
Combining Dynamic Reward Shaping and Action Shaping for Coordinating
Multi-Agent Learning

Xiangbin Zhu

College of Mathematics, Physics and Information Engineering
Zhejiang Normal University,

zhuxb@zjnu.cn

Chongjie Zhang

School of Computer Science
University of Massachusetts

chongjie@cs.umass.edu

Victor Lesser

School of Computer Science
University of Massachusetts

lesser@cs.umass.edu

Abstract—Coordinating multi-agent reinforcement learning
provides a promising approach to scaling learning in large
cooperative multi-agent systems. It allows agents to learn local
decision policies based on their local observations and rewards,
and, meanwhile, coordinates agents’ learning processes to
ensure the global learning performance. One key question is
that how coordination mechanisms impact learning algorithms
so that agents’ learning processes are guided and coordinated.
This paper presents a new shaping approach that effectively
integrates coordination mechanisms into local learning pro-
cesses. This shaping approach uses two-level agent organization
structures and combines reward shaping and action shaping.
The higher-level agents dynamically and periodically produce
the shaping heuristic knowledge based on the learning status
of the lower-level agents. The lower-level agents then uses
this knowledge to coordinate their local learning processes
with other agents. Experimental results show our approach
effectively speeds up the convergence of multi-agent learning
in large systems.

Keywords-Multi-Agent Learning; Organization Control; Su-
pervision; Reward Shaping; Action Shaping

I. INTRODUCTION

A central question in developing cooperative multi-agent

systems is to design distributed coordination policies for

agents so that they work together to optimize the global

system performance. Multi-agent reinforcement learning

(MARL) provides an attractive approach to this question.

MARL allows agents to explore the environment through

trial and error, to adapt their behaviors to the dynamics of

the uncertain and evolving environment, and to gradually

improve their performance through experiences.
One of key research challenges for MARL is to

scale learning to large cooperative systems. Coordinating

MARL [6, 7, 12, 15, 14] provides a promising direction

to address this challenge. Using coordinated MARL, agents

learn their policies based on their local observations and

interactions, while their learning processes are coordinated

and guided by exploiting non-local information to improve

the overall learning performance. One important problem of

coordinating MARL is how agents’ learning processes need

to be modified in order to integrate non-local knowledge.

Existing approaches for coordinating MARL use a tech-

nique, called action shaping, i.e., biasing action selection

by directly manipulating learned policies [6, 7, 12, 15, 14].

Action shaping can prohibit an agent from taking some

actions in specified states, and can encourage or discourage

an agent to take some actions in specified states. Action

shaping is immediately effective on the specified states, but

only limited to these specified states. However, it is difficult

and complex to use action shaping to exploit common

situations where neighboring states of “bad” states (i.e., with

low expected rewards) are more likely bad and neighboring

states of “good” states are more likely good.

In this paper, we demonstrate that reward shaping can

potentially address this issue in coordinating MARL. Reward

shaping [1, 9, 10] has been extensively studied for single

agent reinforcement learning. It exploits heuristic knowledge

by providing an agent with additional reward signals to

accelerate its learning process. By utilizing the backup

operation of reinforcement learning (updating the value of a

state using values of future states), reward shaping implicitly

exploits situations where neighboring states of “bad” states

(i.e., with low expected rewards) are more likely bad and

neighboring states of “good” states are more likely good.

Moreover, reward shaping can expand this effect temporally

and spatially. These will be explained in detail later. Unlike

other work on multi-agent reward shaping [2, 5, 3, 4], our

reward shaping approach dynamically generates additional

reward signals for agents based on their current learning

status and is used to coordinate agents’ learning processes.

However, coordinating MARL with reward shaping can-

not generate a reasonable policy early in the learning process

because it needs more time for exploration than that with

action shaping. In this paper, we proposes a method which

combines reward shaping and action shaping. Empirical

results show that reward shaping and action shaping can be

complementary to each other and combining them for coor-

dinating MARL can further improve learning performance.

