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ABSTRACT 

A paradigm is developed for structuring a complex 
emulator operating in a parallel hardware environment. 
This paradigm is based on the view that a complex 
emulator is best structured as of a set of microprocesses, 
each performing a small independent task, that interact in a 
closely-coupled manner. This is in contrast to the 
conventional method of structuring an emulator as a set of 
subroutines with a sequential flow of control among them. 
The design of an emulator for a parallel machine language 
(i.e. Adam's Graph Machine Language) using the new 
paradigm is discussed in detail, including the dynamic 
execution characteristics of the emulator in a parallel 
hardware environment. The analysis indicates that, given 
an appropriate microcomputer architecture, this structuring 
allows an emulator for a parallel machine language to be 
naturally and compactly coded and to fully map parallelism 
at the emulated, machine language level into parallelism at 
the hardware level. In particular, it has been shown that 
an emulator can be structured so as to utilize well more 
than sixteen identical microprocessors. In addition, the 
emulator uses the idea of tailoring an emulator's control 
structure both to the emulated machine language and 
dynamically to the specific program being emulated. 

I. INTRODUCTION** 

The conventional structure of an emulator is a series of 
subroutines [TUC65, ROS69]. A typical decomposition of 
an emulator consists of a "control" subroutine that fetches 
the next instruction to be executed, a "decode" subroutine 
that determines the opcode of the next instruction to be 
executed and computes the effective address of the data 
operands, and a set of "semantic" subroutines which 
perform the operations specified by the opcode of the 
emulated instruction. This structure is appropriate for 
emulating a machine language which has a sequential 
control structure on a microcomputer which is not capable 
of asynchronous parallel operations. However, if either of 

* This research was carried on while the author was with 
the Department of Computer Science, Stanford 
University, Stanford, Calif. and was partially supported 
under AEC contracts AT(04-3)326,P.A.23 and AT(04- 
3)515 Stanford Linear Accelerator Center, Stanford, Calif. 

*=This paper presents material from the third cnapter of 
[LES72]. 

these assumptions is relaxed the above decomposition of 
the emulation process is overly restrictive; in the 
framework of a subroutine control structure 1) the 
imbedding of the parallel control structure of the emulated 
machine is complex and inefficient~ and 2) the parallel 
resources of the microcomputer cannot be effectively 
utilized. 

The limitations of this subroutine approach to 
structuring an emulator will become an increasingly severe 
problem if the current trends continue towards more 
complex programming languages, language-directed 
machine design (i.e. the development of intermediate 
machine languages (IML) appropriate for execution of 
programming languages [MCK67, WIL72]), and highly 
parallel computer organizations. As programming 
languages become more complex in their control structures 
(e.g. parallelism, co-routines, monitoring, etc.), these 
complexities will be reflected in the control structures of 
the IML. In addition, there will be a desire to fully exploit 
the parallelism of the hardware 1) by imbedding, in the 
IML, control primitives that directly invoke hardware 
parallelism and 2) by using hardware parallelism to speed 
t~p the emulator of the IML. 

To overcome the limitations of the subroutine approach 
to structuring an emulator for a parallel IML, an alternative 
structuring paradigm has been formulated. This paradigm 
decomposes an emulator into a set of microprocesses**, 
each performing a small independent task, that interact in a 
closely-coupled manner. 

The microprocesses interact often, and therefore the 
their interaction patterns must be kept simple in order to 
minimize overhead. Further, there is no single interaction 
pattern (e.g. communication through a global shared 
memory, or ports, or message queues, etc.) that is most 
efficient and natural for all emulators, or even for a 
particular emulator. Rather, the interactions must be 
designed for each emulator. 

This decompostion paradigm is similar in approach to 
those used in the design of sophisticated computer 
organizations such as the IBM 360/91 [AND67], CDC 6600 
[THO64], and the SYMBOL machine [RIC71]. The internal 
organization of each of these computers consists of a set 
of independent, asynchronous modules: 1) the IBM 360/91 

** The relationship of a microprogram to a microprocess is 
analogous to the relationship (as described in [LAM68]) 
of a program to a process. 



is structured so there are separate modules for the 
control, decode, and semantic phases of an emulation; these 
modules are interconnected and interact in a pipeline 
manner; 2) the CDC 6600 is structured so that there is a 
separate module for each "semantic subroutine"; these 
modules are organized so that the semantic phase of many 
instructions may be performed concurrently; and, 3) the 
SYMBOL machine, which directly interprets a higher-level 
language, is structured so there are separate modules for 
compilation, memory-management, execution of compiled 
code, etc.; each of these modules is capable of performing 
concurrently its task on a different user program. 

