
Learning Organizational Roles in a
Heterogeneous Multi-agent System

M V Nagendra Prasad, Victor R Lesser and Susan E Lander�

Department of Computer Science
University of Massachusetts

UMass Computer Science Technical Report 95–35

Abstract

Previous work in self-organization for efficient distributed search control has, for the most part,
involved simple agents with simple interaction patterns. The work presented in this paper repre-
sents one of the few attempts at demonstrating the viability and utility of self-organization in an
agent-based system involving complex interactions within the agent set. We present a multi-agent
parametric design system called L-TEAM where a set of heterogeneous agents learn their orga-
nizational roles in negotiated search for mutually acceptable designs. We tested the system on a
steam condenser design domain and empirically demonstrated its usefulness. L-TEAM produced
better results than its non-learning predecessor, TEAM, which required elaborate knowledge en-
gineering to hand-code organizational roles for its agent set. In addition, we discuss experiments
with L-TEAM that highlight the importance of certain learning issues in multi-agent systems.

�This work is supported in part by the National Science Foundation Cooperative Agreement Grant No.
EEC 9209623. The content of the information does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

1 Introduction

In this paper, we present a multi-agent heterogeneous system called L-TEAM that learns to organize
itself to let the agents play the roles they are best suited for in a distributed search process. L-TEAM
is an extension of the TEAM framework[4] for cooperative search among a set of heterogeneous
reusable agents. A reusable agent system is an open system assembled by minimal customized
integration of a dynamically selected subset from a catalogue of existing agents. Reusable agents
may be involved in systems and situations that may not have been explicitly anticipated at the
time of their design. Each agent works on a specific part of the overall problem. The agents
work towards achieving a set of local solutions to different parts of the problem that are mutually
consistent and satisfy, as far as possible, the global considerations related to the overall problem.
As a part of this search process agents augment their local view of the composite search space
with meta-level information about search spaces of other agents through negotiation to minimize
the likelihood of generating conflicting solutions[4]. TEAM was introduced in the context of
parametric design in multi-agent systems. Each of the agents has its own local state information,
a local database with static and dynamic constraints on its design components and a local agenda
of potential actions. The search is performed over a space of partial designs. It is initiated by
placing a problem specification in a centralized shared memory that also acts as a repository for
the emerging composite solutions (i.e. partial solutions) and is visible to all the agents. Any
design component produced by an agent is placed in the centralized repository. Some of the agents
initiate base proposals based on the problem specifications and their own internal constraints and
local state. Other agents in turn extend and critique these proposals to form complete designs. An
agent may detect conflicts during this process and communicate feedback to the relevant agents;
consequently affecting their further search by either pruning or reordering the expansion of certain
paths. The evolution of a composite solution in TEAM can be viewed as a series of state transitions
as shown in Figure 1 (from [4]). For a composite solution in a given state, an agent can apply a
set of negotiated search operators represented by the set of arcs leaving that state. An agent can be
working on several composite solutions concurrently. Thus at a given time, an agent is faced with
the problem of choosing an operator from a set of allowed operators that can be applied to one of
the composite solutions that can potentially be worked upon. This decision is complicated by the
fact that an agent has to achieve this choice within its local view of the problem-solving situations
(see [4]).

The objective of this paper is to investigate the utility of machine learning techniques as an aid
to such a decision process in situations where the set of agents involved in problem solving are not
necessarily known to the designer of any single agent. The results in this paper demonstrate the
effectiveness of learning techniques for such a task and then go on to provide empirical support to
two important observations regarding learning in multi-agent systems:

1. A credit assignment scheme can lead to enhanced learning if it considers the relations between
an action and the progress of the overall problem-solving process, in addition to the end result
that the action may lead to. This may be especially true of systems with complex interactions.
Models of interactions between agents and the type of meta-level information exchanged can
be exploited to aid the learning process.

2. In multi-agent systems, an agent may experience divergence of local view of the global
problem solving state and the actual global problem solving state. Such a divergence may

1

lead to a deterioration in the ability of an agent to exploit the knowledge that is learned.

