
Farm: A Scalable Environment for Multi-Agent
Development and Evaluation �

Bryan Horling, Roger Mailler, Victor Lesser

Multi-Agent Systems Lab
University of Massachusetts
Amherst, MA 01003-9264

�bhorling,mailler,lesser�@cs.umass.edu

Abstract. In this paper we introduce Farm, a distributed simulation environment
for simulating large-scale multi-agent systems. Farm uses a component-based
architecture, allowing the simulation to be easily modified and augmented, as
well as distributed to spread the computational load and improve running time.
Technical details of Farm’s architecture are described, along with discussion of
the rationale behind this design. Performance graphs are provided, along with a
brief discussion of the environments currently being modeled with Farm.

1 Introduction

A tension exists in simulation frameworks which trades off the inherent richness of the
provided environment, and the flexibility and ease with which that same environment
can be used to analyze a particular aspect of a larger solution. On one hand, robust
simulation environments can offer many enabling technologies that both increase the
fidelity of the simulation, and provide a range of services that the participants may use
to their advantage. These same features, however, can be an obstacle if the goal is to
evaluate a particular technology in the absence of complicating factors.

Our prior work in the area of multi-agent simulation environments [14] resides in the
former category; it provides a wide range of services in an attempt to create a realistic
environment in which agents can perform and be evaluated. While using this approach
is an important step in agent development, our experience has shown that it may also be
helpful to extract key technologies from such an environment, and rigorously test them
under conditions that have fewer distractions. For example, we will discuss a resource
allocation technique that was more easily tested without many of the unrelated domain

� Effort sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory Air Force Materiel Command, USAF, under agreements num-
ber F30602-99-2-0525 and DOD DABT63-99-1-0004. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. This material is also based upon work supported by the National Science
Foundation under Grant No. IIS-9812755. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), Air Force Research Laboratory or the U.S. Government.



complexities. Performing these more focused tests has the dual advantages of reducing
possible artifacts from unrelated events, and improving the time needed for analysis by
reducing the simulation overhead.

Our recent work addressing negotiation-based resource allocation [9] is a good ex-
ample of this tension. The full-scale solution was developed by implementing fine-
grained, sophisticated agents in JAF [14] using a detailed domain-specific simulation
tool called Radsim [8]. Test scenarios were quite realistic, where agents were required
to manage all aspects of a tracking multiple targets using a distributed network of sen-
sors. This necessitated solutions for a range of issues, such as organizational design,
dealing with noisy or uncertain data, managing agent loads, handling unreliable com-
munication, disambiguating targets, etc [8]. Although each of these are important in
their own right, and some have important effects on negotiation, many are orthogonal
to the original resource allocation problem. We found that operating under such condi-
tions not only distracted from this original goal, but also failed to illuminate potential
flaws in the negotiation scheme. Negotiation errors were sometimes mis-attributed to
related subsystems and we were unable to scale the collection of fine-grained agents
using a reasonable number of processors.

In this paper we will present Farm, a distributed simulation environment designed
to facilitate the analysis of the quantitative aspects of large-scale, real-time multi-agent
systems. In particular, Farm provides essential base functionality needed to drive a
multi-agent system, in such a way that elements such as the scalability, real-time con-
vergence rate and dynamics of a particular system can readily be evaluated and com-
pared. Farm has, in some sense, taken a step back by moving to a lighter weight im-
plementation to provide an environment where multi-agent subsystems may be quickly
developed and evaluated. Similar to [2], we are also interested in scaling up the size of
scenarios, while reducing the time needed to run time.

Farm is a component-based, distributed simulation environment written in Java. In-
dividual components have responsibility for particular encapsulated aspects of the sim-
ulation. For example, they may consist of agent clusters, visualization or analysis tools,
environmental or scenario drivers, or provide some other utility or autonomous func-
tionality. These components or agent clusters may be distributed across multiple servers
to exploit parallelism, avoid memory bottlenecks, or use local resources. In addition,
the set of components used in a particular scenario is not fixed - a limited set might be
instantiated initially to reduce the simulation overhead, and components may also be
dynamically added or removed at runtime as needed.

The agents operating in the system are the true subjects of the simulation. These
are typically (but not necessarily) light-weight, partially autonomous entities that have
a defined goal or role to fulfill within a larger domain context. Agents may be hetero-
geneous, either by instantiating the same type of agent with different parameters, or
by using different classes of agent. Each exists as a thread, with its own local memory
and control flow. To distribute the load incurred by the agent population, Farm orga-
nizes them into clusters, where each cluster exists under the control of a parent agent
managing component that provides access to the rest of the simulation environment.

