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Abstract

Using a distributed constraint satisfaction problem (DCSP) model of distributed problem solving, we define
a new texture measure, Imbalance in Variable Tightness, or IVT, unique to distributed systems.  IVT is a
measure of unevenness in distribution of local measures of variable tightness, a CSP texture measure,
among agents.  A non-zero IVT can be inherent, caused by a skewed distribution of variables among agents
with respect to their global variable tightness, or information-based, caused by the limited information of
local views.  We find that variable ordering based on variable tightness, a heuristic that works well in a
centralized context, commonly breaks down in a distributed system involving parallel asynchronous agents,
even when IVT = 0.  Closer examination of positive and negative constraints among variables leads to
specification of precedence relationships among particular pairs of variables, the collective use of which is
usually as good as variable ordering in a distributed system based on global variable tightness.  We find the
significance of particular precedence relations to be highly context-dependent: a pairwise ordering that is
highly beneficial early in problem solving can be highly detrimental later on.  This has implications for
task decomposition and coordination in distributed problem solving.

 The project or effort depicted was or is sponsored by the Department of the Navy, Office of the Chief
of Naval Research, Grants N00014-92-J-1698 and N00014-92-J-1450.  The content of the information does
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1 Introduction:  The Problem
Finding solutions for large problems is sometimes most advantageously carried out as the joint

responsibility of multiple agents.  For example, a group of identical or similar agents might be employed

purely for the purpose of finding the solution faster than can be accomplished by a single problem-solver.

Alternatively, a multiple-agent approach can be essential when the areas of expertise relevant for solving the

problem do not reside in any single agent.  In either type of scenario, a problem is distributed in some way

among multiple agents who, within some framework of interaction, find solutions to parts of the problem,

and whose partial results are somehow combined into an overall solution.

It has been amply demonstrated that when subproblems of multiple agents are interdependent, the way

in which they find, share, and use partial results can greatly affect the overall efficiency of the problem

solving effort.  One example of this phenomenon is distraction, in which an agent takes longer or fails to

find a solution to its part of the problem due to relying on an incorrect partial result shared by another

agent.  Examples of distraction are plentiful.  In decentralized job-shop scheduling, agents with order sets

that are difficult to schedule can be forced into an infeasible scheduling situation by reservations made earlier

by agents with easy order sets, even when a feasible scheduling solution exists [Sycara, Roth, Sadeh, and

Fox 1991].  In the parametric design of a steam condenser, agents that are less constrained by the initial

problem specification can slow down problem solving by distracting other agents with non-useful proposals

[Lander and Lesser 1992].  In a distributed version of the Hearsay-II speech understanding system, agents

with weak constraints could quickly generate and transmit incorrect partial results, which a receiving agent

would try to extend [Lesser and Erman 1980].  A similar phenomenon was also seen in the Distributed

Vehicle Monitoring Testbed, DVMT [Corkill and Lesser 1983].

In this work we examine how subproblem interactions can affect distributed problem solving

efficiency.  We take a distributed constraint satisfaction problem (DCSP) view of cooperative distributed

problem solving (CDPS), for the same reasons as given by [Yokoo, Durfee, Ishida, and Kuwabara 1992]:

because many CDPS problems can effectively be cast as DCSP, in which a set of variables are to receive

assignments consistent with a set of constraints among them, and because DCSP provides a formal

framework within which to study CDPS.  This work is part of a larger project relating problem structure

and problem solving strategies and efficiency.  Such a theory can be used to direct the choice of strategy for

solving a particular problem, along dimensions relating to cooperative control:  what subproblems an agent

should work on and when, to whom partial subproblem solutions or local constraints should be

communicated and when, what credence should be given to external partial subproblem results or

constraints, and so on [Lesser 1991].  In addition, the theory can be used to suggest what information needs

to be collected about a problem in order to make a wise choice.  Finally, the theory can also be used as a

basis for heuristics to be employed when it is impossible or computationally infeasible to gather all the

information necessary to make a completely informed choice.
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In Section 2.1 we introduce the problem of variable ordering based on variable tightness in a distributed

system, and in Section 2.2 we define and discuss a texture measure for distributed systems, called Imbalance

in Variable Tightness (IVT), that describes the distribution of variables among agents with respect to global

variable tightness.  We work through an example in Section 2.3 and evaluate IVT as a predictor of

distributed problem solving efficiency in Section 2.4.  Finding that very small deviations from global

variable tightness ordering can have a dramatic effect on problem solving efficiency, we move on to closer

analysis of relationships among variables in Section 3.  We predict and evaluate the significance of

precedence relationships based on negative and positive constraints, and show that significance of some

precedence relationships depends on problem solving context.  In Section 4 we discuss implications of these

findings and directions we are taking this work.  Finally, the Appendix lists the scheduling problems that

we used for these analyses.

