
23

THE DESIGN OF AN EMULATOR FOR A

PARALLEL MACHINE LANGUAGE

by
Victor R. Lesser,

Computer Science Department
Carnegie-Mellon University

ABSTRACT

A paradigm is developed for structuring a complex
emulator operating in a parallel hardware environment.
This paradigm is based on the view that a complex
emulator is best structured as of a set of microprocesses,
each performing a small independent task, that interact in a
closely-coupled manner. This is in contrast to the
conventional method of structuring an emulator as a set of
subroutines with a sequential flow of control among them.
The design of an emulator for a parallel machine language
(i.e. Adam's Graph Machine Language) using the new
paradigm is discussed in detail, including the dynamic
execution characteristics of the emulator in a parallel
hardware environment. The analysis indicates that, given
an appropriate microcomputer architecture, this structuring
allows an emulator for a parallel machine language to be
naturally and compactly coded and to fully map parallelism
at the emulated, machine language level into parallelism at
the hardware level. In particular, it has been shown that
an emulator can be structured so as to utilize well more
than sixteen identical microprocessors. In addition, the
emulator uses the idea of tailoring an emulator's control
structure both to the emulated machine language and
dynamically to the specific program being emulated.

I. INTRODUCTION**

The conventional structure of an emulator is a series of
subroutines [TUC65, ROS69]. A typical decomposition of
an emulator consists of a "control" subroutine that fetches
the next instruction to be executed, a "decode" subroutine
that determines the opcode of the next instruction to be
executed and computes the effective address of the data
operands, and a set of "semantic" subroutines which
perform the operations specified by the opcode of the
emulated instruction. This structure is appropriate for
emulating a machine language which has a sequential
control structure on a microcomputer which is not capable
of asynchronous parallel operations. However, if either of

* This research was carried on while the author was with
the Department of Computer Science, Stanford
University, Stanford, Calif. and was partially supported
under AEC contracts AT(04-3)326,P.A.23 and AT(04-
3)515 Stanford Linear Accelerator Center, Stanford, Calif.

*=This paper presents material from the third cnapter of
[LES72].

these assumptions is relaxed the above decomposition of
the emulation process is overly restrictive; in the
framework of a subroutine control structure 1) the
imbedding of the parallel control structure of the emulated
machine is complex and inefficient~ and 2) the parallel
resources of the microcomputer cannot be effectively
utilized.

The limitations of this subroutine approach to
structuring an emulator will become an increasingly severe
problem if the current trends continue towards more
complex programming languages, language-directed
machine design (i.e. the development of intermediate
machine languages (IML) appropriate for execution of
programming languages [MCK67, WIL72]), and highly
parallel computer organizations. As programming
languages become more complex in their control structures
(e.g. parallelism, co-routines, monitoring, etc.), these
complexities will be reflected in the control structures of
the IML. In addition, there will be a desire to fully exploit
the parallelism of the hardware 1) by imbedding, in the
IML, control primitives that directly invoke hardware
parallelism and 2) by using hardware parallelism to speed
t~p the emulator of the IML.

To overcome the limitations of the subroutine approach
to structuring an emulator for a parallel IML, an alternative
structuring paradigm has been formulated. This paradigm
decomposes an emulator into a set of microprocesses**,
each performing a small independent task, that interact in a
closely-coupled manner.

The microprocesses interact often, and therefore the
their interaction patterns must be kept simple in order to
minimize overhead. Further, there is no single interaction
pattern (e.g. communication through a global shared
memory, or ports, or message queues, etc.) that is most
efficient and natural for all emulators, or even for a
particular emulator. Rather, the interactions must be
designed for each emulator.

This decompostion paradigm is similar in approach to
those used in the design of sophisticated computer
organizations such as the IBM 360/91 [AND67], CDC 6600
[THO64], and the SYMBOL machine [RIC71]. The internal
organization of each of these computers consists of a set
of independent, asynchronous modules: 1) the IBM 360/91

** The relationship of a microprogram to a microprocess is
analogous to the relationship (as described in [LAM68])
of a program to a process.

is structured so there are separate modules for the
control, decode, and semantic phases of an emulation; these
modules are interconnected and interact in a pipeline
manner; 2) the CDC 6600 is structured so that there is a
separate module for each "semantic subroutine"; these
modules are organized so that the semantic phase of many
instructions may be performed concurrently; and, 3) the
SYMBOL machine, which directly interprets a higher-level
language, is structured so there are separate modules for
compilation, memory-management, execution of compiled
code, etc.; each of these modules is capable of performing
concurrently its task on a different user program.

Just as the level of a virtual machine language (i.e. an
IML) was introduced into the interpretation process to
more efficiently execute higher level languages, it is felt
that to construct efficient and natural emulators for
parallel IMLs a new level of variablity must be introduced
into the emulation process. This new level, which is called
the virtual process-memory-switch [BEL70] environment,
allows the designer to structure an emulator in terms of an
arbi t rary configuration of microprocesses and their
associated interaction patterns without directly dealing
with how microprocess activity is mapped into
microprocessor activity (see Figure 1).