The agents themselves run in pseudo real-time, where individual agents are each
allocated a specific amount of real CPU time in which to run. This aspect allows the



Target Speed
0 2 4 6 8 10 12 14

U
til

ity
0

5

10

15

20

25

30

35

40

Utility Differences by Target Speed

Negotiate

Random

Fig. 1. The effect of increasing target speed on the utility obtained by two different sensor alloca-
tion schemes.

systems to exhibit a fair amount of temporal realism, where the efficiency of an agent’s
activities can have quantifiable effects on performance in domains where the passage of
time matters. For example, in the distributed sensor network domain we describe later,
a sensor allocation scheme requires a certain amount of time to decide on an allocation.
The amount of time available depends in part on the speed at which the target is mov-
ing. Because this time is accounted for in Farm, the target of the sensing has the chance
to move away from the sensor while the allocation is being generated, producing lower
utility despite having an otherwise valid allocation. This effect can be seen in Figure 1.
In that figure we compare the utility obtained by two allocation schemes as the target
speeds are increased. The negotiate scheme requires time in which to compare allo-
cations and communicate, while the random scheme simply picks sensors and ignores
potential conflicts. Given enough time, the former produces a better result, while the
latter gets a higher utility when time is scarce. A detailed discussion of these particu-
lar results is tangential here, we provide them as a motivating example of a situation
where the temporal constraints of a situation are important, and can be captured by
the environment provided by Farm. Communication actions are similarly modeled and
monitored in such a way that message delivery times appropriate for the domain can be
simulated.

Farm has been used to model five different domains, including a variety of agents
implementing different types of solutions for these domains. Scenarios consisting of
5000 autonomous agents have been run using 10 desktop-class Linux boxes. These
environments will be discussed in more detail later in this paper.

In the following section, we will provide a brief overview of the Farm simulator,
followed by a discussion of how Farm relates to other MAS simulation environments.
A more detailed look at Farm’s architecture is provided in section 3, along with a more
in-depth examination of some of those features. We will conclude with examples of the
environments that Farm has been used to create, and how Farm’s capabilities were used
in their design.



Analyses
• State / trend analysis

GUIs
• State visualization

Driver
• Non-agent activity

Farm Core
• Plug-in management
• State maintenance

• Control flow

…
Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
… Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
… Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
…

Fig. 2. An example of Farm’s component architecture.

2 Overview

As mentioned earlier, Farm is a distributed, component-based simulation environment.
By distributed, we mean that discrete parts of the environment may reside on physically
separate computing systems. In general, no assumptions are made about the type of sys-
tem a part is run on, with respect to its operating system, memory or disk architecture.
In particular, all that is required is a Java interpreter, and a means to communicate with
other parts of the environment (e.g. some sort of network connection).

Each part, or component, in this simulation environment is responsible for some as-
pect of the simulation. Figure 2 shows how a typical set of components in the simulation
are related. The hub of activity is the Farm core, which serves as a connection point for
components, and also drives the control flow in the system as a whole. The connected
components then fall into two categories: those which directly manage the agents run-
ning in the system, and those which exist to support those agents or the scenario as a
whole. These agent managers are called meta-agents, as each acts as an interface to and
for a cluster of one or more agents. This organization is solely for efficiency purposes,
it has no effect on the outcome of the simulation, and the individual agents do not know
what meta-agent they are controlled by. Agents are implemented are threads, although
this is only for performance purposes - from an agent’s perspective they are completely
segregated, and are not aware of or share memory with other agents which happen to
also be resident at the same meta-agent.

At runtime, agents are provided time in which to run, and other components (such
as the drivers, analyses, and GUIs from Figure 2) are given the opportunity to perform,
analyze, or modify the simulation at well-determined times. The run cycle is partitioned
such that tasks like state maintenance or analysis may be performed without affecting
the simulation results, even if they require indeterminate time. This is covered in more
detail in section 3.1. Such tasks are facilitated by the ability to store and retrieve global
information, which allows any given component to interact with a snapshot of the sys-
tem’s current state. The design of this data storage is covered in section 3.2.



Metagents
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

T
im

e 
(m

in
)

0

20

40

60

80

100

120

140

160
Farm

Optimal

Fig. 3. The effect of increasing the number of meta-agents on simulation duration.

3 Architecture

As mentioned earlier, a simulation environment built using Farm is comprised of a num-
ber of components. Central to this arrangement is the Farm core, which handles compo-
nent, control and state management. The meta-agents, specialized components which
manage clusters of actual agents, implement much of the architectural-level functional-
ity supporting those agents. More generally, component plugins provide the remainder
of the system’s non-agent capabilities, typically including both domain-independent
and domain-specific elements which create, manage and analyze the environmental
state. An arbitrary set of components may be used for a given simulation scenario.
For example, one might choose to reduce simulation overhead by running without vi-
sualization, or with it to get a clearer picture of the system’s state. Multiple, different
analysis components could be used to capture different aspects of the system. Different
environmental drivers could be used, depending on what type of scenario is desired.
Some additional discussion of the plugin types we have used can be found in section 4.

Whereas the types of the selected plugins are important in providing the capabilities
and character of the simulation, it is just the total number of meta-agents which we are
concerned about. The meta-agents are usually identical in functionality, and the size of
the meta-agent set dictates how the load incurred by the agent population is distributed.
Intuitively, in an environment with 100 agents, 5 meta-agents managing 20 agents each
will run faster than a single meta-agent with all 100 agents. Experimental results look-
ing at the effects of increasing the number of meta-agents can be seen in Figure 3,
which shows its effect on total simulation time. The experimental setup consisted of a
scenario containing 100 agents over a period of 60 seconds, using between one and five
meta-agents. Recall that our goal is to provide each agent with an equal share of time,
independent of what tasks the agents are actually performing. Ignoring the fact that an
individual agent will in reality map to a single meta-agent, an optimal system’s duration
would then exactly distribute the total runtime across all available meta-agents:

��� ������� �	���
�� ����

������� ���� ������
 ��� �������

...or 100 minutes with a single meta-agent. This duration would decrease at a rate in-
versely proportional to the number of additional meta-agents until they reach a 1:1 ratio



with the agent population. Farm closely models the behavior of an optimal system, with
differences between the two largely attributable to Farm’s environmental modeling and
component communication. The number of meta-agents can be increased arbitrarily,
although it generally does not make sense to allocate more than one per processor.