Just as the level of a virtual machine language (i.e. an 
IML) was introduced into the interpretation process to 
more efficiently execute higher level languages, it is felt 
that to construct efficient and natural emulators for 
parallel IMLs a new level of variablity must be introduced 
into the emulation process. This new level, which is called 
the virtual process-memory-switch [BEL70] environment, 
allows the designer to structure an emulator in terms of an 
arbi t rary configuration of microprocesses and their 
associated interaction patterns without directly dealing 
with how microprocess activity is mapped into 
microprocessor activity (see Figure 1). 
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A parallel microcomputer architecture that implements 
the concept of a virtual PMS has been developed by 
adding a new level of hardware control which performs the 
mapping of microprocess activity into microprocessor 
activity [LES72]. This control level can be thought of as a 
simple hardware operating system which manages the 
scheduling of and interactions among microprocessors. 
Microprocess activity is specified through a data base 
called the control data structure (CDS). The CDS consists of 
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a collection of state vectors; each state vector defines a 
microprocess. A particular set of interaction patterns 
among microprocesses is dynamically defined by varying 
the number of and relationships among these state vectors. 
In a conventional computer the analogous structure for 
control contains a fixed set of data elements (e.g. program 
counter, interrupt register, etc.) whose relationships are 
predefined. Thus, in a conventional system, control can be 
modified only by changing the value of data elements in 
the CDS (e.g., by changing the program counter). T h e  
ability added here to modify the syntax of the data 
structure for control is the key to creating the virtual PMS 
environment ~appropriate for a particular IML emulator. 

The remainder of the paper discusses a case history of 
the design and emulation of an IML for a highly parallel 
programming language in~ the framework of the 
microcomputer architecture discussed above. In particular, 
the following topics are discussed: 1) the structure of the 
parallel programming language to be emulated and the 
conceptual problems in designing its IML, 2) the 
decomposition of the emulator into a large set of small, 
independent tasks (microprocesses), 3) the specification of 
the interaction patterns among these microprocesses, and, 
4) the dynamic execution characteristics of the emulator as 
the number of microprocessors is varied. 

II. Adam's Graph Machine Language 

The parallel machine language that was chosen to be 
emulated is based on an asynchronous parallel 
programming schema (language) developed by Adams 
[ADA68] called the Adams' Graph Machine Language 
(AGML). The AGML was chosen as a test case not based 
on its practicality as a machine language but rather 
because its emulator can be designed to employ the 
following control structure concepts; distributed parallel 
control, pipelining, recursion, finite resource scheduling and 
message queueing. 

The AGML is based On a data flow model [KAR66, 
ROD67] for representing the sequencing aspects of a 
computation. The instructions of the AGML can be thought 
of as nodes of a graph; the nodes are connected to each 
other through links which are FIFO (first-in - f irst-out) 

,queues. These links are uni-directional data paths in which 
one terminal point o f  the link is denoted as an output link 
of a node while the other terminal point is denoted as an 
input link of a node. An instruction (node) is executed 
when each of its input links contains a data item; a node 
executes by removing the input data from each of its input 
links, performing a calculation on these data, and storing 
the output of the calculation on zero or more of the output 
links. After the node has stored the results of the 
calculation on its output links, the node can be re-executed 
when each of the input links again has data items. An 
example of a graph program is shown in Figure 2. 

The data flow model for sequencing allows the implicit 
expression of parallel activity because if there exists no 
data dependencies among a group of nodes, then these 
nodes may be executed simultaneously. For example, the 
two multiplication nodes in Figure 2 can be executed 
simultaneously whereas the plus node must await the 
completion of both multiplication nodes. A data flow model 
can also be thought of as a distributed control system 
since each node can independently decide, based on local 
information, whether it can execute. 
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Ffgure 2. A Simple Graph Program 

There are three types of nodes in the AGML: parallel, 
procedure, and sequential nodes. The parallel node allows 
for the expression of pipeline (vector) parallelism. The 
parallel node is defined so that ' i t  may be immediately re- 
executed rather than waiting for the computation to 
complete. This re-execution of the parallel node can occur 
once the input data items have been.removed from their 
links provided there is another set of input data items on 
the input links. Thus, multiple instances of a node may be 
concurrently executing, giving the effect of a pipeline. The 
procedure node allows for the expression of recursive 
control structures. The procedure node, instead of 
invoking a primitive arithmetic operation, causes the 
invocation of a graph procedure. The input parameters of 
the invoked graph procedure are the input data items of 
the procedure node. The invoked graph procedure may, in 
turn, contain procedure nodes, thus leading to a recursive, 
parallel control structure. Finally, the sequential node 
allows for the expression of data-dependent sequencing of 
the graph, e.g., loop-control, etc; it is defined so that its 
semantics are affected by its previous execution history. 
In particular, the execution history is used to select, for- 
the next execution of the sequential node, a subset of its 
input data links from which input data will be accepted. 

