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Abstract

In multiagent systems, interaction protocols are
usually enforced by law. Enforcement is prob-
lematic among computational agents, because
they may operate under incomplete or different
laws, the laws may not be uniformly enforced,
and the agents can vanish easily. This paper
presents an enforcement free method for car-
rying out exchanges so that both agents are
motivated to abide to their contract. This is
achieved by splitting the exchanged goods into
partial exchanges so that at each step, both
agents benefit more from the future of the ex-
change than from vanishing with the goods or
payment. The conditions for such exchange
are presented in general, and the maximum
deliveries and payments—for any point in the
exchange—are solved for. Similar analysis is
carried out for the case, where the agents’
current actions affect their future contracts.
Strategic delaying is also discussed. The pa-
per presents a fast algorithm that will find a
sequence of independent partial deliveries in a
way that enables unenforced exchange if such a
sequence exists. This problem cannot be solved
in polynomial time if the partial deliveries are
interdependent. Finally, the paper shows that
the unenforced exchange scheme hinders unfair
renegotiation.’

1 Introduction

In cooperative distributed problem solving [Durfee et al.,
1989], the system designer imposes an interaction pro-
tocol and a strategy (a mapping from state history to
actions; a way to use the protocol) for each agent. In
multiagent systems [Sandholm and Lesser, 1995c; 1995a;
1995b; Rosenschein and Zlotkin, 1994; Durfee et al.,
1993; Kraus et al., 1992; Wellman, 1992], the agents are
provided with an interaction protocol, but each agent
may choose its own strategy. This allows the agents to
be constructed by separate designers and/or represent
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different real world parties. Agents in such systems of-
ten act based on self-interest, and the protocols have
to be constructed accordingly. An example interaction
protocol is the auction, where some agents bid to take
responsibility for a task, which is awarded to the lowest
price bidder. The bids are binding: if an agent makes
a bid and the task is awarded to it, it must take re-
sponsibility for the task at that price. Among real world
agents, this protocol is enforced by law.

Such enforced protocols are problematic when used
among computational agents. First, there may be a lack
of laws for interactions of computational agents, or the
agents may be governed by different laws—e.g. sited
in different countries. It may also be the case that the
laws are not strictly enforced or that enforcing them (e.g.
by litigation) is impractically expensive. We would like
the agents’ interactions to work properly independent of
fluctuations in enforcement. Secondly, a computational
agent may vanish at any point in time, e.g. by killing
its own process. Thus, the laws cannot be enforced un-
less the terminated agent represented some real world
party and the connection between the agent and the real
world party can be traced. For example, the Telescript
technology [General Magic, Inc., 1994] follows the ap-
proach of strictly trying to tie each agent to its real world
party. On the contrary, we analyze exchanges among
more autonomous agents and study possibilities of ex-
change without enforcement (e.g. with unknown real
world parties or no litigation possibility). In cases where
this type of exchange is possible, it is clearly preferable to
the strictly enforced mode of exchange due to savings in
enforcement costs and lack of enforcement uncertainty.

The fulfillment of a mutual contract can be viewed as
one agent delivering and the other agent paying. We pro-
pose a method for carrying out such an exchange without
enforcement. The exchange is managed so that for both
agents—supplier and demander—at any point in the ex-
change, the future gains from carrying out the rest of
the exchange (cooperating according to the contract) are
larger than the gains from defecting. Defection is equiv-
alent to prematurely terminating the exchange by van-
ishing. For example, defection may be beneficial to a
demander agent if the supplier agent has delivered much
more than what the demander has yet paid for. By intel-
ligently splitting the exchange into smaller portions, the
agents can avoid situations where at least one of them
is motivated to defect. We will call a sequence of de-
liveries and payments safe if neither agent is motivated
to defect at any point in the exchange. The basic idea
of enhancing cooperation by making the present less im-



portant compared to the future has been suggested for
example in [Axelrod, 1984].

We propose an ezchange strategy manager module to
be added to each agent’s architecture. This module
is potentially different for each agent. Its role is to
schedule the agent’s deliveries (or payments) in such
a way that the opponent is not motivated to defect
at any point in the exchange. This is in the agent’s
self-interest. The exchange strategy manager also pro-
vides the agent’s negotiator module with information on
whether a certain proposed contract can be carried out
safely. Unless protocol enforcement is guaranteed, the
negotiator should only agree to contracts that can be ex-
ecuted so that the opponent is not motivated to defect at
any point of the exchange. Automated negotiation has
been mostly studied with respect to ez ante rational-
ity: what contracts seem desirable to the agents before
they are carried out [Sandholm and Lesser, 1995b; 1995c;
1995a; Sandholm, 1993; Rosenschein and Zlotkin, 1994;
Kraus et al., 1992; Wellman, 1992; Durfee et al., 1993).
We suggest that contracts should also fulfill the condi-
tion of ez post rationality: abiding to the contract should
be desirable to the agents at each step of the carrying out
of the contract. Ez post conditions were studied in mul-
tiagent planning without payments in [Brainov, 1994].