Problem
Specification

Partial
Acceptable
Solution

Complete
Acceptable

Solution

Partial
Unacceptable

Solution

Partial
Unacceptable

Solution

Complete
Unacceptable

Solution

Complete
Unacceptable

Solution

Infeasible
Solution

Initiate Solution (I)

Critique Solution (C)

Extend Solution (E)

Relax Solution (R)

Terminate Search (T)

Intermediate State Initial State Temination State

2(I)

1(I)
3(E)

4(C)

5(E)

6(C)
7(

E)

8(
C)

9(
E

)

10
(C

)

14(T)

11(E)

12(C)

15(R)

13(R)

16(T)

Figure 1: Negotiated Search

The rest of the paper is organized as follows. Section 2 discusses the characteristics of a
distributed search space and Section 3 presents our use of the UPC formalism as a basis for learning
organizational knowledge. The following section discusses an implementation of L-TEAM based
on this algorithm and presents the results of our empirical explorations. We conclude by discussing
some related work and the implications of this work.

2 Complex Distributed Search Spaces

Problem domains like those dealt with in TEAM can be viewed as comprising a set of interde-
pendent subproblems. Overall solution to a problem is obtained by aggregation of solutions to its
subproblems. In these domains, partial search paths over a composite search space are interrelated
in such a way that the extension of a path in the search space of one subproblem may effect the
results of extending another path, perhaps in another subproblem. In such complex search spaces,
there is a need for organizing the search in such a manner as to choose those actions that lead to
generation of helpful constraints for the subsequent searches for solving related subproblems. In
multi-agent systems like TEAM, the situation is further complicated by the fact that the search space
is distributed across many agents. In such systems, organizational knowledge can be described as a
specification of the way the overall search should be organized in terms of which agents play what
roles in the search process and communicate what information, when and to whom.

Each agent in TEAM plays some organizational role in distributed search. A role is a task or
a set of tasks to be performed in the context of a single solution. A pattern of activation of roles
in an agent set is a role assignment. All agents need not play all organizational roles; which in

2

turn implies that agents can differ in the kinds of search operators they are allotted. Organizational
roles played by the agents are important for the efficiency of a search process and the quality of
final solutions produced.

During each cycle of operator application in TEAM, each agent in turn has to decide on the
role it can play next, based on the available partial designs. An agent can choose to initiate a
new design or extend an already existing partial design or critique an existing design. The agent
needs to decide on the best role to assume next and accordingly construct a design component. It
can be an extremely difficult task for a system designer to construct a generic rating function for
each agent that takes into account the specifics of the agent set and the complexities of the search
controlling the design of a specific artifact. In this paper we propose learning methods that let the
agents construct these rating functions based on past problem solving experience.

3 Learning Role Assignments

The formal basis for learning search strategies adopted in this paper is derived from the UPC
formalism for search control (see Whitehair and Lesser[17]) that relies on the calculation and use
of the Utility, Probability and Cost (UPC) values associated with each hstate� op� final statei
tuple. Utility component represents the present state’s estimate of the final state’s expected value or
utility if we apply operator op in the present state. Probability represents the expected uncertainty
associated with the ability to reach the final state from the present state, given that we apply
operator op. Cost represents the expected computational cost in terms of reaching the final state.
These values comprise an explicit representation of the position of a search state with respect to
the potential final states in a search space. Additionally, in complex search spaces, for which the
UPC formalism was developed, an application of an operator to a state does more than expand
it. The operator application may result in an increase in the problem solver’s understanding of
the interrelationships among states. In these situations, an operator that looks like a poor choice
from the perspective of a local control policy may actually be a good choice from a more global
perspective due to some increased information it makes available to the problem solver. This
property of an operator is referred to as its potential and it needs to be taken into account while
rating the operator. An evaluation function defines the objective strategy of the problem solving
system based on the UPC components of an operator and its potential. For example, a system
may want to reach any final state as quickly as possible with high quality solutions or it may want
maximum utility per unit cost. The evaluation function is applied to all the operators applicable
to any frontier states of the on-going search and an operator that maximizes the ratings of all the
applicable operators is selected.

Starting from this core of UPC formalism, we modify it to suit our purpose of learning or-
ganizational roles in negotiated search in multi-agent systems. Our first modification involves
classification of all possible states of a search into a pre-enumerated finite class of situations. These
classes of situations represent abstractions of the state of a search. Thus, for each agent, there is
UPC vector per situation per operator leading to a final state. A situation in L-TEAM is represented
by a feature vector whose values determine the class of a state of the search. Note that in order to
get the values of a situation vector at a node, an agent might have to communicate with other agents
to obtain the relevant information regarding features that relate to their internal state. In L-TEAM,

3

an agent responsible for decision making at the node obtains the UPC values based on the situation
vector for all the roles that are applicable in current state. Depending on the objective function to
be maximized, these UPC vectors are used to choose a role to be performed next. During learning,
an organizational role is chosen probabilistically in the ratio of its rating to the sum of the ratings
of all the possible organizational roles for an agent in the given situation. This permits the system
to explore the contributions of all the roles probabilistically. Once the learning is done, an agent
chooses the role with maximum rating in a given situation. This implies that after the learning
phase, each agent organizes itself to play a fixed role in a given situation.

