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Chapter �

Introduction and Language

Overview

OPS� is a well�known language for implementing rule�based systems� Rule�based languages
have been widely used for implementing expert systems� however the performance of such
systems has usually left something to be desired� It has been suggested �Gupta� ����
Ishida and Stolfo� ����� that the performance limitations of rule�based systems could be
overcome by the appropriate use of parallelism� This approach has become increasingly
practical with the advent of symmetric multiprocessors and concurrent programming lan�
guages� This report describes the second release of UMPOPS� a Lisp�based version of OPS�
developed at the University of Massachusetts which has been modi�ed to support a number
of levels of parallel activity
 rule parallelism which allows rules to be �red concurrently�
matching parallelism which allows the pattern matching to be performed in parallel� and
action parallelism which allows individual working memory changes to be made in paral�
lel� Lock�based mechanisms for �partially� ensuring program correctness are provided� A
number of language features have been added to the basic OPS� syntax to allow the imple�
mentation of more sophisticated heuristic control functions and constructs for expressing
iteration over sets of rule instances which support parallelism� A mechanism for expressing
search states as instances of multiple worlds has been provided in order to allow search of
multiple spaces to be performed concurrently�

The �rst chapter of this report gives an overview of the OPS� language and concepts
speci�c to the parallel implementation� This is followed by a user�s manual which describes
the invocation and use of the current version of UMPOPS and the modi�cations to the
syntax required for parallelism� set functions� and heuristic control� Although the �rst part
of the second chapter will be of interest only to those readers actually programming in UMass
parallel OPS�� the description of new language features incorporated into the language may
be of more general interest� The third chapter discusses restrictions on parallel rule �ring
and continues with tutorial on programming rule�based systems in parallel in the form of an
extended analysis of the design and performance of two OPS� programs� The �nal section
of this report is devoted to discussing the low�level issues involved in implementing a parallel
production system based on the Rete network�
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��� Language Overview

UMPOPS was constructed from a public domain version of OPS� written by C� Forgy and
the syntax of UMPOPS is in many respects identical to that described in the OPS� Technical
Report �Forgy� ������ There are� however� a number of exceptions and extensions to the
language� both to provide parallel operators and to increase the general expressiveness of
the language� This report assumes a familiarity with the use of OPS�� but the following
de�nitions may be useful for those less familiar with the language and its implementation�

����� De�nitions

Working Memory� A production system consists of a set of productions examining a
set of facts which describe the current state of the system� In OPS�� this set of facts is
called working memory� Each fact is represented by a single working memory element which
consists of a class followed by a list of attributes and values� For example� a typical working
memory element might have the form

�cat �name Socrates �color orange �size large �weight heavy�

Each working memory element is assigned a timetag which describes the order in which
the working memory elements were created� and serves to uniquely identify each element�
Di�erent elements may contain identical values but will be assigned di�erent timetags� De�
spite their name� timetags do not usually record the actual creation time of a working
memory element� however� because creation time is occasionally of interest to the experi�
menter� UMPOPS has been modi�ed to report the time at which elements are created�

Productions� A production consists of a lefthand side �LHS� which contains a list of
patterns to be matched against working memory and a righthand side �RHS� which contains
a list of instructions to be executed in the event that the production is �red�

The Lefthand Side� The lefthand side contains a list of condition elements� Each condi�
tion element consists of a pattern which can match one or more elements in working memory�
There must be at least one corresponding working memory element for every condition el�
ement in order for the rule to be instantiated �that is� for it to be entered into the con�ict
set�� Condition elements may be negated� in which case the rule only matches if there is no
working memory element which satis�es the negated condtion element� Condition elements
may contain variables� a rule may only �re if there is a set of working memory elements
which can generate a consistent set of variable bindings�

The Righthand Side� The righthand side of a production contains the operations to
be performed if the rule is �red� This can contain any combination of changes to working
memory� input�output statements� or function calls� The execution time of a production is
equal to the amount of time required to execute all the statements in the righthand side�
In general� studies of parallelism in production systems attempt to reduce this execution
time by increasing the speed of the working memory changes�
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The Matching Process� Matching is the process by which a new or modi�ed working
memory element is compared against the lefthand side of all the productions in the system
in order to see if any of them are enabled by the latest change to working memory� This
matching process is considered to be the most time�consuming aspect of executing a pro�
duction system and a considerable amount of research has been done to determine if match
time can be signi�cantly reduced by performing the match process in parallel �Gupta� �����

In OPS�� the matching process takes place when working memory elements are added
to� or deleted from� memory� This means that the match process actually takes place at the
same time as the righthand execution phase� The implication of this is that the match and
execution phase are not actually separate as the conventional description of the production
system execution cycle indicates� When operating in parallel� it is important to remember
that working memory may still be changing while the match process is taking place�

Con�ict Set� The con�ict set is the list of all the rules which are eligible to �re� A con�ict
set entry contains the name of the production� copies of the working memory elements which
caused the production to match� a binding list which contains the values of variables bound
in the lefthand side of the production� and rating information which may or may not be
used when performing con�ict resolution�

����� Levels of Parallelism

The parallel OPS� currently supports rule�� action�� and match�level parallelism� These
levels of parallelism are described below�

Production Parallelism In serial OPS�� only one production can be executed at a time�
If more than one rule is eligible to �re� then a single one must be chosen� Parallel OPS�
allows multiple rules from the con�ict set to be executed simultaneously�

Match Parallelism� When match parallelism is invoked� the matching process which
determines which productions are enabled by a working memory change is carried out in
parallel� This reduces the amount of time required for a single working memory change to
take place�

Action Parallelism� If a production contains multiple actions in its righthand side� it
is possible that they may be able to be executed concurrently� thus reducing the execution
time of the production by a factor proportional to the number of actions �assuming all
actions take approximately the same amount of time to execute��

��� Language Features

Version ��� of UMass Parallel OPS� has the following di�erences from the version described
in version ��� of this manual�
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� Version ��� supports rule��action��and match�level parallelism� However there are new
language constructs for action� and match�level parallelism and new synchronizing
mechanisms to prevent spurious rule executions when running asynchronously�

� All parallel operations are now carried out by rule demons rather than by individual
thread activations� this architecture allows a greater control over when rules� actions�
and matches are executed�

� Interference between rule executions is now prevented by means of a simple locking
protocol in the case of interactions due to positive condition elements�

� Four rule��ring paradigms are currently supported
 parallel asynchronous� parallel
synchronous� serial� and parallel asynchronous tasks with optional internal con�ict
resolution�

� A scheduler�controller package has been added which provides the ability to control
rule �rings either by pruning or by specifying priorities� The scheduler is heavily
instrumented to record timing statistics for rule �rings� queue latencies� and lock
acquisitions�

� Set�oriented rules are now supported at a simple level� The implications of asyn�
chronous rule execution on set�oriented rule semantics is discussed later in this man�
ual�

� A lefthand side notation for expressing �meta�level� control information is provided�

� Several new righthand side actions� some experimental in nature� have been added in
order to support both parallelism and control activities�

� A �multiple worlds� representation has been added to facilitate parallel search�

Other changes to the language which are largely transparent to the programmer include
the addition of hash tables to node memories� partial compilation of righthand sides of
rules� and multiple changes to the internal representations of various structures such as
working memory elements and the con�ict set� These and other e�ciency changes have
yielded approximately a �ve�fold increase in performance over version ���� both running
in parallel and serially� Although these modi�cations are not directly relevant to parallel
activity� they are described in appendix A for the bene�t of other researchers experimenting
with lisp�based versions of OPS��

��� The Rule��ring Architecture

The rule��ring architecture of the system is implemented as shown in Figure ���� As each
rule instantiation becomes enabled� it is placed on a queue of eligible rules �which replaces
the con�ict set�� The instance is rated according to a rule�speci�c �and possibly situation�
speci�c� function prior to being placed on the queue� The main process takes each rule
instance o� the queue in turn and attempts to acquire locks associated with the working

	



memory elements positively referenced or modi�ed by the instance� If the locks can be
acquired� the rule is scheduled using one or a combination of its rating and a rule�speci�c
priority assigned by the programmer at compile�time� The rule instance is placed by the
scheduler in one of a series of queues� ordered according to priority� Thus� certain rules
can be guaranteed higher priority� Each individual queue may also be declared to be a
priority queue so that rules can be prioritized according to their ratings� The rule instances
are removed from the execution queues by rule demons which then proceed to execute the
rules� If heuristic pruning is enabled� the rule demons will �rst execute a control function
attached to the rule type in order to determine whether the rule instance should be pruned�
This is necessary to maintain the responsiveness of the system� as the state of the system
may change dramatically between the time when a rule becomes eligible to �re and when a
processor becomes free to execute it� This is particularly true if rules are prioritized � less
important rules may remain on the execution queues for signi�cant lengths of time� The
rule�demon approach was adopted over the previous approach of forking o� rule executions
using the thread construct when it became clear that the thread mechanism did not allow
su�cient �exibility in ordering and pruning rule executions in response to changes within
the system� The rule demon system also makes it easier to instrument and measure the
behavior of the scheduling queues� The queue�based server architecture was inspired in part
by the method in which match�level parallelism is implemented in CParaOPS� �Kalp et al��
������

Rule Demons

Although the queue servers are called �rule demons�� this is actually a misnomer as they are
actually responsible for �lling requests for action and match�level parallel activities as well�
The control structure of the rule demons is structured according to the model that low�level
activities should be served before higher granularity activities� Therefore� the central loop
of each rule demon operates in the following steps


�� While any match level operations are on the match queues� remove one match oper�
ation and process it�

�� If no match level operation is enqueued� while any action level operations are on the
action queues� remove and process one action�

�� While no match or action requests are extant� monitor the rule queues� beginning
from the lowest numbered �highest priority� and scanning towards the highest �lowest
priority�� If a rule is found� it is removed from the queue and executed�

�� Go to step � and repeat�

The dynamic behavior of the system can be modi�ed by changing the control behavior
of the rule demons� the order in which rule queues are traversed by the demons can be
speci�ed at invocation time� Because there may be increased contention for queues at low�
levels of granularity� UMPOPS by default provides two queues each for action or match
level parallelism� this number may be increased by the user if monitoring indicates that
contention for the scheduling queues has become a bottleneck�





Schedule
Rules

Rule
Instance
Queues

Rule
Demons

Working 
Memory

Acquire
Locks

Eligible
Rule
Queue

New Rule
Instances

Parallel Working Memory
Modification and 
Pattern Match

Lock and schedule processes
run asynchronously.

Figure ���
 The architecture of the parallel rule��ring system�

����� Run Time Statistics�

UMPOPS was implemented to serve as an experimental tool for exploring the characteristics
of parallel rule�based systems and the tradeo�s imposed by various architectural choices�
The rule��ring architecture is therefore instrumented to return timing information� both for
the overall statistics of each run and individual statistics relating to each rule �ring�

Execution Statistics The following statistics are gathered each time the inference engine
is invoked�

� Total run time
 The total time taken to run a program�

� Individual processor times
 The total time spent by each processor in executing rules�
as well as average� minimum and maximum times spent by each processor in executing
rules�

� The total number of rules scheduled� executed� locked out� or deleted by heuristic
functions�

Rule Execution Statistics� For each rule� the system keeps a record of the number of
executions� the time to execute the righthand side� the time to �pre�evaluate� the rule�
the time spent in the �con�ict set�� the time spent waiting in the execution queue� and the
number of attempts and time required to acquire working memory locks� For each of these
statistics� the system records average� minimum� and maximum �gures as well as standard
deviations� These statistics are also available for speci�c rule instances�
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Queue statistics� For each scheduling queue� the system records the time at which each
addition or deletion takes place� this allows the size of each of the priority queues to be
charted over the course of a run�

Critical Regions� Mechanisms are available to measure the amount of time which is spent
waiting to acquire locks on each critical region� however it was found that the presence of
these mechanisms a�ected the timing of the system� so they should only be employed when
it is suspected that there is serious contention for a resource�

Working Memory Elements� For each working memory element� the system records
the time of creation and the time required to perform the match for that element�

��� A Locking Scheme for Ensuring Partial Correctness of

Working Memory

When rules are executed in parallel� their righthand side actions may interact� causing
inconsistencies or errors in working memory� These interactions may take two forms� either
clashing or disabling� Disabling occurs when two or more rules which are mutually disabling
execute concurrently �see Figure ����� In a serial rule��ring system� only one of these rules
would �re and the others would be disabled� The working memory state achieved by the
concurrent �ring of these rules is therefore not achievable by any serial rule��ring order�
Clashing behavior occurs when two rules perform competing modi�cations to the same
working memory element� Because OPS� does not enforce a unique representation for
working memory elements� clashing behavior per se cannot take place� Instead� clashing
rules may create multiple derivations of working memory elements leading to spurious or
redundant rule �rings and subsequent explosive growth of working memory size�

A number of techniques have been developed for detecting rule interactions �Ishida and
Stolfo� ����� Ishida� ����� Schmolze� ������ These algorithms usually consist of a static
analysis phase which is performed at compile time and a runtime component which dynam�
ically examines all eligible rules and selects a co�executable set� The dynamic component�
which cannot be performed at compile time because variables in rules do not become bound
until the rules are instantiated� is relatively expensive� both because of the synchronization
cost of accessing all eligible rules� and because it must perform uni�cation of variables in
order to precisely identify the rule interactions�

In the programs which have been developed for UMPOPS� rule interactions have been
observed to occur only rarely� Rather than accept the synchronization delays associated
with a full analysis of rule interactions�� it was chosen to enforce only a subset of the cor�
rectness criteria using a scheme of read�write locks on working memory elements� The
implementation of the locking mechanism is as follows
 Each working memory element is
assigned a structure which contains a read counter and a write �ag� As each rule instan�
tiation enters the con�ict set� each working memory element that appears on the lefthand

�The overhead due to analysis of rule interactions has been estimated to limit e�ective speedup due to

rule parallelism to between � and �� �Schmolze and Neiman� ���	
�
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P1

(A wombat)   
(B  koala)

(A wombat) (B koala)
(C wombat) (D wombat)
No P2 match 
if P1 is executed serially.

(A wombat) (B koala)
(C koala) (E koala)
No P1 match 
if P2 is executed serially.

P2

(A wombat) (B koala)
(C wombat) (D wombat)
(C koala) (E koala)

P1: +(A <x>), -(C <y>) -> +(C <x>), +(D <x>).
P2: +(B <x>), -(C <y>) -> +(C <x>), +(E <x>).

If P1 and P2 execute concurrently,
the result is an impossible working 
memory state for a serial system.

P1 & P2

Initial working 
memory

Figure ���
 When mutually disabling rules are allowed to �re concurrently� the result may
be a working memory state which could not be produced by any sequential rule �ring�
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side and which is modi�ed in the righthand side is placed on that instantiation�s write list�
Each working memory element which is referenced in the LHS but not modi�ed is placed
on the instantiation�s read list�

Before the rule instantiation is executed� each list is examined� If any of the working
memory elements on the read list have their write �ag set� then another rule currently
executing is about to modify that working memory element� Because the rule instantiation
will eventually be disabled by the removal of the element being modi�ed� it is removed from
the con�ict set but not executed� Similarly� if any of the working memory elements on the
write list have their write �ag set� the instantiation is also removed from the con�ict set�
otherwise� if other rules are referencing the working memory element� the rule instantiation
is not executed� but is placed back on the con�ict set� All read and write privileges associated
with working memory elements must be obtained before rule execution� thus the righthand
side of a production may be considered atomic� either all of the actions will be executed� or
none will be�

Although the creation of a working memory element is certainly a write operation� it
is treated as a special case� When a rule creates a working memory element� it actually
acquires a read lock �increments the read counter� for that element� The reason for the
special treatment is that when asynchronous rule �ring is enabled� a rule might be stimulated
by the addition of a working memory element and become eligible to �re even while the
working memory element is still being added� If a write lock were obtained on the working
memory element� any rules stimulated by that element would be unable to �re �and� if
fact� would be discarded from the eligibility queue�� If a read lock were not obtained on the
working memory element� then the rule stimulated by the element could theoretically delete
it� causing competing match operations and a possible race condition within the Rete net�

The primary disadvantage of the working memory locking scheme is that it only guar�
antees partial correctness� Interactions involving rules which contain negated condition
elements cannot be detected or prevented because it is not generally possible to acquire a
lock on an element� or set of elements� which does not exist� An experimental version of
UMPOPS has been developed which guarantees full serializability� but with an associated
performance penalty� details of this implementation can be found in �Schmolze and Neiman�
������

The concept of locking elements to prevent interactions due to concurrent modi�cations
is widely used in database systems and a similar scheme to the one just described was
implemented in a DBMS�based production system by Sellis�et al� �Sellis et al�� ����� This
implementation uses region locks to prevent interactions due to negative conditions� A region
lock typically prohibits access to a class of working memory elements� possibly restricted by
value and� depending on the precision with which the region can be identi�ed� may prove
unduly pessimistic in restricting access to working memory�

UMPOPS provides a mechanism similar in nature to region locking which allows a single
working memory element to be locked� even before that element has been created� This
mechanism� called make�unique allows the programmer to de�ne a working memory element
and certain key �elds to be unique� that is� only one attempt to create an element with the
class and key values will succeed� all other attempts will be locked out� As will be seen later
in this report� such a mechanism is crucial for implementing common programming idioms
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such as merging the results of a parallel search�
The working memory locking scheme presents a number of advantages and disadvantages

as opposed to the serializability guarantees provided by Schmolze or Ishida� The advantages
are listed below