This paper is organized as follows. Section 2 handles
one exchange in isolation. Conditions for safe exchange
are derived and an inherent restriction concerning the
completion of the exchange is identified. Section 3 takes
the agents’ future transactions into account in describing
safe exchange in order to solve the completion problem.
The role of time in an exchange is discussed in Section 4.
Section 5 analyses the case, where the delivering order of
independent goods can be varied. A quadratic sequenc-
ing algorithm is presented that finds a safe sequence if
one exists. Section 5.1 studies sequencing of interdepen-
dent goods. Section 6 describes the advantages of safe
exchange with respect to unfair renegotiation, and Sec-
tion 7 concludes.

2 Exchanging goods and payments

Our model analyzes exchanging goods—information,
computation services, or other types—for payments.
The exchange proceeds on two axis: the portion of
goods of the contract delivered by exchange step n is
called z, € [0, 1], and the cumulative payment so far is
pn € [0, p°°"7]. p™*" is the total payment specified in
the contract. The agents can make simultaneous moves
and they observe the other agent’s moves so far. They
value the goods z according to nondecreasing functions
that are in equivalent units of payment p. The supplier’s
value function v,(z) describes how much cost the sup-
plier incurs by generating and delivering . The deman-
der’s value function vg4(z) describes what the goods z are
worth to the demander. Trivially, v,(0) = vg(0) = 0.

At any point in an exchange, an agent has the options
of defecting or cooperating. Defecting gives no added
gains that have not already been received (when already
accounting for the opponent’s move on the current step
of the exchange) and no added costs, so its net benefit
is 0. Therefore a net benefit maximizing supplier agent

will cooperate throughout the rest of the exchange from
an arbitrary point (z,p) of the exchange if its future
compensation is at least as great as its future cost?, i.e.
P —p > v,(1) —vs(z). This assumes that the deman-
der will actually finally increase cumulative payment to
p°o™t" An equilibrium analysis with respect to this is-
sue will be presented shortly. To facilitate that analysis,

p™%*(z) is defined based on the above intuition:

— (1) + v, (z). (1)

A rational demander agent will cooperate throughout
the rest of the exchange from an arbitrary point (z, p) if
the future compensation it has to pay is smaller than or
equal to its added value, i.e. p°™" — p < v4(1) — vq4(z).
This assumes that the supplier will finally increase total
delivery to 1, which will be shown to be an equilibrium
shortly. Now, p™"(z) is defined, Fig. 1 left:

pmaa: (:L‘.) déf pcontr

P (@) L po — ug(1) + va(a). (2)

Clearly, p™®2(z) and p™"(z) are nondecreasing in
z. For the supplier to have agreed to the contract,
p™%*(0) > 0, and for the demander, p™"(0) < 0.
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Figure 1: Left: ezample of safe exchange with continuous
goods. Middle: safe exchange of discrete goods possible.
Right: safe exchange of discrete goods not possible.

If the agents do not know each other’s value functions,
they can use bounds they know. The supplier is safe
using an upper bound for p™"(z), i.e. a lower bound
for v4(1) and an upper bound for vg(z). The deman-
der is safe using a lower bound for p™2*(z). Although
the agents are safe using these bounds, even possible ex-
changes are disabled if the bounds are too far off.

The next sections present an equilibrium study of
when safe exchange can actually occur. The analysis
is slightly different for discrete and continuous goods.

2.1 Discrete goods

Discrete goods are goods that are inherently split into
atomic chunks. Such chunks cannot be further split,
and we assume in this section that the delivery order of
the chunks is fixed. For example in the TRACONET
(TRAnsportation COoperation NET) multiagent sys-
tem [Sandholm, 1993], agents representing dispatch cen-
ters negotiated over who’s vehicles should transport

2If equality holds, the agent is indifferent between cooper-
ating and defecting. Throughout this paper we assume that
indifferent agents will cooperate. Note also that throughout
the paper we analyze only remaining payoffs, not total pay-
offs, because the already incurred payoffs are constant with
respect to the remaining game.



which parcels. Taking care of one parcel is an atomic
chunk because the task cannot be split. Sometimes a
contract between two agents involved multiple tasks (in
order to avoid local optima in distributed task alloca-
tion [Sandholm, 1993]) so the total exchange could have
been split into smaller parts. The following theorems de-
scribe the conditions for safe exchange of discrete goods.

Definition 2.1 Supplier’s sirateqy Ss: At any point of
the exchange, if pn, < p™**(z,) deliver an amount such
that cumulative delivery z,1 = maz{z € X|p™"(z) <
o} If pn > D™ (2,), exit.

Definition 2.2 Demander’s strategy Sq: At any point
of the exchange, if pp > p™"(z.), pay an amount
such that cumulative payment ppy1 = p™*(z,). If

Pn < p™"(z,,), exit.

