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Abstract. In this paper, we describe our agent framework and address
the issues we have encountered designing a suitable environmental space
for evaluating the coordination and adaptive qualities of multi-agent sys-
tems. Our research direction is to develop a framework allowing us to
build different type of agents rapidly, and to facilitate the addition of
new technology. The underlying technology of our Java Agent Framework
(JAF) uses a component-based design. We will present in this paper, the
reasons and the design choices we made to build a complete system to
evaluate the coordination and adaptive qualities of multi-agent systems.
Abbreviation:

- JAF Java Agent Framework;

- MASS Multi-Agent System Simulator

1 Introduction

Agent technology, in one form or another, is gradually finding its way into main-
stream computing use, and has the potential to improve performance in a wide
range of computing tasks. While the typical commercial meaning of the word
agent can refer to most any piece of software, we believe the real potential of this
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paradigm lies with more sophisticated, autonomous entities. In general, our defi-
nition of an agentis an autonomous entity capable of reacting to its environment,
determining its most appropriate goals and actions in its world, and reasoning
about deadlines and tradeoffs arising from those determinations. To correctly
develop such autonomous, intelligent, reactive pieces of software, we must have
good ways of implementing, debugging and evaluating them. Many researchers
have realized this, and have begun to develop the required infrastructure [2, 10,
16,20, 3,19]. Our research has done the same, but with a different approach. Our
direction is to develop a framework allowing us to build different type of agents
rapidly, and to facilitate the addition of new technology.

The underlying technology of our Java Agent Framework (JAF) uses a component-
based design. Developers can use this plug and play interface to build agents
quickly using existing generic components, or to develop new ones. For instance,
a developer may require planning, scheduling and communication services in
their agent. Generic scheduling and communication components exist, but a
domain-dependent planning component is needed. Additionally, the scheduling
component does not satisfy all the developer’s needs. Our solution provides the
developer with the necessary infrastructure to create a new planning compo-
nent, allowing it to interact with existing components without unduly limiting
its design. The scheduling component can be derived to implement the special-
ized needs of their technology, and the communication component can be used
directly. All three can interact with one another, maximizing code reuse and
speeding up the development process. We also respect the fact that researchers
require flexibility in the construction of their software, so in general, our solution
serves as simple scaffolding, leaving the implementation to the developer beyond
a few API conventions.

Much of the generality available in existing JAF components is derived from
their common use of a powerful, domain-independent representation of how
agents can satisfy different goals. This representation, called TEMS [4, 5], allows
complex interactions to be phrased in a common language, allowing individual
components to interact without having direct knowledge of how other compo-
nents function. Implemented components in JAF are designed to operate with
relative autonomy. Coincidentally, a reasonable analogy for a JAF agent’s inter-
nal organization is a multi-agent system, to the degree that each has a limited
form of autonomy, and is capable of interacting with other components in a vari-
ety of ways. They are not sophisticated agents, but within the agent, individual
components do provide specific, discrete functionality, and may also have fixed
or dynamic goals they try to achieve. This functionality can be requested by
components via direct method invocation, or it may be performed automatically
in response to messages or events occurring in the agent.

Our objective was to allow developers to implement and evaluate systems
quickly without excessive knowledge engineering. This way, one can avoid work-
ing with domain details, leaving more time and energy to put towards the more
critical higher level design. We have also focused on more precise and controlled
methods of agent evaluation technologies. Together with the agent framework, we



have built a simulation environment for the agents to operate in. The motivation
for the Multi-Agent System Simulator (MASS) is based on two simple, but po-
tentially conflicting, objectives. First, we must accurately measure and compare
the influence of different multi-agent strategies in an deterministic environment.
At the same time, it is difficult to model adaptive behavior realistically in multi-
agent systems within a static environment, for the very reason that adaptivity
may not be fully tested in an environment that does not substantively change.
These two seemingly contradictory goals lie at the heart of the design of MASS
- we must work towards a solution that leads to reproducible results, without
sacrificing the dynamism in the environment the agents are expected to respond
to.

In this paper, we describe our agent framework and address the issues we have
encountered designing a suitable environmental space for evaluating the coordi-
nation and adaptive qualities of multi-agent systems. In the following sections,
we will describe both the JAF framework and the MASS simulation environ-
ment. To describe how these concepts work in practice, we will also present an
example implemented system, the Intelligent Home (IHome) domain testbed.
Lastly, we present an example of the how a JAF-based multi-agent system can
run in an alternate simulated environment, and also how it was migrated to
a real-time, hardware-based system. We conclude with a brief overview of the
future directions of this project.

2 Java Agent Framework

An architecture was needed for the agents working within the MASS environment
which effectively isolated the agent-dependent behavior logic from the underlying
support code which would be common to all of the agents in the simulation. One
goal of the framework was therefore to allow an agent’s behavioral logic to per-
form without the knowledge that it was operating under simulated conditions,
e.g. a problem solving component in a simulated agent would be the same as in a
real agent of the same type. This clean separation both facilitates the creation of
agents, and also provides a clear path for migrating developed technologies into
agents working in the real world. As will be shown later, this has been recently
done in a distributed sensor network environment, where agents were migrated
from a simulated world to operating on real hardware [15]. The framework also
needed to be flexible and extensible, and yet maintain separation between mutu-
ally dependent functional areas to the extent that one could be replaced without
modifying the other. To satisfy these requirements, a component-based design,
the Java Agent Framework (JAF) [12], was created’.

Component, based architectures are relatively new arrivals in software engi-
neering which build upon the notion of object-oriented design. They attempt to
encapsulate the functionality of an object while respecting interface conventions,

! This architecture should not be confused with Sun’s agent framework of the same
name.



thereby enabling the creation of stand alone applications by simply plugging to-
gether groups of components. This paradigm is ideal for our agent framework,
because it permits the creation of a number of common-use components, which
other domain-dependent components can easily make use of in a plug-and-play
manner. Note that the agents produced with this scheme act as small multi-
agent systems in and of themselves, where components function as partially
autonomous entities that communicate and interact to achieve their individual
goals. For instance, our system has a scheduling component, whose goal it is
to schedule activities as best as possible, respecting quality, time and resource
constraints. It can operate in several ways, the most common being to respond
to events describing new tasks needing to be performed. On receiving such an
event, the scheduler attempts to integrate these actions into the existing sched-
ule, which in turn will be used by an execution component to determine when
to perform the actions. Thus, the scheduling component operates autonomously,
reacting to changes and requests induced by other components. This arrange-
ment is key to the flexibility of JAF. Because other components for the most part
do not care how or where in an agent an operation is performed, the designer is
free to add, modify or adapt components as needed.
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Fig. 1. Sun Beanbox, which can be used to build JAF agents.