We use the supervised-learning approach to prediction learning (see [14]) to learn estimates
for the UPC vectors for each of the states. At each node� of the distributed search tree, the
corresponding situation vector of the features representing the relevant problem-solving activities
at that time and an agent’s choice of the role it plays are stored by that agent. The performance
measures arising out of this decision will not be known at that time and become available only at the
completion of the search. After a sequence of such steps leading to completion, the performance
measures for the entire problem solving process are available. The system then back traces through
these steps assigning credit for the performance to the decisions at the nodes involved (the exact
process will be described below)�. At each node, values of the UPC vector for the operator
corresponding to the situation at that node are adjusted. In our use of the UPC framework, we
assume that there is a single final state — the generation of a mutually acceptable complete design.

Let
n
Sk
j

o
, 1 � j � Mk, be the set of possible situation vectors for Agent k where each

situation vector is a permutation of the possible values for the situation-vector features and let
opki , 1 � i � Nk, be the operators Agent k possesses. Agent k has Mk � Nk UPC vectorsn
opki � S

k
j � Agent k� U

k
ij � P

k
ij� C

k
ij� P ot

k
ij

o
. Given a situation Sk

b , objective function f�U�P�C� Pot�

is used to select an operator opka such that

Prob�opka� �
f�Uk

ab� P
k
ab� C

k
ab� P ot

k
ab�P

i f�U
k
ib� P

k
ib� C

k
ib� P ot

k
ib�

During learning

opka � kf��op max
i

f�Uk
ib� P

k
ib� C

k
ib� P ot

k
ib� After learning

where 1 � i � N, and kf��op �rating� represents the operator whose UPC values are such that
f�U�P�C� Pot� = rating.

Let T be the search tree where each node is annotated with the triple
n
opki � S

k
j � Ak

o
representing

the application of operator opki in situation Sk
j by Agent k. Let F�T � be the set of states on the

path to the terminal state T . A terminal state is a state that is not expanded further due to detection
of a success or a failure. A final state is a terminal state where the search ends successfully with a
mutually acceptable design. For example, let the following sequence of operator applications leads
to a terminal state - say a success.

�A node represents a decision point for an agent.
�Note that the supervised learning approach to prediction learning is different from reinforcement learning

which assigns credit by means of the differences between temporally successive predictions[14]. In this
paper we are primarily concerned with showing the benefits and characteristics of learning in multi-agent
systems rather than with the merits of a particular learning method over others. The reason for choosing
supervised learning method is simply that it worked for us.

4

�fop�� S�� A�g � fop�� S�� A�g � � � � � fopm� Sm� Amg�

When the search enters a terminal state, the performance measures are back-propagated to the
relevant agents. In this case, the agents A�� A�� � � � � Am adjust the UPC values for their respective
situation-operator pairs. Schemes for doing adjustments to various performance measures are
discussed below.

There are various ways of doing the actual changes to the UPC and Potential values of each
situation vector and we discuss some simple schemes here. Let �p�Uk

ij represent the predicted utility
of the final solution achieved by Agent k using an operator i in a state n that can be classified as
situation j, accumulated after p problem solving instances and F�T � be the set of states on the path
to a final state F . Let UF be the utility of the solution and let 0 � � � 1 be the learning rate. Then:

�p���U
k
ij � �p�U

k
ij � � �UF � �p�U

k
ij�� n � F�T �� state n � situation j

Thus Agent k that applied opi, modifies the Utility for its opi in situation j.
Let �p�P k

ij represent Agent k’s estimated probability that using an operator i in a state n that can
be classified as situation j will lead to a final state, accumulated after p problem solving instances.
Let F�T � be the set of states on the path to a terminal state T , and let OT � f	� �g be the output of
the terminal state T with 1 representing success and 0 a failure and let 0 � � � 1 be the learning
rate. Then:

�p���P
k
ij � �� � ���p�P

k
ij � �OT � n � F�T �� state n � situation j

We will not dwell on the details of the Cost component update rule because the evaluation func-
tions used in this work do not involve cost. In a design problem solving system, the computational
costs are not a primary consideration. Successfully completing a good design takes precedence
over computational costs involved as long as the costs are not widely disparate.