A graph procedure is terminated when there is a data 
item on each of the external output links. An external 
output link is a link of the graph procedure that is not 
connected as an. input link to any node in the graph 
procedure. These external output links are used to 
transmit the output of the graph procedure to the 
procedure node that invoked the graph procedure. This 
termination condition differs from Adam's original 
formulation which is based on all nodes of the graph 
procedure being inactive.* This new termination condition 
was introduced so that the AGML could be emulated in a 
highly parallel manner. Monitoring for Adams' original 
formulation of the termination condition is very difficult to 
do in a highly parallel manner. This is especially true if no 
assumptions are made about the actual number of physical 

The new termination condition makes the AGML only 
output-determinate rather than completely determinate. 
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microprocessors. In essence, the monitoring process 
overlays the highly parallel distributed control structure of 
the graph machine with a control structure which requires 
sequential accessing of a shared, global data base. in 
contrast, the monitoring process for the new termination 
condition does not affect the basic distributed control 
nature of the AGML. In fact, the process of monitoring for 
this new termination condition is precisely the same as the 
process of monitoring for whether a node is ready to 
execute. 

III. An Emulator for the Adams' Graph Machine Language 

The main emphasis in the design of this emulator has 
been the exploitation of the implicit parallelism of an AGML 
program. The exploitation of this implicit parallelism is not 
worthwhile when node operations are simple arithmetic 
operators (e.g., +, *, etc.) because the overhead costs of 
determining whether there is parallelism and then invoking 
parallel microprocessors is significant with respect to the 
computation performed by a node. However, the AGML 
control structures could just as well be used to sequence 
nodes whose primitive operations were larger units of 
computation (e.g., matrix multiply, exponentiation, etc.) in 
which case the overhead costs of extraction of implicit 
parallelism would be tolerable. This balance between the 
computational grain of the most primitive operations of a 
language that can be parallelized and the overhead cost of 
emulating the control structures of the language which 
specify this parallelism is a crucial design parameter in 
developing and programming parallel languages. The major 
focus of this paper is, however, not on determining this 
balance point but rather on the development of techniques 
for compactly and simply coding emulators which exploit 
the parallelism of a parallel IML. 

The AGML emulator exploits the parallelism of an AGML 
program by: 

1) making parallel, whenever possible, the overhead 
functions required to sequence an AGML program~ 

2) dynamically tailoring the CDS, not only to the 
structure of the AGML emulator, but also to the 
structure of the specific AGML program to be 
emulated. 

This tailoring of the CDS for a specific graph program is 
accomplished by creating a distinct control structure for 
sequencing each node of the graph. This control structure 
for sequencing each node is tailored to the particular type 
of  node and the node's input and output requirements. 
Thus, the CDS for the AGML emulator closely mirrors the 
distributed control structure of the particular AGML 
program. In addition, the CDS may be dynamically modified 
during the execution of a graph program so as to take 
advantage of the potential parallel activity that is 
generated when a graph procedure is dynamically invoked. 

III.] The CDS for AGML Emulator 

The crucial aspect of the design of the emulator is the 
specification of the emulator's CDS. The CDS provides a 
syntactic framework within which the emulator can be 
conveniently microcoded. The CDS of the AGML emulator 
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Figure 3a. Control Data Structure for  Resource Management 

can be thought of in terms of two parts: 1) a CDS for 
resource management (e.g., the dynamic allocation of 
memory for link queue space) and 2) a CDS for sequencing 

• of a graph program. These two parts of the emulator's 
CDS form a two level hierarchy in which the CDS for 
resource management is at the top level. The CDS for 
resource management is implemented as a fixed structure 
which is independent of the particular AGML program 
being emulated, whereas the CDS for sequencing of the 
graph program has a dynamic structure which is dependent 
on the particular graph procedures currently being 
executed. 

II1.1.1 The CDS for Resource Management 

The CDS for resource management is pictured in Figure 
3a. The resource management functions are carried out by 
the SPACE-MANAGER, and SCHEDULER(I)... SCHEDULER(Ns) 
microprocesses. The SPACE-MANAGER microprocess 
dynamically allocates fixed length blocks of storage for link 
queue space. This storage allocation cannot be done 
statically since graph procedures can be dynamically 
invoked during the execution of a graph program. In 
addition, there can be many graph procedures which are 
simultaneously requesting storage for their links. Thus, 
the storage allocation has to be done dynamically in a 
central place. The SPACE-MANAGER microprocess, by 
appropriate manipulation of its execution-state, can 
sequentialize the acceptance and processing of 
communications which either request the allocation of 

s{orage or specify the release of previously allocated 
storage.* 

The scheduling function of the resource manager is 
implemented through a set of SCHEDULER rnicroprocesses 
such that each type of primitive node operation could 
conceivably have its own SCHEDULER rnicroprocess. A 
SCHEDULER rnicroprocess is used to assign, depending 
upon the type of operation, either a functional unit or a 
microprocess to carry out the primitive operation of a 
node. Each SCHEDULER microprocess has a fixed length 
queue to hold requests for a device (i.e., functional unit or 
microprocess) that cannot be currently honored. If this 
queue becomes full, then the SCHEDULER microprocess 
employs the "waiting" execution state that permits 
selective listening rather than the suspended execution 
state. In this selective listening state, a communication to 
the SCHEDULER that requests a device is not consummated, 
whereas a communication to the SCHEDULER that specifies 

t h e  termination of a device is consummated. 