JAF is based on Java Beans, Sun Microsystem’s component model architec-
ture. Java Beans supplies JAF with a set of design conventions, which provides
behavior and naming specifications that every component must adhere to. Specif-
ically, the Java Beans API gives JAF a set of method naming and functional
conventions which allow both application construction tools and other beans to
manipulate a component’s state and make use of its functionality easily. This
is important because it provides compatibility with existing Java Beans tools,
and facilitates the development process by providing a common implementa-
tion style among the available components. JAF also makes heavy use of Java
Bean’s notion of event streams, which permit dynamic interconnections to form
between stream generating and subscribing components. For instance, we have
developed a causal-model based diagnosis component [13] which tracks the over-
all performance of the agent, and makes suggestions on how to optimize or repair
processes performed by, or related to, the agent. The observation and diagnosis
phase of this technology is enabled by the use of dynamic event streams, which
the diagnosis component will form with other components resident in the agent.
The component will begin by listening to one or more components in the agent,
such as the local coordination component. This stream could tell the diagno-
sis component when coordination attempts where made, who the remote agents
were, whether the coordination succeeded or not, and if the resulting commit-
ment was respected. Events arising from this component are analyzed, and used
to discover anomalous conditions. In the case of the coordination component,
a series of similar failed coordination attempts could indicate that a particu-
lar remote agent has failed, or that it no longer provides the desired service.
More proactive analysis into the current state of the coordination component
could then yield further information. By both monitoring the events the compo-
nents produce, and the state they are currently in, the diagnosis component can
determine if the components are performing correctly, and generate potential
solutions to the problems it finds. Our experience with the diagnosis component
was that we did not have to modify other components in order to integrate its
functionality.
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Fig. 2. Abstract view of a typical JAF component.



JAF builds upon the Java Beans model by supplying a number of facilities
designed to make component development and agent construction simpler and
more consistent. A schematic diagram for a typical JAF component can be seen
in figure 2. As in Java Beans, events and state data play an important role
in some types of interactions among components. Additional mechanisms are
provided in JAF to specify and resolve both data and inter-component depen-
dencies. These methods allow a component, for instance, to specify that it can
make use of a certain kind of data if it is available, or that it is dependent on
the presence of one or more other components in the agent to work correctly. A
communications component, for example, might specify that it requires a local
network port number to bind to, and that it requires a logging component to
function correctly. These mechanisms were added to organize the assumptions
made behind flexible autonomy mentioned above - without such specifications
it would be difficult for the designer to know which services a given component
needs to be available to function correctly. More structure has also been added
to the execution of components by breaking runtime into distinct intervals (e.g.
initialization, execution, etc.), implemented as a common API among compo-
nents, with associated behavioral conventions during these intervals. Individual
components will of course have their own, specialized API, and “class” APIs will
exist for families of components. For instance a family of communication com-
ponents might exist, each providing different types of service, while conforming
to a single class API that allows them to easily replace one another.

The goal of a designer using JAF is to use and add to a common pool of
components. Components from this pool are combined to create an agent with
the desired capabilities (see Figure 1). For instance, rather than regenerating
network messaging services for each new project, a single Communicate compo-
nent from the pool can be used from one domain to the next. This has the added
benefit that once a component has been created, it may be easily swapped out
of each agent with one that respects the original class API, but offers different
services. Later in this paper we will describe the MASS simulation environment,
which provides simulation and communication services to agents. Messages sent
from an agent working in this environment must be routed through MASS, which
requires a specialized Communication component which is “aware” of MASS and
how to interact with it. In our pool of components we thus have a simple Com-
municate which operates in the conventional sense using TCP, and a MASS
Communicate which automatically routes all messages through the simulation
controller. Components using communication need not be aware of the internal
delivery system being used, and can therefore be used without modification in
both scenarios. Revisiting the hybrid simulation issue raised earlier, we can have
an agent which conforms to the MASS communication specification, or uses real
world messaging as needed by just exchanging these two components. Analo-
gously, one could have a MASS Execute component, which uses the simulator
to perform all executable actions, or one which actually performed some actions
locally, and reported the results to the MASS controller when completed. In this



latter case, the consistency of the simulation environment is maintained through
the notification, but real data may be still generated by the agent.

The organization of a JAF agent does not come without its price. The au-
tonomous nature of individual components can make it difficult to trace the
thread of control during execution, a characteristic exacerbated by the use of
events causing indirect effects. It can also be difficult to implement new func-
tionalities in base components, while respecting conventions and APIs in derived
ones. However, we feel the flexibility, autonomy and encapsulation offered by a
component oriented design makes up for the additional complexity.

To date, more than 30 JAF components have been built. A few of these are
explained below.

— Communicate This component serves as the communication hub for the
agent. TCP based communication is provided through a simple interface,
for sending messages of different encodings (KQML, delimited or length-
prefixed). It also serves as both a message receiver and connection acceptor.
Components interact with Communicate by listening for message events, or
by directly invoking a method to send messages. Derived versions exist to
work with MASS and other simulation environments.

— Preprocess Taems Reader T&MS is our task description language, which
will be covered later in this article. This component allows the agent to
maintain a library of TA&MS structure templates, which can be dynamically
instantiated in different forms, depending on the needs of the agent. For
example, the designer may update method distributions based on learned
knowledge, or add in previously unrecognized interactions as they are dis-
covered. This is important because it facilitates the problem solving task by
allowing the developer to condition generated task structures with respect to
current working conditions. Data manipulation capabilities exist which per-
mit mathematical and conditional operations, along with TEMS structure
creation and manipulation. Simple routines can then be written with these
tools to use information given to the preprocessor to condition the structure.
The ability to perform these operations within the T&MS file itself allows
the problem solving component to be more generic. A derived version of the
component also exists which reads simple static task structure descriptions.