C o n v e n t i o n a l View of Emula t ion A New View o f Emula t ion

T

~ L

l
I I

1
P h ~ s i c a l PMS Environment

(S i n g l e Microprocessor)

HL___L

Compiler J

l
IltL

1
Virtual PHS Environment
(An a r b i t r a r y number of
Microprocesses wi th t h e i r
a s s o c i a t e d in t erconnec t ion
p a t t e r n s)

J
Phys ica l R'IS Environment
(A f i x e d number o£ H~cro-
p r o c e s s o r s w i t h a f i x e d
ln t erconnec t ion p a t t e r n)

Figure] . A New View o f Emulat iou

A parallel microcomputer architecture that implements
the concept of a virtual PMS has been developed by
adding a new level of hardware control which performs the
mapping of microprocess activity into microprocessor
activity [LES72]. This control level can be thought of as a
simple hardware operating system which manages the
scheduling of and interactions among microprocessors.
Microprocess activity is specified through a data base
called the control data structure (CDS). The CDS consists of

Z4

a collection of state vectors; each state vector defines a
microprocess. A particular set of interaction patterns
among microprocesses is dynamically defined by varying
the number of and relationships among these state vectors.
In a conventional computer the analogous structure for
control contains a fixed set of data elements (e.g. program
counter, interrupt register, etc.) whose relationships are
predefined. Thus, in a conventional system, control can be
modified only by changing the value of data elements in
the CDS (e.g., by changing the program counter). T h e
ability added here to modify the syntax of the data
structure for control is the key to creating the virtual PMS
environment ~appropriate for a particular IML emulator.

The remainder of the paper discusses a case history of
the design and emulation of an IML for a highly parallel
programming language in~ the framework of the
microcomputer architecture discussed above. In particular,
the following topics are discussed: 1) the structure of the
parallel programming language to be emulated and the
conceptual problems in designing its IML, 2) the
decomposition of the emulator into a large set of small,
independent tasks (microprocesses), 3) the specification of
the interaction patterns among these microprocesses, and,
4) the dynamic execution characteristics of the emulator as
the number of microprocessors is varied.

II. Adam's Graph Machine Language

The parallel machine language that was chosen to be
emulated is based on an asynchronous parallel
programming schema (language) developed by Adams
[ADA68] called the Adams' Graph Machine Language
(AGML). The AGML was chosen as a test case not based
on its practicality as a machine language but rather
because its emulator can be designed to employ the
following control structure concepts; distributed parallel
control, pipelining, recursion, finite resource scheduling and
message queueing.

The AGML is based On a data flow model [KAR66,
ROD67] for representing the sequencing aspects of a
computation. The instructions of the AGML can be thought
of as nodes of a graph; the nodes are connected to each
other through links which are FIFO (first-in - f irst-out)

,queues. These links are uni-directional data paths in which
one terminal point o f the link is denoted as an output link
of a node while the other terminal point is denoted as an
input link of a node. An instruction (node) is executed
when each of its input links contains a data item; a node
executes by removing the input data from each of its input
links, performing a calculation on these data, and storing
the output of the calculation on zero or more of the output
links. After the node has stored the results of the
calculation on its output links, the node can be re-executed
when each of the input links again has data items. An
example of a graph program is shown in Figure 2.

The data flow model for sequencing allows the implicit
expression of parallel activity because if there exists no
data dependencies among a group of nodes, then these
nodes may be executed simultaneously. For example, the
two multiplication nodes in Figure 2 can be executed
simultaneously whereas the plus node must await the
completion of both multiplication nodes. A data flow model
can also be thought of as a distributed control system
since each node can independently decide, based on local
information, whether it can execute.

(oxb) + (cxd)

~o,

Ffgure 2. A Simple Graph Program

There are three types of nodes in the AGML: parallel,
procedure, and sequential nodes. The parallel node allows
for the expression of pipeline (vector) parallelism. The
parallel node is defined so that ' i t may be immediately re-
executed rather than waiting for the computation to
complete. This re-execution of the parallel node can occur
once the input data items have been.removed from their
links provided there is another set of input data items on
the input links. Thus, multiple instances of a node may be
concurrently executing, giving the effect of a pipeline. The
procedure node allows for the expression of recursive
control structures. The procedure node, instead of
invoking a primitive arithmetic operation, causes the
invocation of a graph procedure. The input parameters of
the invoked graph procedure are the input data items of
the procedure node. The invoked graph procedure may, in
turn, contain procedure nodes, thus leading to a recursive,
parallel control structure. Finally, the sequential node
allows for the expression of data-dependent sequencing of
the graph, e.g., loop-control, etc; it is defined so that its
semantics are affected by its previous execution history.
In particular, the execution history is used to select, for-
the next execution of the sequential node, a subset of its
input data links from which input data will be accepted.

A graph procedure is terminated when there is a data
item on each of the external output links. An external
output link is a link of the graph procedure that is not
connected as an. input link to any node in the graph
procedure. These external output links are used to
transmit the output of the graph procedure to the
procedure node that invoked the graph procedure. This
termination condition differs from Adam's original
formulation which is based on all nodes of the graph
procedure being inactive.* This new termination condition
was introduced so that the AGML could be emulated in a
highly parallel manner. Monitoring for Adams' original
formulation of the termination condition is very difficult to
do in a highly parallel manner. This is especially true if no
assumptions are made about the actual number of physical

The new termination condition makes the AGML only
output-determinate rather than completely determinate.

2_.5

microprocessors. In essence, the monitoring process
overlays the highly parallel distributed control structure of
the graph machine with a control structure which requires
sequential accessing of a shared, global data base. in
contrast, the monitoring process for the new termination
condition does not affect the basic distributed control
nature of the AGML. In fact, the process of monitoring for
this new termination condition is precisely the same as the
process of monitoring for whether a node is ready to
execute.