w= The microcomputer's interprocessor communication 
primitives allow for the specification of different classes 
of communication. A rnicroprocess, through manipulation 
of its execution state, can specify which class (possibly 
no class) of communications it will currently accept. 
Through this mechanism, a microprocess can 1) 
sequentially accept and process multiple communications, 
2) selectively accept only certain types of 
communications, and 3) asynchronously accept requests 
for communication. 



27 

° ' "  I 

Ftgure 3c. Control I)at~ StructuPe fo r  Aee. 

procedure, initializes and allocates storage for the links of 
the graph procedure, and monitors for the termination of 
the graph procedure. The CDS for sequencing of s graph 
procedure, as previously discussed, is tailored to the 
particular graph procedure being emulated. The template 
for a tailored CDS is pictured in Figure 3b. This tailored 
CDS contains, for each link and node of the graph 
procedure, I corresponding LINK microprocess and NODE 
microprocess, where there are three types of NODE 
microprocesses: PARALLEL, SEQUENTIAL and PROCEDURE. 
For instance, the graph procedure specified In Figure 2 
results in a CDS containing 7 LINK microprocesses and 3 
NODE microprocesses. This CDS for sequencing of a graph 
procedure has been designed so that, once generated, its 
structure need not be modified. Thus, the structure- 
building overhead is only incurred once and consequently is 
not a function of the number of node executions. In 
addition, the generation of the CDS for all NODE 
microprocesses can be done in parallel. 

The LINK microprocess is responsible for retrieving and 
storing data from a link's queue spice and updating the 
queue pointers. The LINK microprocess acts as a 
semaphore process for controlling access to the link's 
queue space. A semaphore process is required for 

controlling access to a link queue because I t  the slime 
time, one node may desire to place data on the queue 
while another node may desire to remove data from the 
queue at the same time. The LINK microprocess is also 
used to avoid "busy waiting" when i node des l r l l  a data 
item and the link queue is empty. In this case, ~mitead of 
the node repeatedly querying the IJNK microprocess 
whether input link data is available, the LINK microprocess 
accepts a request for data from the node end then, when 
the data is available, transfers the data to the node which 
is in a waiting execution-state. Thus, as will be seen in 
more detail later, the LINK microprocess allows the trigger 
function of a node (i.e., deciding when a node is reKly to 
execute) to be monitored in I non-busy wly.  A similar 
handshaking mechanism is used to avoid a node "busy 
waiting" until there is room on the link to store output link 
data. in addition, the LiNK microprocess allows the 
updating of queue pointers to go on in parallel with I 
node's further processing. 

The NODE microprocess implements the fol lowin| 
overhead operations required to sequence a node: 1) 
fetching the input data items from the appropriate input 
links, 2) deciding when the node operation is ready to be 
executed, 3) transferring the input data i tem to the 
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Figure 3b. Control Data Structure for GRAPH-PROCEDURE 

The AGML emulator could have been organized without 
this centralized scheduling function. In essence, the 
centralized scheduler is scheduling virtual microprocesses 
which are in turn being scheduled on physical 
microprocessors by the built-in hardware scheduler. Thus, 
the emulator could have been organized so as to use the 
built- in scheduler alone. There are two main reasons for 
taking the centralized scheduler approach. The first 
reason stems from the simplicity of the built-in hardware 
algorithm for scheduling. Specifically, the two level 
sched~Jling appl'oach allows the design Of a dophisticate¢~l 
graph scheduler which takes into account the structure of 
the graph procedure so as to utilize available 
microprocessors.= more efficiently [NEL72]. The second 
reason stems from the semantics of the parallel node that 
permit the concurrent initiation of an arbitrary number of 
primitive operations for each parallel node. In order to 
take advantage of this potential parallelism of the parallel 

*~ The virtual scheduler can query the hardware system to 
find out the number of physical microprocessors and use 
this information as a parameter in the scheduling 
function. 

nocle in a non-centralized scheduling approach either 1) 
each time a primitive node operation is initiated, the 
sequencer of a parallel node would have to dynamically 
generate the state vector of a microprocess to carry out 
the operation; or 2) the fixed CDS structure of the 
appropriate SCHEDULER microprocess would have to be 
duplicated for each parallel node in the graph procedure. 