— Scheduler The scheduling component, based on our Design-To-Criteria
(DTC) scheduling technology [22], is used by other components to schedule
the T &EMS task structures mentioned above. The resulting schedule takes into
account the cost and quality of the alternative solutions, and their durations
relative to potential deadlines. The scheduler functions by both monitoring
state for the addition of new T&MS structures, for which it will produce
schedules, and through direct invocation.

— Partial Order Scheduler A derived version of the Scheduler component,
the partial-order scheduler provides the agent with a more sophisticated
way of managing its time and resources [21]. Replacing the Scheduler with
this component allows the agent to correctly merge schedules from differ-
ent structures, exploit areas of potential parallelism, and make efficient use



of available resources. Functionally, it provides a layer on top of the DTC
Scheduler component, first obtaining a conventional schedule as seen above.
It then uses this to reason about agent activity in a partially-ordered way
- concentrating on dependencies between actions and resources, rather then
just specifying times when they may be performed. This characteristic allows
agents using the partial order scheduler to more intelligently reason about
when actions can and can not be performed, as well as frequently speeding
up failure recovery by avoiding the need to replan.

— State The state component serves as an important indirect form of inter-
action between components by serving as a local repository for arbitrary
data. Components creating or using common information use State as the
medium of exchange. Components add data through direct method calls,
and are notified of changes through event streams. Thus one component can
react to the actions of another by monitoring the data that it produces. For
instance, when the problem solving component generates its task and places
it in State, the scheduler can react by producing a schedule. This sched-
ule, also placed in State, can later be used by the execution component to
perform the specified actions.

— Directory Services This component provides generic directory services to
local and remote agents. The directory stores multi-part data structures,
each with one or more keyed data fields, which can be queried through
boolean or arithmetic expressions. Components use directory services by
posting queries to one or more local or remote directories. The component
serves as an intermediary for both the query and response process, monitor-
ing for responses and notifying components as they arrive. This component
can serve as the foundation to a wide variety of directory paradigms (e.g.
yellow pages, blackboard, broker).

— FSM Controller The FSM component can be used as a common interface
for messaging protocols, specifically for coordination and negotiation inter-
actions. It is first used to create a finite state machine describing the protocol
itself, including the message types, when they can arrive, and what states
a particular message type should transition the machine to. This scaffold-
ing, provided by the FSM and used by the FSM Controller at runtime, is
then populated by the developer with code to send and process the differ-
ent messages. This clean separation between a protocol and its usage allows
protocols to be quickly migrated from one environment to the next.

Other components provide services for logging, execution, local observation,
diagnosis, and resource modeling, as well as more domain dependent functions.
Examples of agents implemented with JAF will be covered later in this article.

3 Evaluation Environment for Multi-Agent Systems

Numerous problems arise when systematic analysis of different algorithms and
techniques needs to be performed. If one works with a real-world MAS; is it pos-
sible to know for certain that the runtime environment is identical from one run



to the next? Can one know that a failure occurs at exactly the same time in two
different runs when comparing system behavior? Can it be guaranteed that inter-
agent message traffic will not be delayed, corrupted, or non-deterministically
interleaved by network events external to the scenario?

If one works within a simulated environment, how can it be known that the
system being tested will react optimally a majority of the time? How many
different scenarios can be attempted? Is the number is large enough to be rep-
resentative?

Based on these observations, we have tried to design an environment that
allows us to directly control the baseline simulated environment (e.g. be deter-
ministic from one run to the next) while permitting the addition of “determinis-
tically random” events that can affect the environment throughout the run. This
enables the determinism required for accurate coordination strategy comparisons
without sacrificing the capricious qualities needed to fully test adaptability in
an environment.

Hanks et al. define in [11] several characteristics that multi-agent system
simulators should have:

— Exogenous events, these allow exogenous or unplanned events to occur during
simulation.

— Real-world complexity is needed to have a realistic simulation. If possible, the
simulated world should react in accordance with measures made in the real world.
Simulated network behavior, for instance, may be based on actual network perfor-
mance measures.

— Quality and cost of sensing and effecting needs to be explicitly represented in
the test-bed to accurately model imperfect sensors and activators. A good simulator
should have a clear interface allowing agents to “sense” the world.

— Measures of plan quality are used by agents to determine if they are going to
achieve their goal, but should not be of direct concern to the simulator.

— Multiple agents must be present to simulate inter-agent dependencies, interac-
tions and communication. A simulator allowing multiple agents increases both its
complexity and usefulness by adding the ability to model other scenarios, such
as faulty communications or misunderstanding between agents, delay in message
transfer.

— A clean interface is at the heart of every good simulator. We go further than this
by claiming that the agents and simulator should run in separate processes. The
communication between agents and simulator should not make any assumptions
based on local configurations, such as shared memory or file systems.

— A well defined model of time is necessary for a deterministic simulator. Each
occurring event can be contained by one or more points in time in the simulation,
which may be unrelated to real-world time.

— Experimentation should be performed to stress the agents in different classes of
scenarios. We will also add deterministic experimentation as another impor-
tant feature of a simulator. To accurately compare the results separate runs, one
must be sure that the experimental parameters are those which produce different
outcomes.

We will show in this section how MASS addresses these needs. One other
characteristic, somewhat uncommon in simulation environments, is the ability
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to have agents perform a mixture of both real and simulated activities. For in-
stance, an agent could use the simulation environment to perform some of its
actions, while actually performing others. Executable methods, sensor utiliza-
tion, spatial constraints and even physical manifestations fall into this category
of activities which an agent might actually perform or have simulated as needed.
An environment offering this hybrid existence offers two important advantages:
more realistic working conditions and results, and a clear path towards migrat-
ing work from the laboratory to the real world. We will revisit how this can be
implemented in later sections.
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Fig. 3. TEMSs task structure for the IHome Dishwasher agent

4 Multi Agent System Simulator

MASS is a more advanced incarnation of the T&EMS simulator created by Decker
and Lesser in 1993 [7]. It provides a more realistic environment by adding sup-
port for resources and resource interactions, a more sophisticated communication
model, and mixed real and simulated activity. It also adds a scripting language, a
richer event model, and a graph-like notion of locations and connectors in which
agents can move about (e.g. rooms and doorways, or towns and roads). The
new MASS simulator is completely domain independent; all domain knowledge
is obtained either from configuration files or data received from agents working
in the environment.