2 A First Approach Using Textures

2 . 1 Variable and Value Ordering in Centralized and Distributed Systems

Brute force algorithms for solving constraint satisfaction problems, or CSP's, are exponential in worst

case complexity, potentially involving a great deal of backtracking to determine a consistent set of variable

assignments.  Various heuristics  have been suggested for reducing, on average, the amount of backtracking

required.  These heuristics [Dechter and Pearl 1988; Minton, Johnston, Philips, and Laird 1990; Purdom

1983] have focused on variable ordering, that is, heuristically ordering the instantiation of variables in order

to reduce the amount of search necessary, and value ordering, that is, once a variable has been chosen,

heuristically choosing a value that is more likely to be consistent with future assignments than to lead to

an inconsistency that will necessitate backtracking.

Constraint satisfaction can be viewed as a search in which problem space states are constraint graphs,

operators are variable assignments, and texture measures of the search space are used to heuristically focus

search [Fox, Sadeh, and Baykan 1989].  The variable tightness texture, defined as the probability for each

variable of having to backtrack to find a consistent solution if that variable is instantiated last, is one

measure that can be used for variable ordering.  Similarly, the value goodness texture, defined as the

probability that assignment of a particular value leads to an overall solution to the problem, can be used for

value ordering.  Estimates of these measures have been shown to contribute to problem solving efficiency

in the domains of spatial planning and factory scheduling [Fox et al. 1989].

In distributed versus centralized CSP, each agent has only part of the overall problem to solve.  In

addition, each is aware of only some of the constraints underlying the entire problem, namely those that are

local to the agent and those that are part of the overall problem specification, while constraints local to

other agents are generally not known.  If the system is one in which agents asynchronously and in parallel

carry out variable and value ordering based on local knowledge of constraints, and if subproblems are at all

interdependent, then the distribution of tasks and constraint knowledge among agents can greatly affect
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problem solving efficiency.  In particular, variables can be assigned either earlier or later than they would be

based on a centralized view of constraints, and values may be chosen unwisely for lack of information.  The

resulting discrepancy from variable and value ordering based on a centralized view increases the probability

that inter-agent backtracking will be necessary to find a consistent solution, or, if inter-agent backtracking

is prohibited or limited, that a globally consistent solution will not be found.

2.2  Imbalance in Variable Tightness: A DCSP Texture Measure

We would like to characterize the conditions under which the order of assignments made in a system of

distributed, asynchronous agents using variable ordering based on local views will match the order that

would obtain in a centralized system.  To minimize the discrepancy in these orderings, two conditions must

hold:

(1) the variable tightness texture measures of the variables must have the same rank ordering
in the distributed case, based on constraints known to the assigning agent, as over the
entire set of constraints, and

(2) the variables to be assigned must be distributed evenly among the agents with respect to
the global (centralized view) variable tightness rankings.

If we assume that agents acting asynchronously and in parallel assign variables at approximately the

same rate and that the conditions above are met, then the resulting variable ordering will approximate as

closely as possible for an asynchronous system the ordering that would be obtained by considering all

constraints together.  An exact match cannot be guaranteed with asynchronous agents, however, as we will

see.

Directly verifying either of the above conditions in a distributed system requires knowing the variable

tightness ranking of the variables under the full set of constraints.  If both conditions (1) and (2) are met,

however, then the distributions of locally-computed variable tightness measures should not differ

significantly among the agents, whereas if either of the conditions is not met, then differences are likely.

We define a new texture measure, called imbalance in variable tightness, or IVT, to be the extent to

which variable tightness measures differ in distribution (mean and variance) among agents.  Homogeneity of

variances can be tested using an F-test for two agents or Bartlett's test for homogeneity of variances for

more than two agents [Sokal and Rohlf 1981].  If the variances are not significantly different, then

differences among means should be tested; this can be done using a t-test (two agents) or analysis of

variance (more than two agents).  Since the t-test and analysis of variance depend on homogeneous

variances, they should not be carried out if the variances were found to be significantly different; this is fine,

however, because in that case a high IVT has been detected already, anyway.  IVT is defined exactly as

follows:

For two agents:

  

IVT =  
 1 −  p Fs( )  p Fs( )  <  0.05

 1 −  min p Fs( ),  p ts( )[ ] otherwise

⎧
⎨
⎪

⎩⎪
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For more than two agents:

  

IVT =  
 1 −  p Χ2( ) p Χ2( )  <  0.05

 1 −  min p Χ2( ),  p Fs( )[ ] otherwise

⎧

⎨
⎪

⎩
⎪

where Fs is the statistic generated in an F-test and in analysis of variance, ts is Student's t-statistic, and Χ2

is the statistic generated in Bartlett's test for homogeneity of variances.  IVT is an extended texture measure

in that it is uniquely appropriate for distributed problem solving, because it specifically takes into account

the existence of multiple local search spaces that can differ in their local texture measures.