III. An Emulator for the Adams' Graph Machine Language

The main emphasis in the design of this emulator has
been the exploitation of the implicit parallelism of an AGML
program. The exploitation of this implicit parallelism is not
worthwhile when node operations are simple arithmetic
operators (e.g., +, *, etc.) because the overhead costs of
determining whether there is parallelism and then invoking
parallel microprocessors is significant with respect to the
computation performed by a node. However, the AGML
control structures could just as well be used to sequence
nodes whose primitive operations were larger units of
computation (e.g., matrix multiply, exponentiation, etc.) in
which case the overhead costs of extraction of implicit
parallelism would be tolerable. This balance between the
computational grain of the most primitive operations of a
language that can be parallelized and the overhead cost of
emulating the control structures of the language which
specify this parallelism is a crucial design parameter in
developing and programming parallel languages. The major
focus of this paper is, however, not on determining this
balance point but rather on the development of techniques
for compactly and simply coding emulators which exploit
the parallelism of a parallel IML.

The AGML emulator exploits the parallelism of an AGML
program by:

1) making parallel, whenever possible, the overhead
functions required to sequence an AGML program~

2) dynamically tailoring the CDS, not only to the
structure of the AGML emulator, but also to the
structure of the specific AGML program to be
emulated.

This tailoring of the CDS for a specific graph program is
accomplished by creating a distinct control structure for
sequencing each node of the graph. This control structure
for sequencing each node is tailored to the particular type
of node and the node's input and output requirements.
Thus, the CDS for the AGML emulator closely mirrors the
distributed control structure of the particular AGML
program. In addition, the CDS may be dynamically modified
during the execution of a graph program so as to take
advantage of the potential parallel activity that is
generated when a graph procedure is dynamically invoked.

III.] The CDS for AGML Emulator

The crucial aspect of the design of the emulator is the
specification of the emulator's CDS. The CDS provides a
syntactic framework within which the emulator can be
conveniently microcoded. The CDS of the AGML emulator

26

GRAPH- MACHINE

SCHEDULER ~.'.(SCHEDULER ~ (SCHEDULER
) ~ PROCESSOR) ' " ~ FUNC-UNITi SCHEDULER GRAPH-

PROCEDURE

N f u i

LEGEND

r ~ Reg(esenfs the mccxooro~rom
• I I t~e m,cro~r~ess.

(~ R e ~ m ~ t s o mlcroprocess vdle~e ~he name speclfiod
fhe ~Ol denotes fhe m*c~owoce~ ¢9o~c~,

. Inclicates this node $1ruct~e ~ generoted by the
mlcroprocess but ,s no1 c~necmd Io it os o son,

Figure 3a. Control Data Structure for Resource Management

can be thought of in terms of two parts: 1) a CDS for
resource management (e.g., the dynamic allocation of
memory for link queue space) and 2) a CDS for sequencing

• of a graph program. These two parts of the emulator's
CDS form a two level hierarchy in which the CDS for
resource management is at the top level. The CDS for
resource management is implemented as a fixed structure
which is independent of the particular AGML program
being emulated, whereas the CDS for sequencing of the
graph program has a dynamic structure which is dependent
on the particular graph procedures currently being
executed.

II1.1.1 The CDS for Resource Management

The CDS for resource management is pictured in Figure
3a. The resource management functions are carried out by
the SPACE-MANAGER, and SCHEDULER(I)... SCHEDULER(Ns)
microprocesses. The SPACE-MANAGER microprocess
dynamically allocates fixed length blocks of storage for link
queue space. This storage allocation cannot be done
statically since graph procedures can be dynamically
invoked during the execution of a graph program. In
addition, there can be many graph procedures which are
simultaneously requesting storage for their links. Thus,
the storage allocation has to be done dynamically in a
central place. The SPACE-MANAGER microprocess, by
appropriate manipulation of its execution-state, can
sequentialize the acceptance and processing of
communications which either request the allocation of

s{orage or specify the release of previously allocated
storage.*

The scheduling function of the resource manager is
implemented through a set of SCHEDULER rnicroprocesses
such that each type of primitive node operation could
conceivably have its own SCHEDULER rnicroprocess. A
SCHEDULER rnicroprocess is used to assign, depending
upon the type of operation, either a functional unit or a
microprocess to carry out the primitive operation of a
node. Each SCHEDULER microprocess has a fixed length
queue to hold requests for a device (i.e., functional unit or
microprocess) that cannot be currently honored. If this
queue becomes full, then the SCHEDULER microprocess
employs the "waiting" execution state that permits
selective listening rather than the suspended execution
state. In this selective listening state, a communication to
the SCHEDULER that requests a device is not consummated,
whereas a communication to the SCHEDULER that specifies

t h e termination of a device is consummated.

w= The microcomputer's interprocessor communication
primitives allow for the specification of different classes
of communication. A rnicroprocess, through manipulation
of its execution state, can specify which class (possibly
no class) of communications it will currently accept.
Through this mechanism, a microprocess can 1)
sequentially accept and process multiple communications,
2) selectively accept only certain types of
communications, and 3) asynchronously accept requests
for communication.