Closely related to the total number of meta-agents is the load placed on each of
them. Up to this point, we have assumed that agents allocated some duration of time
will always require and use all that time. In practice, especially when agents can interact
and may rely on one another for data, agents may have a considerable amount of idle
time where they are awaiting a notification of one form or another. Farm allows agents
to signal that they have no further actions to perform, so that they may preemptively re-
lease the time they have been allocated. In this way, they can reduce the actual runtime
required, without changing the conceptual amount of time they have consumed in the
simulation. If this capability is used, then the uniformity of agent load we have assumed
so far may be incorrect, since some agents will be consuming different amounts of real
processing time despite the fact that they all have identical simulated processing time.
If there are different classes of agents, which may exhibit these different runtime char-
acteristics, then this distribution should also be reflected in the allocation to avoid the
need to estimate their actual computational requirements a priori. For example, if we
have 5 meta-agents, 80 agents of type � and 20 of type �, a good allocation would place
��� and �� on each meta-agent because the load assigned to each meta-agent would be
most evenly balanced. This scenario assumes no additional knowledge about the agents.
If more details are available a more efficient allocation could be found, by reducing
inter-meta-agent communication, for example. This will only affect the runtime char-
acteristics of the simulation, and not affect the behavior of the agents themselves. The
environmental driver is responsible for this allocation; it is provided with the number of
meta-agents, which it uses with it’s internal characterization of the desired scenario to
decide upon an allocation of agents.

3.1 Control Flow

As the system starts up, the core acts as a registry for components, which contact the
core as they are invoked. Components start by performing an initialization sequence,
after which they wait for direction from the core.

Control in the simulation is concerned with the passage of time. Our ultimate goal
in this is to ensure that each agent in the system is provided the same amount of physical
CPU time, to evaluate how those agents would perform in a continuous-time environ-
ment. In a perfect simulation, all agents would be able to operate asynchronously in
parallel. However, competition for the local processor by agents resident at the same
meta-agent precludes this option if we wish to ensure fairness among them, and hav-
ing one processor per agent is clearly infeasible for large numbers of agents. Thus, we
approximate this behavior by sequentially assigning individual agents a slice of time in
which to run. In between such opportunities an agent thread is paused, so the currently
running agent has exclusive access to the CPU, as much as this is possible in a multi-
tasking system. The simulation thus approximates how the agent population as a whole
would act under real-time conditions, by breaking the timeline into a series of slices
and providing each agent the appropriate amount of time to run for each slice.



This process is separated into two different components of the simulator: the core
and meta-agents. The core starts a pulse by notifying all meta-agents in parallel that
their agents may run for some duration of time. Each meta-agent then sequentially
wakes their local agents, and indicates the specified amount of time which they have
available to them. We refer to this process as the agents receiving a pulse of time in
which to run. Ideally, the meta-agent would externally recognize when this time had
expired, and halt the agent’s thread preemptively. However, this technique can lead to
deadlocks and other undesirable, nondeterministic behaviors that affect the real-time
performance of other agents in the simulation, especially if the agent is interacting
with a remote third party at the time of the preemption. To address this, agents are
provided with a simple time-checking function which should be called periodically, that
internally tracks how much time has been utilized. When their allotment has elapsed,
this function blocks and notifies the meta-agent of completion. At the beginning the
next pulse, the thread is restarted from this same location, so only a minor intrusion
into the agent’s code is required.

Just before and after this pulse is sent to the meta-agents, all components in the
simulation are allowed an indeterminate amount of time in which to run. For example,
before the agents are pulsed, a driver might update environmental data (e.g. a moving
target’s position). After a pulse, analysis tools might take time to update statistics or
visualizations. Because the agents are halted during this time, and the duration of these
activities will not affect the results of the simulation, the designer is free to perform any
number of activities during this period (at the expense, of course, of possibly increasing
how long the simulation takes to run). The process of providing time before, during, and
after each pulse is repeated by the simulation core until the simulation is completed.

Because of this style of control flow, interactions do not take place between agents
within a single time pulse - the effects of one agent will not be observable by another
until that pulse has ended. This can lead to a certain amount of data, communication or
behavioral incoherence in the system, the duration of which is bounded by the length of
the time slice. For example, messages cannot be delivered faster than the pulse duration.
In another situation, the effect of one agent’s action will not be observable by another
immediately, but must wait until the following pulse when the result of that action can
be shared. Mechanisms for addressing this issue are covered in section 3.5.

The pseudo real-time nature of this control used by Farm implies a certain amount
of non-determinism to otherwise identical scenarios, as external events may effect the
actual amount of processing time an agent receives during a window of real time. If
determinism is required, Farm also supports a fixed notion of pulse time, which tracks
the agent’s execution progress, rather than just elapsed time. For example, instead of
allocating 100ms per pulse, agents could be allocated a single pass through their main
event loop. Thus, for each pulse, each agent’s pulse method would be called once,
and (assuming the agents themselves are deterministic) the scenario as a whole will be
deterministic because the same sequence of activities will be performed for each run.
This allows repeatability, but prevents one from drawing strong conclusions about how
the agents behave in real time.



