the scheduler chooses one from the two.

5.1 Postpone a method

The reason to postpone a method in an agent’s schedule is ssimple — it starts too
early to take advantage of facilitates task interactions. Thus, for a method M in
list L, the scheduler first decideswhether it can befacilitated by any other methods
in the parallel schedule. This can be easily done in the TAEMS environment since
all the task relationships are explicitly represented. If there exists facilitates rela-
tionship fromwhich M can be benefited, the schedul er then determines how much
delay D isneeded. The calculation isssmple, since for each method the schedul er
knowsits current schedul ed start-timeand itsexecution duration. Thisinformation
allows the scheduler to find out the earliest start-time for method M, which isthe
timewhen all the facilitating methods are expected to have finished. Thedelay D
of M isjust the difference between the earliest start-timeand its current scheduled
start-time.

Before the scheduler actually postpones M for D time, it must decide whether
such achange will increase the parallel schedule quality. This requires the sched-
uler to find out what methodsin the parallel schedule would be affected by the de-
lay of M. Clearly, the methodsthat are directly affected arethose in L which take
advantage of the facilitates relationships from A, and those that are in the same
agent’s schedule with M and but start after it finishes. Finding those facilitated
methods is not difficult, the scheduler can check each of the facilitates relation-
ships from M and see whether its beneficiary isin list L. However, to identify all
the methods in L which are affected by the delay of M requires the scheduler to
recursively consider each that has been identified. This might be very computa
tionally expensive. Furthermore, for each affected method the scheduler wants to
know whether it can be postponed accordingly so that it can continue to benefit
from the facilitates relationship, or at least to meet itsdeadline if thereis no facil-

11

itates relationship between it and method A . Clearly, if there are some methods
that benefited by M but arenot any more, or if some can no longer meet their dead-
lines, the quality loss resulted should be subtracted from the gain by the delay M
to get the parallel schedule quality. To reduce the computation cost, we use this
algorithm to identify those methods which are affected by the delay of method A,
and moreimportantly, to split them into two groups— one that can be delayed and
continue to benefit from method A7, and one that cannot delayed.

1. Initiglizetwo lists 7" and F'. T isa set of methods that can be delayed with
M, while F' is a set which cannot be delayed with M. C' isthe other list
used, it denotes a set of methods in consideration and isinitialized with all
the methods which are directly affected by M inlist L.

2. Consider each method N in C.

(@ If Nisdsoinlist 7', return the status that it can be delayed.
(b) If Nisadsoinlist F, return the status that it cannot be delayed.

(c) If N currently doesnot facilitate any method (i.e., thereisno facilitates
relationshipsfromit, or al the beneficiaries are expected to start before
N finishes), put NV intolist 7" if delay D will not violate its deadline,
or put NV into list F' if the delay will violate its deadline. Return the
corresponding status, and the changed set 7" or F'.

(d) If N isexpected to facilitate some method in the parallel schedule, put
al thosethat are directly affected and are neither inlist 7" nor £ at the
beginning of list C'. Then recursively consider each of them.

(e) If NV isexpected tofacilitate some method in the parallel schedule, and
all of those methodsthat aredirectly affected areeither in 7" or F', then
consder if the gain of delaying M will offset the loss of facilitating
benefits of thosein F'. If so, and if N will meet its deadline even with
thedelay D, put N intolist 7. Otherwise, putitintolist /. Return the
status of whether it can be delayed or not, and the new list of 7" or F'.

This agorithm can be implemented in two procedures, with step 1 and 2 con-
stituting the first, and 2a to 2e making up another. Both can be implemented re-
cursively, with the second one aways passing back the status and the changed new
list C', T or F. Thisagorithmis like a depth-first search, but to avoid redundant
computations, the nodes that have been visited are kept in list 7" or I so that the

12

search can later reuse any previousresults. Sincethetop level repairing procedure
may apply this algorithm to the same method many times, we also build and use
atable to remember the maximal delay a method can bear without decreasing the
whole parallel schedule during this process. Thus if the scheduler later needs to
know whether a method can be further postponed, it can quickly get the answer
by comparing the maximal and the desired delay time. Caching results can greatly
reduce the computation cost in our application domain, since one method (or task)
can be facilitated by many others. For example, task 75 is facilitated by both 7',
and 7.