Thus, either the structure building overhead involved in 
sequencing of the graph procedure would greatly increase 
or the size of the CDS for the graph procedure would 
greatly increase. On the other hand, a centralized 
scheduler has a fixed CDS structure which does not vary 
dur{ng the execution of the graph, and there is only one 
state vector for each device that can be scheduled. For 
these reasons, a centralized scheduling approach is used. 

111,1,2 The CDS for Sequencing of a Graph Procedure 

The Sequencing of a graph procedure is implemented 
through the microprocess GRAPH-PROCEDURE. This 
microprocess generates the CDS fo r sequencing of a graph 
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~procedure, initializes and allocates storage for the links of 
the graph procedure, and monitors for the termination of 
the graph procedure. The CDS for sequencing of a graph 
procedure, as previously discussed, is tailored to the 
particular graph procedure being emulated. The template 
for a tailored CDS is pictured in Figure 3b. This tailored 
CDS contains, for each link and node of the graph 
procedure, a corresponding LINK microprocess and NODE 
microprocess, where there are three types of NODE 
microprocesses. PARALLELj SEQUENTIAL and PROCEDURE. 
For instance, the graph procedure specified in Figure 2 
results in a CDS containing 7 LINK microprocesses and 3 
NODE microprocesses. This CDS for sequencing of a graph 
procedure has been designed so that, once generated, its 
structure need not be modified. Thus, the structure- 
building overhead is only incurred once and consequently is 
not a function of the number of node executions. In 
addition, the generation of the CDS for all NODE 
microprocesses can be done in parallel. 

The LINK microprocess is responsible for retr ieving and 
storing data from a link's queue space and updating the 
queue pointers. The LINK microprocess acts as a 
semaphore process for controlling access to the link's 
queue space. A semaphore process is required for 

controll ing access to a link queue because at the same 
time, one node may desire to place data on the queue 
while another node may desire to remove data from the 
queue at the same time. The LINK microprocess is also 
Used to avoid "busy waiting" when a node desires a data 
item and the link queue is empty. In this case, instead Of 
the node repeatedly querying the LINK microprocess 
whether input link data is available, the LINK microprocess 
accepts a request for data from the node and then, when 
the data is available, transfers the data to the node which 
is in a waiting execution-state. Thus, as will be seen in 
more detail later, the LINK microprocess allows the tr igger 
function of a node (i.e., deciding when a node is ready to 
execute) to be monitored in a non-busy way. A similar 
handshaking mechanism is used to avoid a node "busy 
wait ing" until there is room on the link to store output link 
data. In addition, the LINK microprocess allows the 
updating of queue pointers to go on in parallel with a 
node's further processing. 

The NODE microprocess implements the following 
overhead operations required to sequence a node: 1) 
fetching the input data items from the appropriate input 
links, 2) deciding when the node operation is ready to be 
executed, 3) transferring the input data items to the 



appropriate microprocess that will perform the node 
operation, and 4) transferring the output of the node 
operation to appropriate output links. The CDS associated 
with each NODE microprocess is designed so that as many 
of these overhead operations can be done either in 
parallel or overlapped between consecutive executions of 
a node. 

The overall CDS for the AGML emulator is pictured in 
Figure 3c. This section has presented the AGML emulator 
in terms of a set of microprocesses, each of which 
performs a small independent task. The next section will 
discuss how these microprocesses dynamically interact to 
perform the emulation o f  a graph program. These 
interaction patterns will be detailed through a discussion 
of the PARALLEL-NODE microprocess. 
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111.2 The Micro¢oding of the Parallel Node 

The PARALLEL-NODE, whose COS is pictured in Figure 
4a, is the most complex of the three types of NODE 
microprocesses because of the control structures required 
to generate and keep track of the multiple concurrent 
initiations of the primitive operations of the node. In order 
to generate multiple initiations, the fetching of input link 
data for an operation, which is done by the INPUT-PNODE 
mic~'oprocess, is separated from the storing of output link 
data for an operation, which is done by the OUTPUT- 
PNODE microprocess. This separation of the input and 
output phases of a PARALLEL-NODE permits the fetching of 
input data for one operation to be performed concurrently 
with the storing of output data for a previously initiated 
operation. In order to insure the output-determinancy of 
the graph procedure, multiple initiations of an operation 
must terminate in the same order as they were initiated. 
The PARALLEL-NODE maintains the correct ordering of 
multiple initiations through a mechanism which holds up the 
storing of the output of an operationuntil the output of all 
previously initiated operations have been stored. 

The PARALLEL-N£)DE interacts directly with the 
following microprocesses: GRAPH-PROCEDURE, SCHEDULER, 
INPUT-PNODE, OUTPUT-PNODE, and PROCESSOR( 1 ) ... 
PROCESSOR(n). The PARALLEL-NODE control environment 
is a two level hierarchy of global process environments. 
The top level allows for access to SCHEDULER 
microprocesses while the lower level allows for access to 
the L I N K  microprocesses. The PARALLEL-NODE 
microprocess and its son microprocesses communicate with 
each other in two ways: through a port attached to each 
microprocess and through a global data base which these 
microprocesses all share. The semantics of interaction 
patterns of the PARALLEL-NODE with these microprocesses 
is indicated in Figure 4b. 