Theorem 2.1 3 With a finite number of discrete goods
(discrete X C [0,1]), for nondecreasing p™"(z) and
p™%* (), the strategies S and Sy form a subgame perfect
Nash equilibrium if for every two consecutive amounts
of cumulative delivery z,z' € X, p™*®(z) > p™"(z').*
Furthermore, the exchange is completed. Fig. 1 middle.

Theorem 2.2 With a finite number of discrete goods
(discrete X C [0,1]), for nondecreasing p™™(z) and
p™%* (), there is no subgame perfect Nash equilibrium
leading to completion of the exchange if for some two
consecutive amounts of cumulative delivery z,z' € X,
p™e(z) < p™"(z'). See Fig. 1 right.

Nash equilibrium [Nash, 1950; Kreps, 1990] means
that each agent is motivated to abide to its speci-
fied strategy given that the other agent abides to its
specified strategy. Subgame perfection [Selten, 1965;
Kreps, 1990] means that the equilibrium is a Nash equi-
librium at any point (zn,pn) of the exchange, not only
the beginning of it. This means that the equilibrium re-
mains an equilibrium after the agents have partially car-
ried out the exchange. Furthermore, it is an equilibrium
at points (z,p) of the exchange that will actually not
be reached by the agents in the exchange process. For
these reasons, subgame perfection precludes incredible
threats/promises and provides some robustness against
external perturbances.

From the condition p™®(z) > p™"(z') and the fact
that p™"™(z) is nondecreasing we see that the following
has to hold for safe exchange: p™?®(z) > p™"(z). In
terms of the agents’ value functions this can be writ-
ten as v4(z) — vs(z) < v4(1) — v4(1). This means that
the agents’ combined profit must be higher (or equal) at
z = 1 than at any other z € [0, 1[. If the agents would
have been better off by making the contract for a smaller
amount of goods, an isolated safe exchange is impossible.
Furthermore, at z = 0 this gives v;(1) < v4(1), which is
an intuitive condition for the contract to have been made

3Proofs of the theorems are omitted due to limited space.
They will be published in an extended version of this paper.

*The equilibria in Theorems 2.1, 2.3, 4.1 and 4.2 are not
unique. For example, the strategies that specify that the
demander never pays anything and the supplier never delivers
anything at any point of the exchange also form a subgame
perfect Nash equilibrium.

in the first place. Specifically, v,(1) < p®™" < wv4(1),
Fig. 1 left.

Theorems 2.1 and 2.2 state that rather stringent con-
ditions have to be met to enable unenforced isolated
exchange of discrete goods. Substituting z = 1 in
the definitions of p™*®(z) and p™"(z) gives p™*(1) =
p™™(1) = p*™*". According to the theorems, safe ex-
change is possible only if p™2%(z) > p™™"(z') for any
two consecutive z and z'. Let us call the size of the last
delivery Az. So for safe exchange the following has to
hold: p™2®(1 — Az) > p™"(1) = p™2¢(1). Thus the in-
creasing function p™**(z) has to be constant during the
last step (Fig. 1 middle). This means that the supplier’s
value function v,(z) is constant. So an isolated safe ex-
change is possible only if the supplier does not incur any
cost from generating and delivering the last chunk. This
occurs for example when the supplier has had to acquire
a number of the last deliverables atomically. Its cost of
acquiring the deliverables can be entirely attributed to
the first one, while it can deliver these items separately
with only the first one increasing v,(z) (assuming negli-
gible costs of physically delivering). This may not occur
very often in practise (Fig. 1 right). Intuitively, when
there is no future benefit to be gained from exchanging,
agents are better off defecting on the current move.

If this problem occurs in an isolated exchange of a
finite number of discrete goods, it spoils the entire ex-
change. On the last move the supplier does not want
to increase delivery to z = 1, because the demander
would defect. Similarly, the demander does not want to
increase cumulative payment above p™**(1 — Az), be-
cause the supplier would defect. Both agents know that
the last part of the exchange will not take place due to
this. So they can analyze the exchange as if it did not
have the last part. Now the second to last part has the
same problem (unless the supplier can deliver that part
without cost): neither agent wants to initiate that part.
Again, both agents know this and so on. This backward
induction can be carried out up to the first exchange.
So, neither agent will make any move, and the exchange
will not take place. Theoretically, there can be an in-
finite number of discrete goods. In such cases this ex-
change spoiling backward induction argument does not
apply because at no point can an agent say that the next
move is the last. Backward induction is inapplicable also
with continuous goods. This facilitates safe unenforced
exchange of continuous goods, as discussed in the next
section. In both the discrete and the continuous case,
the problem of requiring that the supplier can deliver
the last part without costs can be overcome by consid-
ering related future interactions of the agent, Sec. 3.

