Learning Experiments in a Heterogeneous Multi-agent System

M V NagendraPrasad and Victor Lesser

Department of Computer Science
University of Massachusetts

Ambherst, Massachusetts 01003

{nagendra,lesser }@cs.umass.edu

Abstract

Self-organization for efficient distributed search
control has received much attention previously
but the work presented in this paper repre-
sents one of the few attempts at demonstrating
its viability and utility in an agent-based sys-
tem involving complex interactions within the
agent set. We discuss experiments with a het-
erogeneous multi-agent parametric design sys-
tem called L-TEAM where machine learning
techniques endow the agents with capabilities
to learn their organizational roles in negotiated
search and to learn meta-level knowledge about
the composite search spaces. We tested the sys-
tem on a steam condenser design domain and
empirically demonstrated its usefulness.

1 Introduction

In this paper, we present a heterogeneous multi-agent
parametric design system called L-TEAM where ma-
chine learning techniques endow the agents with ca-
pabilities to learn their organizational roles in negoti-
ated search and to learn meta-level knowledge about
the composite search spaces. L-TEAM is an extension
of the TEAM framework[Lander, 1994] for cooperative
search among a set of heterogeneous reusable agents.
A reusable-agent system is an open system assembled
by minimal customized integration of a dynamically se-
lected subset from a catalogue of existing agents. Each
agent works on a specific part of the overall problem.
The agents work toward achieving a set of local solu-
tions to different parts of the problem that are mutually
consistent and satisfy, as far as possible, the global con-
siderations related to the overall problem. As a part
of this search process, agents augment their local view
of the composite search space with meta-level informa-
tion about search spaces of other agents through negoti-
ation to minimize the likelihood of generating conflicting
solutions[Lander, 1994].

TEAM was introduced in the context of parametric
design in multi-agent systems. Each of the agents has its
own local state information, a local database with static
and dynamic constraints on its design components and
a local agenda of potential actions. The search is per-
formed over a space of partial designs. It is initiated by

Susan E. Lander
Blackboard Technology Group
401 Main Street

Ambherst, Massachusetts 01002
lander@cs.umass.edu

placing a problem specification in a centralized shared
memory that also acts as a repository for the emerging
composite solutions (i.e. partial solutions) and is visible
to all the agents. Any design component produced by
an agent is placed in the centralized repository. Some of
the agents initiate base proposals based on the problem
specifications and their own internal constraints and lo-
cal state. Other agents in turn extend and critique these
proposals to form complete designs. An agent may de-
tect conflicts during this process and communicate feed-
back to the relevant agents; consequently affecting their
further search by either pruning or reordering the expan-
sion of certain paths. The evolution of a composite so-
lution in TEAM can be viewed as application of a series
of negotiated-search operators. For a composite solution
in a given state, an agent can apply a set of negotiated-
search operators represented by the set of arcs leaving
that state. An agent can be working on several compos-
ite solutions concurrently.

Thus an agent is faced with a variety of control issues.
We present our experimental studies involving two of the
more important ones in this paper:

1. At a given time, an agent is faced with the prob-
lem of choosing an operator from a set of allowed
operators that can be applied to one of the compos-
ite solutions that can potentially be worked upon.
Agents can learn this selection process.

2. Distributed search process in TEAM involves an ini-
tial “discovery” phase where agents run into a se-
ries conflicts followed by generation of feedback to
the other agents involved in the conflict. This leads
to agents gaining an enhanced view of the compos-
ite search space. Learning can potentially substi-
tute such feedback communication by providing the
agents with the learned view of the composite search
space derived from similar past problem solving ex-
periences.

The rest of the paper is organized as follows. Section 2
discusses organizational roles in TEAM and presents our
experimental results on learning organizational knowl-
edge. Section 3 discusses meta-knowledge about the
composite search space and presents our learning algo-
rithm and experimental results. We conclude by dis-
cussing the implications of this work.