The GRAPH-PROCEDURE microprocess initiates the 
PARALLEL-NODE microprocess and then, when the graph 
procedure termination condition has been met, signals the 
PARALLEL-NODE to terminate. The PARALLEL-NODE, after 
it has received the terminate signal, waits until all 
outstanding node operations are completed and then 
signals back to the GRAPH-PROCEDURE its termination. 

The PARALLEL-NODE, once initiated, activates, the 
INPUT-PNOOE microprocess to fetch the input data from the 

Figure 4a.. Control Data Structure for PARALLEL-NODE 

appropriate input links. After receiving the prefetch 
complete signal from the INPUT-PNODE, the PARALLEL- 
NODE then activates the appropriate scheduler 
microprocess to assign a PROCESSOR to perform the 
operation.= In this way, a PROCESSOR is not assigned to 
perform a node operation until the data necessary for the 
operation has been fetched. 

The PARALLEL-NODE, after receiving the address of the 
assigned PROCESSOR from the SCHEDULER microprocess, 
queues the address and activates the INPUT-PNODE with 
this address. The INPUT-PNODE then transfers the 
prefetched input data to the assigned PROCESSOR. After 
the input data has been transferred, the tNPUT-PNODE 
attempts to prefetch the input data for the next operation. 

The PROCESSOR(i) microprocess, after completing the 
desired operation, signals back to PARALLEL-NODE that the 
output data is ready. The PARALLEL-NODE then checks 
whether PROCESSOR(i) is at the top of the initiation queue. 
If PROCESSOR(i) is at the top of the queue, then the 
address of PROCESSOR(i) is transferred to the OUTPUT- 
PNODE microprocess. Otherwise, an indicator is set in the 
initiation queue that PROCESSOR(i) is ready to store its 
output data. Thus, through the initiation queue mechanism, 
the outputs of the PARALLEL-NODE are FIFO ordered so as 
to make the PARALLEL-NODE determinate. 

The PROCEDURE-NODE is precisely the same as the 
PARALLEL-NODE except that the PROCEDURE-NODE, 
instead of calling the SCHEDULER microprocess, 
generates a state vector for the GRAPH-PROCEDURE 
microprocess. The address of this newly defined 
GRAPH-PROCEDURE microprocess is then treated in the 
same way as the address of the assigned PROCESSOR 
microprocess. 



C. INPUT- 
PNODE 

~p GRAPH- ~'~ f ~' 
ROCEDUREJ 

initiate 

~i( signo I prefe~coh,complet e ~ ,mm, • _I. ~ wh ..... ipu, wil( be stored 

),,o.;,e,o~d/e~'sO, p ....... b(" PARALLEL-)_ s,,oo, out~,'oomp,ete =(~OUTPUT-~ 

which will receive input doio ~ , ~  ~ O / ( o , ~ ,  " 

"oo, 

'l'Sieps 2-B represent the sequence of interoctlons required for o single node computotion. 

31 

Figure 4b. Interaction Patterns of PARALLEL-NODE 

The OUTPUT-PNODE microprocess, upon receiving the 
address of PROCESSOR(i), transfers PROCESSOR(i)'s output 
data to the appropriate output links. 'After the completion 
of this transfer, the PARALLEL-NODE is notified. The 
PARALLEL-NODE then examines the initiation queue to 
determine whether the PROCESSOR(j) at the top of the 
queue has already signaled that its output is ready. If so, 
then the OUTPUT-PNODE is reactivated with the address of 
PROCESSOR(j). 

These interaction patterns allow the fetching of input 
link data, storing of output link data, the execution of an 
arbi trary number of primitive node operations, and the 
processing of requests to store the output of an operation 
all to proceed in parallel. The PNODE-CLOCKER 
microprogram, which is the collection of these microcode 
routines for handling communications to the PARALLEL- 
NODE, is less than 70 (64-bit) microinstructions long. The 
microprogram memory required for the entire AGML 
emulator is less than 600 microinstruction words. Of this 
microstorage, approximately 220 microinstructions are 
used for building up the CDS, 300 microinstructions for 
dynamic control, and the remainder for holding data 
constants. An entire listing of the AGML emulator is 
contained in Appendix C of [LES72]. 