In this paper, we illustrate our approach using a coordi-

nating MARL framework [12] (see Figure 1 and 5), called

Multi-Agent Supervisory Policy Adaptation (MASPA). This

framework employs low-overhead, periodic organizational

control to coordinate multi-agent reinforcement learning to

ensure the global learning performance. MASPA is general

2013 IEEE/WIC/ACM International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT)

978-1-4799-2902-3/13 $31.00 © 2013 IEEE

DOI 10.1109/WI-IAT.2013.127

321

and extensible and can work with most existing MARL

algorithms. MASPA provides an action shaping technique,

which will be used as our evaluation baseline in a distributed

task allocation application domain.

The rest of the paper is organized as follows: Section 2

introduces MASPA and its action shaping. Section 3 presents

reward shaping in multi-agent learning. Section 4 discusses

in detail the advantages and disadvantages of action shaping

and reward shaping and how they are complementary to

each other. Section 5 illustrates how to dynamically generate

shaping rewards in a distributed task allocation problem.

Section 6 shows the empirical results and analyzes these

results. Finally, Section 7 concludes the paper.

II. MASPA AND ACTION SHAPING

Many realistic settings have a large number of agents

and communication delay between agents. To achieve scal-

ability, each agent can only interact with its neighboring

agents and has a limited and outdated view of the system

(due to communication delay). In addition, using MARL,

agents learn concurrently and the environment becomes non-

stationary from the perspective of an individual agent. As

shown in [12], MARL may converge slowly, converge to

inferior equilibria, or even diverge in realistic settings. To

address these issues, a supervision framework was proposed

in [12]. This framework employed low-overhead, periodic

organizational control to coordinate and guide agents’ ex-

ploration during the learning process.

The supervisory organization has a multi-level structure.

Each level is an overlay network. Agents are clustered and

each cluster is supervised by one supervisor. Two supervisors

are linked if their clusters are adjacent. Figure 1 shows a

two-level organization, where the low-level is the network of

learning agent and the high-level is the supervisor network.

The supervision process contains two iterative activities:

information gathering and supervisory control. During the

information gathering phase, each learning agent records its

execution sequence and associated rewards and does not

communicate with its supervisor. After a period of time,

agents move to the supervisory control phase. As shown

in Figure 1, during this phase, each agent generates an

abstracted state projected from its execution sequence over

the last period of time and then reports it with an average

reward to its cluster supervisors. After receiving abstracted

states of its subordinate agents, a supervisor generates and

sends an abstracted state of its cluster to neighboring su-

pervisors. Based on abstracted states of its local cluster and

neighboring clusters, each supervisor generates and passes

down supervisory information, which is incorporated into

the learning of subordinates and guides them to collectively

learn their policies until new supervisory information arrives.

After integrating supervisory information, agents move back

to the information gathering phase and the process repeats.

1

2
4

3

2

1

3

4

5

Supervisors

Agent Networks

Gather Information
Supervisory Control

5

Figure 1. The two-level hierarchical learning structure

A supervisor uses rules and suggestions to transmit its

supervisory information to its subordinates. A rule is defined

as a tuple < c, F >, where

• c: a condition specifying a set of satisfied states

• F: a set of forbidden actions for states specified by c
A suggestion is defined as a tuple < c,A, d >, where

• c: a condition specifying a set of satisfied states

• A: a set of actions

• d: the suggestion degree, whose range is [-1,1]

Rules are “hard” constraints on subordinates’ behavior.

Suggestions are “soft” constraints and allow a supervisor to

express its preference for subordinates’ behavior. A sugges-

tion with a negative degree, called a negative suggestion,

urges a subordinate not to do the specified actions. In con-

trast, a suggestion with a positive degree, called a positive
suggestion, encourages a subordinate to do the specified

action. The greater the absolute value of the suggestion

degree, the stronger the suggestion.