27

° ' " I

Ftgure 3c. Control I)at~ StructuPe fo r Aee.

procedure, initializes and allocates storage for the links of
the graph procedure, and monitors for the termination of
the graph procedure. The CDS for sequencing of s graph
procedure, as previously discussed, is tailored to the
particular graph procedure being emulated. The template
for a tailored CDS is pictured in Figure 3b. This tailored
CDS contains, for each link and node of the graph
procedure, I corresponding LINK microprocess and NODE
microprocess, where there are three types of NODE
microprocesses: PARALLEL, SEQUENTIAL and PROCEDURE.
For instance, the graph procedure specified In Figure 2
results in a CDS containing 7 LINK microprocesses and 3
NODE microprocesses. This CDS for sequencing of a graph
procedure has been designed so that, once generated, its
structure need not be modified. Thus, the structure-
building overhead is only incurred once and consequently is
not a function of the number of node executions. In
addition, the generation of the CDS for all NODE
microprocesses can be done in parallel.

The LINK microprocess is responsible for retrieving and
storing data from a link's queue spice and updating the
queue pointers. The LINK microprocess acts as a
semaphore process for controlling access to the link's
queue space. A semaphore process is required for

controlling access to a link queue because I t the slime
time, one node may desire to place data on the queue
while another node may desire to remove data from the
queue at the same time. The LINK microprocess is also
used to avoid "busy waiting" when i node des l r l l a data
item and the link queue is empty. In this case, ~mitead of
the node repeatedly querying the IJNK microprocess
whether input link data is available, the LINK microprocess
accepts a request for data from the node end then, when
the data is available, transfers the data to the node which
is in a waiting execution-state. Thus, as will be seen in
more detail later, the LINK microprocess allows the trigger
function of a node (i.e., deciding when a node is reKly to
execute) to be monitored in I non-busy wly. A similar
handshaking mechanism is used to avoid a node "busy
waiting" until there is room on the link to store output link
data. in addition, the LiNK microprocess allows the
updating of queue pointers to go on in parallel with I
node's further processing.

The NODE microprocess implements the fol lowin|
overhead operations required to sequence a node: 1)
fetching the input data items from the appropriate input
links, 2) deciding when the node operation is ready to be
executed, 3) transferring the input data i tem to the

28

Figure 3b. Control Data Structure for GRAPH-PROCEDURE

The AGML emulator could have been organized without
this centralized scheduling function. In essence, the
centralized scheduler is scheduling virtual microprocesses
which are in turn being scheduled on physical
microprocessors by the built-in hardware scheduler. Thus,
the emulator could have been organized so as to use the
built- in scheduler alone. There are two main reasons for
taking the centralized scheduler approach. The first
reason stems from the simplicity of the built-in hardware
algorithm for scheduling. Specifically, the two level
sched~Jling appl'oach allows the design Of a dophisticate¢~l
graph scheduler which takes into account the structure of
the graph procedure so as to utilize available
microprocessors.= more efficiently [NEL72]. The second
reason stems from the semantics of the parallel node that
permit the concurrent initiation of an arbitrary number of
primitive operations for each parallel node. In order to
take advantage of this potential parallelism of the parallel

*~ The virtual scheduler can query the hardware system to
find out the number of physical microprocessors and use
this information as a parameter in the scheduling
function.

nocle in a non-centralized scheduling approach either 1)
each time a primitive node operation is initiated, the
sequencer of a parallel node would have to dynamically
generate the state vector of a microprocess to carry out
the operation; or 2) the fixed CDS structure of the
appropriate SCHEDULER microprocess would have to be
duplicated for each parallel node in the graph procedure.

Thus, either the structure building overhead involved in
sequencing of the graph procedure would greatly increase
or the size of the CDS for the graph procedure would
greatly increase. On the other hand, a centralized
scheduler has a fixed CDS structure which does not vary
dur{ng the execution of the graph, and there is only one
state vector for each device that can be scheduled. For
these reasons, a centralized scheduling approach is used.

111,1,2 The CDS for Sequencing of a Graph Procedure

The Sequencing of a graph procedure is implemented
through the microprocess GRAPH-PROCEDURE. This
microprocess generates the CDS fo r sequencing of a graph

29

\
\

\
o o . (

\

Figure 3c. Control Data Structure for AGML

~procedure, initializes and allocates storage for the links of
the graph procedure, and monitors for the termination of
the graph procedure. The CDS for sequencing of a graph
procedure, as previously discussed, is tailored to the
particular graph procedure being emulated. The template
for a tailored CDS is pictured in Figure 3b. This tailored
CDS contains, for each link and node of the graph
procedure, a corresponding LINK microprocess and NODE
microprocess, where there are three types of NODE
microprocesses. PARALLELj SEQUENTIAL and PROCEDURE.
For instance, the graph procedure specified in Figure 2
results in a CDS containing 7 LINK microprocesses and 3
NODE microprocesses. This CDS for sequencing of a graph
procedure has been designed so that, once generated, its
structure need not be modified. Thus, the structure-
building overhead is only incurred once and consequently is
not a function of the number of node executions. In
addition, the generation of the CDS for all NODE
microprocesses can be done in parallel.

The LINK microprocess is responsible for retr ieving and
storing data from a link's queue space and updating the
queue pointers. The LINK microprocess acts as a
semaphore process for controlling access to the link's
queue space. A semaphore process is required for

controll ing access to a link queue because at the same
time, one node may desire to place data on the queue
while another node may desire to remove data from the
queue at the same time. The LINK microprocess is also
Used to avoid "busy waiting" when a node desires a data
item and the link queue is empty. In this case, instead Of
the node repeatedly querying the LINK microprocess
whether input link data is available, the LINK microprocess
accepts a request for data from the node and then, when
the data is available, transfers the data to the node which
is in a waiting execution-state. Thus, as will be seen in
more detail later, the LINK microprocess allows the tr igger
function of a node (i.e., deciding when a node is ready to
execute) to be monitored in a non-busy way. A similar
handshaking mechanism is used to avoid a node "busy
wait ing" until there is room on the link to store output link
data. In addition, the LINK microprocess allows the
updating of queue pointers to go on in parallel with a
node's further processing.