111.3 Dynamic Execution Behavior 

In order to verify that this emulator design actually 
exploits the implicit parallelism, of an AGML program and 
performs the overhead operations required to sequence a 
graph procedure in a parallel manner , the emulator was 
run on a simulator o f the  microcomputer architecture so as 
to measure its dynamic execution behavior. The 
performance statistics to be presented in the remainder of 
this chapter are based on the emulation of two graph 
programs. The first graph program, Sum-Squared (Figure 
5) calculates the sum of the squares of the elements of a 
vector of numbers. The vector is initially placed on the 
external input link with its last element being zero. The 

node "2 Copies" copies the data on its input data link to its 
two output links. The node "Branch and Route" routes the 
data on its first input link (connected to the "+" node) to 
the external output link if its second input link (connected 
to the "---0" node) contains a true value; otherwise, the 
output data from the "+" node is routed back to the "+" 
node for continued summing. The computational structure 
of this graph program can be thought of as a three level 
pipeline that flows into an iterative summation network. 

< 

.,,,...__.EXTERNAL 
INPUT LINK 

ES 

~__.EXTERNAL 
OUTPUT LINK 

Figure ~. Sum-Squan)d Graph Program 
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Ftgure 6. Perfomance Characteristics of A6RL Emulator on 
Sum-Squared Graph Program(S) 

The second graph program, Sum-Eighth-Power, calculates 
the sum of the eighth power of the elements of a vector of 
numbers. The computational structure of this second 
graph program is similar to that of the first graph program 
except that the pipeline part of the computation has seven 
levels. 

The dynamic performance characteristics of the AGML 
emulator were evaluated in two ways. The first evaluation 
technique compared the implicit parallelism¢of the Sum- 
Squared graph program w i t h  that of the throughput 
parallelism of the emulator when emulating this graph 
program (Figure 6), as a function of the number of 
processors. The implicit parallelism of the AGML program, 
as a function of the number of processors, is measured 
through the use of a simulation technique developed by 
Nelson [NEL70], whereas the throughput parallelism is 
calculated by dividing the total time to execute the 
emulator in a hardware configuration containing n 
microprocessors by that for a single microprocessor. The 
comparison of these two curves indicates the AGML 
emulator takes advantage of the implicit parallelism of the 
graph program (i.e., throughput curve dominates implicit 
parallelism curve) and the overhead operations are made 
parallel (i.e., the postive difference between the two 
curves). These conclusions indicated by this comparison 
can also be observed by examining "the Microprocessor- 
Utilization Curves of the Sum-Eighth-Power graph program 
in Figures 7a-c. The dynamic activity of the AGML 
emulator can be partitioned in terms of six sections, as 
labeled in Figure 7a. The activity of the first section, 
which is mostly sequential, represents the dynamic 
construction of the CDS for the particular graph program 
being emulated. The activity of the second section 

* The implicit parallelism of an AGML program is based 
solely upon the sequencing rules of the AGMLp i.e., the 
rules which define when a node may execute. This 
measure of parallelism does not take into consideration 
any of the bookkeeping operations, both software and 
hardware, required to implement the parallel activity of 
the graph program, e.g., the fetching and storing of data 
on links or the monitoring for when a node can fire. 

represents the initiation of all nodes in the graph, and 
their subsequent activity involved with determining 
whether they can execute. The activity of the third 
section mirrors the gradual initiation of the pipeline part of 
the graph computation. The activity of the fourth section 
mirrors the execution of a fully loaded pipeline. The 
activity of the fifth section mirrors the unloading of the 
pipeline part of the computation followed by the iterative 
summation part of the computation. Finally, the activity of 
the sixth section represents the termination of all the 
nodes of the graph after the final output appears on the 
external output link. This sequence of microprocessor 
util ization curves indicates that an AGML emulator can use 
available microprocessors, where sufficient parallelism 
exists, to reduce in a proportional way the time it takes to 
complete each of the sections of the curve. 

IV. A Post-Mortem of the Emulator Design 

The major problem in designing an.emulator as a set of 
closely-coupled microprocesses is how to structure the 
decomposition so that parallelism at the virtual level 
(microprocess activity) is directly translatable into an 
actual speedup in the emulation of the IML. This mapping 
problem in turn centers on three design issues, each of 
which relates to how microprocesses interact: 

1. the design of the interlock structure for a shared 
data base, 

2. the choice of the smallest computational grain at 
which the system exhibits parallel activity, and 

3. the techniques for scheduling a large number of 
closely-coupled microprocesses. 

The first design issue is important because in a closely- 
coupled process structere many processes may attempt to 
access a shared data base at the same time. In a 
uniprocessor system, the sequentialization of access to this 
shared data base does not significantly affect performance 
because there is only one process running at a time. 
Whereas in a multiprocessor system, if the interlock 
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structure for a shared data base is not properly designed 
so as to permit as many non-interfering accesses as 
possible, then access to the shared data base becomes a. 
significant bottleneck in the system's performance 
[MCC72]. This design issue was manifested in the initial 
design for the AGML emulator. This initial design contained 
only one SCHEDULER microprocess, which was used to 
schedule all node operations (i.e., the scheduler queue was 
the shared data base which accesses to were 
sequentialzed). In simulation runs, the SCHEDULER 
microprocess was a significant bottleneck in the emulator's 
performance when there were bursts of parallelisms of in 
the AGML program being emulated. This bottleneck was 
substantially reduced by a redesign of the emulator which 
contained multiple SCHEDULER microprocesses; each class 
of node operations being scheduled by its own SCHEDULER 
microprocess. 