Obtaining measures of potential is a more involved process and requires a certain understanding
of the system - at least to the extent of knowing which are the activities that can potentially make
positive or negative contribution to progress of the problem solving process. For example, in
L-TEAM, earlier on in a problem solving episode, the agents apply operators that lead to infeasible
solutions due to conflicts in their requirements. However, this process of running into a conflict leads
to certain important consequences like exchange constraints that were violated. The constraints
an agent receives from other agents aid that agent’s subsequent search in that episode by letting it
relate its local solution requirements to more global requirements. Hence, the operators leading to
conflicts followed by information exchange are rewarded by potential. Learning algorithms similar
to that for utility can be used for learning the potential of an operator. Let �p�Pot

k
ij represent the

predicted potential of the terminal state achieved by Agent k using an operator i in a state n which
can be classified as situation j, accumulated after p problem solving instances. Let F�T � be the set
of states on the path to the terminal state T , PotT � f	� �g be the potential arising from the state
T , where PotT = 1 if there is is a conflict followed by information exchange else PotT = 0. Let 0
� � � 1 be the learning rate. Then:

�p���Pot
k
ij � �p�Pot

k
ij � � �PotT � �p�Pot

k
ij�� n � F�T �� state n � situation j

In the L-TEAM system, each operator is tagged with the result of its execution - either an
added component to a partial design, or a conflict on certain local requirements along with the

5

communicated violated local constraints, which can be used to determine the potential of a sequence
of operators ending in a conflict.

4 Experimental Results

To demonstrate the effectiveness of the mechanisms in L-TEAM and compare them to those in
TEAM, we used the same domain as in Lander[4] — parametric design of steam condensers. The
prototype multi-agent system for this domain, built on top of the TEAM framework, consists of
seven agents: pump-agent, heat-exchanger-agent, motor-agent, vbelt-agent, shaft-agent, platform-
agent, and frequency-critic. The problem solving process starts by placing a problem specification
on a central blackboard (BB). Problem specification consists of three parameters — required
capacity, platform side length, and maximum platform deflection. During each cycle, each of the
agents in L-TEAM can decide either to initiate a design based on the problem specification or
extend a partial design on BB or to critique a partial design on BB. During the process of extending
or critiquing a design, an agent can detect conflicts and communicate the cause of the conflict to
other agents if it can articulate it. At present, an agent can communicate only single-clause numeric
boundary constraints that are violated. If the receiving agent can understand the feedback (i.e.
the parameter of the communicated constraint is in its vocabulary), it assimilates the information
and uses it to constrain future searches. If such a conflict avoidance search does not work, an
agent tries conflict resolution by resorting to relaxing soft constraints. In addition, if an agent
detects stagnation in the progress of the local problem solving process, it relaxes the local quality
requirement thresholds. The system terminates upon formation of a mutually acceptable design
that satisfies the local quality thresholds of all the agents.

Each agent has an assigned organizational role in any single design. As mentioned before,
TEAM identifies three organizational roles — initiate-design, extend-design, and critique-design.
Learning the appropriate application of all these roles can be achieved but in this paper, we confine
ourselves to two operators in each agent - initiate-design and extend-design. Four of the seven
agents — pump-agent, motor-agent, heat-exchanger-agent, and vbelt-agent — are learning either
to initiate a design or to extend an existing partial design in each situation. The other three agents
have fixed organizational roles — platform and shaft agents always extend and frequency-critic
always critiques.

In the experiments reported below, the situation vector for each agent had three components.
The first component represented changes in the global views of any of the agents in the system. If
any of the agents receives any new external constraints from other agents in the past m time units
(m is set to 4 in the experiments�), this component is ‘1’ for all agents. Otherwise it is ‘0’. If any
of the agents has relaxed its local quality requirements in the past n time units (n = 2) then the
second component is ‘1’ for all agents. Otherwise it is ‘0’. Typically, a problem solving episode
in L-TEAM starts with an initial phase of exchange of all the communicable information involved
in conflicts and then enters a phase where the search is more informed and all the information that
leads to conflicts and can be communicated has already been exchanged. During the initial phase
of conflict detection and exchange of information, the third component is ‘0’. In the latter phase,

�m is empirically determined.