The NODE microprocess implements the following
overhead operations required to sequence a node: 1)
fetching the input data items from the appropriate input
links, 2) deciding when the node operation is ready to be
executed, 3) transferring the input data items to the

appropriate microprocess that will perform the node
operation, and 4) transferring the output of the node
operation to appropriate output links. The CDS associated
with each NODE microprocess is designed so that as many
of these overhead operations can be done either in
parallel or overlapped between consecutive executions of
a node.

The overall CDS for the AGML emulator is pictured in
Figure 3c. This section has presented the AGML emulator
in terms of a set of microprocesses, each of which
performs a small independent task. The next section will
discuss how these microprocesses dynamically interact to
perform the emulation o f a graph program. These
interaction patterns will be detailed through a discussion
of the PARALLEL-NODE microprocess.

~ 1 ~ N n

3~r

111.2 The Micro¢oding of the Parallel Node

The PARALLEL-NODE, whose COS is pictured in Figure
4a, is the most complex of the three types of NODE
microprocesses because of the control structures required
to generate and keep track of the multiple concurrent
initiations of the primitive operations of the node. In order
to generate multiple initiations, the fetching of input link
data for an operation, which is done by the INPUT-PNODE
mic~'oprocess, is separated from the storing of output link
data for an operation, which is done by the OUTPUT-
PNODE microprocess. This separation of the input and
output phases of a PARALLEL-NODE permits the fetching of
input data for one operation to be performed concurrently
with the storing of output data for a previously initiated
operation. In order to insure the output-determinancy of
the graph procedure, multiple initiations of an operation
must terminate in the same order as they were initiated.
The PARALLEL-NODE maintains the correct ordering of
multiple initiations through a mechanism which holds up the
storing of the output of an operationuntil the output of all
previously initiated operations have been stored.

The PARALLEL-N£)DE interacts directly with the
following microprocesses: GRAPH-PROCEDURE, SCHEDULER,
INPUT-PNODE, OUTPUT-PNODE, and PROCESSOR(1) ...
PROCESSOR(n). The PARALLEL-NODE control environment
is a two level hierarchy of global process environments.
The top level allows for access to SCHEDULER
microprocesses while the lower level allows for access to
the L I N K microprocesses. The PARALLEL-NODE
microprocess and its son microprocesses communicate with
each other in two ways: through a port attached to each
microprocess and through a global data base which these
microprocesses all share. The semantics of interaction
patterns of the PARALLEL-NODE with these microprocesses
is indicated in Figure 4b.

The GRAPH-PROCEDURE microprocess initiates the
PARALLEL-NODE microprocess and then, when the graph
procedure termination condition has been met, signals the
PARALLEL-NODE to terminate. The PARALLEL-NODE, after
it has received the terminate signal, waits until all
outstanding node operations are completed and then
signals back to the GRAPH-PROCEDURE its termination.

The PARALLEL-NODE, once initiated, activates, the
INPUT-PNOOE microprocess to fetch the input data from the

Figure 4a.. Control Data Structure for PARALLEL-NODE

appropriate input links. After receiving the prefetch
complete signal from the INPUT-PNODE, the PARALLEL-
NODE then activates the appropriate scheduler
microprocess to assign a PROCESSOR to perform the
operation.= In this way, a PROCESSOR is not assigned to
perform a node operation until the data necessary for the
operation has been fetched.

The PARALLEL-NODE, after receiving the address of the
assigned PROCESSOR from the SCHEDULER microprocess,
queues the address and activates the INPUT-PNODE with
this address. The INPUT-PNODE then transfers the
prefetched input data to the assigned PROCESSOR. After
the input data has been transferred, the tNPUT-PNODE
attempts to prefetch the input data for the next operation.

The PROCESSOR(i) microprocess, after completing the
desired operation, signals back to PARALLEL-NODE that the
output data is ready. The PARALLEL-NODE then checks
whether PROCESSOR(i) is at the top of the initiation queue.
If PROCESSOR(i) is at the top of the queue, then the
address of PROCESSOR(i) is transferred to the OUTPUT-
PNODE microprocess. Otherwise, an indicator is set in the
initiation queue that PROCESSOR(i) is ready to store its
output data. Thus, through the initiation queue mechanism,
the outputs of the PARALLEL-NODE are FIFO ordered so as
to make the PARALLEL-NODE determinate.

The PROCEDURE-NODE is precisely the same as the
PARALLEL-NODE except that the PROCEDURE-NODE,
instead of calling the SCHEDULER microprocess,
generates a state vector for the GRAPH-PROCEDURE
microprocess. The address of this newly defined
GRAPH-PROCEDURE microprocess is then treated in the
same way as the address of the assigned PROCESSOR
microprocess.