3.2 Data Flow

The Farm provides the components in the simulation with a data storage facility with
characteristics similar to distributed shared memory. This is not inter-agent shared mem-
ory (agents are still assumed to interact via messaging), but instead provides an indirect
means of interaction between the simulation components and a way to deliver environ-
mental information to the agents. Using this scheme, components may store and retrieve
data (properties) from a functionally common repository, enabling the data produced
by one part of the simulation to be used by another. For example, an environmental
driver might be responsible for updating the Target1:Location property. Agents
needing to know that target’s location can then simply access this property. Similarly,
each agent could store some notion of it’s current state in, for instance, the property
Agent1:State. An analysis component could then find all properties *:State to
capture a snapshot of all the agents in the system.

Distributed data storage is accomplished in Farm through the use of a token system.
Each globally-accessible property is associated with a token, which may be resident in
the simulator core or at any one of the plugins. The owner of the token for a particular
property is responsible for its storage; all reads and writes to that value are performed
by or through it. The Farm core itself is responsible for keeping track of who owns the
token for each property, somewhat like a specialized directory service. When a property
is to be read for the first time by an entity, it optimistically assumes that it is stored at the
core, and makes a request to the simulator for it. If it is being stored there, the property’s
data will be delivered and the process continued uninterrupted. If a different plugin is
the owner of that property, the core instead provides the requester with the name of that
plugin. This can be used to contact the appropriate plugin and retrieve the data. This
property-plugin mapping is then cached so future requests can be made directly to the
owner plugin. Because plugins may leave, have their tokens removed, or otherwise lose
control of a property, such future requests may fail. In this case the requester will again
revert to the default assumption that the core itself is storing the property, since the core
will either return the data or redirect the reader as needed.

Property writes occur in a similar manner. If the writing entity has a cached property-
plugin mapping, then it will contact the appropriate plugin with the new data to be
written. If no such mapping exists, or if the property is controlled by the core, then
the simulator itself is contacted. As with reading, the simulator may store the data it-
self, or redirect the writer to the appropriate owner plugin. Because property owners
may change over time, writers will again fall back to the default assumption that the
property may be controlled by the core if the local knowledge is out of date. We will
assume from here on that the plugins fulfill all of the storage responsibilities; simulation
core storage is generally only used as a fail-safe mechanism in case a plugin fails or is
otherwise unavailable.

An additional mechanism also exists which allows plugins to be automatically up-
dated with a property’s data when it is updated. A list of recipients is attached to the
owner’s token, so when the property is changed the new value can be automatically
pushed to each member of the list. This pushed data is flagged as being cached, so the
recipient knows it can safely read from the data, but writes must still be propagated



back to the owner. The owner is responsible for ensuring that this remotely cached data
is kept up to date.

Farm also Java’s RMI and serialization services to support mobile code, for cases
where data retrieval bottlenecks are otherwise unavoidable. With this technique, instead
of remotely retrieving and locally processing a potentially large amount of data, a spe-
cialized function is delivered to and run by directly by property owners. This function
can be written to use only local data, with the intention of returning a more concise view
to the originator. This is particularly useful for analysis components, which frequently
need to access data that scales in number with the agent population. The dominating
costs of this technique scale with the number of plugins, resulting in substantial savings
in bandwidth and time.

3.3 Communication

To improve scalability, communication takes place entirely outside of the core. Instead,
communication occurs between meta-agents, and individual agents send and receive
messages via their managing meta-agent. When a new meta-agent registers with the
core, all existing meta-agents are told about the addition, and the new meta-agent is
given a list of all other members - thus a fully-connected graph of meta-agents is main-
tained. When an agent sends a message, it is added to a per-agent outgoing queue. The
meta-agent selects ready messages from these queues and checks its address table to
determine the recipient’s owning meta-agent. If the meta-agent is found, the message is
delivered. If it is not found, it uses the list of known meta-agents to find the appropriate
one, and that mapping is then recorded in the address table. Thus each meta-agent will
learn a mapping for only necessary destination agents. As messages are received by a
meta-agent, they are added to a per-agent incoming message queue, which is polled by
the agent as necessary.

We wish to have a relatively realistic network model, so care is taken when sending
messages. A potential race condition also exists for message delivery, as one agent’s
message may reach another agent before it has technically been sent in the global time
line. As messages are added to an agent’s outgoing queue, they are marked with a de-
livery time. The delivery time of a message will be that of the prior message in the
queue, plus a bounded random transit duration which can be weighted by the length of
the message. A message loss rate probability may also be set. At the end of a pulse,
each meta-agent searches the outgoing message queues of its local agents, and sends
messages if permitted by the assigned delivery times. These messages are queued for
delivery at the destination meta-agent. At the beginning of the next pulse, those received
messages are delivered to the appropriate incoming queue for each agent. The agent is
then responsible for monitoring its queue and handling new messages. We are investi-
gating other potential communication paradigms, such as a defined routing network or
distance-limited broadcast.