2 TEAM: A Heterogeneous
Multi-agent System

2.1 Learning Organizational Roles in
TEAM

In multi-agent systems like TEAM, the search spaces are
complex due to interactions between the distributed sub-
spaces. In such complex search spaces, there is a need for
organizing the search in such a manner as to choose those
actions that lead to generation of helpful constraints for
the subsequent searches for solving related subproblems.
Organizational knowledge can be described as a specifi-
cation of the way the overall search should be organized
in terms of which agents play what roles in the search
process and communicate what information, when and
to whom.

Each agent in TEAM plays some organizational role in
distributed search. A role is a task or a set of tasks to be
performed in the context of a single solution. A pattern
of activation of roles in an agent set is a role assignment.
All agents need not play all organizational roles; which in
turn implies that agents can differ in the kinds of search
operators they are allotted. Organizational roles played
by the agents are important for the efficiency of a search
process and the quality of the final solutions produced.

During each cycle of operator application in TEAM,
each agent in turn has to decide on the role it can play
next, based on the available partial designs. An agent
can choose to initiate a new design or extend an already
existing partial design or critique an existing design. The
agent needs to decide on the best role to assume next
and accordingly construct a design component!. It can
be an extremely difficult task for a system designer to
construct a generic rating function for each agent that
takes into account the specifics of the agent set and the
complexities of the search controlling the design of a spe-
cific artifact. In this paper we propose learning methods
that let the agents construct these rating functions based
on past problem solving experience.

2.2 Learning Algorithm

The formal basis for learning search strategies adopted
in this paper is derived from the UPC formalism
for search control (see [Whitehair & Lesser, 1993))
that relies on the calculation and use of the Utility,
Probability and Cost (UPC) values associated with each
(state, op, final state) tuple. The Utility component
represents the present state’s estimate of the final state’s
expected value or utility if we apply operator op in the
present state. Probability represents the expected un-
certainty associated with the ability to reach the final
state from the present state, given that we apply op-
erator op. Cost represents the expected computational

! Organizational role is also referred to as organizational
role operator or simply operator in this paper but the reader
should note that this is different from the operator used in
regular literature. An agent in a particular role can perform
certain operations. In TEAM, an initiating agent or an ex-
tending agent performs certain set of operations to form a
design component.

cost of reaching the final state. Additionally, in com-
plex search spaces, for which the UPC formalism was
developed, an application of an operator to a state does
more than expand it. The operator application may re-
sult in an increase in the problem solver’s understanding
of the interrelationships among states. In these situa-
tions, an operator that looks like a poor choice from the
perspective of a local control policy may actually be a
good choice from a more global perspective due to some
increased information it makes available to the problem
solver. This property of an operator is referred to as
its potential and it needs to be taken into account while
rating the operator. An evaluation function defines the
objective strategy of the problem solving system based
on the UPC components of an operator and its poten-
tial. For example, a system may want to reach any final
state as quickly as possible with high quality solutions
or it may want maximum utility per unit cost. The eval-
uation function is applied to all the operators applicable
to any frontier states of the on-going search and an op-
erator that maximizes the ratings of all the applicable
operators is selected.

Starting from this core of UPC formalism, we modify
it to suit our purpose of learning organizational roles in
negotiated search in multi-agent systems. Our first mod-
ification involves classification of all possible states of a
search into a pre-enumerated finite class of situations.
These classes of situations represent abstractions of the
state of a search. Thus, for each agent, there is UPC
vector per situation per operator leading to a final state.
A situation in L-TEAM is represented by a feature vec-
tor whose values determine the class of a state of the
search. In L-TEAM, an agent responsible for decision
making at the node retrieves the UPC values based on
the situation vector for all the roles that are applicable
in current state. Depending on the objective function to
be maximized, these UPC vectors are used to choose a
role to be performed next.