C. INPUT-
PNODE

~p GRAPH- ~'~ f ~'
ROCEDUREJ

initiate

~i(signo I prefe~coh,complet e ~ ,mm, • _I. ~ wh ipu, wil(be stored

),,o.;,e,o~d/e~'sO, p b(" PARALLEL-)_ s,,oo, out~,'oomp,ete =(~OUTPUT-~

which will receive input doio ~ , ~ ~ O / (o , ~ , "

"oo,

'l'Sieps 2-B represent the sequence of interoctlons required for o single node computotion.

31

Figure 4b. Interaction Patterns of PARALLEL-NODE

The OUTPUT-PNODE microprocess, upon receiving the
address of PROCESSOR(i), transfers PROCESSOR(i)'s output
data to the appropriate output links. 'After the completion
of this transfer, the PARALLEL-NODE is notified. The
PARALLEL-NODE then examines the initiation queue to
determine whether the PROCESSOR(j) at the top of the
queue has already signaled that its output is ready. If so,
then the OUTPUT-PNODE is reactivated with the address of
PROCESSOR(j).

These interaction patterns allow the fetching of input
link data, storing of output link data, the execution of an
arbi trary number of primitive node operations, and the
processing of requests to store the output of an operation
all to proceed in parallel. The PNODE-CLOCKER
microprogram, which is the collection of these microcode
routines for handling communications to the PARALLEL-
NODE, is less than 70 (64-bit) microinstructions long. The
microprogram memory required for the entire AGML
emulator is less than 600 microinstruction words. Of this
microstorage, approximately 220 microinstructions are
used for building up the CDS, 300 microinstructions for
dynamic control, and the remainder for holding data
constants. An entire listing of the AGML emulator is
contained in Appendix C of [LES72].

111.3 Dynamic Execution Behavior

In order to verify that this emulator design actually
exploits the implicit parallelism, of an AGML program and
performs the overhead operations required to sequence a
graph procedure in a parallel manner , the emulator was
run on a simulator o f the microcomputer architecture so as
to measure its dynamic execution behavior. The
performance statistics to be presented in the remainder of
this chapter are based on the emulation of two graph
programs. The first graph program, Sum-Squared (Figure
5) calculates the sum of the squares of the elements of a
vector of numbers. The vector is initially placed on the
external input link with its last element being zero. The

node "2 Copies" copies the data on its input data link to its
two output links. The node "Branch and Route" routes the
data on its first input link (connected to the "+" node) to
the external output link if its second input link (connected
to the "---0" node) contains a true value; otherwise, the
output data from the "+" node is routed back to the "+"
node for continued summing. The computational structure
of this graph program can be thought of as a three level
pipeline that flows into an iterative summation network.

<

.,,,...__.EXTERNAL
INPUT LINK

ES

~__.EXTERNAL
OUTPUT LINK

Figure ~. Sum-Squan)d Graph Program

I0

8

d

0
0

, , , N

I I I I I I I

2 4 6 8 I0 12 14 16
NUMBER OF MICROPROCESSORS

THROUGHPUT

I I

18 20

32

Ftgure 6. Perfomance Characteristics of A6RL Emulator on
Sum-Squared Graph Program(S)

The second graph program, Sum-Eighth-Power, calculates
the sum of the eighth power of the elements of a vector of
numbers. The computational structure of this second
graph program is similar to that of the first graph program
except that the pipeline part of the computation has seven
levels.

The dynamic performance characteristics of the AGML
emulator were evaluated in two ways. The first evaluation
technique compared the implicit parallelism¢of the Sum-
Squared graph program w i t h that of the throughput
parallelism of the emulator when emulating this graph
program (Figure 6), as a function of the number of
processors. The implicit parallelism of the AGML program,
as a function of the number of processors, is measured
through the use of a simulation technique developed by
Nelson [NEL70], whereas the throughput parallelism is
calculated by dividing the total time to execute the
emulator in a hardware configuration containing n
microprocessors by that for a single microprocessor. The
comparison of these two curves indicates the AGML
emulator takes advantage of the implicit parallelism of the
graph program (i.e., throughput curve dominates implicit
parallelism curve) and the overhead operations are made
parallel (i.e., the postive difference between the two
curves). These conclusions indicated by this comparison
can also be observed by examining "the Microprocessor-
Utilization Curves of the Sum-Eighth-Power graph program
in Figures 7a-c. The dynamic activity of the AGML
emulator can be partitioned in terms of six sections, as
labeled in Figure 7a. The activity of the first section,
which is mostly sequential, represents the dynamic
construction of the CDS for the particular graph program
being emulated. The activity of the second section

* The implicit parallelism of an AGML program is based
solely upon the sequencing rules of the AGMLp i.e., the
rules which define when a node may execute. This
measure of parallelism does not take into consideration
any of the bookkeeping operations, both software and
hardware, required to implement the parallel activity of
the graph program, e.g., the fetching and storing of data
on links or the monitoring for when a node can fire.

represents the initiation of all nodes in the graph, and
their subsequent activity involved with determining
whether they can execute. The activity of the third
section mirrors the gradual initiation of the pipeline part of
the graph computation. The activity of the fourth section
mirrors the execution of a fully loaded pipeline. The
activity of the fifth section mirrors the unloading of the
pipeline part of the computation followed by the iterative
summation part of the computation. Finally, the activity of
the sixth section represents the termination of all the
nodes of the graph after the final output appears on the
external output link. This sequence of microprocessor
util ization curves indicates that an AGML emulator can use
available microprocessors, where sufficient parallelism
exists, to reduce in a proportional way the time it takes to
complete each of the sections of the curve.