The second issue relates to how closely~coupled 
processes can interact. If the grain of decomposition is 
such that the overhead involved in process communication 
is significant in relation to the amount of computation done 
by the process, then the added virtual parallelism achiigved 
by a finer decomposition can decrease~ rather than 
increase, the performance of the system. This design issue 
was manifested in the decomposition of the NODE 
microprocesses which should not have been decomposed 
such that link data was fetched in parallel. This added 
level of parallelism did not justify introducing another level 
of process structure and communication (i.e., between the 
INPUT microprocess and the FETCH-OPERAND 
microprocesses). This added level of process structure 
introduced a great deal more hardware system overhead 
(discussed in the next section) and microprocess 
communication without any actual speed up in the 
emulation process. 

The third issue relates to a phenomenon called the 
"control working set" which was discovered through 
simulation runs of AGML emulator [LES72]. This 
phenomenon predicts that the execution of a closely- 
coupled process structure on a multiprocessor may result in 
a significant amount of supervisory overhead caused by a 
large number of process context switches. The reason for 
this high number of process context switches is analogous 
to the reason for "thrashing" within a data working set 
[DEN68]. For example, in a uniprocessor system if two 
parallel processes closely interact with each other, then 
each time one process is waiting for a communication from 
the other it would have to be context switched so as to 
allow the other process to execute. If these two 
processes communicate often then there would be a large 
number of context switches. However, if there were two 
processors, each containing one of the processes, then 
there would be no process switching. The implications of 
this phenomenon are that the process scheduling strategy 
should schedule a group of processes rather than a single 
process at a time, and the grain of decomposition of the 
system should relate to the number of available 
processors. 

V. Summary 

The design of the AGML emulator has demonstrated on 
both the representational and execution levels that a 
complex emulator can be efficiently structured as a large 
number of microprocesses, each performing a small 
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independent task, that interact in a closeiy-coupled= 
manner. In particular, on the representational level, it has 
been shown that an emulator can be compactly and simply 
coded, i.e. the entire emulator requires less that 600 64- 
bit word of microprogram memory; and that a wide variety 
of different types of control structures (e.g., distributed 
control, semaphore processes, message queuing, broadcast 
control, etc.) can be naturally integrated together in a 
single framework. On the execution level, it has been 
shown that an emulator can be structured so as to fully 
map parallelism expressed at the virtual machine language 
level into parallelism at the hardware level. In particular, it 
has been shown that the emulator can be structured so as 
to utilize a large pool of identical microprocessors (i.e., 
greater than sixteen). In addition, the design of the 
emulator has incoporated the idea of tailoring the 
emulator's control structure not only to the emulated 
machine language but also dynamically to the specific 
program currently being emulated. In summary, the design 
of t h e  AGML emulator has indicated that this new 
structuring paradigm for an emulation is a feasible 
technique for the design of a complex emulator operating 
in a parallel hardware environment. 
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[Following the talk, there was a lengthy 
question and answer session related 
primarily to the meaning of Lesser's Figure 
5, the "Sum-Squared Graph Problem". 
Several in the audience, assumed that the 
example illustrates a purely parallel 
organization, and worried that an 
inopportune timing might cause exit through 
the bottom-most node before the computation 
was complete. Dr. Lesser pointed out that 
although the execution is essentially 
parallel, the values going into the input 
link of a node are serially processed and 
thus the values into the "=0" node test are 
serial. In point of fact, there is a FIFO 
queue for each node for preserving the 
order of the inputs. This discussion was 
followed Dy more general questions. Ed.] 

Q: You mentioned that there were internal 
communication problems. Do you have any 
feeling for the amount of hardware you are 
going to need to build the communication? 

Lesser: I did most of a hardware design 
and it didn't look technologically 
impossible to build such a machine but I 
cannot conjecture what part of the hardware 
would go into communication. 

Q: can you make more of a distinction 
between a functional unit and a micro- 
processor? 

Lesser: In my system, the semantics are 
intertwined -- wherever you use a 
functional unit, you can use a microprocess 
to implement the functions performed by a 
functional unit. The calling sequence for 
invocation of a functional unit is a subset 
of the calling sequence for a micro- 
processor. 
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[The first section of the Rossmann/Jones 
talk, the general description of functional 
memories was given by Professor Rossmann. 
The second section, presented by Professor 
Jones, concerned the uses functional 
memories are put to and why the topic is 
appropriate to the Microprogramming- 
Programming Language Interface. Professor 
Rossmann then returned to describe the 
application to SNOBOL. Ed. ] 