Let {S;-‘}, 1 < j < My, be the set of possible situa-
tion vectors for Agent k where each situation vector is
a permutation of the possible values for the situation-
vector features and let opf, 1 < i < Ny, be the oper-
ators Agent k possesses. Agent k has M x N UPC
vectors {opf, S;-“, Agent k, Ui’;-, Pi’;-, ij, Potf]-}. Given a
situation S¥, objective function f(U, P,C, Pot) is used
to select an operator op® such that

During learning

f(Ufb’ be, C!:b’ POt’;b)

Prob(opt
rob(op;) S, f(UE, Pk Ck, Potk)

After learning

op = *fop' maxf(Uy, Ph, Ciy, Potyy)
where 1 < i < N, and * (;,1(ra,ting) represents the
operator whose UPC values are such that f(U, P, C, Pot)

= rating.

Let 7 be the search tree where each node is annotated
with the triple {opf,S;-“,Ak} representing the applica-
tion of operator opf in situation S;-‘ by Agent k. Let



F(T) be the set of states on the path to the terminal
state 7. A terminal state is a state that is not expanded
further due to detection of a success or a failure. A
final state is a terminal state where the search ends suc-
cessfully with a mutually acceptable design. When the
search enters a terminal state, the performance measures
are back-propagated to the relevant agents. We use the
supervised-learning approach to prediction learning (see
[Sutton, 1988]) to learn estimates for the UPC vectors
for each of the states.

Let (p)Uik- represent the predicted utility of the final
solution achieved by Agent k using an operator i in a
state n that can be classified as situation j, accumulated
after p problem solving instances and F(7) be the set
of states on the path to a final state F. Let Ur be the
utility of the solution and let 0 < & < 1 be the learning
rate. Then:

@)U +a (Ur — UE),
n € F(T),

k
(p+1)Ui;
state n € situation j

Probability value modifications are defined similarly.

(1 - a)(p)PiI;' + aOr,
n € F(T),

We will not dwell on the details of the Cost component
update rule because the evaluation functions used in this
work do not involve cost. In a design problem solving
system, the computational costs are not a primary con-
sideration. Successfully completing a good design takes
precedence over computational costs involved as long as
the costs are not widely disparate.

Obtaining measures of potential is a more involved
process and requires a certain understanding of the sys-
tem - at least to the extent of knowing which are the
activities that can potentially make positive or negative
contribution to progress of the problem solving process.
For example, in L-TEAM, earlier on in a problem solving
episode, the agents apply operators that lead to infeasi-
ble solutions due to conflicts in their requirements. How-
ever, this process of running into a conflict leads to cer-
tain important consequences like exchange constraints
that were violated. The constraints an agent receives
from other agents aid that agent’s subsequent search in
that episode by letting it relate its local solution require-
ments to more global requirements. Hence, the operators
leading to conflicts followed by information exchange are
rewarded by potential. Learning algorithms similar to
that for utility can be used for learning the potential of
an operator. Let (p)Potf]- represent the predicted poten-
tial of the terminal state achieved by Agent k using an
operator iin a state n that can be classified as situation
J, accumulated after p problem solving instances. Let
F(T) be the set of states on the path to the terminal
state T', Potr € {0,1} be the potential arising from the
state T', where Potr = 1 if there is is a conflict followed
by information exchange else Poty = 0. Let 0 < a <1
be the learning rate. Then:

k
e+l =
state n € situation j

k k k
(P+1)P0tij = (P)POt‘L] + (POtT — (P)POt‘L])’
n € F(T), state n € situation j

2.3 Experiments

To demonstrate the effectiveness of the mechanisms in
L-TEAM and compare them to those in TEAM, we
used the same domain as in [Lander, 1994] — paramet-
ric design of steam condensers. The prototype multi-
agent system for this domain, built on top of the TEAM
framework, consists of seven agents: pump-agent, heat-
exchanger-agent, motor-agent, vbelt-agent, shaft-agent,
platform-agent, and frequency-critic. The problem solv-
ing process starts by placing a problem specification on a
central blackboard (BB). Problem specification consists
of three parameters — required capacity, platform side
length, and maximum platform deflection. During each
cycle, each of the agents in L-TEAM can decide either
to initiate a design based on the problem specification or
extend a partial design on BB or to critique a partial de-
sign on BB. During the process of extending or critiquing
a design, an agent can detect conflicts and communicate
the cause of the conflict to other agents. The receiving
agents assimilate the information and use it to constrain
future searches.