Agents running in the MASS environment use T &£Ms [14, 6], a domain-independent,
hierarchical representation of an agent’s goals and capabilities (see Figure 3), to
represent their knowledge. TEMS , the Task Analysis, Environmental Model-
ing and Simulation language, is used to quantitatively describe the alternative
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ways a goal can be achieved [9,14]. A T&EMS task structure is essentially an
annotated task decomposition tree. The highest level nodes in the tree, called
task groups, represent goals that an agent may try to achieve. The goal of the
structure shown in figure 3 is wash-dishes. Below a task group there will be
a set of tasks and methods which describe how that task group may be per-
formed, including sequencing information over subtasks, data flow relationships
and mandatory versus optional tasks. Tasks represent sub-goals, which can be
further decomposed in the same manner. clean, for instance, can be performed
by completing wash-cycle, and rinse-cycle. Methods, on the other hand, are
terminal, and represent the primitive actions an agent can perform. Methods
are quantitatively described, in terms of their expected quality, cost and dura-
tion. pre-rinse-warm, then, would be described with its expected duration and
quality, allowing the scheduling and planning processes to reason about the ef-
fects of selecting this method for execution. The quality accumulation functions
(QAF) below a task describes how the quality of its subtasks is combined to
calculate the task’s quality. For example, the sum QAF below load specifies that
the quality of load will be the total quality of all its subtasks - so only one of
the subtasks must be successfully performed for the sum task to succeed. Inter-
actions between methods, tasks, and affected resources are also quantitatively
described as interrelationships. The enables between pre-rinse and wash, for
instance, tells us that these two must be performed in order. The curved lines at
the bottom of figure 3 represent resource interactions, describing, for instance,
the different consumes effects method pre-rinse-hot and pre-rinse-warm has
on the resource HotWater.

One can view a TAEMS structure as a prototype, or blueprint, for a more
conventional domain-dependent problem solving component. In lieu of generat-
ing such a component for each domain we apply our technologies to, we use a
domain independent component capable of reasoning about TAEMS structures.
This component recognizes, for instance, that interrelationships between meth-
ods and resources offer potential areas for coordination and negotiation. It can
use the quantitative description of method performance, and the QAFs below
tasks, to reason about the tradeoffs of different problem solving strategies. The
task structure in figure 3 was used in this way to implement the washing ma-
chine agent for the intelligent home project discussed later in this article. Figure
6 shows how an agent in the distributed sensor network domain (also discussed
later), can initialize its local sensor. With this type of framework, we are essen-
tially able to abstract much of the domain-dependence into the T&MS structure,
which reduces the need for knowledge engineering, makes the support code more
generic, and allows research to focus on more intellectual issues.

Different, views of a T £MS structure are used to cleanly decouple agents from
the simulator. A given agent will make use of a subjective view of its structure, a
local version describing the agent’s beliefs. MASS, however, will use an objective
view, which describes the true model of how the goals and actions in the structure
would function and interact in the environment. Differences engineered between
these two structures allow the developer to quickly generate and test situations
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where the agent has incorrect beliefs. We will demonstrate below how these
differences can be manifested, and what effects they have on agent behavior. This
technique, coupled with a simple configuration mechanism and robust logging
tools, make MASS a good platform for rapid prototyping and evaluation of
multi-agent systems.

The connection between MASS and JAF is at once both strong and weak.
A JAF agent running within a MASS environment uses the simulator for the
vast majority of its communication and execution needs, by employing “MASS-
aware” components which route their respective data and requests through the
simulation controller. The agent also provides the simulator with the objective
view of its task structure, as well as the resources it provides and its location. The
simulator in turn gives the agent a notion of time, and provides more technical
information such as a random number generator seed and a unique id. Despite
this high level of interconnection, the aspects of a JAF agent performing these
actions are well-encapsulated and easily removed. Thus, an agent can be run
outside of MASS by simply replacing those MASS-aware components with more
generic ones. Outside of MASS, an agent would use conventional TCP/IP based
communication, and would perform its actions locally. It would, for instance,
use the local computer’s clock to support its timeline, and read the random
seed from a configuration file. An example of how this type of separation can be
achieved will be covered in section 5.2, where we will show JAF agents running
both in a different simulation environment, and independently on real hardware.
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Figure 4 shows the overall design of MASS, and, at a high level, how it in-
teracts with the agents connected to it. On initialization, MASS reads in its
configuration, which defines the logging parameters, random seed, scripts (if
any) and global sensor definitions. These are used to instantiate various sub-
systems and databases. While the simulator itself is not distributed, connections
to the simulator are made with standard TCP-based sockets, so agents can be
distributed among remote systems. When connected, agents will send additional
information to be incorporated into this configuration, which allows environ-
mental characteristics specific to the agent to be bundled with that agent. For
instance, an agent might send a description of a sensor which it needs to func-
tion, or a resource which it makes available to the environment. Arguably the
most important piece of data arising from the agents is their T£MS task struc-
tures, which are assimilated into the T&MS database shown in figure 4. This
database will be used by the execution subsystem during simulation to quan-
tify both the characteristics of method execution and the effects resource and
method interactions have on that method. The resource manager is responsible
for tracking the state of all resources in the environment, and the event engine
manages the queue of events which represent tangible actions that are taking
place. The last component shown here, the communications module, maintains
a TCP stream connection with each agent, and is responsible for routing the
different kinds of messages between each the agent and their correct destination
within the controller.