While this decentralized communication mechanism scales very well, it prevents
other components from directly observing or analyzing message traffic. Gross statis-
tics, such as total incoming and outgoing messages, are currently computed and stored
as global properties by individual meta-agents. Other statistics can be computed in a
similar manner to compensate for this design decision.



Agents
100 300 500 700 900 1100

T
im

e 
(m

in
)

0

10

20

30

40

50

60

70

80

Fig. 4. The effect of increasing the number of agents on simulation duration.

The exact messaging protocol is left intentionally unspecified and abstract. Agents
simply send Message objects, which can be extended as needed. The destination agent
then receives Message objects in its incoming queue. Parsing of the object is per-
formed automatically.

3.4 Scalability

Some discussion of the scalability of Farm has been mentioned earlier. The component
architecture of Farm, and specifically its ability to segregate the agent population into
groups under the control of distributed meta-agents, leads the environment to large scale
scenarios. Because the agents effectively run in parallel because of this distribution, the
primary constraint is having available computing power to run such simulations in a
reasonable amount of time.

Figure 4 shows a sample of Farm’s scalability characteristics, from the results of
a series of repeated trials with a scenario length of 60 seconds. The number of meta-
agents was fixed at five, and the number of agents gradually increased from 100 to 1000,
with a 1:4 ratio of targets to sensors. The distributed resource allocation domain from
section 4.1 was used, because the movement of targets provides a need for continual
re-evaluation and communication over areas of contention. The initial results seen in
this graph are promising.

In comparing the 100 agent point from Figure 4 with the 5 meta-agent point in 3
(which also used 100 agents), one might also note a significant difference in simulation
duration. For example, the 100 agent case here took only 6 minutes, as compared to 124
minutes previously. Both experiments used the same machines, domain and agent pop-
ulation, but the trials from Figure 4 allowed the agents to signal their meta-agent if they
have no additional work to do, using the technique mentioned earlier in section 3. This
allows the agent’s pulse cycle to be ended prematurely, with potentially large savings in
actual running time without loss of precision in the simulation results. In our scenario,
if there are more agents in an environment of constant size, there is a higher proba-
bility that additional computation will be needed to resolve the correspondingly larger
number of conflicts. This is seen in non-linearity of the data in Figure 4, where dis-
proportionately more time is used in larger populations. In this way, the system avoids



expending effort simulating agents’ “idle” time, which gives Farm some of the benefit
that a strictly event-based simulation environment would posses.

Perhaps more interesting than “how large can it get?” is the question “what pre-
vents it from getting large?”. No design is perfect, and parts of Farm’s architecture can
inhibit scale in order to permit other features. Typically, the most constraining feature
is the remote access of data, as outlined in section 3.2. This is necessary to facilitate
state analysis, but excessive usage can accumulate a large time penalty. In general, such
scenarios will just take longer to process than if the data storage were completely dis-
tributed. If an appropriate allocation strategy is used, then in many cases data caching
and mobile code can ensure agents are not unduly penalized for the time required to
update remote data.

Another constraint, related to data flow, is environmental maintenance. The task
of creating and maintaining the simulation environment (e.g. placing sensors, moving
targets, etc.) is typically the responsibility of a single component. Like any other, this
component may be distributed for load balancing purposes, but it is still a single process
limited to the resources present at its local processor. Like the agents, it also accesses
state data, but since it has the responsibility of maintaining the entire state, the potential
burden is much more concentrated. Extremely large, complex or dynamic environments
might therefore benefit from separating this responsibility into separate components,
much as the agents themselves are separated. Thus, one might have a target component,
a sensor component, and the like, each with a specific, tractable responsibility.

3.5 Coherency

Whenever an environment is distributed, the problem of coherency arises because en-
tities on one processor may have data inconsistent with that on another. One must try
to make sure that interactions between processors are as faithfully represented as those
occurring on the same processor.

The data consistency problem in Farm manifests itself in the time between when
one agent changes a value to when that change can be observed by another. In be-
tween those events, the system can lose some measure of coherence. Because Farm is
attempting to replicate the behavior of a centralized simulation, data storage should ex-
hibit strong coherence, and components always use the most up-to-date property when
possible. One could envision a system where a weaker form of coherence might be ac-
ceptable to some components (e.g. visualization) in order to reduce overheads. In this
case, techniques used to minimize the cost associated with maintaining such a heteroge-
neous population could be employed, as shown in [12]. However, due to the relatively
small population of plugins in a typical scenario, the costs associated with maintaining
such special cases may outweigh the potential benefits. We have previously outlined
Farm’s data dissemination technique in section 3.2. In the absence of cached informa-
tion, coherence is maintained by the single owner for each property, which handles all
read and write accesses for the property. These accesses are serialized by the owner,
ensuring that consistency is maintained. In the case where data has been pushed to and
cached by remote components, the owner is also responsible for immediately updating
those components with the new information. Owner coherence is maintained by lock-



ing the property for the duration of the update, while remote coherence is limited by the
network and processing delay incurred by the update.

Communication coherency is also important. Farm must ensure that a message is
delivered when appropriate, and from the recipient’s perspective, not before it was ac-
tually sent. As outlined in section 3.3, messages from the agents are queued for delivery
during the pulse, and only sent after the pulse has completed. The receiving meta-agent
queues incoming messages, which are delivered to their final recipient when the speci-
fied delivery time has been reached.