Each agent has an assigned organizational role in any
single design. In this paper, we confine ourselves to
learning the appropriate application of two operators
in the agents - initiate-design and extend-design. Four
of the seven agents — pump-agent, motor-agent, heat-
exchanger-agent, and vbelt-agent — are learning either
to initiate a design or to extend an existing partial de-
sign in each situation. The other three agents have fixed
organizational roles — platform and shaft agents always
extend and frequency-critic always critiques.

In the experiments reported below, the situation vec-
tor for each agent had three components. The first com-
ponent represented changes in the global views of any of
the agents in the system. If any of the agents receives
any new external constraints from other agents in the
past m time units (m is set to 4 in the experiments),
this component is ‘1’ for all agents. Otherwise it is ‘0.
If any of the agents has relaxed its local quality require-
ments in the past n time units (n = 2) then the second
component is ‘1’ for all agents. Otherwise it is ‘0’. Typ-
ically, a problem solving episode in L-TEAM starts with
an initial phase of exchange of all the communicable in-
formation involved in conflicts and then enters a phase
where the search is more informed and all the informa-
tion that leads to conflicts and can be communicated
has already been exchanged. During the initial phase of
conflict detection and exchange of information, the third
component is ‘0’. In the latter phase, it is ‘1’. We used
the following objective evaluation function:

f(U, P,C, potential) = U x P + potential

We trained L-TEAM on 150 randomly generated de-
sign requirements and then tested L-TEAM and TEAM
pairwise on 100 randomly generated design requirements
different from those used for training. TEAM was setup
so that heat-exchanger and pump agents could either ini-
tiate a design or extend a design whereas v-belt, shaft
and platform agents could only extend a design. In
TEAM, an agent initiates a design only if there are no
partial designs on the blackboard that it can extend. We



looked at two parameters of system performance. The
primary parameter was the cost of the best design pro-
duced (lowest cost). The other parameter was the num-
ber of cycles the system went through to produce the
best cost design. In TEAM (and L-TEAM) each agent
in turn, gets a chance to perform an operation during a
cycle. The number of cycles represents a good approxi-
mation to the amount of search performed by the entire
system.

Average cost of a design produced by L-TEAM was
5587.6 and by TEAM was 5770.6. In the design domain,
this difference of 3.2 % is considered a big win, especially
because these designs may be mass-produced. Wilcoxon
matched-pair signed-ranks test revealed that the cost of
designs produced by L-TEAM was lower than those pro-
duced by TEAM at significance level 0.05 (p value was
0.00000003). The average number of cycles needed for
L-TEAM to produce a design was 13.89, while TEAM
needed 13.01 cycles.

3 Learning Meta-knowledge about
Composite Search Spaces

3.1 Composite Search Spaces

The search space in a multi-agent system like TEAM
can be viewed as consisting of two components: the local
space of each individual agent and the composite space of
the system. A local space is private to an agent whereas
the composite space is shared by all agents. An agent
defines a local solution space by assigning values to the
parameters in its local solutions. The local search space
is defined by the parameters the agent uses to constrain
its local search. Problem solving in TEAM starts with
agents possessing only local views of the search and so-
lution spaces. This is highly unlikely to lead to mutu-
ally acceptable solutions lying in the composite space.
Agents engage in a failure-driven exchange of feedback
on non-local requirements to develop the closest approx-
imation possible to the actual composite search space.
With their improved view of the global situation, the
agents are more effective at developing globally accept-
able solutions.