Low Overhead� The overhead of the UMPOPS locking scheme is limited to the gen�
eration of the read and write lists and the actual acquisition of the locks� both of which
incur minimal costs� approximately ���� of rule execution times as opposed to approxi�
mately ��� for full guaranteeing of serializability �see �Schmolze and Neiman� ����� for the
argument behind this assertion��

Because locks are acquired independently of other executing instantiations� the lock
acquisition time is O�N� where N is the number of elements referenced by the instantiation�

In contrast� the overhead associated with the scheme proposed by Schmolze �Schmolze�
����� is at best O�N�� where N is the number of instantiations in the con�ict set�

Rules can execute asynchronously� It is not necessary to compare each eligible rule
against all others� so synchronization is not required and rule��ring may take place asynchronously��

No compile
time analysis is required� Because all working memory elements read or
written by a rule instantiation are automatically determined at run�time� no compile�time
analysis is required� This is particularly signi�cant in systems in which the RHS syntax is
complex or continually changing� as will be seen in the following section� both of these are
true of UMPOPS�

As mentioned previously� the most signi�cant disadvantage of the locking scheme is
that it does not guarantee serializable programs� it merely allows serializable programs
to be designed and constructed� The burden falls upon the programmer to ensure the
correctness of the program� When executing rules asynchronously� the locking scheme
accepts and schedules rules in the order in which they arrive� thus opportunities for heuristic
control are not available� As reported elsewhere �Neiman� ������ this is compensated for
by the increased throughput provided by the asynchronous rule execution policy� A �nal
disadvantage is that the current algorithm requires a central scheduler and lock acquisition
takes place serially� thus keeping lock overhead to a minimum is critical� Lock acquisition
could be performed in parallel� however this would increase the complexity of the lock
acquisition code and the bottleneck due to serial scheduling does not appear to decrease
performance to the point where this would be necessary�

��� Heuristic control

The scheduler of UMPOPS has been modi�ed to support heuristic control� that is� rules can
be either pruned or ordered according to heuristic evaluation functions� To allow rule �rings

�Interaction detection does not necessarily imply synchronization� for example� Schmolze has developed
an asynchronous version of his interaction detection algorithm� Asynchronous algorithms for detecting rule

interactions may not produce the maximal parallel sets� however�
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to be prioritized� multiple execution queues are provided and each is assigned a priority�
Rules assigned to a low priority queue are executed �rst� This is implemented by insuring
that the rule �demons� which monitor the queues �rst look for tasks to perform in the lower
numbered queues� Each rule type is assigned a static priority at compile time and each
instantiation of that rule is placed in the appropriate queue� In order to allow prioritization
within rules of the same type� individual rule queues can themselves be declared to be
priority queues� Rule instances are rated by rule�speci�c evaluation functions and inserted
into the appropriate priority queue� Much of this control information is speci�ed within the
rule using the meta construct� the exact syntax will be described in the following section�

There are several points in the match�schedule�execute cycle in which heuristic control
can be performed� First� heuristic control is usually performed de facto during the rule
matching phase� that is� if the rules were not heuristic in nature� there would be no need
to implement the program using a production system architecture� Writing rules in such a
way as to eliminate unnecessary rule instantiations will minimize the number of rules which
must be scheduled and processed by the control demon�

The next opportunity for pruning rules is during the �pre�execution� phase� This phase
needs some explanation� After the rule is placed on the eligibility queue� it is scheduled
by a dedicated process� The heuristic scheduling functions need information in order to
rate the rule� and much of this information is carried in the variables bound by the rule
instantiation� In OPS�� this information would normally not be available without executing
the righthand side� however� executing the righthand sides of some rules is just what we�re
trying to avoid by the incorporation of heuristics� So UMPOPS does a �pre�evaluation� at
instantiation time �i�e� when the rule is inserted onto the eligibility queue� which extracts
the variable bindings for the instantiation and stores them� No righthand side actions are
actually executed during this phase and the cost is reasonable� If any rule�speci�c control
functions �speci�ed as meta�information� need to be executed� they take place during the
pre�evaluation phase� The rule is then placed on the eligibility queue �formerly the con�ict
set� where it is immediately scheduled by the control process and placed in the execution
queues according to its rating and queue priority� Currently� the only way a rule is pruned
during the scheduling process is if there is a con�ict with an already executing rule� however�
it would be trivial to execute a heuristic pruning function at this time�

The third opportunity for heuristic control occurs immediately prior to a rule�s execu�
tion� Once a rule is placed on the execution queue� it is theoretically executed immediately�
However� in most applications� the number of rules to be executed will temporarily exceed
the number of processors available to execute them� and rules will remain on the execution
queues for potentially extended periods of time� During this time� the state of the system
can change� causing a rule instantiation on the queue to become redundant� Control func�
tions can be attached to rules determine whether the rule is still valid given the current
state of the system� The control functions must be extremely fast and simple if they are
not to decrease performance� so they are typically designed to simply check a value being
asserted by the rule against a global variable� The control function also resets the value
of this global variable if appropriate� �It is a problem in OPS and production systems in
general that working memory cannot be easily accessed from procedural code� and data
must sometimes be stored redundantly in order to be accessible from both rule�based and
imperative code��
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When a rule demon removes an instantiation from the queue� it checks to see whether
the rule has an attached control function� If so� the demon executes the control function in
the context of the rule instance�s righthand side� If the function returns a non�nil� the rule
is executed� otherwise it is killed� Killing a rule does not necessarily mean that no action
is taken � there may be some clean up operations associated with the state represented by
that rule� The programmer has the option of attaching �kill actions� to the rule which are
executed if� and only if� the rule is pruned by a control rule�

����� Dynamic Control of Rule�Firing Policies

Simply assigning static priorities to rule types and control functions to rules which do not
change during the course of a computation is insu�ciently �exible to provide truly so�
phisticated control� It is possible� albeit awkward� to dynamically modify the priorities and
control functions associated with rules during execution� For example� special control meta�
rules can be devised which� when they perceive a particular state occuring in the system� can
execute� modifying the priority as was done in the BB� blackboard architecture�Hayes�Roth�
������

Such control rules should� of course� be given the highest execution priorites� Even so� it
is likely that queue and execution latencies would render such control rules less responsive to
the state of the system than is desirable� A modi�cation to UMPOPS is being contemplated
which would allow true control rules to be distinguished� Because the principal activity of
such meta�control rules would be to send messages to the scheduler �which is very inex�
pensive as compared to modifying working memory�� control latency could be minimized
by sending the control messages during the pre�execution phase �i�e� immediately after the
control rule becomes enabled� and before the rule enters the eligibility set� Because the
new control state of the system would likely have to be mirrored in working memory to
prevent iterative �rings of the meta�control rules� the meta�control rule would still have
to be executed in a conventional fashion� An alternative scheme is to simply bypass the
scheduling mechanism and place control meta�rules on the highest priority execution queue�

Another issue in the dynamic control of rule��ring policies is the apportionment of rule
demons to the various execution queues� The default assignment is that the highest priority
rules get executed �rst� however this is an unfair scheduling policy and it is possible that
rules on lower priorities queues could be �starved� if large numbers of high priority rules
were to arrive� UMPOPS allows the user to specify a queue examination protocol when
invoking rule demons� the demons will examine the rule queues in the given order� If more
than one protocol is given� rule demons the protocols will be divided evenly among rule
demons� It is possible� for example� to assign a single rule demon to monitor a single queue
or a range of queues� and to specify the order in which they are visited� The programmer
can also specify whether the queue protocol is fair� that is� whether after executing a rule�
a demon should begin at the highest priority queue or whether it should visit all queues in
its protocol before restarting its traversal of the execution queues�
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��	 Interactions between ConsistencyMaintenance and Heuris�

tic Control

The heuristic control mechanisms can interact with the working memory locking scheme
described previously in potentially pathological ways� The �rst problem occurs when a
rule which has acquired the necessary working memory locks is then pruned by a heuristic
control mechanism� There will always be an interval between lock acquisition and the
pruning� During this time� it is possible that another rule which is capable of satisfying
the heuristic will become eligible to �re� Because the �rst rule has acquired the necessary
working memory locks� this competing rule will be prevented from executing and will be
removed from the eligibility set by the lock manager� Because neither rule is ever executed�
the result of this sequence of events is that the appropriate action never takes place� Simply
reversing the order in which lock acquisition and heuristic control takes place will not solve
this problem� and performing both operations simultaneously would require delaying lock
acquisition until execution time and performing lock management within a critical region�
One solution �not yet implemented� is to modify the lock management routines so that
rules which are locked out due to competing write operations are not eliminated from the
eligibility set until the competing rule has successfully begun execution�

A similar problem arises when an asynchronous rule��ring policy is employed� Because
rules are scheduled on a �rst�come��rst�served basis� standard con�ict resolution techniques
in which all eligible rules are ordered and the �best� rule is selected cannot be applied� It is
possible� therefore� that a rule will be selected to be �red and acquire all working memory
locks only to have a heuristically superior rule arrive in the eligibility queue� If execution
queue latencies are short� then the second rule will simply be disabled by the �rst rule as it
changes working memory� if the rules are designed correctly� the change to working memory
will re�stimulate a similar instantiation and the superior result will eventually be reasserted
into working memory at the cost of some delay� If execution queue latencies are long� the
rule which asserts an inferior answer may remain in the execution queue for a long time�
This will block the assertion of the superior result and reduce the e�ciency of the heuristic
pruning mechanisms by allowing more inferior solution paths to be explored during the
extended period in which the better solution is blocked� A solution �unimplemented� to
this problem is to allow heuristic override of locks� That is� one could record the identity of
rule instances which have acquired locks to working memory elements� If a rule attempts
to acquire a lock on that element and �nds that it is possessed by another rule� then the
following algorithm could be performed�

�� Check to see if the blocking rule is currently executing� If so� fail�

�� If the blocking rule is still in the execution queue� mark it as temporarily non�
executable�

�� Compare the blocked and blocking rule using a situation speci�c con�ict resolution
function�

�� If the blocked rule is superior� mark the blocking rule as �killed�� release its locks�
and schedule the new rule� If the blocking rule is superior� mark it as executable and
remove the blocked rule from the eligibility queue�
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��
 Multiple Worlds

One of the biggest advantages of parallelism in complex system is the ability to explore mul�
tiple alternatives simultaneously� If the search is partitioned appropriately� then problems
of rules interacting no longer apply� So we can trade the cost of detecting syntactic rule
interactions against the expense of creating partitioned �and possibly redundant� states�
Copying states can be done informally in situations in which the entire problem�solving
state can be represented as one or two working memory elements� in these case� the parti�
tioned state can be created by copying the elements in question and annotating them with
a unique tag �see the Travelling Salesperson example in Chapter � for an example of this
technique�� For larger� more complex states� possibly consisting of linked data structures�
the problem of accessing and copying states becomes more problematic� Not only is it dif�
�cult to explicitly reference each appropriate working memory element in the lefthand side
of the rule and explicitly copy it on the right� but the use of explicit tags to denote state
places an undue strain on the pattern matcher and can lead to matching ine�ciencies�

There�s a simple approach which is to copy each new state into a logically separate
version of the Rete net� That is� we can imagine each node of the Rete net being sliced
into an in�nite number of dimensions� Each dimension represents a new state� and as each
new state is created� the working memory elements associated with that state are placed
in the appropriate world� or dimension �see �gure ����� Thus� creation of a new state
consists very simply of the transformationWMEi �� WMEi � � where the arrow denotes
a copying�transformation operator� The advantage of this approach is that working memory
elements in one state can only be compared with working memory elements in the same
state and therefore identical elements can appear in multiple states� thus no re�naming or
tag generation is necessary� The principal disadvantage� and it is potentially a large one� is
that the copying operation is likely to be very expensive �it e�ectively violates the temporal
redundancy requirement of the OPS� Rete net�� The response to this objection is two�fold�
�rst� given su�cient resources to implement action parallelism� copying of working memory
elements can be done concurrently and the creation of new states can be reduced to O�n�
where n is the depth of the network� The second response is that� with a su�ciently clever
copying algorithm� one state can be copied directly into another from one slice of each node
of the Rete net to the next� thus maintaining the partial match state contained in the Rete
net� This copying operation is potentially suitable for large scale SIMD parallelism and
could potentially be carried out in O��� time�

A second disadvantage is that of space usage � the copying scheme inevitably will result
in redundant copies of working memory elements which could be ine�cient to maintain and
garbage collect� We can somewhat reduce this problem by maintaining a base space� that
is� a space in which all facts not actually modi�ed during the course of the computation
are stored� The ultimate solution to the problem of space �and to a certain extent� that of
copying overhead� is to employ a scheme in which successor states simply inherit the working
memory elements from predecessor states via pointers augmented with truth maintenance�
style IN�OUT lists�

An experimental version of UMPOPS has been developed with a partitioned Rete net
and operators for performing parallel search in multiple worlds� This multiple worlds im�
plementation is described more fully in �Neiman� ������
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Figure ���
 By partitioning the memories of the Rete net� a multiple world implementation
suitable for parallel search can be transparently achieved� To minimize copying� a �base�
space or partition can be de�ned which contains knowledge guaranteed to remain stable
over the course of the search�
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��� Summary

UMass Parallel OPS� has been modi�ed to support parallelism at the rule� action� and
match levels� Language features have been added which allow correct programs to be de�
signed without the overhead of complete checking for rule interactions� �Hooks� for control
functions have been added to the language to increase its expressive ability and to compen�
sate in part for the lack of explicit con�ict resolution while �ring rules asynchronously� The
following chapter discusses how to invoke the system and explains the syntax and usage of
the new language features�
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Chapter �

User�s Manual

This chapter discusses how to invoke the parallel OPS� system� It should be noted that
much of the information is speci�c to the current version of Top Level Common Lisp� and
UMass Parallel OPS� and may change in later releases� The section on invocation can be
skipped by the casual reader� Information on the language which is not speci�c to parallel
OPS� can be obtained from the OPS� User�s Manual �Forgy� ������

��� Invocation�

The system is contained in the �le POPSHASH�lisp� the compiled version is in the �le
POPSHASH�zoom�� The �le should be loaded into a TopCL image� It is recommended
that the TopCL image be invoked with the �gcpages ���� option� and� if using a Lisp
machine front�end� the �netdebug remote�host option� Once the �le is loaded� the control
stack limit should be set using �setf sys		
control�stack�limit
 �������

Startup �les� A standard start �le looks like this


�Standard start file for Toru�Waltz�

�in�package �user�

�load �hash�zoom��

�load �popshash�zoom� �print nil�

�load �lock�time�zoom��

�load �make�unique�zoom��

�load �scheduler�zoom��

�load �pops�set�fns�zoom��

�load �action�par�fns�mmq�zoom��

�load �float�string�zoom��

�load �graph�zoom��

�Top Level Common Lisp and TopCL are trademarks of Top Level� Inc�
�POPSHASH is the modi�cation of the experimental parallel OPS system with hashed memories�
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Where�

hash is the file containing the hash table functions

popshash is the parallel OPS	 code�

scheduler is the current main loop and scheduling package�

lock�time contains utilities for timing lock functions�

make�unique is for the unique locking mechanism�

pops�set�fns is the code for set�oriented productions�

action�par�fns is the code for implementing action parallelism�

graph is a utility for showing the activities of the rule demons

graphically�

�format t �
�Parallel OPS	 loaded� 
���

�setf sys���control�stack�limit� 	����

�i�g�v�

��YOU HAVE TO EXPLICTLY DEFINE THE NUMBER OF OPS PRIORITY QUEUES BEFORE

��RUNNING�

��Even if running serially� because this also initializes the conflict

��set queue�

�init�ops�queues ��

��THIS IS HOW YOU DEFINE THE NUMBER OF QUEUE DEMONS WHEN RUNNING IN

�PARALLEL�

�init�rule�demons ��

�load ��user�dis�dann�bench�toru�waltz�dwaltz�ops��

��IT�S A GOOD IDEA TO DEFINE A RESET FUNCTION TO GET THINGS BACK TO

��GROUND ZERO���

�defun reset��

�oremove ��

�setf �killed� nil�

�clear�unique�trees�

�reset�queues�

�init�time�

�reset�control�variables�

�setf �cycle�count� ��

�setf �action�count� ��

�

���FLAGS TO ENABLE VARIOUS SELF�EXPLANATORY THINGS

���NOTE� Setting action and node parallelism to true don�t automatically

���initiate parallel activities anymore� but allow them to be toggled�

�setf user���production�parallelism� t�

�format t �Setting �production�parallelism� flag to 
a
�� �production�parallelism��

�setf user���action�parallelism� t�

�format t �Setting �action�parallelism� flag to 
a
�� �action�parallelism��

�setf user���node�parallelism� t�

�format t �Setting �node�parallelism� flag to 
a
�� �node�parallelism��

�setf �control�enabled� t�

�format t �Setting �control�enabled� flag to 
a
�� �control�enabled��
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The init�ops�queues command takes one required argument � the number of queues
reserved for rule instantiations � and two optional arguments� the number of queues reserved
for action and match parallelism� respectively� It is recommended that at least two queues
be allocated for match�level operations as the magnitude of match�level node activations
is su�cent to generate some contention for the queues between the queue demons� The
init�ops�queues command must precede the init�rule�demons command�

The init�rule�demons command takes one required argument� the number of rule��action�match�
demons to be activated� An optional argument can be provided to specify the order in which
the demons should examine the queues� This argument has the form of a list of lists� each
list having the form �fair��ag visit�list�� A visit list is simply a list of integers in the range
between � and � � N where N is the number of queues assigned to rules� The �fair��ag�
indicates whether the traversal will be fair� that is� whether the queue demon will examine
all of the rule queues in its list before starting over� or if it will begin at the start of its list
after each rule execution� The traversal lists are apportioned out evenly to the rule demons
as they are created� a rudimentary check is performed to ensure that each rule queue is
visited at least once�

Rule demons may be killed using the kill�rule�demons function�

��� Rule Firing Policies

High�level control over rule��ring algorithms in UMPOPS is primitive� the global policies
are determined by the setting of global variables� Rules may be �red either synchronously or
asynchronously by setting the �async� �ag� If the �production�parallelism� �ag is set to nil�
rule �ring takes place serially� If the variable 
cr�scheme
 is set to �rating when running
serially� rules are �red according to priority functions� otherwise they are �red according
the conventional MEA con�ict resolution scheme�

����� Control Tasks

It is likely that the programmer will occasionally wish to perform synchronous con�ict reso�
lution within the context of certain tasks or groups of rules� while allowing other activities to
take place asynchronously� �An example of an application which requires such a rule��ring

architecture is the Alexsys system developed at Columbia University �Stolfo et al�� �����
Stolfo et al�� ������ a discussion of experiments with this system will appear in future
reports�� A task�based rule��ring architecture is required when the computation can be
divided into multiple asynchronous tasks� each of which


� Has a speci�c preferred order in which operators should be tried�

� Applying one operator invalidates all others in that task�

� Performing search by applying operators in parallel would be prohibitively expensive
due to copying or computational costs�
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����� De�ning Tasks and Task Quiescence

A task can be de�ned informally as a named subproblem within the scope of a larger
computation� Rules executing in di�erent tasks can �re asynchronously� however they
are not guaranteed to access discrete resources� so locking of working memory elements
accessed within tasks is necessary� This possible interaction between tasks distinguishes
UMPOPS�s tasks from Miranker and Kuo�s notion of a set of independent clusters �ring
asynchronously �Miranker et al�� ����� Kuo et al�� ������ A task is a control mechanism
which de�nes the context in which a computation�s con�ict resolution routines �if any� and
rule��ring policy are de�ned and in which a local quiescence may be determined� Multiple
rules from within a task may execute concurrently� this is dependent only on the con�ict
resolution routine assigned to that task� if the routine returns multiple instantiations� they
all may �re� Rule��ring within a task may be asynchronous �in which case no con�ict
resolution routine is de�ned� or synchronous �in which case� a situation speci�c con�ict
resolution routine may be speci�ed� or a default may be used��

Control activities in tasks requiring synchronous con�ict resolution can only occur once
the task has become quiescent� The quiescence of a task can be de�ned as a state in which
all current computation corresponding to that task has been completed� Because of the
data�directed� pattern�matching nature of rule�based systems� determining the quiescence
of tasks �or even the scope of tasks� is non�trivial� Certainly if all working memory changes in
the entire system have become quiescent� then we can say that a particular task is quiescent
and that all relevant operators corresponding to that task have been determined� However�
in a system in which tasks are executing asynchronously with respect to each other� it is
unreasonable to expect system�wide quiescence to occur� Thus� we have the problem of
determining whether a working memory change which is currently occuring is part of the
current task� In general� this can only be determined by waiting to see if that element
matches against a rule which also matches against an element previously determined to be
in the task�

For example� consider the pseudo�OPS code below


�P

�task �name find�a�wombat�

�wombat �name Keith�

��

����

If the working memory element �wombat �name Keith� was being asserted� then the
task de�ned by the element �task �name find�a�wombat� could not be said to be qui�
escent� Dynamic rule con�ict detection cannot be used to detect the quiescence of tasks�
not only because of the overhead� but because new rules may continously be created �or
about to be created�� thus once again� only global synchronization would allow run�time
consistency checking to accurately determine whether a task was quiescent�

We must assume that for the large part� working memory is quiescent and that all active
working memory changes can be annotated as directly a�ecting particular tasks� This is
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done by starting with a quiescent working memory� Goal elements are created in the context
of a task� a goal element is simply any element which is speci�cally annotated as belonging
to a task and which stimulates further rule �rings� From that point on� any rule stimulated
by the goal element is considered to be executing in the context of that task� and any
working memory changes stimulated by that rule are in the context of the task� Quiescence
is achieved when all working element changes being performed within the context of a task
have terminated�

Because all rules execute in the context of the task which created their stimulated
elements� communication or sharing of data is di�cult to arrange� �The task mechanism is
still experimental and not all of the necessary mechanisms have been developed�� Currently�
all initial working memory elements are created in the context of an initial task� All tasks
are allowed to access these elements� If any of these elements are modi�ed by a control
task� the resulting element remains in the context of the initial task� This allows tasks
to communicate with the initial task� but means that quiescence of tasks is only partial�
quiescence of the initial database pool cannot be guaranteed� The question of determining
partial quiescence remains an interesting research issue���

����� The Task Implementation

Incorporating tasks into the UMPOPS rule��ring architecture was straightforward� Rule
instances and working memory elements have to be annotated to record their parent tasks
and the rule �ring routines have to modi�ed to annotate them correctly�

Each task has its own con�ict resolution routine which is to be applied only to rules
instantiations within the context of that task� thus� each task must be assigned its own
con�ict�eligibility set� A new eligibility set structure was devised for UMPOPS� the eligi�
bility set is now an array of sets� with the index of each set being uniquely assigned to a
task� Various initialization routines were modi�ed to ensure that the new data structures
are initialized and reset properly� The con�ict set reporting routines were modi�ed so that
they correctly interpret and print out the contents of the various con�ict sets�

Task Syntax

The task syntax is similar to that used in UMPOPS for specifying action�level parallelism�

De�ning tasks� Tasks must be de�ned before they can be created� A task de�nition con�
sists of a task name� a rule �ring policy �asynchronous or synchronous� and� if synchronous�
a con�ict resolution routine speci�ed as a function call taking an eligibility set�

�deftask �task�name

	conflict�resolution�routine �CR�function�name

	type �synchronous � asynchronous�

�
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Initiating tasks� A task must be explicitly invoked with one exception� all initial rule
�rings take place within the scope of an initial default task� �The user may de�ne this
default task to be asynchronous or synchronous�� The syntax is


�with�new�task��task�name body��

All RHS actions contained within the body are executed within the context of the task�
Otherwise� all RHS actions within a rule are executed within the context of the task which
stimulated that rule�

Modi�ying or Terminating Tasks� When phases of a computation change� the nature
of the task may have to change as well� The �redefine�task �task�type� operator
allows rules to change the rule��ring policy and con�ict resolution routine of a task in mid�
computation� The �kill�task� function allows a rule to terminate the task context in
which it is executing� This allows the resources used by the task� speci�cally the eligibility
set� to be reclaimed and assigned to other tasks�

Summary� Tasks

The control task is a �exible construct which allows a parallel rule��ring system to pursue
multiple independent activities� each of which possesses its own con�ict resolution routine
and appropriate rule��ring policy� The propagation of task contexts through the use of
working memory elements allows at least a partial quiescence to be de�ned and determined
for each task� If tasks can also be guaranteed to be fully data�independent in a speci�c
application� complete local quiescence of a task can be determined�

��� Functions for Timing and Benchmarking

UMPOPS is instrumented to provide a great deal of information about the execution char�
acteristics of parallel programs� The following functions can be used to retrieve this timing
information


� Analyze�tasks
 The analyze�tasks function returns a list of the utilization times
for all activated rule demons� divided into time spent executing rule� action� and
match level activities� Maximum� minimum� average and total times are given� �The
�tasks� referred to are not the control tasks discussed in the previous section� but the
tasks assigned to processors��

� Analyze�instances
 The analyze�instances function prints out the execution statis�
tics for each type of rule executed� including number of executions� average� minimum�
and maximum execution times� and number of times the rule was locked out� Infor�
mation about residency on the eligibility set and queues and time spent performing
heuristic ratings is also given�

� Print�time
 For the real statistics a�cionado� the function print�time will print out
queue and execution statistics for every individual rule executed during a program�
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� Anomalies
 Given an argument representing a time limit� returns all rules exceeding
that execution time�

Graphing functions are available to show processor utilizations� All graphing functions
should be preceeded by the function call �init�graph�� The function �do�graph start

end� prints out processor utilizations for the indicated time period� Each type of parallelism
is indicated by a � � �rule parallelism�� an �A� �action parallelism�� or an �M� �match par�
allelism�� For each time period� the average number of rules in the eligibility set and all
execution queues is given� The graphing data is obtained by sampling recorded execution
times at a given level of granularity� The default resolution is �� samples�sec� This reso�
lution is approximately that of a rule execution� however to adequately examine activities
at a �ner level of granularity� the sampling interval can be reduced by resizing the graph�
The function �resize�graph sample�sec time�period� will resize the graph to record
data at the given resolution for the given number of seconds� For example� �resize�graph
���� �� will display activities at a resolution of every ������ �ne enough to display even
match�level activity accurately� The function �write�graph file�name start end� will
write the graph data to a �le with the columns delimited by tabs so that the graph can be
reproduced using more sophisticated graphics�

��� LHS Meta�level Notation

The lefthand syntax of the rules in UMass parallel OPS� has been modi�ed to allow the
speci�cation of �meta�level� information� The notation has the syntax �meta �meta�type

value� �meta�type value� ����� Although the meta construct is present in the lefthand
side� it does not generate patterns or change the match in any way� it is simply used to
send messages to the rule compilation routines�

Originally� the purpose of the meta notation was to allow the speci�cation of control
information� however� in actual use� the meta notation has been used as a catch�all for any
language modi�cation which would otherwise require a modi�cation to the original OPS�
syntax� The current usages of the meta notation are summarized below�

��	�� Annotating mode�changing productions�

Rule�based programs are usually organized in phases� Each production contains a reference
to particular working memory element of a class such as mode or stage� The production
is only enabled when the mode is set to a particular value� In order to change the mode�
special rules such as the following are used


�p go�to�next�phase

�stage �is current�phase�

��

�modify � �is next�phase��

In a serial OPS� system� the standard con�ict resolution strategy is used to ensure that
the mode�changing production only �res after all other eligible productions have done so�
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In a system which �res all eligible productions in parallel� the mode�changing production
may execute prematurely� To prevent this� mode�changing productions should be explicitly
annotated in the following way


�p go�to�next�phase

�meta

�rtype mode�changer��

�stage �is current�phase�

��

�modify � �is next�phase��

�Mode�changing� rules annotated in this manner are handled specially by the scheduler�
they are prevented from �ring until all other rules in the con�ict set have �red and all
working memory changes have been processed�

��	�� Other uses of the meta notation

The meta notation has been used as a general purpose mechanism to specify information
about the rules which would otherwise require changes to the existing OPS� rule syntax�
These usages are summarized below


� Priority� A number between zero and N�� where N is the number of priority queues�
All rules of this type will be placed within that queue�

� Priority
queue� If non�nil� then rule instantiations of this type are placed on a
priority queue�

� Priority
fn� The function which is executed during the pre�eval phase in order to
determine the rating of rules placed in a priority queue�

� Lock
not
required� If it is certain that a rule will never interact with other rules
�e�g�� it works in its own space�� then locking is not required� Setting lock�not�required
to be non�nil informs the controller that locks need not be acquired for this rule�

� Control
fn� A control function which� when executed in the environment of the
righthand side� will determine whether or not the rule should �re� Variables bound
by the rule can be accessed using the !varbind function �i�e� �!varbind ��foo��
returns the current binding of �foo��� Usually the control function compares some
combination of instantiation variables with a global variable describing the current
state of the solution�

� Control
generator� A function which allows a control value to be associated with a
keyword at instantiation time which is then stored in the rule instantiation for later ref�
erence by control functions� The user speci�es a form� i�e� ��gen�control�data indicator
exp��� and the cons�cell �indicator � exp� is placed on an association list associ�
ated with the rule instance� It can then be accessed by various control functions using a
standard assoc call� i�e� �assoc �
tsp�distance
 �rule�instance�control�data

instance���
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� Rhs
kill
actions� A list of righthand side actions to be taken if the rule is killed by
a control rule� These are usually �clean up� actions which delete the current state so
as to reduce the overall size of working memory�

Examples of the use of the meta construct can be seen in the programming examples in
section � and the appendices�

��� New Righthand Side Functions in UMPOPS

This section describes the additions to the OPS� righthand side instruction set and syntax�

����� Action and Match�level Parallelism

In the previous version of UMass parallel OPS�� action and match level parallelism were
enabled by global �ags� Using this technique� it was not possible to selectively employ
these levels of parallelism in speci�c rules� Because action and match parallelism are not
appropriate to all situations and may cause saturation of processing capability� it proved
necessary to develop RHS language constructs to allow action or match parallelism to be
speci�ed at the level of individual working memory changes� To avoid having to maintain
separate versions of programs with and without action and match level parallelism� the
global switches 
node�parallelism
 and 
action�parallelism
 are retained� If these
�ags are set to nil� parallelism is disabled and all actions and match activities will take
place serially�

A disadvantage of the scheme of using explicit constructs to implement match parallelism
is that it is not possible to simply activate match parallelism to measure the speedup
achievable on existing OPS� programs� the programs must be modi�ed to explicitly invoke
parallelism in their righthand sides�

Action Parallelism�

To invoke action parallelism� there are two constructs� in�parallel and in�parallel�sync�
Each of these constructs takes one or more RHS actions as an argument� Each working
memory change carried out within the scope of these commands is executed concurrently
with all other working memory changes� If the in�parallel construct is used� the �ow of
control continues on to the actions following the construct� if any� as soon as the working
memory changes are initiated� It is frequently necessary to ensure that all working memory
changes have completed before a rule terminates� for example� when performing an ini�
tialization routine� In such cases� the in�parallel�sync construct is used� this construct
initiates all the RHS actions included within its body� then waits until they have all been
completed before any further actions are taken�

Match
Level Parallelism�

Match�level parallelism does not normally yield great speedups because of the small granu�
larity of the match operations� the relatively high overhead of invoking parallel operations
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at that level of granularity� and the small number of rules a�ected by the average working
memory change �Gupta� ����� There are� however� certain cases in which a signi�cant im�
provement can be achieved� The most common of these is the mode�changing production�
When a working memory element which triggers a new phase of the computation is added�
unusually large amounts of matching activity occur and many rules are triggered� Under
these circumstances� match�level parallelism can greatly reduce the rule execution time�

To invoke match�level parallelism� new righthand side actions are provided� These are
make�match�parallel� modify�match�parallel� and remove�match�parallel� The syn�
tax of these actions is identical to their serial counterparts� however� the matching of the
working memory changes triggered by these commands will take place in parallel� The
commands do not terminate until all the matching processes have been completed�

����� Make�unique

UMPOPS provides working memory locks to enforce consistency in working memory during
concurrent activities� But the working memory locking scheme is not adequate to ensure
correct rule �rings for rules which contain negated elements on their lefthand sides as it is
not possible to acquire a lock on an element that does not yet exist� However� it is possible�
through the make�unique function� to require that a rule �ask permission� before creating
an element that it �or another rule� references through a negative condition element�

The make�unique function �actually a pseudo�function� is used to create a working
memory element with certain values once and only once� This mechanism� very useful when
performing initializations� allows the user to specify a working memory element of a speci�c
class with given key values� Before creation� a check is performed to see if such an element
previously exists� If so� the rule is not allowed to execute� otherwise the rule is allowed to
create that element� and all other instantiations are prevented from doing so� This is called
acquiring a �unique lock�� An extended example of the use of the make�unique mechanism
is given in section ������

The element which is to be created must be declared to be unique using the unique�attribute
command� This command� which must precede any rule de�nitions� usually immediately
follows the literalize command de�ning the working memory element� For example� to
de�ne a unique solution element for each of a number of tasks� one could use the following
syntax


�literalize task�solution task value�

�unique�attribute task�solution task�

After this declaration� only one element with the class �task�solution� and a given value
of the task �eld can be created by a call to make�unique� thus each task will have a unique
solution element and clashing cannot occur� Uniqueness is only guaranteed if the element
is created using the make�unique call� UMPOPS doesn�t prevent the programmer from
later changing the key �elds or values of a unique element� The syntax of the make�unique
call �and� in fact� the function itself� is identical to that of the OPS� make� The elements
required to be created uniquely are annotated at compile time and the make�unique call
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is retained as syntactic sugar to highlight the elements that are intended to be created as
unique elements�

Once obtained� unique locks are never released� this allows the programmer to implement
�one�shot� rules which �re once and once only� The function clear�unique�trees must
be executed between runs of a program in order to release all existing unique locks� �The
underlying mechanism behind the unique locks is a discrimination tree upon whose leaf
nodes the locks are hung��

The make�unique function di�ers from the more general region locks in that it allows
the user to specify a particular create operation to be singled out for special attention�
Instead of having to check all new working memory elements against all currently de�ned
regions� only elements declared to be unique are examined� this reduces the overhead of the
locking mechanism signi�cantly�

����� Set Functions

Recent work on incorporating rule�based systems into database systems has indicated that
increased e�ciency and ease of programming can be obtained through the use of set�based
rules rather than instance�based rules �Gordin and Pasik� ����� Widom and Finkelstein�
����� Sellis et al�� ����� In the instance�based implementation of a rule�based system� one
and only one rule instantiation is created for each set of working memory elements which
match a lefthand side� That is� if the lefthand side of a rule has N positive condition el�
ements� then the resulting instantiation will refer to N working memory elements which
match those conditions� A set�based rule modi�es this scheme by allowing the programmer
to specify that certain groups of condition elements on the lefthand side should be con�
sidered as sets� Therefore� the resulting instantiation can be considered as a set of all the
instantiations which would have normally been matched by an instance�based system� By
creating righthand side functions which operate on these functions� many algorithms can
be represented with greater e�ciency and a reduction in rule��rings�

The principal in�uence of set operations on synchronous parallel rule �ring is the reduc�
tion of rule �rings devoted to fundamentally serial algorithms� For example� counting and
marking algorithms can be performed by a single set�oriented production� This simpli�es
programming and eliminates many control structures which depend on con�ict resolution to
succeed� Because the overhead of rule instantiation and invocation is reduced for set rules�
the waiting time for any rule which must synchronize with the counting or marking task
is reduced� However� individual set�oriented rules� because they must operate on greater
amounts of data� may take longer to execute than instance�based rules�

Synchronization Groups

Implementing set�oriented rules in an asynchronous rule��ring system is somewhat more dif�
�cult� The problem is that set construction proceeds incrementally as one or more working
memory elements which stimulate the set rule in question propagate through the network�
An asynchronous rule �ring scheme may attempt to execute a set�oriented rule before the
set has been completely constructed� This could result in the execution of the set rule mul�

��



tiple times with di�erent data sets� causing inconsistencies within the database� Therefore�
it is necessary to determine when the working memory changes which a�ect a particular
instantiation of a set rule are complete and to �re the instantiation only at this time� The
problem of associating working memory changes with a particular set�oriented rule instan�
tiation is similar to that of associating working memory elements with particular tasks or
of associating rule instances with a particular con�ict set�

For now� this problem is solved by using a signaling mechanism� It is assumed that each
set operation has some trigger� that is� that the rules are in some sense goal�oriented� Before
the triggering element �or elements� is �are� added to working memory� the beginning of a
task is signalled� After the working memory modi�cations� the end of the task is signalled�
If any set rule is triggered during the period during which the task is active� it is placed on
that task�s completion list� When the task completes� the rule instantiation is placed in the
execution queue as soon as all the working memory changes invoked within the task become
quiescent� Note that the idea of task synchronization does some damage to the pure notion
of data�directed programming embodied by rule�based systems� In order to create a task
group� it is necessary to know in advance when a working memory being created is likely
to trigger a set�based rule�

The following righthand actions are used to implement synchronization groups


Generate
sync
group� Returns a pointer to a synchronization group� If invoked within
a righthand side� all working memory elements subsequently created by this rule will be
considered as members of that synchronization group�

End
group� Terminates a synchronization group� Any rules enabled by the working mem�
ory elements within the group will become enabled as soon as all elements have completed
matching�

Signal
quiescence
to
group� Used by the working memory match routines to signal to
a group that a working memory element has become quiescent� This simply decrements a
counter within a critical region and then� if the counter becomes zero and the group has
been terminated� allows enabled rules to �re�

Signal
wme
active
to
group� Adds a new working memory element to the synchroniza�
tion group�

Set
group
completion
demon� Allows a function to be attached to a group to be exe�
cuted when the group terminates and becomes quiescent�

The synchronization group mechanism is su�ciently �exible to be used for purposes
other than synchronizing set�rules� for example� it is used for avoiding race conditions when
performing modify actions in parallel�
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Syntax of the set notation

The addition of set�oriented rules to OPS� required changes to both the left� and right�
hand rule syntax� Set�oriented rules must have one or more set patterns in their left�
hand side� A set pattern is a condition element surrounded by square brackets� e�g�
��block �color �x��� Any such condition element matches all elements which satisfy
the pattern� If more than one set pattern is present in the LHS� then one instance of a
set production matching the cross product of all these elements will be produced� One can
think of a set rule as simply compressing all the rule �rings which would occur in standard
OPS� into a single rule �ring� The map�set function allows the programmer to map RHS
operations across the set of rule instantiations�

�map�set

�rhs�action�

�rhs�action�

	 	

�rhs�action��

The righthand side actions which are encased in the map�set function are mapped
across the set of instances� Any variables or condition element variables are bound to the
appropriate values in turn� Any righthand side actions which should only be executed once
can either precede or follow the map�set construct� The set notation can also be used to
count occurrences of working memory elements� when a set�oriented rule is executed� the
variable �set�count is bound to the number of instances contained in the set�

����	 Map�vector

OPS� is oriented towards using rules as the basic unit of control This is not particularly
e�cient as each rule �ring consumes an unavoidable amount of overhead in terms of match�
ing� rule instantiation� con�ict resolution �if any�� variable binding� and so on��� Thus�
using rules as the basic unit of iterative operations is a bad idea from the standpoint of
minimizing the number of rule �rings which must be performed serially� The map�vector

command is an example of the kind of syntactic mechanism which can be incorporated into
a rule�based language to allow iterative operations to be performed within the scope of a
single rule �ring� Much more sophisticated structures than vectors have been incorporated
into rule�based languages since OPS� was written and the map�vector command should be
considered signi�cant not for its expressive power �which is simply making up for a language
de�ciency� but for the reduction in sequential rule �rings that it allows�

The map�vector command is used to map RHS operations over elements in a vector�
A vector is a �eld of a working memory element corresponding to a list of values� it can
be thought of as a one�dimensional array of arbitrary length� The vector is not a particu�
larly �exible mechanism and the mechanisms for manipulating them are particularly crude�
Iterating over a vector typically involves maintaining a working memory element with a
counter and a vector� extracting a value from the vector using a substr command� then
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deleting the element and reasserting a modi�ed version with an incremented counter� The
map�vector command has the syntax

�map�vector ��ce�variable � ce�index� vector�name

��field�bindings � nil�

body�

The ce�variable or ce�index is simply a pointer to the element containing the vector� The
vector�name is the name of the �eld in which the vector is stored� The ��eld�bindings� is
a list of the form ��variable�name� key �variable�name� key� where key is one of prev j

item j rest j index j length j vector�less�item� Body� of course� is the set of RHS actions to be
executed in the context of the map�vector� The ��eld�bindings� need some explanation�
During the execution of the map�vector� each element of the vector is considered in turn�
Local variables are bound to the list of elements previously seen�prev�� the list of elements
yet to be seen�rest�� the current element�item�� the index of the current element�index��
the length of the vector�index�� or the entire vector except for the current item �vector�less�
item�� Because map�vectors can potentially be nested� the programmer is given the ability
to bind these values to appropriate variable names� The ability to refer to the previous and
subsequent items in the vector allows permutations of vector elements to be produced� A
typical use of map�vector from a travelling salesperson example is show below


�p start�city

��start �start �start�city �sc �length �length � �

�initialized �value t�

��

�oremove ��

�map�vector �start city�list �item �city vector�less�item �vli�

�bind �tag�

�in�parallel

�make connect�goal �tag �tag �city� �sc �city� �city

�length �compute �length � ��

�city�list �vli�

�make so�far �tag �tag �distance � �cities�seen �sc���

�
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Chapter �

Writing Parallel OPS� Programs�

Structure and Performance

This chapter discusses the problem of actually programming a parallel OPS� program� The
�rst section discusses the general nature of parallel OPS� programs and the restrictions
that the implementation places on concurrently executing rules in order to ensure program
correctness� The remainder of the chapter discusses some of the actual programming is�
sues involved in parallel rule �ring� For purposes of illustration� two programs� Toru�Waltz
and Travelling Salesperson� are analyzed in terms of their potential for parallelism� Lan�
guage constructs which are particularly pathological when employed in parallel programs
are highlighted and methods of avoiding them are discussed� The use of RHS functions
and programming methods speci�c to UMPOPS are demonstrated� The parallel behavior
of these benchmarks is analyzed in terms of both speedup and processor utilization and the
features of the programs which contribute or detract from their performance are examined�

��� Programming Productions in Parallel

A conventional production system usually has a very de�nite structure consisting of phases
of processing� Each rule belongs to a single phase and is relevant only during that phase�
Only a single production is selected and executed in each cycle� Transition between phases is
controlled by mode working memory elements which are added or deleted by mode�changing
productions� Order of execution is controlled by a rigid con�ict resolution strategy which
is frequently used to impose control upon the computation�

This traditional program structure does not support a great deal of parallelism� Because
a working memory change is likely to a�ect only a small number of productions within the
current phase� the bene�ts of node �matching� parallelism is limited� Because only a single
production is selected at a given time� there is no opportunity for production parallelism�
Even the scope of action parallelism is limited� because there is frequently an implicit
assumption that the working memory changes in the righthand side take place in a speci�c
order�

Writing an OPS� program which takes advantage of parallel rule �rings can be done in
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several ways� The �rst and easiest is to �nd a domain with obvious parallel decompositions
so that each subtask can be assigned to one or more rule �rings� An example of this is the
circuit simulation benchmark� in which each device in the circuit is simulated by a separate
rule �ring� Applications that display such a large amount of parallelism may be few and
far between�

Much of the performance gain in programs using rule parallelism will likely result from
shifts in the fundamental program writing paradigm� As an example� consider the current
meaning of con�ict resolution� Rules are expected to con�ict� and if more than one is
applicable to a given situation� the �best� is chosen� In a parallel system� there is no reason
why all productions applicable in a given situation should not be executed� assuming that
the number of rules in the con�ict set does not grow exponentially� This is equivalent
to performing an exploration of a search space in parallel� Because the elimination of
con�ict resolution reduces the opportunity for heuristic evaluation� the parallel activation
of rules gives rise to a number of control issues� The programmer must be able to represent
the relative utility of rules� control the number of rules being activated� and be able to
terminate incorrect or irrelevant sequences of rule �rings� These control issues are the focus
of our on�going research in parallel production systems�

��� Restrictions on Parallel Rule Firings

When rules are executed concurrently� the potential exists for interactions between the rules
which can potentially leave working memory in an inconsistent state� or which can produce
results which could not be achieved by any serial execution order of the productions �Ishida
and Stolfo� ����� Schmolze� ����� Schmolze� ������ UMPOPS provides mechanisms for
detecting and preventing interactions due to positive interactions� however� this is only suf�
�ciently powerful to allow correct programs to be written� it does not guarantee correctness�
So the programmer is required to design rule�based programs so that interactions do not
occur� The basic assumptions underlying correct parallel programs are listed below


� Only one production maymodify a given working memory element during an execution
cycle �enforced by locking��

� A production may not reference or modify a working memory element which is being
�or has already been� modi�ed by another co�executing production� Because the
instantiations of a rule contain their own copies of relevant working memory� there
are circumstances where it is valid �or at least harmless� to refer to a working memory
element which is currently being modi�ed�

� A rule which contains negative condition elements should not be executed if any rule is
currently executing which would add a working memory element which would disable
the rule� �Not enforced by locking��

� All working memory operations which a�ect a particular production must be com�
pleted before that production is scheduled and executed�

�Supplied with the release as an example program�
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The last restriction is to avoid �ring transient instantiations of a production when em�
ploying an asynchronous rule��ring policy� If the entry of a rule instance into the eligibility
set is not monotonic� the rule should not be �red asynchronously� For example� given the
following production and changes to working memory� a transient production instantiation
appears in the eligibility set� because it will be immediately disabled� it should not be
executed�

�p example�prod

�A�

��B �field� wombat�

��

����

�remove B �field� wallaby �field� wombat� ��� example�prod into eligibility set�

�make B �field� koala �field� wombat� ���� example�prod out of eligibility set�

The changes in the above example are exactly those which would take place by the
execution of the OPS� statement �modify �B� �field� baz� in the righthand side of
some rule�

��� Analyzing Two Benchmarks for Rule Parallelism

This section discusses the construction of two parallel rule�based programs in terms of
their potential for various levels of parallelism
 node� action� rule� and for their potential
for asynchronous rule execution� The �rst benchmark was written by Toru Ishida and
modi�ed by the author� it will be referred to as Toru�Waltz�� The second program is an
implementation of the travelling salesperson problem which illustrates the issues underlying
the implementation of heuristic control in a parallel asynchronous rule�based program� �

����� Analyzing the Toru�Waltz Benchmark for Rule Parallelism

It turns out that the Toru�Waltz program is reasonably amenable to parallel rule execution
for a fundamental reason � during the course of the program� con�ict resolution is never�

used for the purpose of distinguishing between two valid rules� In most cases� if a rule
appears in the con�ict set� it is either executable� super�uous� or transient� So the principal
problems in adapting this program to parallelism is removing extraneous rules from the
con�ict set and �ring the eligible rules at the earliest possible time without accidentally
executing a transient instantiation�

The Toru�Waltz benchmark is well�suited for parallel rule execution� It is divided into
a number of stages� each of which supports a considerable degree of concurrent rule �ring�

�Schmolze has referred to this benchmark as Neiman�Waltz�� but modesty forbids���
�The text of the benchmarks is given in the appendix�
�Well���hardly ever�
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� Initialize
 Creates a database of the legal junction labels�

� Make�data
 Loads the scene to be analyzed into working memory�

� Enumerate�Possible�Candidates
 Lists all the labellings for all the junctions�

� Reduce�Candidates
 Eliminates all illegal line labellings�

Both the initialize and make�data phases of the computations simply consist of
adding data to working memory� Rule parallelism can be employed by executing both rules
concurrently� To further reduce the initialization overhead� action parallelism can be used
to assert the initial working memory elements concurrently� In Toru�Waltz� initialization
time was reduced by approximately a factor of ten by combining rule and action parallelism�

The enumerate�possible�candidates phase of the computation is ideal for asyn�
chronous rule parallelism� Each instantiation is monotonically enabled by the creation of a
junction in the make�data phase of the computation� Each instantiation corresponds to a
unique junction and labelling� so rules never con�ict� The righthand side of the make�data
and enumerate rules perform no modify commands� so no transient instantiations appear
in the con�ict set� Although the enumerate rules contain a negated condition element� its
sole purpose is to render the rule self�disabling�

A brief digression is in order here� In the discussion of the rationale underlying the
selection of the locking mechanism� it has previously been asserted that attempts to auto�
matically ensure serializable behavior require both a compile�time and run�time component�
Then why should we feel that it is possible to design a parallel rule�set which executes cor�
rectly when design� of course� precedes run�time" The answer is given above
 because the
designer is granted a certain knowledge of the nature of the data which is input to the
program� it is possible to make deductions about the uniqueness of each rule instantia�
tion� For example� in Toru�Waltz� we know that each junction is assigned a unique label�
and therefore there will only be one rule instantiation for each junction�possible�junction�
label combination� Thus� while an automated interaction detection mechanism must rely
on run�time analysis of rules with instantiated variables to conclude that each instance of
the enumerate�possible�line�label rule can be run in parallel� the designer� by means
of a certain omnipotence� can conclude the rules will not interact� This� of course� raises
the potential of including syntactic methods of conveying this information to compile�time
analysis methods� but given the philosophy of designing for parallel activity� the principal
virtue of such a mechanism would be to verify the correctness of the programmer�s design�

Because the enumeration rules are added to the eligibility set monotonically �that is�
once added� a rule instance will never be removed from the con�ict set by another rule �ring��
it is possible to combine the enumeration and initialization phases so that the enumerate

rules can �re asynchronously as soon as they are enabled� Because the mode�changing
mechanism continuously monitors the rule demons for quiescence and the eligibility set for
contents� there is no possibility that the system will move onto the next phase before the
initialization and enumeration phases have terminated�

The reduce�candidates phase consists of rules which detect junctions whose labels
are not consistent with any possible labelling of adjacent vertices� these junctions are then
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deleted� Deleting elements which represent junctions is the only action which takes place
during the reduce�candidates phase of processing� It takes a certain amount of inspec�
tion to conclude that the rules in this phase can actually execute concurrently� This is
because it is actually possible for rules to mutually disable each other by deleting exist�
ing possible�line�label elements� By examination� it can be seen that this interaction is
actually harmless� the e�ect of executing both rule instantiations concurrently is to exe�
cute a redundant remove operation which is actually semantically valid in OPS�� However�
because the labelling�candidate element is referenced via a positive condition element� the
working memory locking mechanism of UMPOPS automatically detects the interacting rule
instances and prevents one of them from �ring�

����� Mode Changes

One serializing feature in Toru�Waltz �and most other rule�based programs� is the use of
the modal or gating type of working memory element� An example of this usage is the
stage working memory element in the Toru�Waltz benchmark� Modes are typically used
to distinguish between the major stages of a computation� In cases where there is no
signi�cant parallelism between the stages� the use of mode elements serve a useful purpose
in denoting an explicit partitioning among rules� Speci�c semantics can be assigned to
each mode change� for example� in the Toru�Waltz program� the reduce�candidatesmode
declares that no new junctions will be created� therefore the relaxation phase can begin� If
stages of the computation can overlap or be pipelined� the use of mode elements can cause
unnecessary serialization of the computation� in these cases� the rules in the overlapping
stages should be placed in the same partition so that they may �re asynchronously�

The use of modal working memory elements can seriously slow down a computation
because otherwise eligible productions can not enter the con�ict set until the mode of the
element is changed� Typically� many productions are enabled by a modi�cation to a modal
element and creation of instantiations is relatively expensive� so the overhead of a mode�
changing rule can be very high� What is more� because the order of matching within the Rete
net is determined by the order of the condition elements within the rule� the traditional
location of the gating condition element as the �rst element in the rule prevents partial
matching from occurring between other elements within the rule� This causes a signi�cant
amount of matching to take place once the gating element �nally arrives �see Figure �������
To give an idea of the magnitude of the problem posed by mode�changing rules� the single
rule go�to�reduce�candidates can consume anywhere from ��� to ��� of the run�time of
Toru�Waltz �out of a total of �� rule �rings� depending on whether match�level parallelism
and asynchronous rule��ring are enabled�

The delay due to the gating e�ect can be minimized by placing the gating element as the
�nal positive condition element in the rule� This positioning allows more partial matching
to occur before the gate element is created� This technique only works if the gating element
is not used to pass parameters to the rule� that is� no �eld in the gating element may be
uni�ed with any �eld in any other condition element of the rule� The problem with this
re�ordering of terms is that placing the gating condition as the �nal element may cause
the rule to partially match in situations in which the rule is not applicable� The overhead
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caused by this unnecessary matching may exceed the advantage gained in minimizing rule
activation time by changing the placement of the gating element� The exact nature of the
trade�o� can only be determined by examining each case separately�

Parallelism can be used to minimize the delays caused by gating in two ways� Because a
gating element typically a�ects many production instantiations� node parallelism� as men�
tioned previously� can be e�ective in minimizing the time consumed in the matching process�
In Toru�Waltz� the time consumed by the go�to�reduce�candidates mode�changing rule
is reduced by a factor of �ve by using match�level parallelism� If asynchronous production
execution is allowed� then productions enabled by the addition of the modal element can
be executed as soon as they enter the con�ict set� thus maintaining processor utilization
and avoiding a bottleneck when processes have to be assigned to each instantiation in the
con�ict set�

CE1
 (gate element) CE2

CE3

CE4

CE4

P-Node

Joins can not take place
until after the gate element
has been added.