2.2 Continuous goods

This section analyzes the exchange of continuous goods,
1.e. goods that can be split arbitrarily. First, two con-
ditions for safe exchange are presented. Intuitively, the
first one states the conditions under which a safe ex-
change can proceed to some amount of cumulative de-
livery. The second one states the conditions under which
safe exchange can proceed from some amount of cumu-
lative delivery.



Condition 2.1 Reachability. (Fig. 2) For every point
€]0,1],
1. p™a®(z*) = p™n(z*), and pm‘”( ) is constant in
some left neighborhood of z=*

2. p™meE(z*) > p™"(z*), tmd limm_m*_ P (z) >

mazr (

(2
(2

3. m”( o> p™(et), limg .- p™(z) =
(z*), and pm‘”( ) is constant in some left
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Figure 2: Fzchanging continuous goods: reaching a
point.

Condition 2.2 Departability.
point z* € [0,1],

(Fig. 3) For every

mazr ( min (

1. p )= *), and p"”"( ) is constant in
some right neighborhood of z*

2. p™eT(z*) > p™"(z*), and limm_mwr p™n(z) <
maa: (:L‘. )
3. maa:( > pm'm.( ), hmz—)z*‘t pmzn(m) —

P (z*), and p"”"( ) is constant in some right
netghborhood of z*
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Figure 3: Ezchanging continuous goods: departing from
a point.

Theorem 2.3 With continuous goods (X = [0,1]), for
nondecreasing p™"(z) and p™®®(z), the strategies S,
and Sy form a subgame perfect Nash equilibrium if con-
ditions 2.1 and 2.2 hold. Furthermore, the exchange is
completed.

Theorem 2.4 With continuous goods (X = [0,1]), for
nondecreasing p™™(z) and p™*®(z), there is no subgame
perfect Nash equilibrium leading to the completion of the
exchange if conditions 2.1 and 2.2 do not hold.

Theorems 2.3 and 2.4 state that isolated unenforced
exchange of continuous goods is safe if some initial deliv-
ery can be made, every intermediate amount of delivery
can be reached and departed, and the final amount of de-
livery can be reached without exceeding p™2*(z) or mov-
ing below p™"(z). These theorems do not assume conti-
nuity of p™?®(z) (equivalently v,(z)) or p™"(z) (equiv-
alently vg(z)). Neither do they assume that p™**(z) or
p™"(z) is strictly increasing. If p™%%(z) and p™"(z)

are continuous, the exchange can be carried out safely
if and only if Vz € [0,1], either p™®2(z) > p™"(z) or
p™e(z) = p™™(z) and P (z ) is constant in a left
neighborhood of z and p™™(z) is constant in a right
neighborhood of . If in addition to continuity, p™**(z)
and p™"(z) are strictly increasing, the exchange can be
made safely if and only if Vz € [0, 1], p™2%(z) > p™"(z).

Isolated safe exchange can be problematic also in the
case of continuous goods. Substituting z = 1 into
the definitions of p™2®(z) and p™"(z), we see that
p™e®(1) = p°ontr — pmin(1). TFrom case 1 of condi-
tion 2.1 we see that full delivery (z = 1) can be reached
only if p™**(z) is constant in some left neighborhood of
z = 1. If the value function of the supplier v;(z) is not
constant in the end of the exchange, the exchange cannot
be completed. So an isolated safe exchange is possible
only if the supplier does not incur any cost from gener-
ating and delivering the last portion of the goods, which
was discussed in Section 2.1. This problem is less severe
than in the case of finitely many discrete goods because
the size of the deliveries can be made decreasing and
arbitrarily small—thus making the number of deliveries
infinite (Fig. 1 left). This allows the agents to reach a
cumulative delivery that is arbitrarily close to 1 because
the backward induction argument that disabled the en-
tire exchange in the case of discrete goods does not hold.
There is no particular exchange step at which the agents
could reason that neither will make a move.

3 Extension 1: Non-isolated exchange

Often an agent interacts with other agents more than
once. One interaction may affect the agent’s future in-
teractions. For example, if an agent defects in the cur-
rent exchange, its counterpart may not want to take on
future contracts with that agent. Moreover, the coun-
terpart can notify other agents that the agent defected.
Thus, the agent’s interactions with third parties may also
be hindered by defecting in the current exchange. The
hindering future impact of a defection can be thought of
as an extra cost. This future cost may motivate agents
to cooperate in the current exchange even if it would be
rational to defect in it when considered in isolation. The
methods for calculating defection impacts on the future
are beyond the scope of this paper. We assume that both
agents know their own and their opponent’s defection
costs. We denote the supplier’s defection cost by c?¢f

and the demander’s by cdef The defection costs can be
1ncorporated into the model by redefining p™**(z) and

pmaa:'(m) déf pcontr _

ve(1) +vs(z) + i (3)