IV. A Post-Mortem of the Emulator Design

The major problem in designing an.emulator as a set of
closely-coupled microprocesses is how to structure the
decomposition so that parallelism at the virtual level
(microprocess activity) is directly translatable into an
actual speedup in the emulation of the IML. This mapping
problem in turn centers on three design issues, each of
which relates to how microprocesses interact:

1. the design of the interlock structure for a shared
data base,

2. the choice of the smallest computational grain at
which the system exhibits parallel activity, and

3. the techniques for scheduling a large number of
closely-coupled microprocesses.

The first design issue is important because in a closely-
coupled process structere many processes may attempt to
access a shared data base at the same time. In a
uniprocessor system, the sequentialization of access to this
shared data base does not significantly affect performance
because there is only one process running at a time.
Whereas in a multiprocessor system, if the interlock

f o 2 0

o 16
r r ~ J

,,,g
n- 4
m

0 I

Figure 7a.

I I] I I I I

2 :3 4 5 6 7 8
TIME (xlO,O00 BUS CYCLES)

n=4 6

I I I
9 IO II

Microprocessor(4) Ut:tltzatlon Curve for Sum-[tghth-Power
Graph Pro(Jram(lO)

33

24 (;3
Q~
o

20

~ ,6
r r (J
(3_

r r 12

(D
, ~ < [
a: 4
W

0 I

Figure 7b.

I I I I I I I I I
5 4 5 6 7 8 9 I0 II

TIME (xlO,O00 BUS CYCLES)

Rlcroprocessor (4 vs 8) Uti l izat ion Curve Sum-Etghth-Po~er
Graph Program(lO)

24

o 2 o

E ~ o~12
o~
~W8

UJ

0

I

n=16

t I I t I I
I 2 13 4 5 6 7 8 9 I 0 II

TIME (xlO,O00 BUS CYCLES)

Ftgure 7c. Microprocessor (4,8.16.32} Uti l ization Curve
Sum-Elghth-Power Graph Program(lO)

structure for a shared data base is not properly designed
so as to permit as many non-interfering accesses as
possible, then access to the shared data base becomes a.
significant bottleneck in the system's performance
[MCC72]. This design issue was manifested in the initial
design for the AGML emulator. This initial design contained
only one SCHEDULER microprocess, which was used to
schedule all node operations (i.e., the scheduler queue was
the shared data base which accesses to were
sequentialzed). In simulation runs, the SCHEDULER
microprocess was a significant bottleneck in the emulator's
performance when there were bursts of parallelisms of in
the AGML program being emulated. This bottleneck was
substantially reduced by a redesign of the emulator which
contained multiple SCHEDULER microprocesses; each class
of node operations being scheduled by its own SCHEDULER
microprocess.

The second issue relates to how closely~coupled
processes can interact. If the grain of decomposition is
such that the overhead involved in process communication
is significant in relation to the amount of computation done
by the process, then the added virtual parallelism achiigved
by a finer decomposition can decrease~ rather than
increase, the performance of the system. This design issue
was manifested in the decomposition of the NODE
microprocesses which should not have been decomposed
such that link data was fetched in parallel. This added
level of parallelism did not justify introducing another level
of process structure and communication (i.e., between the
INPUT microprocess and the FETCH-OPERAND
microprocesses). This added level of process structure
introduced a great deal more hardware system overhead
(discussed in the next section) and microprocess
communication without any actual speed up in the
emulation process.

The third issue relates to a phenomenon called the
"control working set" which was discovered through
simulation runs of AGML emulator [LES72]. This
phenomenon predicts that the execution of a closely-
coupled process structure on a multiprocessor may result in
a significant amount of supervisory overhead caused by a
large number of process context switches. The reason for
this high number of process context switches is analogous
to the reason for "thrashing" within a data working set
[DEN68]. For example, in a uniprocessor system if two
parallel processes closely interact with each other, then
each time one process is waiting for a communication from
the other it would have to be context switched so as to
allow the other process to execute. If these two
processes communicate often then there would be a large
number of context switches. However, if there were two
processors, each containing one of the processes, then
there would be no process switching. The implications of
this phenomenon are that the process scheduling strategy
should schedule a group of processes rather than a single
process at a time, and the grain of decomposition of the
system should relate to the number of available
processors.

V. Summary

The design of the AGML emulator has demonstrated on
both the representational and execution levels that a
complex emulator can be efficiently structured as a large
number of microprocesses, each performing a small

34

independent task, that interact in a closeiy-coupled=
manner. In particular, on the representational level, it has
been shown that an emulator can be compactly and simply
coded, i.e. the entire emulator requires less that 600 64-
bit word of microprogram memory; and that a wide variety
of different types of control structures (e.g., distributed
control, semaphore processes, message queuing, broadcast
control, etc.) can be naturally integrated together in a
single framework. On the execution level, it has been
shown that an emulator can be structured so as to fully
map parallelism expressed at the virtual machine language
level into parallelism at the hardware level. In particular, it
has been shown that the emulator can be structured so as
to utilize a large pool of identical microprocessors (i.e.,
greater than sixteen). In addition, the design of the
emulator has incoporated the idea of tailoring the
emulator's control structure not only to the emulated
machine language but also dynamically to the specific
program currently being emulated. In summary, the design
of t h e AGML emulator has indicated that this new
structuring paradigm for an emulation is a feasible
technique for the design of a complex emulator operating
in a parallel hardware environment.