A more insidious form of inconsistency occurs when the meta-agents are distributed
across a heterogeneous set of machines. Because the agent’s computational effort is
measured in seconds, one group of agents may effectively be allocated more time sim-
ply because the processor they happen to reside on can perform more computations
in the same amount of time. A few strategies can be employed to compensate for this
problem. One could compute a processor-to-real time ratio for all machines in the pool,
and use that to scale the actual time allocated by individual meta-agents. In Farm, this is
accomplished by first determining a baseline performance standard, either by prespeci-
fying it or by having the simulation core to dynamically compute one from the computer
it resides on. This baseline value is then provided to the meta-agents, who dynamically
determine their individial performance metrics by computing a common benchmark.
We use the Linpack benchmark [1] to produce these performance measures. The ratio
of the baseline value to a meta-agent’s individual performance metric is used to weight
the execution time it allocates to the agents under its control.

Another strategy to address the issue of heterogeneity is to statistically remove the
problem through repeated trials where the agent population is shuffled between hosts.
A third option (clearly requiring less effort) is to simply ensure your server pool is suffi-
ciently homogeneous, or accept the performance differences as a byproduct of working
in a realistic environment. For the results presented in this paper, the experiments were
performed using a group of similarly configured workstations.

4 Environments

Several computational environments have been implemented using Farm, each taking
about two days to implement the environment itself, and the agents taking from a day
to a week depending on their complexity and the availability of source code. Each
environment generally consists of a driver, which instantiates and maintains the envi-
ronment, and analysis components, which generates statistics at runtime, and a set of
one or more types of agents. In addition, several generic components have been devel-
oped which may be used across all environments. These include a graphing component,
property log, time driver, and simple statistical analysis (running averages and standard
deviations).

4.1 Distributed Resource Allocation

The distributed resource allocation environment is an abstraction of the distributed sen-
sor network (DSN) problem [8]. A complete solution would reason about a range of



Fig. 5. The distributed sensor network domain implemented in Farm.

issues, from role assignment to low level task scheduling to multi-target data associa-
tion. The underlying problem, however, is much more straightforward. The environment
consists of a number of sensors and mobile targets, and the high level objective is to use
the sensors to track them. Each sensor has limitations on its range and usage. This then
reduces to a resource allocation problem, where the attention of the sensors must be
allocated so that all the targets are tracked.

Several plugins were created for this domain. The first was a driver, which is re-
sponsible for assigning sensor and target agents to meta-agents, and for creating and
maintaining the sensor environment. This includes determining locations for the sim-
ulated sensor nodes, updating target locations as they move, and maintaining sensor-
target observability lists. These lists were stored as properties, so that they can easily
be accessed by the individual agents. This and other data was also used by an analysis
plugin, which determined the possible and current utility produced over time, tracked
message totals, and sensor allocation conflicts, among other things. Much of the data it
uses are produced by individual agents, which are then stored as global properties. One
can see that as the system scales, this data transfer can become significant, which mo-
tivates the property storage discussion presented earlier in section 3.2. Farm’s generic
graphing plugin, seen at the bottom of Figure 5, was used to visualize some of this data.
The analysis component works by aggregating the data and producing some sort of
summary statistic at each time pulse. This statistic is also stored as a property, the name
of which can be provided to the graphing plugin at launch time so it can find and graph
the values over time. Another domain-specific visualization component, shown at the
top of Figure 5, displays the current sensor field, along with target allocations, conflicts
and negotiation patterns. This works in a manner similar to the analysis component,
aggregating data produced by individual agents with location data from the driver to



produce its image. The same data collection costs mentioned above also motivate the
need for a component-based system such as Farm employs that allows one to run both
with and without potentially expensive components like these visualizers.

Our comprehensive solution to this problem is implemented as a homogeneous col-
lection of sophisticated JAF agents, which run in real time in both the Radsim simulator
and hardware. In the Farm environment there are two types of simpler agents: sensor
agents, each of which controls a single sensor, and tracking agents, each of which is re-
sponsible for tracking a single target. The driver provides the track managers with a list
of candidate sensors, i.e. those which are in range of its target, and the track manager
must determine which sensors it wants to use. The track managers must then coordinate
to resolve conflicts so all targets are tracked. The SPAM negotiation protocol [9] was
implemented to solve this problem.

This domain was the incentive behind Farm’s creation, and has shown itself to be
particularly useful in debugging and evaluating SPAM. Because Farm scales to much
greater numbers, and also eliminates most of the complicating, but ultimately tangential
factors (relative to resource allocation), development and evaluation of the protocol was
much easier in this environment than in the original detailed simulator. We were also
able to directly use almost all the code from the original JAF-based implementation,
so improvements made in the Farm environment were easily mapped back the more
realistic Radsim and hardware environments.

4.2 Graph Coloring

The well-known graph coloring domain was implemented as a means of both testing
the generality of SPAM, and also to compare its performance against reference proto-
cols known to work on graph coloring. The driver in this domain was simpler than for
DSN, as it only needs to create the nodes and edges of the graph. A domain visualizer
was written to help observe system behavior. We use the layout procedure described in
[15] to produce satisfiable graphs of arbitrary size using a defined number of colors.
Currently the resulting graph is static, although we intend to add an additional dynamic
component to it in the future. A separate analysis component evaluates the possible and
actual number of coloring constraints, which is then visualized using the graphing com-
ponent. Three agents have been implemented in this domain, using protocols derived
from descriptions in [15].