pmin'(m) déf pcontr _ ’Ud(].) + ’Ud(ill) _ CZEf‘ (4)
In isolated exchange, substituting z = 1 in the defini-
tions of p™2®(z) and p™"(z) gave p™"(1) = ptontT =
p™%*(1). This led to the problem that the exchange
could not be carried out to completion—unless p™*(z)
was constant in the end of the exchange. In non-
isolated exchange, substituting z = 1 gives pmi"’(l) =
peomET _ cgef and pmae’ (z) = peomt" +cdef. The defection
penalties give leeway to the exchange, thus possibly en-
abling safe exchange to be completed even if p™*(z) is



not constant in the end. The contract price p°™*" could

be exceeded due to this leeway. To avoid this, the deman-
der’s strategy can be modified so that at any point in the
exchange, the demander increases cumulative payment
to min(p“’"",pm”’(m)) instead of pm‘”’(m). This will
not hinder exchange, because the condition takes effect
after the full contract price has been paid. Non-isolated
exchange is more fruitful than isolated exchange, because
it facilitates safe completion. The theorems on the pos-
sibilities of subgame perfect Nash equilibrium exchange
(2.1,2.2, 2.3, and 2.4) apply directly to the case of non-
isolated exchange with the new definitions pm‘”’(m) and
pmi"’(m) substituted in place of p™2*(z) and p™"(z),
and the minor modification in the demander’s strategy.

AP supplier defects pmax'

N T def

i def
i Cd

('supplier's defection penalty )

( demander's defection penalty )

| =region of safe isolated exchange
N = region where only non-isolated exchangeis safe

demander defects
Figure 4: Defection penalties of non-isolated exzchange
give leeway to safe moves.

If the agent does not know the defection cost of the
opponent, it can use a lower bound for that cost. This
way the agent is safe, but if the bound is too far off, even
possible exchanges are disabled.

4 Extension 2: The role of time

This section addresses real time in the exchange: will an
exchange take place immediately, or will it be infinitely
postponed, or something in between? Nonincreasing dis-
count functions f(t,), (0 < f(tn) < 1,f(0) = 1) are
assumed. Subscripts s and d distinguish between the
supplier and the demander, and superscripts p and v
characterize whether the discount applies to payment or
the value of goods. For example, using constant inter-
est rate (r) compounded interest, the discount function
is f(tn) = e "*=. First, the role of time in isolated ex-
change is analyzed. Real time is incorporated into the
model by allowing the agents to postpone their moves.
During the time that one agent is postponing, the other
agent can make a delivery or a payment, at which point
the first agent can redecide its postponing decision. The
players’ strategies are redefined to handle time:

Definition 4.1 Supplier’s strategy St'™e?: At any point
of the exchange, immediately deliver an amount such
that cumulative delivery z,1 = maz{z € X|p™"(z) <
pn} if pn < pmaa:(mn). Ezit if pn > Pm”(iﬂn)-
Definition 4.2 Demander’s strategy S§™e¢: At any
point of the exchange, immediately pay an amount such
that cumulative payment pni1 = p™**(2n). Exit if
pm“l(mn) > Dn.

The following theorem states that neither agent is mo-
tivated to unilaterally deviate from immediate exchange
if certain conditions hold on the discount factors.

Theorem 4.1 With a finite number of discrete goods
(discrete X C [0,1]), for nondecreasing p™"(z) and
p™®(z), the strategies SY™°¢ and S4™e¢ form a Nash
equilibrium if for every two consecutive amounts of cu-
mulative delivery = and z', p™*2(z) > p™"(z'), and
Vin > Oaff(tn) < f:(tn)afg(tn) > fs(tn) The equi-
librium is a Nash equilibrium in every subgame that is
reached and the exchange is completed immediately.

So, isolated unenforced exchange is feasible if the sup-
plier discounts payments more sharply (or equally) than
production costs and the demander discounts the value
of goods more sharply (or equally) than payment. The
condition on the supplier’s discount functions is rather
natural. For example in a stable environment, the sup-
plier’s current value of producing an item should remain
constant, but obviously payment is discounted. The
condition on the demander’s discount functions is more
stringent. It is realistic in the case where the deman-
der needs the goods urgently. An agent need not know
the opponent’s exact discount functions. It is sufficient
to know whether they fulfill the conditions. The equi-
librium concept of the theorem is slightly weaker than
subgame perfection because it only guarantees that the
equilibrium is a Nash equilibrium in subgames that are
reached—mnot all subgames. In practise this means that
if, for some unknown reason, the exchange has been de-
layed, it is not guaranteed that the agents are motivated
to proceed immediately or at all. For example, in a sub-
game where fP(¢,) = 0, f?(tn) > 0 for the current i,,
the supplier is not motivated to proceed immediately be-
cause no payment by the demander can compensate for
any cost incurred by the supplier’s delivering.