CE1 CE2

CE3

CE4

CE4
 (gate element)

P-Node

Joins can take place
before the gate
element is added.

A. B.

Figure ���
 The location of the gating element a�ects the amount of partial matching which
can take place in the match process�

����� The Travelling Salesperson Benchmark

The Toru�Waltz program was simple to parallelize because it presented opportunities for
data parallelism in which individual rule instances could �re on unique data items� No
control mechanisms were required because one instance �red for each potential junction
labelling� The travelling salesperson benchmark �TSP� is a more complex example because
the search process has to be managed so that there is no interaction between working
memory elements in di�erent search states� and rules must be heuristically pruned in order
to reduce execution time to a reasonable number of rule �rings� Finally� solutions from
di�erent paths must be compared and the best solution selected�
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Search spaces are managed in TSP by assigning all elements in the same state a unique
identi�er� In the example shown below� a new state is created by creating a new tag using
the ngenatom command� �NGENATOM generates a unique integer rather than a symbol in
order to avoid the overhead of interning a variable which is quite high in a parallel system��
The tag is used to annotate the working memory elements which comprise a state in the
search space� i�e� the so�far and connect�goal element� The so�far element records the
distance travelled and the cities seen� while the connect�goal element records the next city
to be visited� Because each combination of elements in a state are unique and there is only
one operator in TSP� there will be only one rule instance �ring per state� This allows the use
of the �meta �lock�not�required t�� notation� because of the partitioning� no rules can
con�ict during the propagation phase and the overhead of locking working memory elements
is not necessary� As will be seen shortly� this is not the case when asserting solutions�

Note the use of the map�vector command which allows iteration across vectors to be
performed in the righthand side� thus avoiding having to use multiple rule �rings to achieve
the iteration� Because the nature of the search process in Travelling Salesperson is that
few rules are initially active� the propagate�cities rules were divided into two types� The
initial start�cities rule and rule instances matching states with more than �ve cities left
to visit have action parallelism invoked in their righthand sides so that matching need not
be completed before the next state can be constructed and visited� As more states in the
search space are created and more rules become more active� action parallelism is not longer
used� This is because with fewer successor nodes� the righthand sides do not take as long to
execute and� with more active states� all available processors are already usefully employed
in performing search�

�p propagate�city��

�meta �priority �� �control�fn compare�with�solution�

�priority�queue t�

�lock�not�required t�

�priority�fn propagate�city�priority�fn�

�rhs�kill�actions ��oremove �sofar�

�oremove �cg���

�

��sofar �so�far �tag �tag �distance �d�so�far �home�city �home � �

��cg �connect�goal �tag �tag ��est�cost �� nil �e�cost�

�city� �city� �city� �city�

�length � � � �l � � �

�distance �city� �city� �city� �city� �distance �d�

��

�bind �cities�seen �litval cities�seen��

�oremove �sofar�

�oremove �cg�

�map�vector �cg city�list � item �new�city vector�less�item �vli�

�bind �newtag �ngenatom��
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�in�parallel

�make connect�goal �tag �newtag �city� �city� �city� �new�city

�length �compute �l � ��

�city�list �vli �

�make so�far �tag �newtag �distance �compute �d�so�far � �d�

�home�city �home

�cities�seen

�substr �sofar �cities�seen inf� �previously visited

�city� � �and the new city

���

The meta�information in the above rule states that its basic priority is � �and all in�
stances of this rule will be placed in queue number ��� that this is a priority queue� the
function that computes the priority is propagate�city�priority�fn� the heuristic control
function associated with this rule is compare�with�solution� and if the rule is pruned by
the heuristic control function� it should remove the working memory elements indicated by
the condition elements �sofar� and �cg�� Note that both the priority function and the
heuristic control function are encoded in lisp� but are executed within the context of the
rule�s righthand side and can therefore access not only global Lisp variables� but also can
reference any OPS variable bound in the rule�s lefthand side by using the OPS� !varbind
function�

Heuristic Control in TSP

The TSP problem is NP�hard� and if all possible solutions were examined� the search space
would grow unmanageably for even small values of N� There are a number of well�known
admissable heuristics for ordering the traversal of the search space in TSP� the one chosen for
this example is the minimum spanning tree�Pearl� ������ Rules are placed in the execution
priority queue according to the value returned by the MST heuristic� A record is kept of
the best �lowest� solution developed so far� and if the value of the heuristic exceeds this
value for any search space� the corresponding rule instance is not executed� instead� the
rule�s kill�actions are executed to remove the corresponding working memory elements and
reduce the size of memory�

The heuristic functions are implemented procedurally in Lisp and are speci�ed using
the LHS meta notation� An early version of this program attempted to compute the MST
heuristic using rule �rings� however� this resulted in more rule �rings to compute the heuris�
tic than to perform the search� For the same reason� rules are pruned using procedural
functions in the rule demons� at the level of granularity of search operations in TSP �one
rule per state�� meta�rule implementations of control methods are not e�cient�

Asynchronous Rule
Firing in TSP

An asynchronous rule��ring policy is used in the travelling salesperson program� Because
rules are scheduled and executed as soon as they enter the eligibility queue� there is never
a time when the system is quiescent and it is impossible to select the �best� of all possible
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solution paths as indicated by the heuristic evaluation function� It is reasonable to ask
whether this causes any degradation in the quality of the solution process as measured by
the number of nodes expanded in the search space� In fact� the number of nodes expanded
by the TSP program is approximately the same whether the program is executed serially
or asynchronously in parallel� There are a number of reasons why this is the case� First�
solutions tend to be placed in the execution queues faster than they can be handled by
the rule demons� Because the propagation rules are placed on a priority queue� the lower
quality rules tend not to be executed until after a solution has been found� they can then be
pruned without being executed� The second and most important reason why asynchronous
rule �ring is admissable is that the heuristics used for TSP are only reasonably precise�
Each invalid solution path must be developed to a certain depth before the estimate of the
quality of the developing solution becomes good enough that the path can be pruned� So�
in even a strictly best��rst algorithm for solving TSP using the minimum spanning tree
heuristic must develop a minimum number of nodes in order to ensure that the current
solution is indeed the minimum distance� Executing rules asynchronously just means that
a certain amount of this work takes place before the solution is found� An analysis of the
parallel nature of the travelling salesperson problem can be found in �Kumar et al�� ������

Merging Solutions

The Travelling Salesperson problem was developed primarily to illustrate two points about
parallel rule��ring� the elimination of the need for rule interference detection by partitioning
the problem into independent states �this idea is developed further in �Neiman� ������ and
the idiom for merging results from parallel search processes� Eventually� each parallel search
path which has not been pruned terminates and posts a possible solution� Only one solution
is acceptable and when competing rules post solutions there is a chance for con�ict� either
the posting of multiple solutions or the posting of an inferior solution�

Consider the �rst case
 in order to create a solution element� one needs a rule of the
form


�p init�solution

�meta �priority ���

��new �solution�goal �distance �dist �tag �tag � �

��solution�goal �distance � �dist�

��solution�

��

�bind �cities�seen �litval cities�seen��

�make�unique solution �tag �tag �distance �dist

�cities�seen �substr �new �cities�seen inf���

�If there is a goal to create a solution�

and there is no goal to create a better solution

and there is no current solution

Then

create a solution element��
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If rules were executed instantaneously� then there would be no di�culties with this rule�
However� there is an unavoidable delay between the instantiation of a rule and its �ring�
This leads to the following possible scenario� An instantiation of the init�solution rule
arrives with a goal to create a solution of say� ������� It is scheduled to �re� once on
the execution queue� the rule cannot be disabled� even if a better solution goal arrives�
Suppose then� a better solution �produced by some parallel search process� does arrive
while the �rst instantiation is still on the execution queue� It is also scheduled and placed
on the execution queue� The end result of this scenario is that two solution elements are
posted in working memory and a possibly erroneous result is produced� How can this be
prevented" The locking scheme cannot prevent this situation because the element to be
locked� the solution element� does not exist until after the execution of the initialization
rule� Instead� we provide a mechanism for creating a unique working memory element� A
unique element is de�ned as a class of working memory element with one or more optional
key �elds� Only one element with a given combination of working memory class and key
�eld values is allowed to exist� In the above scenario� if the solution class is declared to be
unique� the second rule instantiation will not be allowed to �re� because an instance of the
solution element is already being created� Thus� the rule instance will be disabled and the
assertion of the solution element will trigger an instantiation of the new�and�improved

rule� causing the correct solution to eventually be asserted�

�p new�and�improved

�meta �priority ���

��new� �solution�goal �distance �dist� �tag �tag� � �

��solution�goal �distance � �dist��

��old� �solution �distance � �dist�� �

���

�bind �cities�seen� �litval cities�seen��

�make solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf��

�remove �old��

�

A similar possibility for interactions occurs with the new�and�improved rule� two so�
lutions may compete to modify the existing solution� Once again� multiple copies of the
solution element could potentially be created� In this case� however� an existing element
is being replaced and the rule instantiation replacing it must �rst acquire a write lock on
that element� Thus� only one instance of the new�and�improved rule is ever scheduled to
�re at a given time�

There are a number of points of interest in the solution merging rules
 First� note that
the correctness of the solution merging is guaranteed� If a superior solution is ever locked
out� the assertion of the new solution element will re�trigger the instantiation� thus� the
data�directed nature of the rule�based system serves to automatically correct temporary
errors� Although the correct solution will always eventually be asserted� it is important
that the solution�merging rules perform a check to ensure that the solution being asserted
is from the best known solution goal� Otherwise� if many solution�goals were present� each
time the solution was modi�ed� it would take many cycles of rule �rings before it was
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ensured that the correct solution was achieved� and many rules would be locked out during
each of these cycles�

Finally� note the order in which the actions take place in the new�and�improved rule�
The new solution is asserted and then the previous solution is removed from memory� This
is to avoid the creation of transient instantiations of the init�solution rule� Although the
unique�lock mechanism would prevent the init�solution rule instantiations from �ring�
avoiding the overhead of creating the instantiations is a good idea�

����	 Queue Latencies in TSP

TSP was chosen as a benchmark because even small problems generate large enough search
spaces to provide opportunities for rule�level parallelism and the necessity for heuristic
pruning� Each node in the search space �except for the leaf and penultimate nodes� generates
multiple successor states and thus the rate of rule generation will exceed the execution
rate for any reasonable number of processors� The scheduled but unexecuted rules �which
represent the open list� remain on the execution queues until processors become available to
execute them� This queue latency time can greatly exceed the actual time of rule execution�
It�s interesting to brie�y examine the e�ects of queue latency on the performance of the
benchmark�

Because the solution element is used for performing heuristic pruning� it is necessary
to assert new solutions as rapidly as possible� If there were only one execution queue� new
solutions would remain on the execution queue for extended periods of time� Propagation
and solution rules would compete for resources and inferior search paths would be traversed
during the interval between the scheduling of a solution rule and its execution� For this
reason� rules which assert solutions are given a higher priority than propagation rules�
ensuring that the information used for heuristic pruning is as current as possible�

Once an initial solution has been found �not necessarily the �nal solution�� heuristic
pruning can take place� At this point� it would appear possible that the node which would
generate the �nal solution could potentially languish in the execution queue for a long time
while lesser solutions were developed� and this could adversely a�ect the performance of the
benchmark� In fact� the combination of the use of priority queues and a reasonable heuristic
cause the solution to be developed rather expeditiously� Because the search problem then
has to develop many additional nodes in order to eliminate the possibility of a better
solution� it turns out that queue latency is not a major problem in a heuristic program that
requires a �best� solution� In fact� the contents of the execution queues can be divided
up into rules representing nodes that must be �opened� and nodes that will eventually be
pruned� it is only if a signi�cant number of the latter are executed while waiting for the
former that queue �and scheduling� latency becomes a problem�

��� Performance Analysis of Toru�Waltz and TSP

The rationale behind parallelizing a rule�based system is to increase the performance of the
system� Ideally� the nature of the speedup should be linear or near�linear to the number of
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available processors� In practice� there are a number of e�ects which limit the performance
of UMPOPS and they are discussed in this section�

��	�� Methodology of Benchmarking Programs

As has been discussed earlier� UMPOPS has been instrumented to record timing infor�
mation during execution� The most visible and useful measurement is simply the time
required to execute a particular benchmark program� Because of the time�sharing nature
of the Sequent�s operating system and the user�s inability to prevent processors from being
redirected to perform system tasks� there can be a signi�cant variation between runs of the
same benchmark� The loss of processors during a parallel run can be especially signi�cant
when the swapped process was in the midst of a critical region� in this case� the delay is
multiplied by the number of processors attempting to enter that region� The variability of
run times is most noticeable during benchmarks which require a number of processors near
the limit of the machine� because these runs also tend to be the shortest� the variation due
to system scheduling can range from �������� For these reasons� when benchmarking� the
simple expedient of choosing the best time over a series of runs was adopted� Thus� the
following benchmarks should be viewed much as you would view the EPA stickers on a new
car � your mileage may vary�

��	�� Performance Measurements� Toru�Waltz

The speedup due to all levels of parallelism in Toru�Waltz appears to be roughly a factor
of seven or eight� independent of the number of processors available beyond that number
�see Figure ������� Because both action and match parallelism are employed in Toru�Waltz
to reduce the overhead due to initialization and mode�changing� the overall speedup is not
expected to be particularly linear� As a general rule� each successive level of granularity
of parallelism� rule� action� and match� generates less of an overall speedup due to the
proportionate overhead required in generating the parallel action� Not only is the overhead
of smaller granularity operations greater relative to the cost of the operation� but� because
there are typically many more small granularity operations� the absolute cost of the overhead
becomes signi�cant� The speedup for action parallelism in a single rule is approximately
��fold in UMPOPS� Match�level parallelism yields a speedup factor of �ve in the single
mode�changing rule in which it is employed��

For an insight into the performance of Toru�Waltz� we can examine the processor uti�
lization graph for this benchmark �see Figure ��������

During the initialization phase� Toru�Waltz makes use of rule and action parallelism�
Two rules �re simultaneously to add data to the system and each rule employs action
parallelism to reduce run time� Because all actions must be completed before moving to the
next phase� two processors must be reserved to perform synchronization and the maximum
level of action parallelism is �� processors� During the mode�change from the enumerate

phase to the reduce candidates phase� only a single rule can �re and match parallelism is

�There is no reason to think that this speedup is an absolute limit� but optimization of match�level

parallelism is not a high�priority in this research project�
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Parallel Speedup for Toru-Waltz
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Figure ���
 The parallel speedup graph for Toru�Waltz� The left axis shows both run�time
in seconds and the speedup factor� The right axis shows the average rule �ring speed per
second for each run�
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Processor Utilization for Toru-Waltz
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Figure ���
 The processor utilization graph for Toru�Waltz with �� �demon� processors�

employed to reduce the serial bottleneck� Finally� as the algorithm approaches completion�
the amount of work to be performed �and the demand for processors� falls o� signi�cantly�
This is due to the nature of the constraint propagation algorithm� each junction is connected
to at most three other junctions and thus� each rule �ring can initiate at most three rule
�rings� Because the Toru�Waltz benchmark is fairly small� the signi�cance of these three
limiting phases is relatively large� and the potential speedup is limited�

The principal bottleneck in Toru�Waltz is the overhead due to the go�to�reduce mode�
changing production� If this rule is included� the rule execution rate for Toru�Waltz with
�� processors is ��� �rings�sec while if this rule is disregarded� the average rule execution
speed is ��� �rings per second and exceeds ��� rules�sec in the reduce phase�

��	�� Performance Measurements� TSP

The processor utilization for the Travelling Salesperson benchmark is shown in �gure ������
as can be seen in this graph� the level of rule parallelism is very high in this benchmark
after the initialization phase has been completed� Theoretically� the speedup due to rule
parallelism in the Travelling Salesperson Problem should be essentially linear and� as can
be seen in �gures ����� and ������ this is approximately the case� The results shown in this
graph are the best results of a series of benchmarking runs� Speedup factors are measured
with the initialization rules included and with them deleted from the total runtime� The
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best observed speedup is approximately �� times using �� processors�� In general� the
observed speedup departs from the linear due to the time�sharing nature of the Sequent�s
scheduler and for reasons discussed in the following section�

Processor Utilization for TSP
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Figure ���
 The processor utilization for the TSP benchmark�

Contention and Cache Failures

In our experiments with TSP� we have seen a steady decrease in run time �increase in
performance� as more processors are applied to the problem� however� the increase departs
from the linear as the number of processors increase� There are a number of possible
explanations for this decrease including the character of the Sequent�s scheduler� contention
for resources within the Rete net� and cache faults within the shared memory architecture�

Although the contention of the various queue demons for the rule� match� and action
queues would appear to be a potential bottleneck� measurements of processor utilization
indicate that processors spend very little idle time when performing rule parallelism�

Measurements of both rule execution times and the time that processors spend attempt�
ing to gain access to critical regions indicate that contention for resources within the Rete
net and for the eligibility set might account for as much as �� of the decrease from linear
performance� In TSP� average rule execution times tend to increase by only a small amount�
no more than ������ of a second as the number of processors utilized increases� re�ecting
a slight contention for resources� This increase is roughly �� of the average rule execution
time� Contention for resources can rise considerably if the number of processors being em�
ployed approaches the number available on the machine available processors are employed
and other processes require cycles� Under these load conditions� it becomes probable that

�In UMPOPS� one processor is always reserved for the scheduler and therefore� the maximum number of

rule demons is �� on a �� processor machine�
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Parallel Speedup for TSP

Number of Rule Demons

R
un

 T
im

e 
(in

se
co

nd
s)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15
0

2

4

6

8

10

12

14

S
pe

ed
up

 F
ac

to
r

Run Time Run Time
(- Init)

Speedup
(with Init)

Speedup
(- Init)

Figure ���
 The parallel speedup for the TSP benchmark� One set of lines shows the
decrease in run�time as the number of processors increases� the other shows the ratio of
parallel run�time to serial run�time�
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Parallel Speedup for TSP
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Figure ��	
 The parallel speedup for the TSP benchmark showing run�time and the number
of rules �ring per second�

a processor will be swapped out while it has acquired control over a critical region� the
swapping delay is then multiplied by the number of processes waiting to get access to that
critical region�

There is one anomaly associated with the average rule execution time metric� it jumps
signi�cantly when moving from serial to parallel execution� The explanation for this is
apparently the loss of cache consistency as multiple processors begin accessing the same
areas of shared memory� particularly within the Rete net memory nodes� Unfortunately�
the Sequent operating system does not provide any tools for measuring this e�ect directly
and this explanation must remain a hypothesis� It is to be expected that the number of
cache faults would increase with the number of executing processors� and the slight increase
in average rule execution times may also be due partly to bus and cache contention�

The �nal explanation for the decrease in linearity is simply that as the run�time of the
benchmark decreases� small e�ects due to the time�sharing scheduler� paging and other
artifacts of the operating system� and even the time required to access and store timing
data become more signi�cant�

��� Summary  Programming Parallel OPS�

This section has examined two programs written to take advantage of parallel rule execution�
These programs illustrate two situations in which parallelism is e�ective
 data parallelism�
in which operations can be applied to many di�erent data objects in parallel� and parallel
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search� in which many search paths can be explored concurrently� Some of the issues
underlying parallel rule�based programming have been discussed� including e�ective use of
lock mechanisms� avoiding transient instantiations� merging solutions� and making e�ective
use of action� and match�level parallelism during initialization and mode�chaning rules� In
both programs� an asynchronous rule��ring control policy was used and� in the travelling
salesperson problem� it was shown how heuristic control mechanisms could be incorporated
into a rule�based program without resorting to synchronizing con�ict resolution schemes�
The performance characteristics of each program were analyzed and it was shown how
multiple levels of parallelism could be used to optimize performance� The limited number
of processors available on the Sequent prevents the determination of the full speedup due
to parallelism for these benchmarks� However� the fact that each benchmark is able to fully
utilize all available processors for much of their execution indicates that many additional
processors could gainfully be employed�
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Chapter �

Implementation

This chapter discusses the data structures and algorithms which are used to implement
the parallel OPS� matching process and the changes that were necessary to allow parallel
activity� During the re�implementation process� it was discovered that there are several
assumptions concerning the order in which activities take place within the matcher which
are no longer valid in a parallel system � the potential errors and their solutions are also
described in this section�

Many of the details of the implementation were inspired by Gupta�s study of the issues
involved in parallelizing the Rete net �Gupta� ����� Because this work is undoubtedly
familiar to the interested reader� this report concentrates primarily on the implementation
details which are unique to parallel OPS�� particularly the synchronization of two�input
nodes�

��� The Rete Net

Because the following discussion hinges on an understanding of the internals of the OPS�
pattern matching process� a short overview is given of the processing which takes place
within the Rete net� the principle data structure in OPS��

In production systems� most of the processing time is spent determining which rules are
eligible to �re� In OPS�� this process consists of matching the lefthand sides of productions
against working memory� When a set of working memory elements is found such that there
is a working memory element for every non�negated condition element in the lefthand side
and there exist no elements which match negated condition elements� the rule is eligible
to �re� As a principal bottleneck in rule �ring� this matching process should be as fast as
possible�

The matching process in OPS� takes place using a data structure called the Rete net�
The Rete net is an e�cient implementation of a pattern matcher based on the following
observations


� Working memory changes only incrementally from cycle to cycle�
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� Many productions in a rule base are frequently structurally similar and may share one
or more terms�

The �rst observation implies that it should be possible to store partial matches and only
match against those working memory elements which change� rather than implementing the
naive approach of comparing each production against all of working memory after each set
of working memory changes� Sharing of tests between productions reduces the total number
of comparisons that must take place�

Rete Net Overview� The matching process works by passing tokens consisting of one
or more working memory elements through the net� performing tests on them at each node�
The �top� of the Rete net is composed of alpha nodes which consist of simple tests on the
class of the working memory element and speci�c �elds� This part of the network possesses
no memory and resembles a conventional discrimination net� tokens are passed to suceeding
nodes in the network only if the tests at the current node succeed� Alpha tests are not very
time�consuming and parallelizing their execution does not lead to large improvements in
performance�

Beta tests are responsible for unifying variable values between two condition elements
�inter�element tests�� Each of the beta nodes has two inputs and two memories� one associ�
ated with each input� As a token arrives at a beta node� it is stored in memory and tested
against the opposite memory to see if one or more consistent bindings can be achieved� If
so� a new token is constructed from the incoming token and the stored token� This new
token is then propagated through the beta node�s out list �a list of successor nodes�� The
memories associated with the beta nodes store partial matches� making it unnecessary to
repeat the entire computationally expensive uni�cation process after each working memory
modi�cation� The cost of executing a beta node is proportional to the size of the memory
against which the incoming token is tested� The two primary beta nodes are the AND
and NOT nodes� Beta nodes present numerous opportunities for parallelism� for example�
multiple beta nodes can be executed in parallel� or� if the architecture supports su�ciently
�ne�grained processing� an incoming token can be compared to each corresponding token
in memory simultaneously� Beta nodes also present a number of obstacles to implement�
ing parallelism� First� they contain memory nodes which must remain consistent despite
possible parallel accesses� Secondly� each beta node refers to at least two tokens which can
change asynchronously during the match process� Finally� new data may arrive during a
match episode� synchronization constructs are needed to ensure that the new data does not
stimulate spurious matches or none at all�

At the bottom of the Rete net is a series of production nodes� when a token arrives at
one of these nodes� the production corresponding to the node is placed in the con�ict set�
instantiated with variable bindings from the incoming token� The production node has no
memory� thus only one production �ring ever results from a given combination of working
memory elements�

AND Nodes� The operation of an AND node is illustrated in Figure ���� In part A of
the �gure� a token is shown arriving at the memory node of the AND� The token �which
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represents a partial match� is inserted into the memory of the AND node and then processed
�part B�� �In a serial system� it does not matter whether the node is placed in memory before
or after processing� although this is not the case when node parallelism is allowed�� Part
C of the �gure shows the processing of the AND node� The incoming token is compared
to each token in the opposite memory according to the list of tests contained within the
node� A typical test might compare the value of the third slot of the second element of the
incoming token to the �fth slot of the �rst element of the memory token�

Pairs of tokens which satisfy the tests are concatenated into a new token and passed to
the succeeding nodes in the network� Because an AND node is basically symmetrical� this
description covers the case of tokens arriving from both the left and right sides� In the case
of a negated token �that is� a token resulting from a remove working memory command�� the
AND node functions in the same way except that the token is removed from the memory
node and� if the token satis�es the tests� a new negated token is passed to succeeding nodes
so that partial matches will be deleted from memory nodes lower down in the network� If
the succeeding node is a production node� then the negated token is used to remove the
corresponding instantiation from the con�ict set��

NOT Nodes� A NOT node is used to implement negated clauses in a production lefthand
side� The NOT nodes are structurally similar to AND nodes� but the processing is quite
di�erent� A NOT node must ensure that for a given negated clause� there is no working
memory element that matches that clause in such a way that there are consistent variable
bindings with the working memory elements matching the preceding LHS clauses� Like the
AND node� the NOT node has two memories� One memory is devoted to working memory
elements which potentially match the negated clause� The other memory contains a list
of tokens corresponding to the non�negated condition elements of the LHS and� associated
with each token� a count of the number of matches which occur in the opposite memory�
The processing of tokens arriving at a NOT node di�ers according to whether the token
arrives from the left or righthand side�

A token arriving from the left �the choice of sides is arbitrary� represents a list of
elements which match the lefthand side condition elements of the production� this token
will be propagated through the net only if no token is present in the opposite memory
which satis�es the tests of the NOT node� The arriving token is placed in the lefthand
memory of the NOT node and assigned a counter value of zero �Figure ���� parts A and
B�� For each element in the right memory� the test is performed� if successful� the counter
is incremented� If the count is zero after the entire righthand memory has been examined�
the token is propagated�

A token arriving from the right �Figure ���� parts A and B� is placed in the righthand
memory� Then� for every token in the lefthand memory� if the tests are satis�ed� then the
corresponding counter is incremented� If the counter was formerly �� then the new token
has disabled the production� in this case� the lefthand token is negated and propagated to

�A negated token should not be confused with a negated condition element� A negated token is simply a

token tagged for removal while a negated condition element speci�es a working memory element which must

not exist if a rule containing it is to �re�

��



New Right Token

AND
NODE

Tests

Left Token 1
Left Token 2
Left Token 3
Left Token 4
    :     :     :
Left Token  N

Tests

Left Memory

Left Memory Right Memory

New
Right 
Token

Left
Tokeni

(Left Tokeni  + New Right Token )

AND
NODE

Tests

New 
Right Token
Right Token 1
Right Token 2
  :       :       :
Right Token N

Left Token 1
Left Token 2
Left Token 3
Left Token 4
    :     :     :
Left Token  N

Left Memory Right Memory

New Right Token

A. B.

C.

Right Memory

New 
Right Token
Right Token 1
Right Token 2
  :       :       :
Right Token N

Figure ���
 A token arrives at an AND node�

��



New Left Token

NOT
NODE

Tests

Tests

Left Memory

Left Memory Right Memory

Right 
Tokeni

New
Left
Token

NOT
NODE

Tests

Right Memory

A. B.

C.

Left Memory

Right Token 1
Right Token 2
Right Token 3
  :      :      :
Right Token N

New Left Token 
          (0)
Left Token 1 
    (# matches)
Left Token 2
    (# matches)
    :     :     :
Left Token  N
    (# matches)

 test succeeds

#matches

If #matches = 0
(i.e. no matches were found)
then propagate token through 
remainder of network.

Left Tokeni

Right Token 1
Right Token 2
Right Token 3
  :      :      :
Right Token N

New Left Token

Righthand side memory
represents possible match to 
negated condition element in 
production LHS.

New Left Token 
          (0)
Left Token 1 
    (# matches)
Left Token 2
    (# matches)
    :     :     :
Left Token  N
    (# matches)

Right Memory

Figure ���
 A token arrives at the lefthand input of a NOT node�

��



remove it from memory nodes further down the net� For negated �deleted� tokens arriving
at the NOT node� the process is the same except that the token is removed from the memory
and the counters are decremented� If any counter becomes �� then the lefthand token is
propagated�

��� Implementing Match�level Parallelism

Any degree of parallelism in a system which uses a Rete net pattern matcher implies the
presence of �or at least the capability for� node and intra�node parallelism� Technically�
the node level of parallelism allows more than one test node in the network to be active
at the same time while intra�node parallelism allows multiple activations of a single node�
The �rst attribute increases the speed of a single match episode because multiple paths
of the network can be traversed in parallel� The second attribute allows multiple match
episodes to take place at once� a situation which arises when multiple actions in a RHS are
executed concurrently� or when the righthand sides of multiple productions are executed
concurrently�

Match�level parallelism occurs when node parallelism is used to increase the matching
speed of a single working memory element change� Implementing match parallelism is
relatively simple� Each node possesses an out�list� that is� a list of the nodes which succeed
it in the network� In a serial system� this out�list is traversed in a depth��rst fashion� To
parallelize the net traversal� each item in the out�list is traversed in parallel� This approach
to match parallelism spawns one new process for each node in the net traversed by a given
token� Depending on the structure of the Rete net� the branching factor� the amount
of computation performed at each node� and the overhead of invoking parallel processes�
this might involve more overhead than is gained by the parallelism� Variations on the
scheme involve only invoking node parallelism when the out�list is large� not invoking node
parallelism for the simple alpha nodes� only creating parallel processes at the �rst level of
beta nodes� or creating less than N processes for an N�element out�list� each process then
traversing part of the out�list in a depth��rst fashion�

When node parallelism is employed� there is a chance that multiple production nodes
may be simultaneously active� causing multiple instantiations to be entered into the con�ict
set at the same time� For this reason� the con�ict set �or� if the implementation doesn�t
require con�ict resolution� the list of productions waiting to be executed� must be considered
a critical resource� and the add and delete functions must take place within a critical region�

Intra�node parallelism� in which multiple tokens can be processed by multiple activations
of the same node at the same time� is required for action� or rule�level parallelism� The
major di�culty is maintaining the consistency of the associated memory �for beta nodes�
during simultaneous accesses� If two tokens are added to memory at the same time� then
the memory list could end in an inconsistent state� To avoid this problem� each memory
node is assigned a unique lock which allows token insertion and deletion to be performed
within a critical region� For AND nodes� the memories do not have to be locked during
the actual token processing as the synchronization mechanism described in the following
section ensures that the state of the network remains consistent�
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��� Synchronization of ��input Nodes

The Rete net makes the implicit assumption that only one token is processed by a two
input node at one time� When the system supports action or production parallelism� this
assumption is no longer true� multiple tokens might arrive at a two�input node at any time�
and at either input �Forgy� ����� It is inevitable that eventually a token will arrive at either
the left or right input while a matching token is still being processed on the opposite side�
This can cause serious synchronization problems�

There are two possible failure modes� depending on when the token is added to the
node�s memory� Figure ��� depicts the case in which the implementation adds tokens to the
memory before passing the token to the AND node� When tokens arrive simultaneously�
it is possible that the left token will match against the right token� and the right token
will match against the left token� This will result in two identical tokens being propagated
through the network� The inevitable result is that the con�ict set will eventually contain
multiple identical instantiations� multiple copies of tokens will proliferate in memory� and
the state of the network will be corrupted�

If the tokens are added to the node�s memory after the matching process takes place�
then it is possible that neither token will match� The righthand matching process will
examine the lefthand memory and not �nd a matching token and the lefthand process will
examine the righthand memory and not �nd a matching token� Then both tokens will be
added to memory on their respective sides� This would result in a situation in which the
node�s memories contain two tokens satisfying all tests but which have not been passed
further down the net�

One possible solution to this problem� which was adopted by Gupta� is to lock one side
of a node when a token arrives from the opposite side so that the problem of simultaneous
arrival never occurs� This is unduly restrictive� however� for the occurrence of a simultaneous
arrival of matching tokens is very rare� Non�matching tokens arriving at the opposite inputs
can be processed without di�culty� So a locking approach will unduly reduce throughput�
Instead� UMPOPS adopts the following solution


In UMPOPS� tokens are added to memory before they are passed to the AND node� so
the case in which two identical tokens are propagated must be detected� The solution taken
to this synchronization problem was to add a completion �ag and a match list �eld to each
token being passed through the network� As each token enters a two�input node� the �ag is
set to false� It is not set to true until all tests have been completed on that token and it has
been added to memory� obviously� if a node�s match �ag is set� then its matching process is
complete and it is not going to generate any more matches unless a matching token arrives
on the opposite side�

When a test in the two�input node succeeds� the matching token is checked to see if
its completion �ag is set� If the �ag is set� then the token is propagated as usual� If not�
then that token is currently being processed and a case of simultaneous activation exists�
The matching token is stored on the incoming token�s match list� After the incoming token
has been compared against the entire opposite memory� both it and its match list are
passed to a synchronization process� The synchronization process iterates over the match
list examining the completion �ags of each item� If the �ag becomes set� then the two
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tokens are concatenated and propagated� If the matched token�s �ag is not set� then its
match list is examined to see if it contains the current token� If so� then the two nodes
are mutually matching and a synchronization error exists� In this case� the result of one
match is suppressed by removing it from the token�s match list �The choice of which side the
token is removed on is arbitrary�� Once the matching token is removed� the match list for
the incoming token becomes empty and its completion �ag is set� This allows the opposite
synchronization process to propagate the concatenated token further down the net�

The overhead for this synchronization check is not high because it is rare for two tokens
to arrive at a node simultaneously� therefore the usual overhead is the creation of the token
data structure� and the checking and setting of the completion �ags�

Figure ��� demonstrates the synchronization process�

To prove that this mechanism correctly solves the simultaneous token problem� consider
the following cases�

Case A� The left token�TL� arrives and completes matching before the right token TR
arrives� This is the same as the serial case� The left token does not �nd a righthand match
and is not propagated� but sets its completion �ag� The righthand token then arrives�
successfully matches against the lefthand token� and� because the completion �ag for TL is
set� the result is propagated�

Case B� TL does not complete matching before TR arrives� but� because TR is concate�
nated to the front of the memory list� TL does not match against TR� In this case� the
completion �ag for TL is not yet set� so TL is placed on TR�s match list� The synchroniza�
tion mechanism ensures that TR cannot complete until the match list is empty� The token
TL� however� has an empty match list and completes� setting its completion �ag� TR can
then propagate the result of concatenating TL and TR�

Case C� TL and TR arrive at the two input node simultaneously� Both are entered in to
memory� and each successfully matches against the other� Left uncorrected� two identical
tokens �TL � TR� would be propagated through the network� This is the pathological
case which the synchronization mechanism was designed to avoid� The completion �ag can
not be set on either token because in order to do so� the opposing token would have to
have its �ag set� Therefore� the matching token is placed on each incoming token�s match
list� that is� TR stores TL and TL stores TR on its list� Each token is then passed to the
synchronization routine� The synchronization routine observes that the token TR has TL
on its match list which in turn has TR on its match list� It arbitrarily deletes TR from TL�s
match list� TL then has a null match list and the match process terminates� setting the
completion �ag for TL� Once the �ag is set� the synchronization process monitoring TR can
then propagate TL�TR and remove TL from TR�s match list� allowing its match process to
terminate� Only one copy of the outgoing token is propagated�

Because of the symmetry of the two�input AND node� the tokens TL and TR can be
reversed in the above discussion� There are no other cases� It remains only to consider the
case of deadlock� Is it possible for a token to never set its completion �ag� thus resulting in
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a synchronization process which never terminates" The answer� brie�y� is no� for the only
way for a token to never complete is for it to match a token whose completion �ag is never
set� But the only way for this to happen is for the two tokens to be mutally matching� and
this deadlock is arbitrarily broken by the synchronization routine�

The synchronization problem may also appear in NOT nodes� however this was solved by
another mechanism� Because the NOT node modi�es its memory nodes during processing
�by incrementing counters�� it proved easier to simply lock both memories while the node
was being executed� Therefore� the simultaneous synchronization problem does not arise in
this implementation� However� locking the memory nodes dramatically reduces throughput�
and a less restrictive algorithm should eventually be developed�

Synchronization and Sharing of Memory Nodes

The approach taken to synchronization e�ectively prevents the sharing of memory nodes
in UMPOPS� If a memory node has an out�list of more than one beta node� then a token�s
synchronization �ag might be set in any of these nodes� This could cause synchronization of
any of the other sibling nodes to take place improperly� Because the proliferation of memory
nodes is ine�cent in terms of space usage and increases the number of critical regions that
must be acquired during processing� this restriction should be removed� Methods such as
arrays of synchronization �ags in which the arity of the array is the same as the arity of
the out�list should be applicable� but have not yet been implemented�

��� Race Conditions

There is one additional hazard due to intra�node parallelism which must be guarded against�
Consider the case in which a token T� enters a two input node and matches with a token
contained on the opposite side T�� A new token consisting of the two tokens concatenated
together� �T� � T�� is propagated through the tree� Now suppose that a remove working
memory element episode takes place� which causes T� to be removed from the node memory�
This causes the token 
�T� � T�� to be propagated� where the minus sign represents a �ag
specifying deletion� For any number of reasons� it is possible that this negated token could
arrive at a beta node or production node before the original token� If this happens� the
deletion will fail� and the positive token will remain in memory despite the fact that one of its
supporting working memory elements has vanished ��gure ����� Currently� race conditions
are avoided by using the task synchronization mechanisms provided by UMPOPS� no action
stimulated by an embedded add or delete operation in a modify command is allowed to
execute until the opposing match operation has completed�

	�	�� Avoiding critical regions

When running in parallel� it is necessary to reduce the time that processes spend in critical
regions as this tends to serialize performance� The most notable critical regions in UMPOPS
are the eligibility �con�ict� set and the node memories� Con�ict for the node memories is
greatly reduced by hashing� Inserting instantiations into the eligibility set is inexpensive�
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however� deletion is costly because the traversal of the list and the actual deletion must take
place within a lock� To avoid this delay� instantiations which are deleted from the eligibility
set are simply marked as �killed�� but are not actually removed from the list� As the
scheduling process removes instantiations from the list� it checks to see if the instantiations
have been killed� if so� they are simply discarded� A variation of this scheme could be used
to reduce the overhead of deleting tokens from node memories� however this would require a
garbage collection process to periodically examine the node memories and remove unneeded
tokens�

��� Implementing Action�level Parallelism

Action�level parallelism occurs when multiple working memory changes stimulated by a
single rule take place concurrently� From a matching standpoint� once the working memory
changes are asserted� they are handled no di�erently than changes invoked by separate rule
instances� The challenge of implementing action parallelism comes from the implementation
of OPS� which de�nes or compiles the righthand side into monolithic code in which the
individual actions are not accessible to be invoked concurrently� In order to access the
individual actions� the in�parallel and in�parallel�sync constructs were devised� These
constructs� actually compile�time macros� examine their arguments �which consist of make�
modify� or remove functions� and modify them so that they spawn o� individual match
processes�

In e�ect� each working memory operation is expanded into a function which pushes
a change operation and arguments onto an action queue where it is then executed by a
rule�action demon� If the 
action�parallelism
 �ag is not set� the action�queue�push
operation executes the operations instead of pushing them onto the action queue�

The initial naive implementation of action�level parallelism allowed the righthand side of
the rule to compute the token to be added to �deleted from� memory� This token was then
placed on the action queue with a �ag indicating whether it was an add or delete operation�
It turned out� however� that the process of constructing the token to be matched against
working memory is actually fairly expensive relative to the matching process� Thus� the
righthand side of the rule was only able to push about four actions onto the queue before
the �rst had �nished executing� and the bene�t due to action parallelism was thus limited
to four�fold� This rather contradicts the widely quoted statistic that matching consumes at
least ��� of the work of executing a rule � one reason for this may be that action parallelism
is most useful during initialization routines in which there is not a lot of matching performed
against the elements being asserted�

To increase the potential speedup due to action parallelism� the righthand side was mod�
i�ed so that instead of creating the token to be matched� it simply placed the appropriate
make� modify or delete function� its arguments� and the necessary environment variables
onto the action queue� The action demons now were responsible for both constructing the
tokens and matching them against working memory� Although this increased the time that
the individual action demons were active� the rule instances were able to push actions onto
the queue much more quickly and the speedup due to action parallelism increased to at
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least eight�fold� The �obvious� object lesson to be learned from this is that when spawning
o� processes sequentially �especially at a low level of granularity�� the launch time must be
minimized� Therefore� all initialization and processing work which can be passed on to the
parallel processes should be�
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Chapter �

Conclusion

This manual has described the features and syntax of the UMass Parallel OPS�� These fea�
tures include the ability to invoke parallelism at the rule��action�� or match�levels� specify
heuristic pruning and ordering funcitons� and �partially� enforce correctness using a work�
ing memory�based locking scheme� Some of the issues involved in designing programming
parallel rule�based systems were addressed and two sample programs were studied� Finally�
low�level implementation details of parallel matching and synchronization were discussed�
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Appendix A

Enhancements to OPS�

A�� E�ciency considerations in Lisp�based OPS�

UMPOPS is implemented in Top Level Common Lisp� a concurrent Lisp supporting lightweight
threads which was originally developed at the University of Massachusetts and has since
been commercialized� The principal reason for this choice of implementation language is
that the public domain code was already available in Lisp� Although there are now public
domain C�based OPS�s which o�er higher performance� this increased speed is largely due
to extremely optimized compilation of the rules into a Rete net� The compiled nature of
this code makes it extremely di�cult to modify the pattern matching algorithms in order
to add levels of parallelism or synchronization mechanisms� in most cases� the rule��ring al�
gorithms are equally in�exible� Lisp is still the language of choice for experimental vehicles
such as UMPOPS which are frequently modi�ed or augmented with new language features
or control mechanisms� During the development of UMPOPS� a number of enhancements
were made to the lisp�based OPS��s pattern matcher and data structures� These enhance�
ments have improved the performance of UMPOPS by a factor of � to �� times� despite
the overhead due to the extra data structures� locking� and general bookkeeping required to
implement rule parallelism� Because considerable experimental work is still performed us�
ing Lisp�based versions of OPS�� the magnitude of this performance increase is su�cient to
make it worth brie�y describing the modi�cations to the OPS� code which are not directly
related to parallelism�

A���� Representation of working memory elements and tokens

OPS� represents working memory elements as �at lists� the �rst element of which is the
class of the element� and all following items are �eld values� Extraneous information such
as the timetag of the element is stored on an association list� indexed by the class of the
element and the element itself� This representation scheme proved inadequate for parallel
implementations of OPS�� The association list corresponding to the class of each element
had to be locked everytime a new element was created or deleted which caused undesirable

�Top Level Common Lisp and TopCl are trademarks of Top Level� Inc�
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contention for the critical region� This contention was increased by the necessity for storing
additional information about each working memory element �such as the wme locking in�
formation and benchmarking information such as match and assertion times�� A new data
structure� the wme�info structure was created to store all information about the working
memory element� To avoid having to access a global structure to access the wme�info

structure� it was stored as the last element of each working memory element� Because this
requires cdr�ing to the end of the element every time the element is accessed� this is not
as e�cient as� say� implementing each working memory element as a structure� however
this was far simpler than rewriting all the OPS� code which references working memory
elements� Although the wme�info structure was developed simply to avoid contention for
critical resources when asserting working memory elements in parallel� it turned out that a
��� increase in performance was achieved even when running serially�

During pattern matching using the Rete net� tokens are passed through the network� In
OPS�� these tokens are simply lists of working memory elements� In UMPOPS� the necessity
of storing synchronization information in each token required that tokens be represented
as structures� Although more expensive than the conventional OPS� representation for
tokens� this representation allowed other e�ciency measures to be implemented� notably
the storage of tests values for pattern matching and hash keys for memory node access�

A���� Reduction of GELM calls

When pattern matching� OPS� performs binary tests on working memory tokens� These
tests consist of tests applied to the values of speci�c �elds of the tokens� The �elds are
accessed using indices compiled into the tests� OPS� makes frequent calls to the gelm

�get element� function which takes an index into a token� selects the appropriate working
memory element and �eld and extracts the value speci�ed by the index� The gelm function
is easily the most frequently called function in OPS�� However� it is clear that many of the
gelm calls are redundant� at each node in the Rete net� a call to gelm for a speci�c token
will always return the same value� It�s more e�cient� therefore� to simply call gelm once
when the token arrives at each node memory and to store a list of the values required for
the node tests� Because UMPOPS requires a structured representation for tokens instead
of the simple list used by OPS�� this modi�cation was simple and resulted in a ������
decrease in match times and a considerable reduction in the calls to the gelm function�

For reasons which remain mysterious but are probably related to the small amount of
memory available to previous implementations of Lisp� OPS� originally stored the gelm
indices as integers in which the working memory index�WM� of the token and the �eld
number�F� were encoded as WM � ����� � F � Decoding this involved a call to �oating
point routines to perform division and rounding operations� The performance of OPS� was
sped up considerably by replacing this representation with a simple dotted pair �WM � F��

A���� Hashed Memories

The original OPS� memories were simply unstructured lists� In UMPOPS� the memories of
each node are represented as hash tables whenever possible� �Hashing is only possible when

�



the node contains an equality test�� The hashing scheme is similar to that used in the CMU

parallel�matching OPS� �Gupta et al�� ������ however� that implementation maintains a
single global hash table rather than a hash table at each node� Once the appropriate
hashed memory has been retrieved for an incoming token� the corresponding equality test
has already been performed� so that test is not repeated during evaluation of the beta tests�

The hashtable functions provided by Common Lisp could not be used in implementing
hashed memory nodes because of the requirement that memory nodes be accessed in parallel�
Because the CL hashtable is expandable� it is necessary to acquire a lock on the entire
hashtable whenever the table is referenced� whether or not it is actually being modi�ed�
This is unacceptable when executing in parallel as a reference to any bucket of the hashtable
prevents any further access to that table and thus serializes access to the Rete node� This
problem was solved by developing a special hashtable in which each bucket is assigned a
lock� The hashtable is of �xed size� so each bucket contains a list of entries� The bucket
is only locked when changes are made to its list of entries� In addition� each entry �which
represents a hashed slice of a memory node� also possesses a lock which must be acquired
when tokens are inserted into that sub�bucket� Although more complex to implement� this
scheme greatly reduces contention for memory locks�

The addition of hashed memories to UMPOPS improved performance by approximately
a factor of two�

A���	 Compilation of Righthand Sides

In a Lisp�based OPS�� righthand side actions are represented as macros� The principal
reason for this is to avoid having to �quote� arguments passed to the actions� In order
to execute the righthand side actions� an eval operation is performed on each action�
This involves a macro expansion at runtime for each RHS action� the macro expansion
is quite ine�cient and can cause serious variation in RHS execution times� Although the
development of a full RHS compiler was beyond the scope of our research� we developed
a preprocessing mechanism which expanded all embedded macros in the RHS actions and
then passed the body of the RHS to a function compiler� The compiled RHS function is
stored in the PNODE structure attached to each rule type� Instead of eval�ing the RHS� it
is now invoked using the more e�cient apply operator�
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Appendix B

The Toru�Waltz Benchmark

�

� INITIAL OPS	 VERSION OF WALTZ�S ALGORITHM by Toru Ishida

�

� Modified by Dan Neiman

� COINS Dept�

� University of Massachusetts

� ������ Added possible�line�label element� One element is added for each possible

� labelling of each end of each line� This allows easy testing for consistent

� line labelling without proliferation of rules�

�������������������������������������������������������������������������������

�������������������������������������������������������������������������������

� �

� Data � Knowledge Structure for Waltz�s Algorithm �

� �

�������������������������������������������������������������������������������

�������������������������������������������������������������������������������

�literalize possible�junction�label junction�type line� line�� line���

�literalize junction junction�type junction�ID line�ID� line�ID�� line�ID���

�literalize labelling�candidate junction�ID line� line�� line�� l�c�ID�

�literalize possible�line�label line candidate junction label�

����������������������������������������������

� Knowledge of Possible Junction Labeling �

����������������������������������������������

��literalize possible�junction�label junction�type line� line�� line���

� � �

� Junction type � L  � � �

� V

�



�p initialize

�meta �no�lock�required t��

�stage initialize� ��� ��remove � �make stage make�data�

�in�parallel�sync

�make possible�junction�label �junction�type L

�line� out �line�� in �line�� nil�

�make possible�junction�label �junction�type L

�line� in �line�� out �line�� nil�

�make possible�junction�label �junction�type L

�line� � �line�� out �line�� nil�

�make possible�junction�label �junction�type L

�line� in �line�� � �line�� nil�

�make possible�junction�label �junction�type L

�line� � �line�� in �line�� nil�

�make possible�junction�label �junction�type L

�line� out �line�� � �line�� nil�

�  � � �

� Junction type� FORK V

� � l

�make possible�junction�label �junction�type FORK

�line� � �line�� � �line�� � �

�make possible�junction�label �junction�type FORK

�line� � �line�� � �line�� � �

�make possible�junction�label �junction�type FORK

�line� in �line�� � �line�� out�

�make possible�junction�label �junction�type FORK

�line� � �line�� out �line�� in �

�make possible�junction�label �junction�type FORK

�line� out �line�� in �line�� � �

�  ����� �

� Junction type� T l

� l�

�make possible�junction�label �junction�type T

�line� out �line�� � �line�� in�

�make possible�junction�label �junction�type T

�line� out �line�� � �line�� in�

�make possible�junction�label �junction�type T

�line� out �line�� in �line�� in�

�



�make possible�junction�label �junction�type T

�line� out �line�� out �line�� in�

� �l�

� Junction type� ARROW  � l � �

� � l� �

�make possible�junction�label �junction�type ARROW

�line� in �line�� � �line�� out�

�make possible�junction�label �junction�type ARROW

�line� � �line�� � �line�� � �

�make possible�junction�label �junction�type ARROW

�line� � �line�� � �line�� � ���

��������������������������

� Scene to be Analyzed �

��������������������������

��literalize junction junction�type junction�ID line�ID� line�ID�� line�ID���

�

� �������������

�

�

� A B

� � � � �

�  � � � �� � �

� � C � � D �

� � 	�l�� � � �l� �

� E ����l � � � � l � �

� l��� l � � � ��  l �� �

� l l F l� � � � � l � �

� l l� l� �� G �� l� � �

� l l� l � � l � �

� l l l L� � M l �� �

� l l��K� l � � ���� O

� H l l�� �	 l� �� � N���l

� � ���l� P �� l� �� Q �� l l l

� l � �J �l� � l � �l� � �l l�� l

� l �� � l � � l � � l � � �l l l

� l � ��� l � � l � � l � � l l l

� l R� � l ��� �l� � l ��� � l l V

� l��� �� ��l �� T �� ��l �� � l l

� l �� � �l � ��	 �l � W�l l

� l �S� l U � � l V � �� l

� ��l l l l l l� l

� l �l �X� ��l� �Y� �l l

� l l� � � l � � ��l l

� l l � � l � � l l

� Z � l ��� � l � � l � DD

� � l � �	� l ��� ��� l �� 

�



� ��� l � � l � � l �

� �l� �l� �l�

� AA BB CC

�

� ����������

�p make�data

�meta �no�lock�required t��

�stage initialize�

���

��remove �

��make stage enumerate�possible�candidates�

�in�parallel�sync

�make junction �junction�type L �junction�ID A

�line�ID� � �line�ID��  �line�ID�� NIL�

�make junction �junction�type L �junction�ID B

�line�ID� � �line�ID�� � �line�ID�� NIL�

�make junction �junction�type ARROW �junction�ID C

�line�ID� 	 �line�ID�� � �line�ID�� ��

�make junction �junction�type ARROW �junction�ID D

�line�ID� � �line�ID��  �line�ID�� ��

�make junction �junction�type ARROW �junction�ID E

�line�ID�  �line�ID�� � �line�ID�� �

�make junction �junction�type FORK �junction�ID F

�line�ID� � �line�ID�� � �line�ID�� 	�

�make junction �junction�type L �junction�ID G

�line�ID� � �line�ID�� � �line�ID�� NIL�

�make junction �junction�type FORK �junction�ID H

�line�ID�  �line�ID�� � �line�ID�� ��

�make junction �junction�type ARROW �junction�ID J

�line�ID� � �line�ID�� � �line�ID�� ��

�make junction �junction�type FORK �junction�ID K

�line�ID� � �line�ID�� � �line�ID�� 	�

�make junction �junction�type FORK �junction�ID L

�line�ID� � �line�ID�� � �line�ID�� ��

�make junction �junction�type FORK �junction�ID M

�line�ID�  �line�ID�� � �line�ID��  �

�make junction �junction�type FORK �junction�ID N

�line�ID� � �line�ID�� � �line�ID�� ���

�



�make junction �junction�type ARROW �junction�ID O

�line�ID� � �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID P

�line�ID� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID Q

�line�ID� �	 �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID R

�line�ID� �� �line�ID�� �� �line�ID�� ��

�make junction �junction�type FORK �junction�ID S

�line�ID� �� �line�ID�� � �line�ID�� ���

�make junction �junction�type ARROW �junction�ID T

�line�ID� � �line�ID�� � �line�ID�� 	�

�make junction �junction�type FORK �junction�ID U

�line�ID� �� �line�ID�� �� �line�ID�� �	�

�make junction �junction�type FORK �junction�ID V

�line�ID� �� �line�ID�� �� �line�ID�� � �

�make junction �junction�type ARROW �junction�ID W

�line�ID� � �line�ID��  �line�ID�� � �

�make junction �junction�type FORK �junction�ID X

�line�ID� �� �line�ID�� �� �line�ID�� �	�

�make junction �junction�type FORK �junction�ID Y

�line�ID� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type L �junction�ID Z