6

it is ‘1’� �.
In design problem solving, the probability of successfully completing a design and obtaining

a high utility design are of primary considerations. In addition, in a complex open environment
like that in the L-TEAM system, some form of guidance to the problem solver regarding the
intermediate stages of search that may have an indirect bearing on the final solution is helpful. So
we used the following rating function:

f�U�P�C� potential� � U � P � potential

Learning rates were empirically determined and set to 0.1 for the Utility and Probability
components and 0.01 for the Potential component.

We first trained L-TEAM on 150 randomly generated design requirements and then tested both
L-TEAM and TEAM on the same 100 randomly generated design requirements different from
those used for training. TEAM was setup so that heat-exchanger and pump agents could either
initiate a design or extend a design whereas v-belt, shaft and platform agents could only extend a
design. In TEAM, an agent initiates a design only if there are no partial designs on the blackboard
that it can extend. We looked at two parameters of system performance. The primary parameter
was the cost of the best design produced (lowest cost). The other parameter was the number of
cycles the system went through to produce the best cost design. In TEAM (and L-TEAM) each
agent in turn, gets a chance to perform an operation during a cycle. The number of cycles represents
a good approximation to the amount of search performed by the entire system.

Figure 2 shows the difference in the costs of the best designs produced by L-TEAM and TEAM
on each of the design requirements.

Average cost of a design produced by L-TEAM was 5587.6 and by TEAM was 5770.6. In the
design domain, this difference of 3.2 % is considered a big win, especially because these designs
may be mass-produced. Wilcoxon matched-pair signed-ranks test revealed that the cost of designs
produced by L-TEAM was lower than those produced by TEAM at significance level 0.05 (p value
was 0.00000003). Average cycles needed for L-TEAM to produce a design was 13.89, while
TEAM needed 13.01 cycles. Table 1 shows the organizational roles for the TEAM system used in
these tests. In L-TEAM, at the start of the learning phase, the four learning agents can either initiate
a design or extend a design. Vbelt-agent and platform agents that can only extend a design and
frequency-critic that can only critique a design are not learning. Learning leads to the organization
shown in Table 2 (each cell shows the role with maximum rating for an agent in a given situation).

Next, we investigated the gain from situation specificity in L-TEAM. We ran L-TEAM with
a null situation vector. Each agent could choose to either initiate a design or extend a design,
independent of the situation. We trained the non-situation-specific L-TEAM to see if it could
organize itself so that the agents played the roles that best suited them. The same 100 runs as used

�In the tables for organizational roles below, we represent a value of 1 for the first component as newc
whereas a value of 0 is �newc. A value of 1 for the second component is represented as rr whereas a value
of 0 is �rr. A value of 1 for the third component is represented as sd whereas a value of 0 is �sd.

�In general, we expect that some characteristics of a partial design on which an operator is acting (like
the goodness rating of the partial design) to also be a part of the situation vector. However, in L-TEAM we
just consider learning two operators of which initiate-design initiates a solution independent of the existing
designs. If there were other operators that interacted with extend-design based on the design which it extends,
we might have to take these design characteristics into consideration as a part of the situation vector.

7

D
i
f
f
e
r
e
n
c
e

-3000

-2500

-2000

-1500

-1000

-500

0

500

0 10 20 30 40 50 60 70 80 90 100

Run

Figure 2: Y-axis shows the difference: lowest cost of design produced by situation-specific L-
TEAM minus lowest cost of design produced by TEAM for the same design requirements. X-axis
shows the run number.

agent pump heatx motor vbelt shaft platform frequency
agent agent agent agent agent agent critic

roles initiate initiate
extend extend extend extend extend extend critique

Table 1: Organizational roles for TEAM

8

situation
newc newc newc newc �newc �newc �newc �newc

rr rr �rr �rr rr rr �rr �rr

agent sd �sd sd �sd sd �sd sd �sd

pump initiate initiate initiate initiate initiate
agent extend extend extend
heatx initiate
agent extend extend extend extend extend extend extend
motor initiate initiate
agent extend extend extend extend extend extend
vbelt
agent extend extend extend extend extend extend extend extend
shaft
agent extend extend extend extend extend extend extend extend
platform
agent extend extend extend extend extend extend extend extend
frequency
critic critique critique critique critique critique critique critique critique