Each learning agent integrates rules and suggestions into

its policy which is learned by a local learning algorithm to

generate an adapted exploration policy. Let RL be the rule

set. Let G be the suggestion set. G(s, a)={< c,A, d >∈
G|state s satisfies the condition c and a ∈ A} is defined. The

function deg(s, a) returns the degree of suggestion, which

is defined as following:

deg(s, a) =

⎧⎨
⎩

0 if |G(s, a)| = 0
d if |G(s, a)| = 1

and < c,A, d >∈ G(s, a)
(1)

So the adapted policy πA can be gotten as following:

πA(s, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if RL(s, a) �= ∅
π(s, a) + π(s, a) ∗ η(s)

* deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a)) ∗ η(s)

* deg(s, a) else if deg(s, a) > 0
(2)

where πA is the adapted policy, π is the learning policy,

RL(s, a) is a set of rules applicable to state s and action a,

deg(s, a) is the degree of the satisfied suggestion, and η(s)

322

ranges from [0,1] determines the suggestion receptivity. The

η(s) function decreases as learning progresses.

Because this type of integration method use supervisory

information to directly bias the action selection for explo-

ration without changing the policy update process, we refer

to it as action shaping.

III. REWARD SHAPING IN MULTI-AGENT LEARNING

An alternative form of integrating supervisory informa-

tion into local learning processes could potentially involve

reward shaping. Reward shaping has been shown to be

a beneficial in single-agent reinforcement learning and in

limited multi-agent settings [2, 8, 10]. In this section, in the

context of our two-level coordination approach to MARL,

we will present a reward shaping approach to integrating

dynamic supervisory information into local learning algo-

rithm of multiple agents so that their learning processes are

coordinated. We will then discuss how to periodically and

dynamically compute appropriate shaping rewards.

MARL can be model-free, such as PGA-APP [13] that

is built upon Q-learning. Therefore, the reward shaping

technology of single-agent systems can be directly integrated

in the MARL. The reward shaping of Q-learning is to

provide an additional reward in order to accelerate the

convergence of Q-learning [10, 11]. The one-step Q-learning

with reward shaping is defined by [10]:

Qt+1(s, a)←(1− α)Qt(s, a) + α[r(s, a) + F t(s, a, s′)
+ γmax

a′
Qt(s′, a′)]

where F t(s, a, s′) is the general form of the shaping reward

and r(s, a) is the immediate reward. The reward shaping

presented here can be thought of as dynamic advice because

it is generated online.

In the context of our two-level coordination approach to

MARL, we can convert suggestions and rules to shaping

rewards. So, we can use functions fr and fs for mapping

rules and suggestions to reward respectively. So shaping

reward can be described as follows:

F t(s, a, s′, a′) = fs(deg(s, a)) + fr(RL(s, a)) (3)

Based on the equation (1), fs(deg(s, a)) can be defined

by:

fs(deg(s, a)) =

⎧⎪⎪⎨
⎪⎪⎩

r(s, a) ∗ η(s)
* deg(s, a) if r(s, a) > 0

−r(s, a) ∗ η(s)
* deg(s, a) else if r(s, a) ≤ 0

(4)

where r(s, a) is the immediate reward for the action a.

Let rrule(s, a) be the shaping reward that an agent re-

ceives for rules. For the state s and the action a, if the

associated rule set RL(s, a) is not empty, the shaping reward

rrule(s, a) can be defined as:

rrule(s, a) =

{
αr(s, a) if r(s, a) < 0
−αr(s, a) else

(5)

where r(s, a) is the immediate reward for the action a and

α is an adjustment parameter.

Based on the equation (5), fr(RL(s, a)) can be defined

by:

fr(RL(s, a)) =

{
0 if RL(s, a) = ∅
rrule(s, a) else

(6)

IV. COMBINING REWARD SHAPING AND ACTION

SHAPING

In this section, we show action shaping and reward

shaping are complementary and the advantages of combining

them for coordinating multi-agent learning.

Zhang et al. [12] have empirically verified that the ac-

tion shaping method is effective for coordinating MARL.

As mentioned early, the action shaping can accelerate the

local Q-learning process via avoiding some bad actions or

encouraging some good actions. Thus, it can improve the

system performance by directly changing the local policy.

Rules are used to prune the state-action space. Suggestions

bias an agent’s exploration. However, action shaping affect

fewer states temporally and spatially than that of reward

shaping.

Figure 2. The grid world with action shaping

For example, consider a grid world, shown in Figure 2.