The parameters defining a local solution space may be
constrained by either implicit constraints or ezplicit con-
straints. Implicit constraints represent procedurally cap-
tured or embedded requirements. Explicit constraints
are declaratively represented requirements that can be
shared by agents to enhance the effectiveness of the
search for mutually acceptable solutions. In TEAM, ex-
plicit constraints are limited to simple boundary con-
straints of the form (z < n), (z < n), (z > n), or
(z > n). If z is a shared parameter, then an explicit con-
straint on z can be shared with other agents. An agent
that includes the parameter z in the definition of its lo-
cal search space can assimilate a constraint on z that
it receives as feedback from another agent. This pro-
cess is called information assimilation and it enhances an
agent’s view of the composite search space. For example,
Figure 1 shows a two agent system with their local views
and the composite search space. Initially agents start out
with just local views of their search spaces. Proposal

of infeasible solutions leads to conflicts and subsequent
exchange of constraints if those conflicts are due to vio-
lations of explicit constraints. In the simple two agent,
two shared parameter system in our example, after all
the explicit constraints are exchanged through iterative
process of conflict detection and explicit constraint feed-
back, each agent’s approximation of the other agent’s
solution space on the shared parameters is shown in the
lower part of Figure 1.

The search in TEAM is cast as a constraint-
optimization problem meaning that not all constraints
need to be satisfied in a solution. As many constraints
are satisfied as is possible. Constraints have differing
amounts of flexibility. Some may be hard, meaning that
they must be satisfied in any legal solution. Some oth-
ers may be soft constraints that may be relaxed as and
when needed. Softness of a constraint represents its de-
gree of flexibility with some constraints being softer than
others. The composite solution space lies within the in-
tersection of the local parameter spaces under hard con-
straints but not necessarily under soft constraints. Order
of constraint relaxation is an issue out of the scope of this
paper. Lander[Lander, 1994] presents an algorithm for
this.

Given a problem specification, each agent in TEAM
initiates a search with completely local views. Whenever
conflicts on explicit constraints are detected, a feedback
process conveys the conflict information and the corre-
sponding constraints to the agents involved. Agents now
do their subsequent searches with an enhanced view of
the composite solution space. Thus, conceptually, search
in TEAM can be divided into two phases: 1) an initial
phase where conflict detection and exchange of explicit
conflicts occurs and 2) a latter phase phase where agents
have assimilated feedback information, formed approx-
imations of the composite search space, and no further

useful interaction is likely to occur?.

3.2 Learning Algorithm

We now present our experiments in endowing the agents
with capabilities to learn the characteristics of the com-
posite search space. The algorithm we use here is the
Instance-Based Learning(IBL) algorithm[Aha, Kibler, &
Albert, 1991]. During the learning phase, the agents
perform their search with information assimilation as
discussed above. At the end of each search, an agent
stores the problem requirements and the non-local con-
straints it received as feedback from the other agents as
an approximation of the non-local requirements on the
composite solution space. After the agents learn over a
sufficiently large training set, they can replace the infor-
mation assimilation process with the learned knowledge.
When a new problem instance is presented to the agent
set, it chooses the set of non-local constraints that are
stored under the problem specification that is closest to

2 An agent’s view of the composite search space is approx-
imate even after the exchange of all the conflicting explicit
constraints because of the existence of implicit constraints
on shared parameters. These types of constraints cannot be
communicated by an agent to another agent.



Agent A

X
Agent B

Solution Spaces of AgentsA and B over X and Y

*

*

*

X

Composite Solution Space of A and B

X

A's perception of B's space

X

B's perception of A's space

Figure 1: Local and Composite Search Spaces

the present problem specification and adds them to the
set of local requirements at the start of the search.