After the scheduler has determined that it is beneficial to postpone method A,
the scheduler will use a similar algorithm to visit al the affected methods in the
parallel schedule. But thistimeit will postpone the start-time of each methodsin
list 7' to reflect the delay of M.

We still use the task groupsin Fig. 1 as our exampleto illustrate this postpone
repairing mechanism. Since the scheduler gets the optimal schedule (see Fig. 2)
at the generation stage, we make a small change here. We assume that method
my only needs 12 instead of 34 time units for execution. This change will result
in anew schedule (shown in Fig. 3), since now m, can be finished earlier if itis
executed by agent A, than by A;. The postpone mechanism starts by identifying

N

mg Mg my

o
S
8
=
3

Figure 3: Method M, needs to be postponed.

those methods that do not benefit from all of the facilitates relationships. It can
be seen from Fig. 3 that method m, is the one since it is executed before m g IS
finished. Clearly, 1 time unit delay is what m, needs. The scheduler then checks
if such delay would affect the other methods in the schedule. Since m, isthe last

13

oneto be executed, the scheduler cannot find any. Thusal unitidletimeisinserted
into agent A,’sschedule, asshowninFig. 4. Clearly, thisisaso an optimal quality
parallel schedule.

& n

mg Mg Am4

Idletime

o
P
S}
N
o

Time

Figure 4. Postponing a method.

5.2 Switch agent

From Section 5.1, it can be seen that postponing a method A in one agent’s sched-
uleto take advantage of thetask relationshipsisnot alwaysbeneficial totheparallel
schedule quality. The reasons can be any combination of the following two cases.

1. Some methods which benefited from the facilitates task relationships from
method A no longer do so dueto the delay of M, or they can no longer meet
their deadlines.

2. Some methodswhich do not benefit from the execution of method M can no
longer meet their deadlinesdueto the delay. These methodsarethose behind
method A in the agent’s schedule.

Inany case, if the quality lossis greater than the gain, the scheduler will not try to
postpone M.

But if the sole reason not to postpone method M is some methods behind it
cannot meet their deadlines any more, and these methods are not expected to take
advantage of the facilitates relationships from M in the current schedule of the
agent, switching M to another agent so that it will start later may be possible. In

14

this way, there will be no change to any method behind M in the same agent’s
schedule.

The smplest way to switch another agent for amethod M isto let the parallel
scheduler to reschedulethemethod. That is, the scheduler considers M inthepres-
ence of the current parallel schedulewith A removed. If the new parallel schedule
results higher quality, replace the current one with the new.

To illustrate how the two repairing mechanisms work together, we modify the
previous example shown in Fig. 1 and Fig. 3 (see Section 5.1). But increasing the
duration to execute method m 1, to 6 time units. Furthermore, we add a new task
Ty tothetask group TG2 in Fig. 1, and assume there isonly one method 4, (with
q = 25, d = 5) to achieve thistask. Suppose 7s is enabled task 7., meaning that
it can be executed only after 7., isdone. Fig. 5 showstheinitial parallel schedule
before any repairing is done. Method m 4, is assigned to agent A, instead of A,

g 1B

mg Mg my mqq
m2 M1o
| | >
0 10 20 Time

Figure 5: Needs switch agent and postpone.

since it can be executed earlier. Similar to the previous example, the scheduler
will try to postpone method m, for 5 time units to take advantage of the facilities
relationship from myo. But by checking the schedule of agent A,, the scheduler
finds method m; won't be finished in time if such delay happens. Since m; is
not required or desired to be executed after m 4 because of task relationships, the
scheduler will try to assign it to another agent. A, isthe only choice. After the
switching, the scheduler can then postpone m,. The final schedule is shown in
Fig.6.

15

mp Mo My

! ! >

0 10 20 Time

Figure 6. After switching m; and postponing m.