The MASS controller has several tasks to perform while managing simulation.
These include routing message traffic to the correct destination, providing hooks
allowing agents to sense the virtual environment and managing the different
resources utilized by the agents. Its primary role, however, is to simulate the
execution of methods requested by the agents. Each agent makes use of its
partial, subjective view of the environment, typically describing its local view
of a goal and possible solutions, which determines the expected values resulting
from such an execution. As mentioned above, the simulator also has the true,
objective view of the world which it uses to compute the results of activities in the
environment. The distributions from the objective view are used when computing
the values for a method execution, and for determining the results of method
or resource interactions. This probabilistic distribution describes the average
case outcomes; the simulator will degrade or improve results as necessary if, for
instance, required resources are not available, or other actions in the environment
enable or facilitate the method’s execution in some way. For example, consider
what would happen if the enables interrelationship between rinse and dry were
absent in the subjective view of figure 3. During scheduling, the agent would
be unaware of this interdependency, and thus would not enforce an ordering
constraint between the two actions. If the agent were to perform dry first, the
simulator would detect that its precondition rinse had not been performed, and
would report that the dry method failed. In this case, the agent would need to
detect and resolve the failure, potentially updating its subjective view with more
accurate information.
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MASS is also responsible for tracking the state and effects of resources in the
environment. Figure 3 shows three such resources: Electricity, HotWater, and
Noise. Two types of resources are supported - consumable and non-consumable.
The level of a consumable resource, like HotWater is affected only through di-
rect consumption or production. A non-consumable resource, like Noise, has a
default level, which it reverts back to whenever it is not being directly modified.
MASS uses the objective view from each agent to determine the effects a given
method will have on the available resources. Also present in the objective view
is a notion of bounds, both upper and lower, which the resource’s level cannot
exceed. If an agent attempts to pass these bounds, the resource switches to an
error state, which can affect the quality, cost and duration of any action cur-
rently using that resource. At any given time, MASS must therefore determine
which methods are affecting which resources, what effects those actions will have
on the resources’ levels, if the resource bounds have been exceeded, and what
quantitative repercussions there might be for those violations.

Another responsibility consuming a large portion of the simulator’s atten-
tion is to act as a message router for the agents. The agents send and receive
their messages via the simulator, which allows the simulation designer to model
adverse network conditions through unpredictable delays and transfer failures.
This routing also plays an important role in the environment’s general deter-
minism, as it permits control over the order of message receipt from one run to
the next. Section 4.1 will describe this mechanism in more detail.

4.1 Controllable Simulation

In our simulated experiments, our overriding goal is to be able to compare the
behavior of different algorithms in the same environment under the same condi-
tions. To correctly and deterministically replicate running conditions in a series
of experiments, the simulator should have its own notion of time, “randomness”
and sequence of events. Two simulation techniques exist which we have exploited
to achieve this behavior: discrete time and events. Discrete time simulation seg-
ments the environmental time line into a number of slices. In this model, the
simulator begins a time slice by sending a pulse to all of the actors involved,
which allows them to run for some period of (real) CPU time. In our model, a
pulse does not represent a predefined quantity of CPU time, instead, each agent
decides independently when to stop running. This allows agent performance to
remain independent of the hardware it runs on, and also allows us to control
the performance of the technique itself. To simulate a more efficient scheduling
algorithm, for instance, one could simply reduce the number of pulses required
for it to complete. Since the agent dictates when it is finished its work, this can
be easily accomplished by performing more work before the response is sent.
This allows us to evaluate the potential effects of code optimization before ac-
tually doing it. The second characteristic of this simulation environment is its
usage of events, which are used to instigate reactions and behaviors in the agent.
The MASS simulator combines these techniques by dividing time into a num-
ber of slices, during which events are used to internally represent actions and
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interact with the agents. In this model, agents then execute within discrete time
slices, but are also notified of activity (method execution, message delivery, etc.)
through event notification.

In the next section we will discuss discrete time simulation and the benefits
that arise from using it. We will then describe the need for an event based
simulation within a multi-agent environment.

Discrete time simulation Because MASS utilizes a discrete notion of time, all
agents running in the environment must be synchronized with the simulator’s
time. To enable this synchronization, the simulator begins each time slice by
sending each agent a “pulse” message. This pulse tells the agent it can resume
local execution, so in a sense the agent functions by transforming the pulse to
some amount of real CPU time on its local processor. This local activity can take
an arbitrary amount of real time, up to several minutes if the action involves
complex planning, but with respect to the simulator, and in the perceptions of
other agents, it will take only one pulse. This technique has several advantages:

1. A series of actions will always require the same number of pulses, and thus
will always be performed in the same amount of simulation time. The num-
ber of pulses is completely independent of where the action takes place,
so performance will be independent of processor speed, available memory,
competing processes, etc...

2. Events and execution requests will always take place at the same time. Note
that this technique does not guarantee the ordering of these events within
the time slice, which will be discussed later in this section.

Using this technique, we are able to control and reproduce the simulation to
the granularity of the time pulse. Within the span of a single pulse however, many
events may occur, the ordering of which can affect simulation results. Messages
exchanged by agents arrive at the simulator and are converted to events to
facilitate control over how they are routed to their final destination. Just about
everything coming from the agents, in fact, is converted to events; in the next
section we will discuss how this is implemented and the advantages of using such
a method.

Event based simulation Fvents within our simulation environment are de-
fined as actions which have a specific starting time and duration, and may be
incrementally realized and inspected (with respect to our deterministic time line,
of course). Note that this is different from the notion of event as it is tradition-
ally known in the simulation community, and is separate from the notion of the
“event streams” which are used internally to the agents in our environment.
All of the message traffic in the simulation environment is routed through the
simulator, where it is instantiated as a message event. Similarly, execution re-
sults, resource modifiers or scripted actions are also represented as events within
the simulation controller. We attempt to represent all activities as events both
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for consistency reasons and because of the ease with which such a representation
can be monitored and controlled.