�line�ID� �� �line�ID�� �� �line�ID�� NIL�

�make junction �junction�type ARROW �junction�ID AA

�line�ID� �� �line�ID�� � �line�ID�� ���

�make junction �junction�type ARROW �junction�ID BB

�line�ID� �� �line�ID�� �� �line�ID�� �	�

�make junction �junction�type ARROW �junction�ID CC

�line�ID� � �line�ID�� �� �line�ID�� ���

�make junction �junction�type L �junction�ID DD

�line�ID� � �line�ID�� �� �line�ID�� NIL���

���������������������������������

� Temporal Labelling Candidates �

���������������������������������

��literalize labelling�candidate junction�ID line� line�� line���

	



�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

� �

� Production Rules for Waltz�s Algorithm �

� �

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

���������

� Start �

���������

�p start�Waltz

�meta �no�lock�required t��

�start�

���

�remove �

�make stage initialize��

���������������������������������

� Enumerate Possible Candidates �

���������������������������������

�p enumerate�possible�candidates

�meta �no�lock�required t��

�stage initialize�

�junction �junction�type �j�type� �junction�ID �j�ID�

�line�ID� �l� �line�ID�� �l�� �line�ID�� �l���

�possible�junction�label �junction�type �j�type�

�line� �line�� �line�� �line��� �line�� �line����

��labelling�candidate �junction�ID �j�ID�

�line� �line�� �line�� �line��� �line�� �line����

���

�bind �l�c�ID� �ngenatom��

�make labelling�candidate �junction�ID �j�ID� �l�c�ID �l�c�ID�

�line� �line�� �line�� �line��� �line�� �line����

�make possible�line�label �line �l� �label �line�� �candidate �l�c�ID�

�junction �j�ID��

�make possible�line�label �line �l�� �label �line��� �candidate �l�c�ID�

�junction �j�ID��

�make possible�line�label �line �l�� �label �line��� �candidate �l�c�ID�

�junction �j�ID���

�p go�to�reduce�candidates

�meta �rtype mode�changer�

�no�lock�required t��

�stage initialize�

���

�remove�match�parallel �

�make�match�parallel stage reduce�candidates��





���������������������

� Reduce Candidates �

���������������������

�If a line is labelled ��� on one end� than it must be labelled ��� on the

�other end�

�P consistent�plus

�stage reduce�candidates�

��line��possible�line�label �line �line� �junction �junction� �label � �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � �find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label ��

���

�remove �line��

�remove �l�c���

�If a line is labelled ��� on one end� than it must be labelled ��� on the

�other end�

�P consistent�minus

�stage reduce�candidates�

��line��possible�line�label �line �line� �junction �junction� �label � �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � �find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label ��

���

�remove �line��

�remove �l�c���

�If a line is labelled �in� on one end� than it must be labelled �out� on the

�other end�

�P consistent�in�out

�stage reduce�candidates�

��line� �possible�line�label �line �line� �junction �junction� �label in �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � �find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label out�

���

�remove �line��

�remove �l�c���

�If a line is labelled �out� on one end� than it must be labelled �in� on the

�other end�

�P consistent�out�in

�stage reduce�candidates�

��line� �possible�line�label �line �line� �junction �junction� �label out �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � �find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label in�

���

�remove �line��

�remove �l�c���

�When a labelling�candidate is deleted� we want to also delete all possible line

�labels associated with that labelling�candidate�

�



�P eliminate�line�labels

�stage reduce�candidates�

��old� �possible�line�label �candidate �c�� �

��labelling�candidate �l�c�ID �c��

���

�remove �old���

�Commented out the remove because this part of the code is serial�

�We�re interested in benchmarking parallel rules���

�p go�to�print�out

�meta �rtype mode�changer��

�stage reduce�candidates�

���

��remove �

�make stage print�out��

�������������

� Print Out �

�������������

�p print�out

�stage print�out�

���

�remove �

�halt��

�



Appendix C

The Travelling Salesperson

Problem

�TSP

�Travelling salesperson problem modified to incorporate the minimum

�spanning tree heuristic�

�literalize go �

�literalize home�city name�

�literalize start tag start�city length city�list�

�vector�attribute city�list�

�literalize connect�goal tag est�cost city city� length city�list�

�literalize so�far tag distance cities�seen�

�vector�attribute cities�seen�

�literalize solution distance tag cities�seen�

�Note the use of the UNIQUE�ATTRIBUTE for the solution element�

�unique�attribute solution�

�literalize solution�goal distance tag cities�seen�

�literalize distance city city� distance�

�Working memory element declarations for minimum spanning tree calculation

�literalize mst�city tag name flag�

�literalize goal�compute�mst cost�so�far seed�city tag unseen�cities�

�vector�attribute unseen�cities�

�literalize mst�data cost�so�far tag�

�vector�attribute city�list�

�literalize initialized value�

� ����� Modified start�city to use new map�vector rhs�macro� This will

�cut down on instantiations of start�city and create new nodes to �open�

�in quick succession�

�p start�city

�meta �priority ���

��start� �start �start�city �sc� �length �length� � �

�initialized �value t�

���

��



�oremove ��

�map�vector �start� city�list �item �city� vector�less�item �vli��

�bind �tag� �ngenatom��

�in�parallel

�make connect�goal �tag �tag� �city �sc� �city� �city�

�length �compute �length� � �

�city�list �vli��

�make so�far �tag �tag� �distance � �cities�seen �sc����

�

�p finish�trip

�meta �priority �� �control�fn compare�new�solution�with�solution�

�control�generator ��gen�control�data �tsp�distance� �ari ��d�so�far� � �d� � �d��������

��sofar� �so�far �tag �tag� �distance �d�so�far� �cities�seen �start�city� � �

��cg� �connect�goal �tag �tag� �city �city� �city� �city�� �length � � �

�distance �city �city� �city� �city�� �distance �d��

�distance �city �city�� �city� �start�city� �distance �d�� �

���

�bind �cities�seen� �litval cities�seen��

�make solution�goal �distance �compute �d�so�far� � �d� � �d�� �

�cities�seen �substr �sofar� �cities�seen� inf� �city�� �start�city���

�Use action parallelism to reduce the run time of rules which do a

�lot of processing in their righthand sides�

�p propagate�city�	

�meta �priority � �control�fn compare�with�solution�

�priority�queue t�

�lock�not�required t�

�priority�fn propagate�city�priority�fn�

�

��sofar� �so�far �tag �tag� �distance �d�so�far� � �

��cg� �connect�goal �tag �tag� ��est�cost ��� nil �e�cost��

�city �city� �city� �city�� �length � ! 	 �l� � � �

�home�city �name �home��

�distance �city �city� �city� �city�� �distance �d��

���

�bind �cities�seen� �litval cities�seen��

�map�vector �cg� city�list � item �new�city� vector�less�item �vli��

�bind �newtag� �ngenatom��

�in�parallel

�make connect�goal �tag �newtag� �city �city�� �city� �new�city�

�length �compute �l� � �

�city�list �vli� �

�make so�far �tag �newtag� �distance �compute �d�so�far� � �d��

�cities�seen �substr �sofar� �cities�seen� inf� �previously visited

�city�� � �and the new city

���

�No action parallelism in righthand sides as by the time these rules are

�invoked� full rule parallelism will be in use�

�p propagate�city�lt�	

�meta �priority � �control�fn compare�with�solution�

�priority�queue t�

�lock�not�required t�

��



�priority�fn propagate�city�priority�fn� �for now� a variable� later a function���

�make control generator an externally compiled function���

��control�generator ��gen�control�data �tsp�distance� �ari ��e�cost� � �������

�

��sofar� �so�far �tag �tag� �distance �d�so�far� � �

��cg� �connect�goal �tag �tag� ��est�cost ��� nil �e�cost��

�city �city� �city� �city�� �length � � � � 	 �l� � � �

�home�city �name �home��

�distance �city �city� �city� �city�� �distance �d��

���

�bind �cities�seen� �litval cities�seen��

�map�vector �cg� city�list � item �new�city� vector�less�item �vli��

�bind �newtag� �ngenatom��

�make connect�goal �tag �newtag� �city �city�� �city� �new�city�

�length �compute �l� � �

�city�list �vli� �

�make so�far �tag �newtag� �distance �compute �d�so�far� � �d��

�cities�seen �substr �sofar� �cities�seen� inf� �previously visited

�city�� � �and the new city

��

�p init�distance�table

�start�

"�distance �city �c� �city� �c�� �distance �d��#

���

�map�set

�add�to�distance�table �$varbind ��c�� �$varbind ��c���

�$varbind ��d����

�make initialized �value t��

�p start

�go�

���

�in�parallel�sync

�make start �start�city NY �length � �city�list SEATTLE HTFD SF CHI PHOENIX BOSTON�

�make home�city �name NY�

�make distance �city NY �city� SF �distance �����

�make distance �city NY �city� HTFD �distance  � �

�make distance �city NY �city� SEATTLE �distance �	���

�make distance �city NY �city� CHI �distance 	���

�make distance �city NY �city� PHOENIX �distance �����

�make distance �city NY �city� BOSTON �distance ���

�make distance �city SF �city� HTFD �distance �����

�make distance �city SF �city� SEATTLE �distance �	��

�make distance �city SF �city� CHI �distance �����

�make distance �city SF �city� NY �distance �����

�make distance �city SF �city� PHOENIX �distance  	��

�make distance �city SF �city� BOSTON �distance �����

��



�make distance �city SEATTLE �city� SF �distance �	��

�make distance �city SEATTLE �city� HTFD �distance �����

�make distance �city SEATTLE �city� NY �distance �	���

�make distance �city SEATTLE �city� CHI �distance �����

�make distance �city SEATTLE �city� PHOENIX �distance �����

�make distance �city SEATTLE �city� BOSTON �distance �����

�make distance �city CHI �city� NY �distance 	���

�make distance �city CHI �city� SF �distance �����

�make distance �city CHI �city� HTFD �distance �	��

�make distance �city CHI �city� SEATTLE �distance �����

�make distance �city CHI �city� PHOENIX �distance ����

�make distance �city CHI �city� BOSTON �distance ���

�make distance �city HTFD �city� NY �distance  ��

�make distance �city HTFD �city� SF �distance �����

�make distance �city HTFD �city� SEATTLE �distance �����

�make distance �city HTFD �city� CHI �distance �	��

�make distance �city HTFD �city� PHOENIX �distance ��	��

�make distance �city HTFD �city� BOSTON �distance ��

�make distance �city PHOENIX �city� NY �distance ��	��

�make distance �city PHOENIX �city� HTFD �distance �����

�make distance �city PHOENIX �city� SF �distance ����

�make distance �city PHOENIX �city� SEATTLE �distance �����

�make distance �city PHOENIX �city� CHI �distance  ���

�make distance �city PHOENIX �city� BOSTON �distance �����

�make distance �city BOSTON �city� NY �distance ���

�make distance �city BOSTON �city� SF �distance �����

�make distance �city BOSTON �city� SEATTLE �distance �����

�make distance �city BOSTON �city� CHI �distance ���

�make distance �city BOSTON �city� HTFD �distance ��

�make distance �city BOSTON �city� PHOENIX �distance ��	��

�

�init�distance�table 	�

�

�If better solution found� propagate it�

�Note� Without locking mechanism� this rule has two error modes�

�depending on when remove is performed� If the remove comes

�second� then there will be two solutions for a brief period�

�Another rule might fire on the old solution value� and create

�a superfluous solution �or� in some systems� might overwrite the

�new� better solution�� If the remove comes first� then there

�will be a brief period in which no solution exists� in which

�case an init production referencing ��solution� might fire�

�p init�solution

�meta �priority ���

��



��new� �solution�goal �distance �dist� �tag �tag� � �

��solution�goal �distance � �dist��

��solution�

���

�bind �cities�seen� �litval cities�seen��

�make�unique solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf���

�Now here�s an application for functionally accurate programming�

�Note that this rule may fire� even though� while it�s firing�

�a solution�goal whose distance is � �dist� may appear� in

�effect disabling this rule� But� because solution is locked�

�competing rule won�t fire until new solution is postulated� so

�no harm is done� and correct solution eventually becomes asserted�

�p new�and�improved

�meta �priority ���

��new� �solution�goal �distance �dist� �tag �tag� � �

��solution�goal �distance � �dist��

��old� �solution �distance � �dist� �tag �oldtag�� �

���

�bind �cities�seen� �litval cities�seen��

�make solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf��

�remove �old��

�

��



�SALES�CONTROL�LISP

�These are the lisp functions used to implement heuristic control

�in the travelling salesperson program�

�defvar �solution�so�far� nil �The solution generated so far��

�defvar �control�variables� ���solution�so�far���

�A pruning function which determines if a new solution is better than

�the current solution� If so� records the new value and returns t�

�defun compare�new�solution�with�solution�instance�

�declare �optimize �speed �� �safety �� �space ����

�Compare�with�solution�control�data�� Control�data is an a�list derived from

the rule�instance�control�data slot� If the control function returns a

non�nil value� the rule should be executed� otherwise it should be pruned��

�let ��new�solution �cdr �assoc ��tsp�distance� �rule�instance�control�data instance�����

�cond ��not �solution�so�far��

�setf �solution�so�far� new�solution��

��� new�solution �solution�so�far��

�setf �solution�so�far� new�solution��

�t

nil �indicating bad rule �� don�t execute

����

�This function is used to compare a developing solution with a complete solution�

�If the developing solution ever exceeds the current best� then return nil�

�If no current best solution� return t�

�defun compare�with�solution�instance�

�declare �optimize �speed �� �safety �� �space ����

�Compare�with�solution�control�data�� Control�data is an a�list derived from

the rule�instance�control�data slot� If the control function returns a

non�nil value� the rule should be executed� otherwise it should be pruned��

�if �solution�so�far�

�� �rule�instance�rating instance� �distance travelled � best�solution

�solution�so�far��

t��

�Priority computation for propagate city

�defun propagate�city�priority�fn��

�� �$varbind ��d�so�far��

�compute�mst �list �$varbind ��city����

�cons �$varbind ��home�� �substr�to�list ��cg� �city�list �inf�����

�Minimum Spanning Tree Computation�

�defvar �distance�table� nil�

�defun init�distance�table�n�cities�

�setf �distance�table�

�new�dhash�table n�cities���

��



�defun add�to�distance�table�city city� distance�

�let ��tmp �get�dhash city �distance�table����

�set�dhash city

�push �cons city� distance�

tmp�

�distance�table����

�defun do�mst�fn�city�list�

�compute�mst �list �car city�list��

�cdr city�list���

�defun compute�mst�seen�cities not�seen�cities�

�let ��min�so�far ��

�min�city nil�

�dist ���

�while not�seen�cities

�setf min�city �car not�seen�cities��

�setf min�so�far �apply %�min

�mapcar %��lambda�city�

�city�distance city min�city��

seen�cities���

�mapc %��lambda�seen�

�mapc %��lambda�not�seen�

�setf dist �city�distance seen not�seen��

�cond ��� dist min�so�far�

�setf min�so�far dist�

�setf min�city not�seen����

�cdr not�seen�cities���

seen�cities�

�push min�city seen�cities�

�setf not�seen�cities �delete min�city not�seen�cities���

min�so�far��

�defun city�distance�city city��

�cdr �assoc city�

�get�dhash city �distance�table��

�test %�eq���

�	