4.3 Learning Evaluation

The learning domain we developed is somewhat different, in that was not intended to
produce an environment where a number of agents work together addressing a common
environment. Instead, a number of individual agents learn in parallel on separate prob-
lems. Specifically, we have implemented a simple �-armed bandit problem [13], along
with several agent types instantiating different reinforcement learning techniques. The
purpose of this was to create an environment where a number of tests can be run con-
currently, to provide more immediate, comparative feedback as visualized by Farm’s
graphing plugin in Figure 6. In this figure we compare how the percentage of agents
performing the optimal action changes over time between two different techniques,



Fig. 6. The learning domain implemented in Farm. This shows the average results of two learning
techniques being run concurrently, each with a learning population of 500 agents.

where each measurement for each technique is the average over the behavior of 500
concurrently running agents.

The driver for this domain was responsible for determining what types of learning
agents to create. As with the DSN domain, this is a potentially heterogeneous collec-
tion agents, so allocation was performed by distributing a representative sample of this
collection to each meta-agent. The learning domain also employed a more complex
analysis component, which used mobile code to first generate aggregate statistics at
each component, and only transfer a summary back to the analysis component. These
summary statistics were then combined to produce the global statistic. This produced a
large savings in time and communication, at the expense of a more complex implemen-
tation.

This particular domain is also differentiated by its use of the deterministic notion of
pulse time. Agents are controlled so that instead of running for a certain number of mil-
liseconds, they are allowed only a fixed number of passes (1) through their control loop
per pulse. This allows us to ignore the computational costs of the learning techniques
(which might vary by implementation), and instead focus on their theoretical conver-
gence rates. This control style may be turned off to analyze real-time performance.

5 Related Work

Attempts have been made [10, 6] to define the set of features and characteristics that
a multi-agent simulator should posses. The topics described in these efforts are impor-
tant, in that they can help guide designers towards a comprehensive, robust solution.
Farm, however, is not intended to provide a complete simulation solution - instead it
tries to provide a relatively simple environment where agents possess only the most
germane functionality. Much of the complexity of a real environment can be either ab-
stracted away, or approximated through the use of black-box style components which
provide agents with necessary information, when the actual process of obtaining that
information is unimportant. Thus, much of the underlying modeling structures which
make other simulators unique is absent in Farm.



5.1 MACE3J

MACE3J [4], like Farm, is primarily intended to simulate large numbers of large-
grained agents. It includes mechanisms for different styles of event and messaging
control, data collection, and a lightweight agent definition model. It is also scalable,
but does so under a multiprocessor-based scheme, taking advantage of the capabili-
ties inherent in lower level system software to manage many of the inter-processes and
inter-thread issues which arise in simulation. While this method is undoubtedly more
efficient than the distributed approach we have selected, it also requires additional phys-
ical overhead in the form of an actual multi-processor machine, or a cluster of machines
tied together with appropriate software. In this sense, Farm is more closely related to
the original MACE [3], which also employed a distributed architecture.

Farm places more emphasis on the real-time aspects of agent behavior, as progress
in a scenario is driven by the passage of time, not events or messages, and the effective-
ness of an agent is affected by the duration of its computations. In contract, MACE3J’s
event driven control with synchronization points allows for more deterministic results.
In other ways the two environments are similar: Farm also supports repeatability, varied
communication models, and data collection and display tools.

5.2 Swarm

Like Farm, the Swarm [11] simulation environment is a modular domain-independent
framework. It offers the ability to probe agents’ state and beliefs, and graphically dis-
play them, similar to the logging and graphing tools provided with Farm. Fundamen-
tally, the two differ in their representation of time. Swarm uses a discrete event system,
where a point in time in not reached or seen until some event has been scheduled to
take place then. Farm uses a real-time approach where time passes regardless of what
events are taking place. Both techniques are valid, but serve different purposes. In ad-
dition, Swarm agents have a different character to them, as they are generally modeled
as a set of rules, or responses to stimuli. Conversely, Farm agents are built more like a
conventional program, where classes and routines are built to exhibit agent behavior.

5.3 CoABS Grid

The CoABS Grid (CG) [7] is a middleware system designed to integrate a collection of
architecturally heterogenous agents into a single consistant environment. It has many
of the characteristics of a simulation environment, although it is more robust in that the
environment and the effects of agent activities need not necessarily be simulated. CG
has some features that directly provide domain services to the agents, such as capability
registration and search, secure communications, and directory services, which in a Farm
simulation would traditionally be considered part of the agent solution. However, in the
spirit of avoiding unnecessary complexity that we have espoused, one could envision,
for example, a Farm directory service plugin in much the same way drivers are used to
relieve the agents of other burdens. Like Farm, CG strives to be a scalable solution, has
support for optional visualization and logging tools, mobile code, and fully distributed
point-to-point communication. Farm differs from CG in its tighter control of time, in



that agents are allocated a particular amount of execution time by the Farm core. Be-
cause CoABS agents may be legacy systems or non-native wrapped agents this level of
timing control and accountability is difficult to achieve in that framework.