The most important classes of events in the simulator are the execution and
message events. An execution event is created each time an agent uses the sim-
ulator to model a method’s execution. As with all events, execution events will
define the method’s start time, usually immediately, and duration, which de-
pends on the method’s probabilistic distribution as specified in the objective
TEMS task structure (see section 3). The execution event will also calculate the
other qualities associated with a method’s execution, such as its cost, quality
and resource usage. After being created, the execution event is inserted into the
simulator’s time based event queue, where it will be represented in each of the
time slots during which it exists. At the point of insertion, the simulator has
computed, but not assigned, the expected final quality, cost, duration and re-
source usage for the method’s execution. These characteristics will be accrued
(or reduced) incrementally as the action is performed, as long as no other events
perturbate the system. Such perturbations can occur during the execution when
forces outside of the method affect its outcome, such as a limiting resource or
interaction with another execution method. For example, if during this method’s
execution, another executing method overloads a resource required by the first
execution, the performance of the first will be degraded. The simulator models
this interaction by creating a limiting event, which can change one or more of
the performance vectors of the execution (cost, quality, duration) as needed. The
exact representation of this change is also defined in the simulator’s objective
TAMS structure.

As an example, we can trace the lifetime of an action event in the MASS
system - the pre-rinse-hot method from figure 3. The action begins after the
agent has scheduled and executed the action, which will typically be derived from
a TAEMS task structure like that seen in the figure. The Execute component in
the agent will redirect this action to MASS, in the form of a network message
describing the particular method to be executed. MASS will then resolve this
description with its local objective T £MS structure, which will contain the true
quantitative performance distributions of the method. When found, it will use
these distributions to determine the resulting quality, cost and duration of the
method in question, as well as any resource effects. In this case, MASS determines
the results of pre-rinse-hot will have a quality of 8, a cost of 0 and a duration of
3. In addition, it also determines the method will consume 10 units of HotWater
for each time unit it is active. An action event is created with these values,
and inserted into MASS’s action queue. Under normal conditions, this event will
remain in the queue until its assigned finish time arrives, at which point the
results will be sent to the agent. Interactions with other events in the system,
however, can modify the result characteristics. For instance, if the HotWater
resource becomes depleted during execution, or if a conflicting method is invoked,
the duration of the action may be extended, or the quality reduced. These effects
may change the performance of the action, and thus may change the results
reported to the agent.
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Real activities may be also incorporated into the MASS environment by al-
lowing agents to notify the controller when it has performed some activity. In
general, methods are not performed by MASS so much as they are approxi-
mated, by simulating what the resulting quality, cost and duration of the action
might be. Interactions are simulated among methods and resources, but only in
an abstract sense, by modifying those same result characteristics of the target
action. The mechanism provided by MASS allows for mixed behavior. Some ac-
tions may be simulated, while others are performed by the agent itself, producing
the actual data, resources or results. When completed, the agent reports these
results to the simulator, which updates its environmental view accordingly to
maintain a consistent state. For example, in section 5.2 we will see how agents
fuse sensor data from disparate sources to produce a estimated target position.
This position is needed to determine how and when other agents subsequently
gather their data. A simulated fusion of this data would be inadequate, because
MASS is unable to provide the necessary domain knowledge needed to perform
this calculation. An agent, however, could do this, and then report to the simula-
tor its estimated quality, cost and duration of the analysis process. Both parties
are satisfied in this exchange - the agent will have the necessary data to base its
reasoning upon, while the simulator is able to maintain a consistent view of the
results of activities being performed. Using this mechanism, agents may be incre-
mentally improved to meet real world requirements by adding real capabilities
piecemeal, and using MASS to simulate the rest.

The other important class of event is the message event, which is used to
model the network traffic which occurs between agents. Instead of communicat-
ing directly between themselves, when a message needs to be sent from one agent
to another (or to the group), it is routed through the simulator. The event’s life-
time in the simulation event queue represents the travel time the message would
use if it were sent directly, so by controlling the duration of the event it is pos-
sible to model different network conditions. More interesting network behavior
can be modeled by corrupting or dropping the contents of the message event.
Like execution events, the message event may also may be influenced by other
events in the system, so a large number of co-occurring message events might
cause one another to be delayed or lost.

To prevent non-deterministic behavior and race conditions in our simulation
environment, we utilize a kind of “controlled randomness” to order the realiza-
tion of events within a given time pulse. When all of the agents have completed
their pulse activity (e.g. they have successfully acknowledged the pulse message),
the simulator can work with the accumulated events for that time slot. The sim-
ulator begins this process by generating a a unique number or hash key for each
event in the time slot. It uses these keys to sort the events into an ordered list. It
then deterministically shuffles this list before working through it, realizing each
event in turn. This shuffling technique, coupled with control over the random
function’s initial seed, forces the events to be processed in the same order during
subsequent runs without unfairly weighting a certain class of events (as would
take place if we simply processed the sorted list). This makes our simulation com-



18

pletely deterministic, without sacrificing the unpredictable nature a real world
environment would have. That’s how we control the simultaneity problem.

5 Experiences

5.1 Intelligent Home project

The first project developed with MASS was the Intelligent Home project [18]. In
this environment, we have populated a house with intelligent appliances, capable
of working towards goals, interacting with their environment and reasoning about
tradeoffs. The goal of this testbed was to develop a number of specific agents that
negotiate over the environmental resources needed to perform their tasks, while
respecting global deadlines on those tasks. The testbed was developed to explore
different types of coordination protocols and compare them. The goal was to
compare the performance of specialized coordination protocols (such as seen in
[17]) against generic protocols (like Contract-Net[1] and GPGP[8]). We hoped to
quantitatively evaluate how these techniques functioned in the environment, in
terms of time to converge, the quality and stability of the resulting organization,
and the time, processing and message costs.

JAF and TEMS were used extensively, to develop the agents and model their
goal achievement plans, respectively. MASS was used to build a "regular day in
the house” - it simulates the tasks requested by the occupants, maintains the
status of all environmental resources, simulates agent interactions with the house
and resources, and manages sensors available to the agents. MASS allowed us to
that events occurred at the same time in subsequent trials, and the only changes
from one run to the next were due to changes in agent behavior. Such changes
could be due to different reasoning activities by the agents, new protocols or
varied task characteristics.

The Intelligent Home project includes 9 agents (dishwasher, dryer, washing
machine, coffee maker, robots, heater, air conditioner, water-heater) and were
running for 1440 simulated minutes (24 hours). Several simulations were run with
different resource levels, to test if our ad-hoc protocols could scale up with the
increasing number of resource conflicts. Space limitations prevent a a complete
report of the project here, more complete results can be found in [17]. Instead, we
will give a synopsis of a small scenario, which also makes use of diagnosis-based
reorganization [13].