Clearly, by Theorem 2.2, immediate exchange is not
possible if the condition on the consecutive z’s does not
hold. Similarly, by Theorem 2.4, immediate exchange
is not possible with continuous goods if conditions 2.1
(reachability) and 2.2 (departability) do not hold. If
they do hold, immediate exchange is possible also in the
continuous case:

Theorem 4.2 With continuous goods (X = [0,1]),
for nondecreasing p™™(z) and p™®®(z), the strategies
Stimed  gnd Sfiime‘i form o Nash equilibrium if con-
ditions 2.1 and 2.2 hold, and Vi, > 0,fP(t,) <
f2(@n), fA(tn) > f3(tn). Furthermore, the equilibrium
is @ Nash equilibrium in every subgame that is reached
and the exchange is completed immediately.

If the conditions on the discount functions do not hold,
the outcomes vary. For example, a supplier wants to
carry out the exchange at a time ¢, when its fP(t,) is
high and f?(t.) is low. This may or may not coincide
with the time when the demander wants to move. The
exact forms of the discount functions define whether the
exchange can be carried out in equilibrium immediately,
by slightly postponing (different moves in the exchange
may be postponed different amounts), or only by post-
poning indefinitely.

Next, it is shown that time discounts reduce the ad-
vantages of non-isolated exchange. We assume that the
current value of each agent’s defection cost does not
change—which seems realistic. If an agent discounts



payments, this means that its absolute value of the de-
fection cost increases with time. The following theorem
states that with certain types of discount functions, the
exchange cannot proceed outside of the region of isolated
exchange (I in Fig. 4) without being delayed. The result
that the discount factors on payments need to reach 0
usually means that the delay is indefinitely long. Thus,
in such settings, taking advantage of the defection penal-
ties of non-isolated exchange (by moving into region N
in Fig. 4) to facilitate safe exchange is usually infeasible.
Intuitively, an agent wants to postpone a negative net
benefit into the future where it is heavily discounted.

Theorem 4.3 If lim;,o fZ(t) = 0 in any subgame
where P (z2,) < pp < pm‘”’(mn), and Vt > i, fP(t) <
fU(t), there is no subgame perfect Nash equilibrium
that results in reaching (1, p°™*") before (supplier’s) de-
lays have caused fU(t) = fP(¢t) = 0. Similarly, if
lim; , o0 f5(t) = 0 in any subgame where pmi"’(mn) <
Pn < P (zy), and Vit > t,, fR() > fY(t), there is no
subgame perfect Nash equilibrium that results in reach-
ing (1,p°™") before (demander’s) delays have caused
fit) = fa)=o.

The conditions lim;_, f¥(t) = 0 and fP(¢) < f2(t)
are almost always true. The condition f5(¢) > f3(¢)
is true if the demander needs the goods urgently. The
supplier’s discount function for its goods need not ap-
proach 0 however. Its cost of producing goods (dis-
counted to present) may not even decrease with the pro-
duction date. This may sometimes allow the demander
to facilitate exchange by safely over-paying and moving
into the upper region N in Figure 4.

The negative result (Theorem 4.3) stems from not con-
sidering indefinite postponing a violation of the contract.
This can be changed by specifying deadlines or lateness
penalty schedules for the agents in the contract. If the
contract is not abided to (e.g. deadlines not honored or
lateness penalties not paid), the defecting agent will suf-

fer the defection penalty (c?¢/ or cgef) due to how its de-
fection will affect its future contracts. So, strictly speak-
ing a contract matters only in non-isolated exchange,
and therefore forcing timely exchange by deadlines or
lateness penalties is possible only in such cases. This
highlights the value of Theorems 4.1 and 4.2 for isolated
exchange that guarantee that immediate exchange is an
equilibrium and does not need to be forced. Even in
non-isolated exchange, deadlines and lateness penalties
are meaningful only as long as abiding to the deadline
or paying the lateness penalty is less expensive than suf-
fering the defection penalty. Lateness penalty schedules
are preferable to strict deadlines because they are less
risky for the agent who is potentially subject to them,
but the other agent can still tailor the lateness penalty
schedule to motivate the former to move immediately.

5 Extension 3: Delivery sequencing

So far we have discussed exchanges in which the deliv-
ering order of the goods is fixed beforehand. In this
section we analyze an exchange where discrete partial
deliveries (individual goods or atomic chunks) can be

delivered in any order, as long as all of them get deliv-
ered. It is assumed (this is relaxed in Section 5.1) that
the demander’s added value from one chunk does not de-
pend on the other chunks delivered so far, and that the
supplier’s cost for delivering a chunk does not depend on
other chunks delivered earlier. This enables us to asso-
ciate each chunk ¢ with two values, Ap™*® and Ap™™",
that fully characterize how much the maximum and the
minimum cumulative payments change as c is delivered.

For example, an agent could make a contract to carry
out a number of matrix multiplications. Multiplying two
matrices neither facilitates nor hinders multiplying some
other two, so the chunks are independent with respect to
the supplier. The chunks are truly independent if they
are independent with respect to the demander also—
based on the uses of the multiplication results.