This grid world has a start state denoted by ’S’ and a

goal state with reward ’+1’. This grid world also con-

tains a trap with reward -0.1. Each state has four actions:

Right, Left, Up and Down. Actions are stochastic motions.

For example, if an agent takes action Up, it will move up

with probability 0.8, but with probability 0.1, it will move

right, and with probability 0.1, it will move left. The goal for

this grid world is to find an optimal policy for an agent to

travel from the start state to the goal state. If we use action

shaping, there will be some rules for neighboring states of

323

Figure 3. The grid world with reward shaping

the trap, which prohibit selecting the action that leads the

agent to the trap with probability 0.8. But these rules do

not change the reward of the trap. So action shaping does

not directly affect the Q-values of the neighboring states,

but only cuts the trap from the state-action space. However,

because the move is a stochastic move, the neighboring

states of the trap are actually dangerous states. It is difficult

to express these states with rules and suggestions. In con-

trast, by exploiting the backup operation of reinforcement

learning, reward shaping can implicitly affect the Q-values

of the neighboring states, which is shown in Figure 3. This

is because reward shaping makes the negative reward of

the trap greater and thus the agent will less likely explore

neighboring states of the trap.

The explanation above is from the spatial perspective.

Suppose that agents are in a non-stationary environment

where the trap could be moving. After the trap has moved,

the effect of reward shaping will take more time to die

out since it has already affected neighboring states, but, in

contrast, the effect of action shaping will be immediately

adjusted to the new state. Thus action shaping is more

responsive but local in character, whereas reward shaping is

less responsive but non-local in character, and thus they will

bring different impacts from the temporal point. For exam-

ple, in the distributed task allocation problem (DTAP) [12],

action shaping will bring more benefits for adjusting the

load balance in a cluster. Figure 4 shows a simply state

transition diagram for an agent in DTAP. An agent has five

states based on its loads, e.g., s0 indicating the lightest load

and s4 representing the heaviest load. If an agent takes action

a0, the agent’s load increase. If an agent takes action a1, the

agent’s load may be reduced because of completed tasks.

Assume that, at an early stage of the learning, the agent has

a rule on state s2 for limiting its local queue length (i.e.,

preventing from taking action a0 on state s2). As a result,if

we use reward shaping, the Q-value of action a0 in state s2
will be reduced. Due to the non-stationary environment, the

agent now has an overwritten rule for limiting its local queue

on state s3 at the later stage. Then using reward shaping, the

agent will still have the low Q-value of action a0 in state

s2 for some time. However, in contract, if the agent only

uses action shaping, then it will select action a0 with high

probability in state s2 and visit state s3 more quickly and

frequently.

Figure 4. The state transition diagram of DTAP

In general, action and reward shaping can both speed up

the convergence of the MARL by making the exploration

phase of reinforcement learning more effective. Neverthe-

less, at the beginning of learning, action shaping almost

always provides better performance than that of reward

shaping because action shaping guides immediately the

exploration strategy of MARL while reward shaping needs

more time to improve Q-values. Therefore, combining action

shaping and reward shaping can potentially be beneficial.

To combine these two shaping methods, the receptivity

function η(s) is used on both suggestions and rules of action

shaping. Intuitively, at the beginning, let action shaping take

a leading role. Later, as the local policy has sufficiently

learnt to be reasonable, the impact of action shaping should

be decreased via η(s). Therefore, we have a function η(s)
for rules and the adapted policy πA can be changed as

following:

πA(s, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− η(s)) ∗ π(s, a) if RL(s, a) �= ∅
π(s, a) + π(s, a) ∗ η(s)

* deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a)) ∗ η(s)

* deg(s, a) else if deg(s, a) > 0
(7)

where η(s) is defined as following:

η(s) = k/(k + visit(s)) (8)

where visit(s) is the number of visiting the state and k is

a constant.

V. DYNAMICALLY COMPUTING SUPERVISORY

INFORMATION

One important issue of our two-level coordination ap-

proach to MARL is how to generate supervisory information

for action shaping and reward shaping in order to coordinate

learning processes of multiple agents. In this section, we will

324

Figure 5. Supervised MARL

first introduce the idea of a cluster value, which is periodi-

cally computed for each cluster to provide an evolving non-

local view and then discuss how to dynamically compute

supervisory information using the cluster value.