5.3 Compact schedule

When a method is switched from one agent to another, the time dot it occupied
in the schedule of the former agent becomes idle time. In order to keep schedule
duration short, the scheduler needs to check whether it is possibile to utiltize this
idle time by shift some methods forward to execute them earlier. It is clear that
only the method that immedately followstheidletime should be considered at first.
Thismethod M isthen moved forward asfar asit does not lose any benifit already
taken from the task relationships. Any movement of thismethod A, however, can
result inalist L of method that starts after the original idle time dot, and follows
some amount of idletime (so it ismove-able) inthe parallel schedule. To consider
how to shift foward the methodsin list ., three heuristics are used in order.

1. Any shift of a method cannot result in any lose of the benefits it has taken
from any task relationships.

2. If morethan one can be shifted forward, the onethat causesthelargest move-
ment inthelongest scheduleispreferred. That is, the scheduler perferstore-
duce the duration of the whole parallel schedule, instead of alocal schedule
of some agent.

3. The method that startsearlier is preferred.

Of course, the new method is put into 7. whenever its predecessor is shifted for-
ward. The scheduler repeatedly use the three heuristicsto move methodsin L till
no shift can be made.

16

6 Experiment

We have implemented our parallel scheduler on TA£MS testbed. Thetestbed allows
us to adjust various parameters, such as the number of computational agents, the
number of the task groups, the chance that each kind of task relationship can occur.
Since we haven’t implemented an exclusive-search scheduler to generate optimal
parallel schedules, it isunclear at this moment how our scheduler performs statis-
ticaly. Inanumber of (relatively smple) randomly generated tests whose optimal
schedules are known, our scheduler performs very well. We are undergoing more
experiments to analyze the performance of the scheduler with or without the re-
pairing stage.

7 Reated work

Our scheduling problemwould be quitelikethe onesthat arewidely studiedif there
are no task relationships that would affect task execution durations or their result
qualitieq1, 5, 6]. The presence of these task relationships imply that not only all
the methods need to be scheduled so that they can be executed before their dead-
lines, they should also be ordered in away to achieve shorter schedule duration
and better overall result qualities. Below we describe the related work that does
consider some relationships between tasks, but none as redlistic and the ones we
use.

Fox and Smith treats scheduling as a constraint-directed search. Their system
ISIS[9] implements ahierarcia scheduling approach. Orders (tasks) are selected
one by oneto havetheir operations (methods) scheduled according to their priority.
Decisionsregardsing the selection of resources (like computational agents) smply
attempt to satisfy the constraintsrel ating to the order (to properly sequence the op-
erations and meet the deadlines). Their constraints are different from the ones that
result from the facilitates or hinders task relationships, in the sense theirs must be
satisfied in agood schedule while ours can be violated if it isimpossible to satisfy
them. If not al the constraints can be satisfied, the flexibility from task relation-
ships thus requires the scheduler to decide what constraints should pursue.

Hildum implements a knowledge-based system for solving dynamic resource-
constrained scheduling problemsin [10]. His scheduling agorithm expliots the
flexibility properties (like earliest-start-time) of tasks to alow the schedule to be
adaptableto the changing environment (likethe arrival of some new tasks). It uses

17

|east-commitment decision making technique to preserve maneuverability by ex-
plicitly incorporating dack timeinto the devel oping schedule. The preserved slack
time can be used (e.g., shifting task) later to adjust the schedule. Our scheduler
does not preserve dack timein the schedule, it inserts them only when necessary.

GERRY [11] developed by Zweben et al. uses constraint-based iterativerepair
to schedule and reschedul e the tasks of a plan according to temporal constraints,
milestones, resource congtraints and state constraints. Some of their constraints
aresimilar to or can be represented as our task relationships. Their scheduling and
repairing algorithm iteratively modifies the schedule via some basic actions like
inserting an achiever, shifting a task forward or backward. Our work employs a
constructive method to build draft schedule. This reduces the amount of iterative
maodifications needed at the repairing process.

Ramamritham and Stankovic in [12] uses a heuristic incrementa approach to
build schedule for multiprocessor systems. Their work focuses on how to guaran-
teethat all the tasks meet their deadlines. Their assumption that tasks are indepen-
dent is different from ours, though we believe that their heuristics (based on task
arrival time, deadline, worst case processing time) can be used to generate some
meta-level information (like what isthe maximal load for an agent) for our sched-
uler.