Call a delivery sequence safe if min(p™** (z), p*"*") >
p™™(z') for all consequtive z and z’'. We provide a fast
greedy algorithm that finds a safe ordering if one exists.
The algorithm takes six inputs: a set of chunks C, a
vector of Ap™2® values, a vector of Ap™™ values, the
contract price p°®™", and the defection penalties (c2¢/ =

cgef = 0 in the case of isolated exchange).

Algorithm 5.1 SEQUENCE-CHUNKS(C,
Apmaa:, Apmin, pcontr, c;lef, CZEf)

1. pya = peomt + oot pinin = peontr — e
2. For every c in C do /* Sets bounds forp atz =0 */

Pintt = Pingt — AP, Pt = Py — AP
3. If e < 0 or p% > 0 return “NO SOLUTION”.
4. Diwvide C into two sets POS and NEG s.t.
POS = {ce C|Apl*® — Ap!™™ > 0} and
NEG = {c € C|Ap]*** — Ap»™ < 0}.
5. P = g, P = i, mp = |POS],nm = [N EG]
6. Fori = 1ton,
FEASIBLES = {c € POS|p™"+Ap™n < pmac}
If FEASIBLES = 0 return “NO SOLUTION".
¢* =argmax  Ap™®® — Ap™n,
cEFBASIBLES
chunk[i] = c*.
pmaa: — pmez | Ap?:az, pmin — pmin + Ap?:zn
POS = POS — {c*}.

mazr __ ,contr de min __ ,contr def
7. pe = ptomtT  cded pmin = peomtt — 3

Qo

. Fori = n, +n, down ton, + 1
FEASIBLES = {c € NEG|p™™ < p™3®_ Apm2®}
If FEASIBLES = 0 return “NO SOLUTION".

¢* = argmax  Apl"™ — Apl*®®.

¢c€FEASIBLES
chunk[i] = c*.
mazr __ ,,Mac maz min _ . min min
P = p™ — ApReE, p™t = p™" — Apt

NEG = NEG —{c*}.
9. Return the ordered vector “chunk”. First chunk to be
delivered is in “chunk[1]”.

Step 6 of the algorithm sequences the chunks with posi-
tive ApT**® — Ap™™ in a forward passing greedy manner
to try to increase p™2* as much as possible while increas-

ing p™™ as little as possible. Intuitively, the algorithm



tries to maximize the range of possible safe prices at
each z. Step 7 just computes p™** and p™™ at the end
of the whole sequence of chunks. Step 8 makes a greedy
backward pass. It tries to allocate the chunks with neg-
ative Ap™®® — Ap™™ so as to use as little as possible
of the beneficial difference Ap™?® — Ap™™ in the end of
the sequence. Intuitively, this difference is saved for the
middle of the sequence, from where it has time to affect
more chunks (lying later in the sequence).

To solve our sequencing problem, we tried several
greedy algorithms starting with the intuitive ones. Most
of them do not guarantee that a safe sequence is found
even if one exists. For example, the algorithms that
greedily pass only forward and maximize Ap™3® — Apmin
or minimize Ap™™" can be defeated by counterexamples
with just two chunks. Our algorithm cannot be defeated:

Theorem 5.1 Algorithm 5.1 finds a safe ordering if one
ezists and always terminates in O(|C|?) time.

Sometimes the division of the exchange into chunks is
not externally fixed but can be decided by the agents,
e.g. at contract time. This can be done top down by gen-
erating a chunking and then testing its safety by running
algorithm 5.1. If it is not safe, the chunking can be re-
fined by splitting chunks further. Splitting is monotonic
in the sense that no split can make a safe exchange un-
safe. Therefore this splitting algorithm does not need to
backtrack. The top down method can be used for con-
tinuous goods also. The minus side of the approach is
the need to guess the splits. If they are guessed badly,
possibly many more chunks are generated than are nec-
essary to enable safe exchange. A bottom up approach
for chunking is to sequence the smallest possible atomic
chunks using algorithm 5.1. Next, the agents can see how
many atomic chunks they can deliver at once at each step
without changing the order and while still keeping the
exchange safe. Bottom up chunking requires no guess-
ing of splits but it can be computationally complex if the
number of smallest possible chunks is large. It cannot
be applied to continuous goods because the number of
smallest possible chunks is infinite.