We use DTAP as a domain-dependent example. In DTAP,

each agent receives tasks that arrive according to a Poisson

distribution at a certain rate with exponential execution time.

At each time, when an agent receives a task, the agent

must make a decision whether it executes the task locally or

transmits the task to one of its neighbors. So if an agent has

2 neighbors, it can choose one of three actions when it has

received a task. As mentioned before, we have a hierarchical

structure for multi-agent learning. Figure 5 shows a 2-layer

multi-agent system.

A. Cluster Value

The cluster value Vc is employed to evaluate how good

a cluster has learned. A cluster evaluation function C(z)
is designed to compute the cluster value, where z is the

argument vector with regards to a specific cluster. Let E
be the set of all agents in a cluster. Let Si be the state

space of agent i. Let Ai be the action space of the agent

i. Let pi(s) be the probability that agent i visits state s.

We define Ri(s) =
∑

a∈Ai
πi(s, a)ri(s, a), where πi(s, a)

is the policy value when the agent i selects the action a at

the state s based on the policy πi and ri(s, a) is the reward

received when the agent i selects the action a at the state s.

Then, Vc can be calculated by the equation (9).

Vc =
∑
i∈E

∑
s∈Si

Ri(s)pi(s). (9)

B. Action Shaping and Reward Shaping

As mentioned before, the shaping reward for each agent

can be calculated from its suggestion degree, which is from

its supervisor. In DTAP, the suggestion degree is computed

using the cluster values. Let dv be the difference between

two neighbor clusters’ values, which express some measure

of the difference between learning processes of these two

clusters. The goal of the supervisory control implemented

action and reward shaping is trying to improve learning

performance of the cluster with a lower cluster value without

significantly affecting learning performance of the cluster

with a higher cluster value. To achieve this goal, we need

to compute the cluster-level suggestion degree rsuggestion
using dv values, which can express the quantitative goodness

of distributed reinforcement learning, and then to map such

a non-local suggestion degree to local suggestion degrees.

We assume that there are two clusters: cluster c1 and

cluster c2. Based on the policy of cluster c1, cluster c1
interacts with one of its neighboring clusters, which is c2
for example. let Vc1 and Vc2 is the cluster values of cluster

c1 and its adjacent cluster c2, respectively. So we have:

dv = Vc2 − Vc1 (10)

Based on equation (9) and (10) can be changed as fellows:

rsuggestion = α(Vc2 − Vc1) (11)

where α is an adjustment coefficient.

For DTAP, cluster value Vc is approximately computed

based on reports received from its cluster agents. In each

report, the queue length of each agent is the important argu-

ment. The supervisor receives reports from its subordinates

at fixed intervals. After getting all reports, the supervisor

can calculate the average queue length of its cluster, which

is also called the average load. Thus, Vc is approximated by

the average queue length.

Based on its cluster value, cluster ci chooses one of its

neighboring clusters, e.g., cluster ck. Let Vci and Vck be

the average load of cluster ci and its adjacent cluster ck
respectively. So based on the equation (10), we have:

dv = Vck − Vci

If dv < 0, cluster ci considers cluster ck has a lower

average load. Then, cluster ci will encourage its members

to forward tasks to cluster ck according to the following

suggestion degree:

rsuggestion = −dv/Vci

A positive suggestion degree means to encourage forward-

ing tasks to cluster ck.

If dv > 0, cluster ci considers cluster ck has a higher av-

erage load. Cluster ci encourages the subordinates to process

its tasks by themselves. In other words, we discourage the

subordinates to forward tasks to these neighboring agents

which have a higher average load. Thus, the cluster-level

suggestion degree is given by:

rsuggestion = −dv/Vck

325

Figure 6. Propagating shaping reward

Using the cluster-level suggestion degree rsuggestion, we

now consider generating the local suggestion degree for

specific agents. Our method is to transfer the cluster-level

suggestion degree to subordinates adjacent to cluster ck,

which is showed in Figure 6. The cluster-level suggestion

degree will also be transferred to subordinates that are not

on the boundary to other clusters, but with a discount factor

based on their distance to the boundary. So shaping rewards

will attenuate for agents further away from the boundary.