3.3 Experiments

L-TEAM is the TEAM system described in the previous
experiments but augmented with the IBL capabilities®.
We trained the system with 100 randomly chosen in-
stances and then tested the system on 100 instances
different from the training instances. During the test-
ing phase, L-TEAM’s information-assimilation mecha-
nism was disabled. Thus the agents had to rely on their
learned knowledge of the approximations of the compos-
ite solution space to produce good solutions. However, if
the similarity of the present problem specification to the
most similar past problem solving instance is not below
a threshold then using the constraints of this past prob-
lem solving instance may be misleading and hence the
present problem instance does not add these constraints
to its set of local requirements. In such a situation, L-
TEAM behaves like TEAM with no information assim-
ilation. For comparison purposes we also ran the test
cases against TEAM with no information assimilation
capabilities and TEAM with information assimilation.
Average cost of a design produced by TEAM with in-
formation assimilation was 6598.0, by TEAM without in-
formation assimilation was 7227.2 and by L-TEAM after
learning was 6961.26. Average cycles per design taken
by TEAM with information assimilation was 12.98, by

3Note that the L-TEAM system has either role learning
or IBL active but not both. In future, we intend to turn on
both the mechanisms and look for interactions between them.

TEAM without information assimilation was 15.54 and
by L-TEAM was 13.9. Wilcoxon matched-pair signed-
ranks test revealed that the cost of designs produced
by L-TEAM after learning was lower than those pro-
duced by TEAM with no information assimilation at
significance level 0.05 (p value was 0.000056). However,
Wilcoxon matched-pair signed-ranks test also revealed
that the cost of designs produced by TEAM with infor-
mation assimilation was lower than those produced by
L-TEAM at significance level 0.05 (p value was 0.00014).

We next ran an experiment where L-TEAM used
learned knowledge when it found a past problem solving
instance similar enough to the present problem specifi-
cation. If it failed to find such an instance, it used nego-
tiated search with information assimilation. The same
100 test instances as in the previous experiments were
used.

Average cost of design produced by L-TEAM with in-
formation assimilation was 6680.02 and it took 12.94
cycles on an average. Wilcoxon matched-pair signed-
ranks test revealed no significant difference in cost of
design produced by L-TEAM with information assimi-
lation and TEAM with information assimilation. How-
ever, L-TEAM with information assimilation produced
designs that on an average cost 82.00 units more than
those produced by TEAM with information assimilation.
L-TEAM took 0.04 cycles less than TEAM on an aver-
age.

These experiments suggest that learning could sub-
stitute for negotiation in situations where negotiation
becomes very expensive due to communication costs



(however, negotiation is still needed during the learning
phase). The results achieved by using learned knowledge
of the composite solution space are better than having
no negotiation at all. When negotiation is permitted, it
still outperforms using learned knowledge. Note however
that, given the limited number of experiments conducted
till now, we are not claiming this to be true across all
multi-agent negotiated-search systems. In fact, we be-
lieve that the power of well-tailored learning mechanisms
can endow a multi-agent system with capabilities that far
transcend those produced in the work presented here.

4 TImplications and Conclusion

Previous work in self-organization for efficient dis-
tributed search control has, for the most part, in-
volved simple agents with simple interaction patterns
and concentrated primarily on toy domains. The work
presented in this paper represents one of the few at-
tempts at demonstrating the viability and utility of self-
organization in an agent-based system involving complex
interactions within the agent set.

Acknowledgments

This work is supported in part by the National Science
Foundation Cooperative Agreement Grant No. EEC
9209623. The content of the information does not neces-
sarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

References

[Aha, Kibler, & Albert, 1991] Aha, D. W.; Kibler, D.;
and Albert, M. K. 1991. Instance-based learning al-
gorithms. Machine Learning 6:37-66.

[Lander, 1994] Lander, S. E. 1994. Distributed Search
in Heterogeneous and Reusable Multi-Agent Systems.
Ph.D. Dissertation, University of Massachusetts.

[Sutton, 1988] Sutton, R. 1988. Learning to predict by
the methods of temporal differences. Machine Learn-
ing 3:9-44.

[Whitehair & Lesser, 1993] Whitehair, R., and Lesser,
V. R. 1993. A framework for the analysis of sophis-
ticated control in interpretation systems. Computer
Science Technical Report 93-53, University of Mas-
sachusetts.