BIBLIOGRAPHY

ADA68 D.A. Adams, "A Computational Model with Data
Flow Sequencing", (Ph,D Thesis), Report No. CSl17,
Computer Science Department, .Stanford University,
December 1968.

AND67 D.W. Anderson et al, "The IBM System/360 Model
91: Machine Philosophy and Instruction-Handling",
IBM Systems Journal, Vol. 11, No. 3, January 1967,
pp. 8-23.

BEL70 C.G. Bell and A. Newell, "The PMS and ISP
Descriptive System for Computer Structure", in 1970
Spring Joint Comput. Conf.,. AFIPS Conf. Proc., Vol.
22. Montvale, N.J.: AFIPS Press, 1970, pp. 657-676.

DEN68 P.J. Denning, "The Working Set Model for Program
Behavior", Commun. Ass. Comput. Mach., Vol. 11, May,
1968, pp. 323-333.

ERS71 A.P. Ershov, "Parallel Programming", Artificial
Intelligence Laboratory, Report No. AIM-t46 ~
Computer Science Department, Stanford Uni~ersity.~
July. 1971.

KAR66 R.M. Karp and R.E. Miller, "Properties of a Model
for Parallel Computations: Determinacy, Termination,
Queueing", SIAM J. Appl. Meth. 14, November 1966.

LAM68 B.W. Lampson, "A Scheduling Philosophy of
Multiprocessing Systems", Commun. Ass. Comput.
Mach., Vol. 11, May t968, pp. 347-359.

LES72 V.R. Lesser, "Dynamic Control Structures and their
use in Emulation"(Ph.d Thesis), Report SLAC-305,
Stanford Linear Accelerator Center, Stanford
University, September 1972.

LES71 V.R. Lesser, "An Introduction to the Direct
Emulation of Control Structures by a Parallel
Microcomputer", IEEE Tran. Comput., Vol. C-20~ July
1971, pp. 751-763.

MCC72 J.W. McCredie, "Analyti~ Models of Time-Shared
Computing Systems: New Results, Validations and
Uses", (Ph.D. Thesis), Comp. Sci. Dept., Carnegie-
Mellon Univ., Chapter 5, 1972.

MCK67 W. McKeeman, "Language Directed Computer
Design", in 1967 Fall Joint Comput. Conf., AFIPS Conf.
Proc., Vol. 31. Washington, D.C.: Thompson, 1967, pp.
413-418.

NEL70 E. Nelson, "Graph Program Simulation", Report No.
CS185, Department of Computer Science, Stanford
University, October 1970.

NEL72 E. Nelson, "Free Running and Resource Limited
Graph Programs", (Ph.D. Thesis), Computer Science
Department, Stanford University, September 1972.

RIC71 R. Rice and W.R. Smith, "SYMBOL: A Major Departure
from Classic Software Dominated von Neumann
Computing Systems", in 1971 Spring Joint Comput.
Conf., AFIPS Conf. Proc., Vol. 38, Montvale, N.J.:
AFIPS Press, 1971, pp. 601-616.

ROD67 J.E. Rodriquez, "A Graph Model for Parallel
Computations", (Ph.D. Thesis), Mass. Institute of
Technology, September 1967.

ROS69-R.F. Rosin, "Contemporary Concepts of Micro-
programming and Emulation", Comput. Surveys, Vol. 1,
December 1969, pp. 197-212.

THO64 J.E. Thornton, "Parallel Operation in the Control
Data 6600", in 1964 Fall Joint Comput. Conf., AFIPS
Conf. Proc., Pt. II, Vol. 26. Washington, D.C.: Spartan
Books, 1964, pp. 33-40.

TUC65 S.G. Tucker, "Emulation of Large Systems",
Commun. Ass. Comput. Mach., Vol. 8, December 1965,
pp. 753-761.

WIL72 W.T. Wilner, "Design of the B1700", Burroughs
Corporations, Santa Barbara Plant, Goleta, Calif., May
1972.

35

[Following the talk, there was a lengthy
question and answer session related
primarily to the meaning of Lesser's Figure
5, the "Sum-Squared Graph Problem".
Several in the audience, assumed that the
example illustrates a purely parallel
organization, and worried that an
inopportune timing might cause exit through
the bottom-most node before the computation
was complete. Dr. Lesser pointed out that
although the execution is essentially
parallel, the values going into the input
link of a node are serially processed and
thus the values into the "=0" node test are
serial. In point of fact, there is a FIFO
queue for each node for preserving the
order of the inputs. This discussion was
followed Dy more general questions. Ed.]

Q: You mentioned that there were internal
communication problems. Do you have any
feeling for the amount of hardware you are
going to need to build the communication?

Lesser: I did most of a hardware design
and it didn't look technologically
impossible to build such a machine but I
cannot conjecture what part of the hardware
would go into communication.

Q: can you make more of a distinction
between a functional unit and a micro-
processor?

Lesser: In my system, the semantics are
intertwined -- wherever you use a
functional unit, you can use a microprocess
to implement the functions performed by a
functional unit. The calling sequence for
invocation of a functional unit is a subset
of the calling sequence for a micro-
processor.

36

[The first section of the Rossmann/Jones
talk, the general description of functional
memories was given by Professor Rossmann.
The second section, presented by Professor
Jones, concerned the uses functional
memories are put to and why the topic is
appropriate to the Microprogramming-
Programming Language Interface. Professor
Rossmann then returned to describe the
application to SNOBOL. Ed.]