A dishwasher and waterheater exist in the house, related by the fact that
the dishwasher uses the hot water the waterheater produces. Under normal cir-
cumstances, the dishwasher assumes sufficient water will be available for it to
operate, since the waterheater will attempt to maintain a consistent level in
the tank at all times. Because of this assumption, and the desire to reduce un-
necessary network activity, the initial organization between the agents says that
coordination is unnecessary between the two agents. In our scenario, we examine
what happens when this assumption fails, perhaps because the owner decides to
take a shower at a conflicting time (i.e. there might be a preexisting assumption



19

that showers only take place in the morning), or if the waterheater is put into
“conservation mode” and thus only produces hot water when requested to do
so. When this occurs, the dishwasher will no longer have sufficient resources to
perform its task. Lacking adaptive capabilities, the dishwasher could repeatedly
progress as normal but do a poor job of dishwashing, or do no washing at all
because of insufficient amounts of hot water. We determined that using a diag-
nostics engine the dishwasher could, as a result of poor performance observed
through internal sensors or user feedback, first determine that a required re-
source is missing, and then that the resource was not being coordinated over -
the dishwasher did not explicitly communicate its water requirements to the wa-
terheater. By itself, this would be sufficient to produce a preliminary diagnosis
the dishwasher could act upon simply by making use of a resource coordination
protocol. This diagnosis would then be used to change the organizational struc-
ture to indicate that explicit coordination should be performed over hot water
usage. Later, after reviewing its modified assumptions, new experiences or inter-
actions with the waterheater, it could also refine and validate this diagnosis, and
perhaps update its assumptions to note that that there are certain times during
the day or water requirement thresholds when coordination is recommended. The
MASS simulator allowed us to explore and evaluate this new approach to adap-
tation without the need for a tremendous investment in knowledge engineering
to create a realistic environment.

5.2 Distributed Sensor Network

A distributed sensor network (DSN) stresses a class of issues not addressed in the
IHome project. We are presented in this research with a set of sensor platforms,
arranged in an environment. The goal of the scenario is for the sensors to track
one or more mobile targets that are moving through that environment. No one
sensor has the ability to precisely determine the location of a target by itself,
so the the sensors must be organized and coordinated in a manner that permits
their measurements to be used for triangulation. In the abstract, this situation
is analogous to a distributed resource allocation problem, where the sensors
represent resources which must be allocated to particular tasks at particular
times. Additional hurdles include a lack of reliable communication, the need to
scale to hundreds or thousands of sensor platforms, and the ability to reason
within a real time, fault prone environment. In this section we will show how
JAF was migrated to new simulation and hardware environments.

Several technical challenges to our architectures are posed by this project.
It operates in real-time, it must work in both a foreign simulation environment
(called Radsim) and on an actual hardware implementation, it must function
in a resource-constrained environment, and handle communication unreliability.
We were provided with Radsim as a simulator, obviating the need for MASS?.
Radsim is a multi-agent simulation environment operating in the DSN domain.
One or more agents inhabit its environment, each attached to a sensor node.

2 Radsim is developed and maintained by Rome Labs
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Fig. 5. Organization of a DSN JAF agent. Upper bounds contain the domain dependent
components, the lower bounds the independent.

Radsim models the communication between agents, the capabilities and action
results of the individual sensors, and the position and direction of one or more
mobile targets. Radsim differs from MASS in several significant ways. Because
it is domain-specific, Radsim simulates a finite number of predefined actions, re-
turning actual results rather than the abstract quality value returned by MASS.
It’s timeline is also continuous - it does not wait for pulse acknowledgement be-
fore proceeding to the next time slice. This, along with the lack of a standard
seeding mechanism, causes the results from one run to the next to be non-
deterministic. Our first challenge, then, was to determine what changes were
required for JAF to interface with this new environment. This was done by de-
riving just three JAF components: Control, Communicate and Execute, as shown
in figure 5. The new Control component determines the correct time (either in
Radsim or hardware), the Communicate component funnels all message traffic
through the radio-frequency medium provided in the environment, and additions
to Execute provide the bridge allowing JAF actions to interface with the sensor.
These changes were made with around 1,000 lines of code, the remainder of the
JAF worked unchanged, allowing us to reuse roughly 20,000 lines of code. A do-
main dependent problem solver, which reasons about the various goals an agent
should pursue, and scan scheduler, which produces scanning pattern schedules,
were also implemented.

Setup_Hardware
el

Duration || ] [set-Sector ] [P ] [Calc-Bkgrd

el

Fig. 6. T&EMS task structure for initializing a DSN agent.

To address real-time issues, the partial-order scheduler (mentioned in sec-
tion 2) was used to provide quick and flexible scheduling techniques. A resource
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modeling component was used to track both the availability of the local sensor,
and the power usage of the sensor. This component was used by the scheduler
to determine when resources were available, and to evaluate the probability that
a given action might fail because of unexpected resource usage. The Commu-
nicate component was enhanced to add reliable messaging services (using se-
quence numbers, timeouts and retransmits), enabling other components to flag
their messages as “reliable”, if needed. Several new components were added to
address the domain-specific tasks of scheduling the target detection scans, man-
aging the track generation and performing the negotiation. In all cases there
was a high degree of interaction between the new components and the generic
domain-independent, ones. Much of the necessary domain dependent knowledge
was added with the use of T&MS task structures, such as seen in figure 6. Here
we see the initialization structure, which dictates how the agent should initial-
ize its local sensor, perform background measurements, and contact its regional
manager.

In our solution to this problem, a regional manager negotiates with individual
sensors to obtain maximal area coverage for a series of fast target-detection scans.
Once a target is found, a tracking manager negotiates with agents to perform the
synchronized measurements needed for triangulation. Our technology enables
this, by providing fine grained scheduling services, alternative plan selection
and the capacity to remove or renegotiate over conflicting commitments. Two
of the metrics used to evaluate our approach are the RMS error between the
measured and actual target tracks, and the degree of synchronization achieved
in the tracking tasks themselves.