Table 2: Organizational roles for situation specific L-TEAM after learning

agent pump heatx motor vbelt shaft platform frequency
agent agent agent agent agent agent critic

roles initiate
extend extend extend extend extend critique

Table 3: Organizational roles for non-situation-specific L-TEAM after learning

in the previous experiments were used for testing in this study. The average cost of the design
produced by non-situation-specific L-TEAM was 5616.2 and by situation-specific L-TEAM was
5566.58. Wilcoxon matched-pair signed-ranks test revealed that the costs of designs produced
by situation-specific L-TEAM were lower than those produced by non-situation-specific L-TEAM
with a probability of 0.94 (p value was 0.06). This value is suggestive though not significant.
Situation-specific L-TEAM was also better in terms of the number of cycles. Average cycles
needed for situation-specific L-TEAM to produce a design was 13.89, while non-situation-specific
L-TEAM needed 15.01. A Wilcoxon matched-pair signed-ranks test on these runs revealed that
the number of cycles taken by situation specific L-TEAM to produce a design were lower than that
taken by non-situation-specific L-TEAM at significance level 0.05 (p value was 0.049). Table 3
shows the learned organization. These experiments suggest (due to p value close to 0.05) that the
situation specific L-TEAM is superior to non-situation specific L-TEAM that is superior to TEAM
in terms of the cost of the designs produced. Situation-specific L-TEAM did a little more search
than the TEAM system (difference of 0.88 cycles per design) but non-situation-specific L-TEAM
did significantly worse than both situation-specific L-TEAM and TEAM in terms of the number of
cycles.

At this point we could ask more detailed questions about why the situation-specific-L-TEAM
perform better than the non-situation-specific-L-TEAM in terms of cost of designs? Even though
pump-agent is the initiator of designs in an overwhelming number of cases, it turns out that
the designs initiated by heat-exchanger-agent and motor-agent occasionally outperformed those

9

initiated by the pump-agent. We have reasons to believe that a situation vector captures these
subtleties, at least to a certain extent. In addition, it could also be the case that the initiations by
motor-agent early on in the search led to a quicker discovery of conflicting requirements on shared
parameters in certain problem runs. On rare occasions, (twice in our 100 experimental runs),
situation-specific-L-TEAM performed worse than non-situation-specific-L-TEAM . We attribute
this observation to the phenomenon of distraction frequently observed in multi-agent systems[5].
In the context of role assignments, this phenomenon maps to the ability of the agents to judge
whether it is effective to work on its own designs or respond to the designs generated by the other
members of the agent set in the present situation. It could be true that the situation vector we
adopted may not have been sufficiently discriminating to eliminate such a distraction totally.

Next we investigated the role of the potential component in the evaluation function. We set up
an experiment where situation-specific L-TEAM was trained with an evaluation function that did
not take potential into consideration:

f�U�P�C� potential� � U � P

The system learned the organization shown in Table 4. Test runs on the same 100 problem
specifications used for tests in the previous experiments showed that situation-specific L-TEAM
without potential gave exactly the same results as non-situation-specific L-TEAM run-on-run.
As can be seen from the previous discussion for experiments on non-situation-specific L-TEAM,
situation-specific L-TEAM without potential produced designs of higher cost and required more
number of cycles per design. This is not surprising given the organization in Table 4 is similar to
that for non-situation-specific L-TEAM. Pump agent is always the initiator. Heat-exchanger agent
and motor agent initiated designs in certain situations (bold-faced operators in Table 4) but these
situations were the rarely occurring ones. The fact that potential leads to significant gains in the
system performance brings us to an important observation. In complex systems like L-TEAM, it is
often the case that the system performs actions that may only have an indirect bearing on the final
solution requirements. Identifying such actions and rewarding the learning system for them can
lead to an enhanced performance.

Agents in a multi-agent system are characterized by incomplete or inaccurate local views of the
global problem solving process. Agents need to expend time and resources to communicate with
other agents to obtain a more global view of the on-going problem solving process. This involves
a trade-off where an agent has to distribute its limited resources between communication and
assimilation of information received from other agents on one hand and its own local computational
requirements on the other hand[3]. Given such a scenario, an agent may be forced to function
in uncertain environments, where it may have an outdated or partial view of the global situation.
We simulated such a divergence between an agent’s subjective view of the global situation and
the actual global situation by updating its subjective view every 3 cycles instead of every cycle.
The organization learned by situation-specific L-TEAM as shown in Table 2 was used and during
testing, an agent’s view of the global situation vector was updated every three cycles instead of
every cycle	. The system was tested on the same 100 problem specifications as in the previous
experiments. The system performance deteriorated and it again performed identically to non-
situation-specific L-TEAM. Situation-specific L-TEAM with updates for global situation vector

	The system may generally be permitted to spend more computational effort during learning and hence
we use the knowledge learned with updates of situation vector every cycle.