An agent may need to combine two or more suggestions

on the same state-action pairs from its cluster manager based

on its cluster being potentially connected to more than one

cluster. Let Dsuggestion be the combined suggestion degree

that combine two suggestions that an agent receives. Our

combination strategy is showed as follows:

Dsuggestion =

{
max(r1, r2) if r ∗ r2 > 0
r1 + r2 else

where r1 and r2 are two suggestion degrees that are received

by the agent. This strategy can be generalized to combine

more than two suggestion degrees. Once an agent gets their

suggestion degrees, it computes its shaping rewards based

on equation (4).

Another source of shaping rewards is from the rules in

the supervisory information. Rules indicate that the agent

should not choose some specific actions in some states

because their actions will cause very bad performance. Our

empirical results show rules executed with action shaping

usually can have a large effect on learning performance

because a rule can significantly reduce the state-action space

for local multi-agent reinforcement learning’s exploration,

thus speeding up convergence. Similarly, reward shaping

associated with rules has also an important impact on

learning performance by speeding up the learning with more

accurate rewards.

For DTAP, when an agent has too long a queue, it should

forward any tasks that it received to other agents. We create

a load limit rule to limit the local queue length. When the

local queue length lqueue is larger than the limit Llimit, an

agent should not add a new task to its local queue. The limit

Llimit is set to the cluster value Vc for a cluster. In essence,

this rule helps balance load within the cluster.

When an agent’s local queue length lqueue is larger than

the limit Llimit, this load limit rule will be activated and the

agent will then use equation (6) to compute shaping reward

fr(RL(s, a)) associated with this rule.

In our experiments, the adjustment parameter α in the

equation (5) is 1 and the constant k in the equation (8) is

1000.

VI. EVALUATION

We use DTAP [12] to evaluate our approaches. The main

goal of DTAP is to minimize the average time of service

time(ATST) of all tasks received by the system. The service

time of a task refers to the interval between its arrival time

and the end time of its execution. The communication cost

among agents is proportional to the distance between them,

one time unit per distance unit.

A. Experimental Design

The experimental setup is almost the same as in [12],

except that we choose PGA-APP [13] as the local learning

algorithm. The state of an agent is mapped from its average

work load over a period of time τ(τ = 500). There are three

measurements:

• ATST (average total service time), which is used to

evaluate the overall system performance. Thus, it is the

main measurement for evaluating MARL.

• AMSG (average number of message per task), which

indicates the overall communication overhead for fin-

ishing one task.

• TOC (time of convergence), which is used to evaluate

the learning speed. To calculate TOC, we take sequen-

tial ATST values with certain size and then calculate

the ratio of those values’ deviation to their mean. If

the ratio is less than a threshold (e.g., 0.025), then we

consider the system stable. TOC is the start time of

the selected points. Note that after the systems reach

the TOC point computed by our method, the learning

performance may still continue improving but with a

small rate.

The two-dimension grid networks of agents are 27*27

grids for experiments. All agents have the same execution

rate. The mean of task service time μ is 10. We tested three

patterns of task arrival rates: boundary load, center load and

corner load.

In each simulation run, ATST and AMSG are computed

every 500 time units to measure the progress of system

performance. The simulation ran over 10 times to get av-

erage values. We compared four structures: no supervision,

action shaping, reward shaping and combined shaping that

integrates action shaping and reward shaping. For three

structures with supervision, there are 81 clusters and each

cluster has 3*3 agents.