After successfully demonstrating JAF in a new simulation environment, we
were then challenged with the task of migrating it to the actual sensor hardware.
In this case, JAF agents were hosted on PCs attached to small omnidirectional
sensors via the serial and parallel ports. Our task was facilitated by the devel-
opment of a middle layer, which abstracted the low level sensor actions into the
same API used to interface with Radsim®. The actual environment, however,
differed from Radsim in its unpredictable communication reliability, extreme
measurement noise values and varied action durations. It also lacked the central
clock definition needed to synchronize agent activities. In this case, the agents
were modified to address the new problems, for instance by adding a reliable
communication model to Communicate, and a time definition scheme to the
control component. These JAF agents have been successfully tested in this new
hardware environment, and we are currently in the process of developing better
negotiation and scaling techniques to apply to this interesting domain [15].

5.3 Producer Consumer Transporter

The JAF/MASS architecture has also been used to prototype an environment for
the to the producer, consumer, transporter (PCT) domain [13]. In this domain,
there are conceptually three types of agents: producers, which generate resources;

3 Middle layer API and sensor drivers were implemented by Sanders.
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consumers, which use them; and transporters, which move resources from one
place to another. In general, a producer and consumer may actually be different
faces of a factory, which consumes some quantity of resources in order to produce
others. There are several characteristics of this domain where alternatives exist
for the factories and transporters - the choices made at these points by or for
the PCT agents make up the organizational structure of the system.

Reactions

Short/Long Term Diagnoses
Symptoms | Models

e g

Fig. 7. Role of organizational knowledge within a PCT agent.

This particular system differs from the previous two in that it used the T£EMS
representation as an organizational design layer, in addition to describing the lo-
cal goals and capabilities of the agent. For instance, the subjective view would
describe which agents in the system a consumer could obtain resources from,
or identify the various pathways a transporter could take. It also made use of a
third view of TEMS - the conditioned view. The agent’s conditioned TEMS view
is essentially the subjective view, modified to better address current runtime
conditions. In figure 8, we see a subjective view which provides three potential
candidates capable of producing X. Instead of specifying all producers a con-
sumer could coordinate with, the conditioned view might identify only those
which were most promising or cheap or fast, depending on the current goals of
the agent. On the right side of the figure, we can see an example of this, where
P1 and P3 have been removed from consideration. The idea is to constrain the
search space presented by the task structure, to both speed up the reasoning
and selection process, and increase the probability of success. The conditioned
view was used as the organizational design for the agent - since the majority of
decision making was based on this structure, changes in the organization could
be made there to induce change in the agent’s behavior.

In addition to local reasoning, a diagnosis component was used to gener-
ate the conditioned view. As mentioned earlier, the diagnosis component made
use of a causal model, which served as a road map from symptom to poten-
tial diagnoses. The component itself would monitor the state of the agent, by
listening to event streams and monitoring state, to detect aberrant behavior.
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Fig. 8. Subjective and conditioned task structures for PCT

Once detected, the causal model would be used to identify potential causes of
the problem, which would result in a set of candidate solutions. These solutions
would be induced by making changes to the organizational design in the agent,
through modification to the local conditioned view, as shown in figure 7. The
JAF architecture facilitated this sort of technology, by providing the common
mechanisms for interaction among components. The diagnosis component was
integrated by simply plugging it into the agent, and no modifications to other
components were necessary.

®x| |®® | i |

A. |

Fig. 9. Experimental solutions in the PCT environment.

Experiments in this environment focused on the convergence time of various
diagnosis techniques to stable organizations, and the efficiency of those organi-
zations. For instance, in figure 9, initial conditions in the environment on the
left included transporters T) and T3 bringing resource X from producer Fj to
consumers F» and F3. Later in the scenario, the needs of Fy change, such that
it now requires Y. Several different organizations are possible, not all of them
functional and efficient. Different diagnosis techniques were applied to situations
like this to evaluate the characteristics of the individual organizations, and even-
tually converging on a solution like that shown on the right side of the figure.
More details on the results of these experiments can be found in [13], and more
sophisticated PCT environments are currently being tested and evaluated with
the help of Dr. Abhijit Deshmukh and Tim Middelkoop.
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6 Conclusions

The key idea in this article is the ability of the JAF/MASS architecture to quickly
and easily prototype and explore different environments. Varied coordination,
negotiation, problem solving and scheduling can all be implemented and tested,
while retaining the ability to reuse code in future projects or migrate it to an
actual implemented solution.

The JAF component-based agent framework provides the developer with
a set of guidelines, conventions and existing components to facilitate the pro-
cess of agent construction. We have seen in several examples how generic JAF
components can be combined with relatively few domain specific ones to pro-
duce agents capable of complex reasoning and behaviors. The use of T&MS as
a problem solving language further extends the usefulness of this framework by
providing a robust, quantitative view of as agent’s capabilities and interactions.
Of particular importance is JAF’s demonstrated ability to easily work in a wide
range of environments, including the discrete time MASS simulator, the real-
time Radsim simulator, and on actual hardware, while making use of existing,
generic components.

The MASS simulation environment was built to permit rapid modeling and
testing of the adaptive behavior of agents with regard to coordination, detection,
diagnosis and repair mechanisms functioning in a mercurial environment. The
primary purpose of the simulator is to allow successive tests using the same
working conditions, which enables us to use the final results as a reasonable
basis for the comparison of competing adaptive techniques.

In the Intelligent Home project, we showed how a heterogenous group of
agents were implemented in JAF and tested using MASS. Different coordi-
nation and problem solving techniques were evaluated, and the TaMS lan-
guage was used extensively to model the domain problem solving process. In
the distributed sensor network project, JAF agents were deployed onto both
a new simulation environment, and real hardware. Agents incorporated com-
plex, partial-ordered scheduling techniques, and ran in real-time. Finally, in the
producer/consumer/transporter domain, notions of organizational design and
conditioning were added, and adapted over time by a diagnosis component.

We feel the main advantages of the JAF framework are its domain indepen-
dence, flexibility, and extensibility. Our efforts in MASS to retain determinism
without sacrificing unpredictability also make it well suited for algorithm gener-
ation and analysis.
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