10

situation
newc newc newc newc �newc �newc �newc �newc

rr rr �rr �rr rr rr �rr �rr

agent sd �sd sd �sd sd �sd sd �sd

pump initiate initiate initiate initiate initiate initiate initiate initiate
agent
heatx initiate
agent extend extend extend extend extend extend extend
motor initiate
agent extend extend extend extend extend extend extend
vbelt
agent extend extend extend extend extend extend extend extend
shaft
agent extend extend extend extend extend extend extend extend
platform
agent extend extend extend extend extend extend extend extend
frequency
critic critique critique critique critique critique critique critique critique

Table 4: Organizational roles for situation specific L-TEAM with no potential component in the
evaluation function

every three cycles produced designs of higher cost and required more number of cycles per design
than situation-specific L-TEAM with updates for global situation every cycle.

Other experiments we conducted include investigating the generality of the learning mechanisms
described here. We changed the problem specification to take one more component - the required
power. Availability of this parameter permits pump and motor agents to perform more informed
initiations of design. Situation-specific L-TEAM still produced an improvement of 41.39 units
over TEAM in the cost of designs[6].

Performance of the L-TEAM and TEAM systems in the steam condenser domain relative to
true optimality is not known but, as discussed in Lander[4], we suspect that there may be a floor
effect in the data and the designs produced by the systems are close to optimal. This suggests that
the gains from situation-specific learning that can possibly be achieved may be limited. If it is the
case that such a floor effect exists, larger improvements can be expected in some other domains.

5 Related Work

Previous work related to learning in multi-agent systems is limited. Tan[16], Sandholm and Nagen-
dra Prasad[8], Sandholm and Crites[7], and Sen and Sekaran[9] discuss multi-agent reinforcement
learning systems. All these systems rely on reinforcement learning methods[1, 14]. While these
works highlight interesting aspects of multi-agent learning systems, they are primarily centered
around toy problems on a grid world. L-TEAM is one of the few complex multi-agent systems
demonstrating the viability of such methods for interesting learning tasks in the domain of problem
solving control, which is a notion that is not explicit in the above systems. Such an explicit notion
of organizational control knowledge led us to studies on the importance of concepts like “potential”
and divergence of subjective and objective views of the world.

Shoham and Tennenholtz[11] discuss co-learning and the emergence of conventions in multi-
agent systems. However, the nature of the interactions is simple and the agents are fine-grained

11

in their work. In this paper, we are concerned with large-grained agents and complex interactions
between activities of the agents.

Shaw and Whinston[10] discuss a classifier system based multi-agent learning system that
represents an interesting alternative to the learning mechanism we proposed in this paper but as
discussed previously, in this paper our interest is more than just learning the organizational roles.

Sugawra and Lesser[15] discuss a distributed networking system where each local segment of
the network has an intelligent diagnosis agent called LODES that monitors traffic on the network and
uses an explanation-based learning technique to develop coordination rules for the LODES agents.
TEAM-like systems may not be amenable to knowledge-intensive task of extracting coordination
rules or situation-specific organizational rules from histories due to the heterogeneity of its agents.

Certain multi-agent learning systems in the literature deal with a different task from that
presented in this paper. Systems like ILS[13] and MALE[12] use multi-agent techniques to build
hybrid learners from multiple learning agents. On the other hand, L-TEAM learns problem-solving
control for multi-agent systems.

6 Implications and Conclusion

Previous work in self-organization for efficient distributed search control has, for the most part,
involved simple agents with simple interaction patterns. The work presented in this paper represents
one of the few attempts at demonstrating the viability and utility of self-organization in an agent-
based system involving complex interactions within the agent set.

L-TEAM is an example of an open system comprising reusable heterogeneous agents for
parametric design. Agents in L-TEAM learn their organizational roles in a negotiated search for
mutually acceptable designs. We tested the system on a steam condenser design domain and
empirically demonstrated its usefulness. L-TEAM produced better results than its non-learning
predecessor, TEAM, which required elaborate knowledge engineering to hand-code organizational
roles for its agent set. However, the contributions of this paper go beyond just learning organiza-
tional roles. Experiments in the previous section taught us two important lessons with ramifications
for issues of learning in multi-agent systems in general.

� It was noted that the performance was significantly better when an evaluation function took
into consideration the potential of a role to make indirect contributions to the final solutions.
In complex systems, recognition and exploitation of actions with potential can result in a
better learning process. This observation encourages system designers to go beyond looking
at the end result of a series of actions for credit-assignment schemes. They may also need
to consider the role of meta-level information like relations of actions to the progress in the
overall problem-solving process.