B. Results

Figure 7, 8, and 9 show results of ATST under different

task load patterns. All pattern structures produced similar

326

Times

0 5000 10000 15000 20000 25000 30000 35000

A
T

ST

0

50

100

150

200
None

Action Shaping

Reward Shaping

Combined

Figure 7. ATST with boundary load for different structures

Times

0 5000 10000 15000 20000 25000 30000 35000

A
T

ST

0

50

100

150

200

None

Action Shaping

Reward Shaping

Combined

Figure 8. ATST with center load for different structures

Times

0 5000 10000 15000 20000 25000 30000 35000

A
T

ST

0

50

100

150

200

250

300

350

400

450
None

Action Shaping

Reward Shaping

Combined

Figure 9. ATST with corner load for different structures

results. As expected, reward shaping has a higher ATST

than that of action shaping at the early stage of learn-

ing. This is because action shaping can immediately guide

agents to choose good actions and to avoid bad actions,

while, using reward shaping, agents still need to explore

some bad states. Nevertheless, reward shaping outperform

the case with no supervision at the early stage because

shaping rewards implicitly provide a partial global view

and coordinate agents’ learning processes. As time goes by,

learning with reward shaping converges more quickly than

that with action shaping. The reason, as mentioned before, is

that agents with reward shaping can avoid more bad states.

Learning with combined reward shaping and action shaping

shows further improved performance, which is because the

combined method improves learning performance of reward

shaping at the early stage.

Table I
PERFORMANCE OF DIFFERENT STRUCTURES WITH BOUNDARY LOAD

Supervision ATST(12500) ATST(8500) AMSG TOC

None 45.9±0.6 60.2±0.8 5.9±0.1 20500

Action
Shaping

33.5±0.6 39.9±0.9 6.8±0.2 15000

Reward
Shaping

28.4±0.3 35.0±0.3 6.5±0.2 12500

Combined 27.6±0.4 30.4±0.5 7.2±0.1 8500

Table II
PERFORMANCE OF DIFFERENT STRUCTURES WITH CENTER LOAD

Supervision ATST(10000) ATST(9000) AMSG TOC

None 56.1±5.5 62.8±7.5 9.0±0.1 18500

Action
Shaping

37.1±1.0 39.3±1.0 9.6±0.2 11000

Reward
Shaping

32.7±0.5 34.7±0.3 9.8±0.2 10000

Combined 32.0±0.9 33.3±0.9 9.5±0.2 9000

Table III
PERFORMANCE OF DIFFERENT STRUCTURES WITH CORNER LOAD

Supervision ATST(15500) ATST(12000) AMSG TOC

None 82.5±18.1 129.2±42.6 11.7±0.4 29000

Action
Shaping

47.6±1.6 52.0±2.0 11.8±0.3 16000

Reward
Shaping

40.8±1.7 44.7±1.8 12.5±0.4 15500

Combined 38.5±0.7 41.8±1.1 11.6±0.2 12000

Table I, Table II and Table III show different measures,

including ATST, AMSG and TOC under different task load

patterns. AMSG are calculated at the time of convergence

and ATST(*) is computed at the time step as specified

in the parentheses. As we mentioned, the system’s ATST

may still continue decreasing after reaching TOC computed

by our method, but with a small rate. To better illustrate

the results, we compare learning performance of all four

cases at both time of convergence of reward shaping and

combined shaping. We can see that learning with shaping

technologies can decreases system ATSTs while speeding up

the convergence. In addition, reward shaping performs better

than action shaping and combined shaping outperforms

reward shaping in terms of ATST and learning convergence.

We can also observe that learning shaping technologies do

not produce heavy communication overhead.

To further analyze results, we conducted two pairwise

hypothesis tests for comparing the performance of combined

shaping and reward shaping with different loads.

Hypothesis 1: learning with combined shaping converges

faster than that with reward shaping. The p-value of this

327

hypothesis test is 2.385E-040 for the boundary load, 3.595E-

019 for the center load, and 1.722E-019 for the corner load,

all of which are less than 0.05 and statistically confirm

Hypothesis 1.
From our experimental results, we observe that combined

shaping increases convergence speed by between 10% and

30%.
Hypothesis 2: learning with combined shaping produces

a better (or lower) ATST than learning with reward shaping

at the earliest convergence time among four cases, i.e., the

TOC of combined shaping. The p-value of this hypothesis

test is 5.508E-040 for the boundary load, 6.508E-022 for

the center load, and 5.319E-011 for the corner load, all of

which are less than 0.05 and statistically confirm Hypothesis

2. We observe that, at the earliest convergence, combined

shaping improves overall performance in ATST between 4%

and 13% over reward shaping.