8 Summary

This paper presented a heuristics parallel scheduler based on task structures. We
believe identifying task relationships and exploiting them is crucia in building
high quality schedules for real-life applications. Since in most cases task rela-
tionships can be rather complicated, a scheduler can be easily trapped into alarge
amount of backtracking in order to find a good schedule. Our scheduler avoids
such traps by using a conservative non-backtrack heuristic search at the genera-
tion stage. It is conservative, since at this stage it only encourages the benefits of
task interactions but does not aggressively enforce (enables relationship is an ex-
ception) them, like the examplesillustrated in Fig. 3 and Fig. 5. This alows our
scheduler to quickly generate adraft schedule. The two mechanisms postpone and
switching agent that our scheduler uses to refine adraft schedule focus on how to
take advantage of those task relationships that have not yet been taken.

We did not specify what to do if a given set of methods (alternative) cannot
be schedul ed to meet the desired quality. It is expected that the repairing approach

18

developed by Garvey and Lesser in [8] can beused inthisparallel scheduler. Their

approach allowsthe schedul er to regeneratethe alternativeby switching some meth-
ods that causes the failure or the low quality of the schedule. For example, if the

scheduler findsthat if method m1, (in Fig. 1) had used fewer computation time the
overall quality of the parallel scheduler could beincreased by 50. Then the sched-

uler will use method mg to replace m, sSince they achieve the same task 7-..

The performance of our scheduler can aso be improved by exploiting meta-
level information. More specifically, we expect that the scheduler can estimate
what isthe most promising change (or what is the worst point) in the schedule be-
foreit actually starts the repairing process. It is clear such information will allow
the scheduler to quickly get agood schedule, and to compare it with other sched-
ulersworking in asimilar environment.

9 Acknowledgment

We appreciate the valuable reviews from Kathryn McKinley. Our experiment is
based on the testbed developed by Keith Decker and Alan Garvey. Alan Garvey
has also helped us to form and implement the ideas.

References

[1] Wedey W. Chu and Lance M-T. Lan. Task allocation and precedence rela-
tions for distributed real-time systems. |EEE Transactions on Computers,
c-36(6):667-679, June 1987.

[2] S.H.Bokhari. Dua processor scheduling with dynamic reassignment. |EEE
Transactions on Software Eng., SE-8:401-412, July 1979.

[3] G.S. Rao, H. S. Stone, and T. C. Hu. Assignment of tasks in a distributed
processing system with limited memory. |EEE Trans. Comput., C-28:291—
299, April 1979.

[4 P Y.R. Ma E. Y. S. Leg, and M. Tsuchiya. A task allocation model for
distributed computing systems. |EEE Trans. Comput., C-31:41-47, January
1982.

19

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Gilbert C. Sth and Edward A. Lee. Declustering: A new multiprocessor
scheduling technique. |EEE transactions on Parallel And Distributed Sys-
tems, 4(6):625-637, June 1993.

Gilbert C. Sihand Edward A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. |EEE
Transactions on Parallel and Distributed Systems, 4(2):175-186, February
1993.

Keth S. Decker and Victor R. Lesser. Quantitative modeling of complex
computational task environments. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 217—224, July 1993.

Alan Garvey and Victor Lesser. Design-to-time scheduling with uncertainty.
Technical Report TR95-03, Department of Computer Science, University of
Massachusetts, January 1995.

Mark S. Fox and Stephen F. Smith. 1sis—aknowledge-based system for fac-
tory scheduling. Expert Systems, 1(1):25-49, 1984.

David W. Hildum. Flexibility in a knowledge-based system for solving dy-
namic resource-constrained scheduling problems. Technical Report Umass
CMPSCI TR94-77, University of Massachusetts, September 1994.

Monte Zweben, Brian Daun, and Michael Deale. Scheduling and Reschedul -
ing with iterative repair, pages 241-256. Morgan Kauffman, 1994.

Krithi Ramamritham and John A. Stankovic. Efficient scheduling algorithms
for real-timemultiprocessor systems. | EEE Transactionsof Parallel and Dis-
tributed Systems, 1(2):184-194, April 1990.

20