5.4 MASS

Our earlier simulation environment, the Multi-Agent System Simulator [14], is quite
different than Farm. It provides a richer, quantitative view of the world, where agent
activities and their interactions are modeled using a hierarchical task decomposition
language, consumable and non-consumable resources have constraints which can af-
fect behavior, and an agent’s beliefs may differ from objective fact. As with the earlier
example, agents are built using JAF, which itself has a fair amount of complexity. All
of these features are desirable for evaluating sophisticated agents in context, but at the
same time they can be distracting when only a subset of behaviors need analysis. In ad-
dition, the environmental models and communication mechanisms are centralized, and
the agents, while distributed, run as separate processes, so the environment as a whole
does not scale well past 40 agents or so. The DECAF [5] agent framework also has a
similar character and purpose to JAF/MASS, although it does not have a centralized
simulation environment, and it offers built-in brokering and name services which JAF
lacks. In most other respects, DECAF compares to Farm in much the same way as JAF.

5.5 VMT

The Vehicle Monitoring Testbed (VMT) was one of the first distributed simulation en-
vironments designed to support distributed intelligent processing [2]. It is interesting to
note that the same capabilities which we currently address in Farm, such as the desire
to scale, overcoming resource bottlenecks, and facilitating distributed control, were the
same motivating issues in a system designed 20 years ago. Although the VMT environ-
ment has a more specialized purpose, it still shares several features with Farm, including
a similar messaging scheme, a notion of global time and a synchronization mechanism
ensuring distributed processes receive equal amounts of time.

6 Summary

Farm is a multi-agent simulation environment designed to handle large scale simula-
tions using custom analysis, visualization and environments, while tracking agent ac-
tivity in simulated real time. The main simulation entity acts as a hub, by accepting and
managing connections from distributed plugins, providing execution prompts to those
plugins, and maintaining a globally accessible data repository. Agents in the system are
implemented as threads, but are autonomous in character, require communication to in-
teract, and do not share memory. These agents are organized in groups on distributed
processors, where their real-time CPU usage is monitored and rationed in accordance
with the simulated environment’s design. By distributing both the agents and analysis
tools, Farm is able to exploit available computing power to handle very large environ-
ments, while retaining the ability to effectively model real world performance.



Issues relating to scale and coherency are closely tied to the distributed nature of
the system. On one hand, poor data and computational distribution can lead to commu-
nication and processing bottlenecks. On the other, because agents are distributed across
processors, care must be take to ensure temporal, data and communication consistency.
Different strategies for managing these issues were covered.

The environment so far has been used to create scenarios containing more than 5000
individual agents. Several domains have also been implemented, including distributed
sensor network and graph coloring testbeds.

References

1. J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1979.

2. E. Durfee, D. Corkill, and V. Lesser. Distributing a Distributed Problem Solving Network
Simulator. In Proceedings of the Fifth Real-time Systems Symposium, pages 237–246, De-
cember 1984.

3. L. Gasser, C. Braganza, and N. Herman. MACE: a flexible testbed for distributed ai research.
In Distributed Artificial Intelligence, M.N. Huhns, ed. Pitman/Morgan-Kaufmann, 1987.

4. L. Gasser and K. Kakugawa. MACE3J: fast flexible distributed simulation of large, large-
grain multi-agent systems. In Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 745–752. ACM Press, 2002.

5. J. R. Graham, K. S. Decker, and M. Mersic. DECAF - a flexible multi agent system archi-
tecture. Autonomous Agents and Multi-Agent Systems, 2003.

6. S. Hanks, M. E. Pollack, and P. R. Cohen. Benchmarks, test beds, controlled experimenta-
tion, and the design of agent architectures. AI Magazine, 14(4):17–42, Winter 1993.

7. M. L. Kahn and C. D. T. Cicalese. CoABS grid scalability experiments. In Proceedings
of the Second International Workshop on Infrastructure for Scalable Multi-Agent Systems at
Autonomous Agents, May 2001.

8. V. Lesser, C. Ortiz, and M. Tambe. Distributed Sensor Networks: A multiagent perspective.
Kluwer Publishers, 2003.

9. R. Mailler, V. Lesser, and B. Horling. Cooperative Negotiation for Soft Real-Time Dis-
tributed Resource Allocation. In Proceedings of Second International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS 2003), pages 576–583, Melbourne,
July 2003. ACM Press.

10. M. G. Marietto, N. David, J. S. Sichman, and H. Coelho. Requirements analysis of multi-
agent-based simulation platforms: State of the art and new prospects, 2002.

11. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation system: A
toolkit for building multi-agent simulations. Technical report, Sante Fe Institute, 1996.

12. S. Shah, A. Bernard, V. Sharma, K. Ramamritham, and P. Shenoy. Maintaining temporal
coherency of cooperating dynamic data repositories. Computer Science Technical Report
TR01-52, University of Massachusetts at Amherst, November 2001.

13. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998. A Bradford Book.

14. R. Vincent, B. Horling, and V. Lesser. An Agent Infrastructure to Build and Evaluate Multi-
Agent Systems: The Java Agent Framework and Multi-Agent System Simulator. Lecture
Notes in Artificial Intelligence: Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems., 1887, January 2001.

15. M. Yokoo. Distributed Constraint Satisfaction. Springer Series on Agent Technology.
Springer, 1998.