VII. CONCLUSION

Acting shaping has been used for coordinating multi-

agent reinforcement learning (MARL). In this paper, we

presented a reward shaping method for coordinating MARL.

Furthermore, we show action shaping and reward shaping

are complementary and present a new shaping approach that

combines reward shaping and action shaping for coordinat-

ing MARL. To dynamically generate supervisory informa-

tion for supporting reward and action shaping, our approach

employs a two-level organizational structure. The higher-

level agents gather information from the lower-level agents

and their neighboring supervisory agents and then dynam-

ically generates supervisory information. This supervisory

information is then integrated into local learning processes of

the lower-level agents by using our new shaping approaches

so that their learning processes are coordinated. Experiments

show that our two-level shaping approach effectively speeds

up MARL and improves the learning quality, and our com-

bined shaping method outperforms both action shaping and

reward shaping when applied alone.

ACKNOWLEDGMENT

This work is supported partially by the National Sci-

ence Foundation (NSF) under Agreement IIS-1116078. Any

opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] J. Asmuth, M. L. Littman, and R. Zinkov. Potential-

based shaping in model-based reinforcement learning.

In Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, pages 604–609, 2008.

[2] M. Babes, E. M. De Cote, and M. L. Littman. Social

reward shaping in the prisoner’s dilemma. In Pro-
ceedings of the 7th international joint conference on

Autonomous agents and multiagent systems-Volume 3,

pages 1389–1392, 2008.

[3] S. Devlin and D. Kudenko. Theoretical considera-

tions of potential-based reward shaping for multi-agent

systems. In The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1,

pages 225–232, 2011.

[4] S. Devlin and D. Kudenko. Dynamic potential-based

reward shaping. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems-Volume 1, pages 433–440. International

Foundation for Autonomous Agents and Multiagent

Systems, 2012.

[5] S. Devlin, D. Kudenko, and M. Grześ. An empirical

study of potential-based reward shaping and advice in

complex, multi-agent systems. Advances in Complex
Systems, 14(02):251–278, 2011.

[6] C. Guestrin, M. G. Lagoudakis, and R. Parr. Coor-

dinated reinforcement learning. In ICML ’02: Pro-
ceedings of the Nineteenth International Conference on
Machine Learning, pages 227–234, San Francisco, CA,

USA, 2002. Morgan Kaufmann Publishers Inc.

[7] J. R. Kok and N. Vlassis. Collaborative multiagent

reinforcement learning by payoff propagation. Journal
of Machine Learning Research, 7:1789–1828, 2006.

[8] A. D. Laud. Theory and application of reward shaping
in reinforcement learning. PhD thesis, University of

Illinois, 2004.

[9] B. Marthi. Automatic shaping and decomposition of

reward functions. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 601–608.

ACM, 2007.

[10] A. Y. Ng, D. Harada, and S. Russell. Policy invariance

under reward transformations: Theory and application

to reward shaping. In Proceedings of the 16th Interna-
tional Conference on Machine Learning,, pages 278–

287, 1999.

[11] J. Randlov and P. Alstrom. Learning to drive a

bicycle using reinforcement learning and shaping. In

Proceedings of the Fifteenth International Conference
on Machine Learning, pages 463–471, 1998.

[12] C. Zhang, S. Abdallah, and V. Lesser. Integrating

organizational control into multi-agent learning. In

AAMAS’09, 2009.

[13] C. Zhang and V. Lesser. Multi-agent learning with

policy prediction. In Proceedings of the 24th National
Conference on Artificial Intelligence (AAAI10), 2010.

[14] C. Zhang and V. Lesser. Coordinating multi-agent

reinforcement learning with limited communication. In

AAMAS’13, 2013.

[15] C. Zhang and V. R. Lesser. Coordinated multi-agent re-

inforcement learning in networked distributed pomdps.

In W. Burgard and D. Roth, editors, AAAI. AAAI Press,

2011.

328