� Another important observation from the experiments in the previous section is concerned with
the divergence of an agent’s subjective view of the global situation from the actual global
situation. In the L-TEAM system working on the steam condenser design, even a small
divergence (update of the situation vector every three cycles instead of every cycle) led to
significant deterioration in performance. However, in general, we expect the performance to
decay gracefully with the divergence of the two views. In many real-life systems, especially
in time-critical and resource-limited applications, this divergence may be inevitable and an

12

agent has to be prepared to live with a trade-off between exploiting the knowledge that is
learned and allocating resources to detect optimal instantiations of the learned knowledge.

References

[1] A. Barto, R. Sutton and C. Watkins, “Learning and Sequential Decision Making”, in M. Gariel
and J. W. Moore (eds), Learning and Computational Neuroscience, MIT Press, Cambridge,
MA 1990.

[2] D. D. Corkill, “A Framework for Organizational Self-design in Distributed Problem-solving
Networks”, Ph.D. Dissertation, Dept. of Computer Science, University of Massachusetts,
Amherst, 1983.

[3] E. H. Durfee and V. R. Lesser, “Predictability versus Responsiveness: Coordinating Problem
Solvers in Dynamic Domains” in Proceedings of the Seventh National Conference on Artificial
Intelligence, pp 66-71, St. Paul, MN, 1988.

[4] S. E. Lander, Distributed Search in Heterogeneous and Reusable Multi-Agent Systems, Ph.D.
Thesis, Dept.of Computer Science, University of Massachusetts, Amherst, 1993.

[5] V. R. Lesser, and L. D. Erman, “Distributed Interpretation: A Model and Experiment”, IEEE
Transactions on Computers, C-29(12), pp 1144-1163, Dec. 1980.

[6] M V Nagendra Prasad, Victor Lesser, and Susan Lander, “Learning Organizational Roles in a
Heterogeneous Multi-agent System” Forthcoming Technical Report, Department of Computer
Science, University of Massachusetts, Amherst, 1994.

[7] T. Sandholm and R. Crites, “Multi-agent Reinforcement Learning in the Repeated Prisoner’s
Dilemma” to appear in Biosystems, 1995.

[8] T. Sandholm and M V Nagendra Prasad, “MUSCLE: Multi-agent system for Coordinated
Learning Experiments”, Unpublished memo, Department of Computer Science, University
of Massachusetts, Amherst, 1993.

[9] S. Sen and M. Sekaran, “Learning to Coordinate without Sharing Information”, in Proceedings
of the Twelfth National Conference on Artificial Intelligence, pp 426-431, Washington, 1994.

[10] M. J. Shaw, and A. B. Whinston, “ Learning and Adaptation in DAI systems”, in Distributed
Artificial Intelligence, vol. 2, Morgan Kaufmann Pub., San Mateo, California, pp. 413-429,
1989.

[11] Y. Shoham and M. Tennenholtz, “Emergent Conventions in Multi-Agent Systems: initial
experimental results and observations”, in the Proceedings of KR-92.

[12] S. S. Sian, “Extending learning to multiple agents: issues and a model for multi-agent machine
learning”, in Machine Learning - EWSL 91, Y. Kodratoff (Ed.), Springer-Verlag, pp. 440-456,
1991.

13

[13] B. Silver, W. Frawely, G. Iba, J. Vittal, and K. Bradford, “A framework for multi-paradigmatic
learning”, in Proceedings of the Seventh International Conference on Machine Learning,
Austin, Texas, pp 348-358, 1990.

[14] R. Sutton, “Learning to Predict by the Methods of temporal differences”, Machine Learning
3, pp 9-44, 1988.

[15] T. Sugawara, and V. R. Lesser, "On-Line Learning of Coordination Plans," Twelfth Annual
Workshop on Distributed Artificial Intelligence, 1993.

[16] M. Tan, “Multi-agent Reinforcement Learning: Independent vs. Cooperative Agents”,
Proceedings of the Tenth International Conference on Machine Learning, Amherst, Mas-
sachusetts, pp 330-337, 1993.

[17] R. Whitehair and V. R. Lesser, “A Framework for the Analysis of Sophisticated Control
in Interpretation Systems”, Technical Report Number 93-53, Dept.of Computer Science,
University of Massachusetts, Amherst, 1993.

14