5.1 Sequencing interdependent deliveries

Sometimes partial deliveries are interdependent. The
value of a chunk may depend on which chunks have
been delivered before it. For example in manufactur-
ing, the first products can be thought of as more costly
than subsequent ones because the fixed costs (e.g. rent,
acquired equipment) can be associated with the earlier
products. Similarly, a data retrieval agent may incur
large costs in searching for certain information. Once
the information is found, subsequent searches of related
information are less expensive. The demander may also
value a chunk differently depending on the other chunks
delivered so far. In TRACONET (see Section 2.1), the
chunks (transport tasks) were interdependent for both
the supplier and the demander. Transporting a parcel
often affects the marginal cost of transporting others.
For example, a vehicle may be able to carry two parcels
to adjacent locations, thus reducing the marginal cost of
both tasks. Conversely, one parcel may fill up the vehicle
so that another task must be handled by a more costly

vehicle. Some contracts involved multiple tasks. So if
the safe exchange mechanisms of this paper had been
used, sequencing of interdependent chunks would have
been required. This was not crucial because the agents
represented real world dispatch centers whose contracts
were enforced by law.

In general, interdependent goods cannot be sequenced
in polynomial time in the number of chunks if it is re-
quired that a safe solution is found if one exists. Just
representing the problem requires @(2|C|) space because
for each set of chunks in the power set of all chunks,
p™2* and p™" have to be represented—and in the worst
case this information cannot be compressed. Neverthe-
less, if the number of chunks per contract is small—as
in TRACONET—exponential search among sequences
of chunks is viable. In such cases the advantages of safe
unenforced exchange outweigh the extra computational
load. Furthermore, special cases of the problem may be
solvable in polynomial time, e.g. the case of independent
chunks discussed earlier.

6 Renegotiation risk

After an irrevocable delivery or payment, the agent that
gained from it may want to renegotiate the contract. For
example after the first partial delivery, the demander
may want to renegotiate the contract for a lower price.
The demander knows that the original contract price was
safe for the supplier, so now that the supplier has already
“lost” the first delivery, the supplier should be willing to
carry out the rest of the exchange at a lower price. On
the other hand, the supplier knows that any point in
the exchange is safe for the demander. Therefore, if the
supplier can commit to not renegotiating, the demander
is motivated to follow the original contract and to not
vanish.

Renegotiation is more likely in unsafe exchange [Lax
and Sebenius, 1981; Raiffa, 1982]. For example, when
an international company initiates a mining venture in
a developing country, it has to invest most of the capi-
tal up-front. This unsafe move motivates the developing
country to renegotiate the conditions of the mining ven-
ture (profit division etc.). Due to expropriation risk the
company cannot avoid renegotiation.

7 Conclusions and future research

This paper presented a method for carrying out mutual
exchanges among self-motivated agents without third
party enforcement. Larger exchanges were split into
smaller parts so that at no point was either agent moti-
vated to defect (in equilibrium). The maximum size de-
livery that the supplier can safely make at any point in
the exchange was shown as well as the maximum amount
that the demander can safely pay. The possibility of safe
exchange depends on the demander agent’s and the sup-
plier agent’s value functions for the goods of the contract.
Safe exchange is enhanced if the supplier incurs most of
its cost from the early portion of the exchange, while the
possibility that the demander acquires most of its value
already from the early parts hinders safe exchange.
Isolated safe exchange can be carried out entirely only
if the supplier can deliver the last part without cost.



With continuous goods it can be carried out arbitrarily
close to completion even if this is not the case. Con-
sidering defection’s adverse effect on future negotiations
often enables completing the exchange.

Under the presented conditions on their discount func-
tions, agents are motivated to carry out isolated ex-
changes immediately. Time discounts reduce the via-
bility of taking advantage of non-isolated exchange. In
such cases, immediate moves can be forced by deadlines
or lateness penalties.

Some domains allow goods to be delivered in differ-
ent orders. The presented quadratic algorithm finds a
safe ordering for independent goods if one exists. The
problem cannot be solved in polynomial time for inter-
dependent goods. Finally, we showed that safe exchange
helps prevent unfair renegotiation.

In this paper we looked at totally safe exchanges,
where each agent knew its opponent’s value function,
discount functions, and defection penalty (i.e. cost of
making reputation worse). We explained how agents
could use bounds for these if they are not exactly known.
If the bounds were too far off, even possible exchanges
were disabled. Often it is the case that agents can es-
timate a distribution for each of these, although strict
bounds are not available or they are too far off. Using
these distributions the agents can take a calculated risk
of making moves that are unsafe with a certain proba-
bility. This approach of using distributions is also useful
to the agent in trying to model the possibility of changes
in the opponent’s value function, discount functions or
defection penalty that happen during the exchange due
to the opponent interacting in its environment (getting
other offers, contracts etc.).

Another approach is to try to bound ones losses by
making the partial exchanges small enough so that even
if the opponent defects, the loss will be within a bound.
In both the probabilistic risk method and the loss bound-
ing method there is a tradeoff between making the ex-
change safer by using small partial exchanges and mini-
mizing partitioning costs (e.g. physical per part delivery
costs) by using large ones. Finally, either a probabilis-
tic approach or a loss bounding approach can be used to
address the risk of the opponent accidentally defecting—
e.g. loosing contact due to a technical fault.
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