A non-zero IVT can result from two different situations, which we distinguish as inherent and

information-based.  Firstly, it may be that variables are not distributed evenly among agents with respect to

global variable tightness measures; that is, some agents have an "easier" set of variables to assign than

others.  This is a violation of Condition 2 above.  In this case, the interleaving of assignments among

asynchronous agents with easier and harder task sets results in some looser variables being assigned before

tighter ones.  We call this situation an inherent imbalance since it is caused by the actual distribution of

tasks.  It requires relatively strong measures to remedy, such as redistribution of the variables among the

agents, use of a priority system for assignments and backtracking reassignments, or synchronization of

agents.

Alternatively, a non-zero IVT can occur even when the distribution of variables is balanced with respect

to global variable tightness, when agents have an imperfect awareness of constraints on variables they can

assign.  In this case, variables may not appear to be tight in the agent's local view when globally they are.

This situation, which we call an information-based imbalance, is a violation of Condition 1.  It is caused

by the difference between the real and apparent variable tightness texture measures, or between the objective

and subjective views.  An information-based IVT, in contrast to an inherent one, may be corrected by

providing more information to the assigning agent.

2.3  Example

Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R2 for 4)  → A2 (R1 for 5)  → A3 (R2 for 2)

α 2 8 A4 (R1 for 2)  → A5 (R4 for 2)

β 3 16 A6 (R4 for 4)  → A7 (R2 for 3)  → A8 (R3 for 2)  → A9 (R1 for 2)

β 4 16 A10 (R1 for 4)  → A11 (R1 for 3)  → A12 (R2 for 4)

Figure 1.  Example of a scheduling problem.

Figure 1 shows a scheduling problem for two agents, each with two orders consisting of a sequence of

activities with resource and time requirements shown.  All orders are released at time 0 and must be

completed by their deadline.  For each activity, a domain of possible start times is constructed based on

precedence relationships within the containing order.  For example, Activity 2 cannot begin before Activity
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1 has finished, nor can it begin later than the Order 1 deadline minus its own duration plus that of Activity

3.  Thus the domain for Activity 2 is {4, 5, 6, 7, 8, 9}.  Problem solving consists of selecting an activity

to assign and a possible start time from the activity's domain, until a consistent set of start times has been

found.

Activity   10   10   10   10    4     4    11   11   11   2     2    2     2     2     9    9

R1: |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

Activity       1     1    1     1     7    7    7                 12   12   12   12           3    3

R2: |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

 Activity                                                  8     8

R3: |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

Activity       6     6    6     6                 5     5

R4: |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

Time 0   1   2   3   4    5   6    7   8   9  10  11  12  13  14  15 16

Figure 2.  One solution to the example scheduling problem.

There is a great deal more flexibility in the scheduling of some activities than in others for this

problem.  To envision this, consider Figure 2, which shows one of the 512 consistent schedules.  Three of

the five activities requiring Resource R1, which is required for a total of 16 time units, have only one

possible time at which they can feasibly be scheduled (Activities 11, 2, and 9), while each of the other two

has two possible times (Activities 10 and 4, which can be scheduled as shown or switched with each other).

No other values in the domains of these activities are ever included in solutions.  On the other hand, some

activities have considerably more flexibility:  Activity 8 can be scheduled anytime between times 7 and 12,

and Activity 5 can be scheduled anytime between times 2 (if Activities 10 and 4 are switched) and 15.  In

fact, every value in the domains of these two activities is a possible solution value.  To minimize the

amount of backtracking required to reach a consistent solution, start times should be assigned early in

problem solving for those activities that are likely to initiate backtracking, and later for those less likely to

do so.

Table 1 shows computation of exact, global variable tightness measures for the 12 activities.  The

variable tightness for each activity is calculated as the percentage of "deconstrained solutions" (consistent

solutions to the problem excluding the activity in question) for which no consistent assignment for that

activity can be found.  As would be expected, variable tightness is very high, over 90%, for Activities 2, 4,

10, and 11, four of the five activities that require Resource R1.  But not all activities that require a resource

with little flexibility are tight:  variable tightness for Activity 9, which also requires Resource R1, is 0.00.

Thus if a solution to the entire problem excluding Activity 9 is found, then a consistent assignment for

Activity 9 always remains.  This is because, since Activity 2 must be scheduled no later than time 9 in

order for Activity 3 to finish before the Order 1 deadline (Figure 2), Resource R1 will always be available at
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time 14, which is fine for Activity 9.  The variable tightness measures for Activities 1 and 8 are not

surprisingly 0.00, and others fall somewhere in between.  Twelve different variable orderings are possible

based on these variable tightness measures.

Centralized View Agent α: Local View

Activity Resource
Deconstr.
Solutions

Infeasible
Solutions

Variable
Tightness

Deconstr.
Solutions

Infeasible
Solutions

Variable
Tightness

1 R2 217 0 0.00 292 0 0.00
2 R1 26528 26016 0.98 540 230 0.43
3 R2 1404 892 0.64 310 0 0.00
4 R1 7848 7336 0.93 280 0 0.00
5 R4 344 24 0.07 258 0 0.00

Centralized View Agent β: Local View
6 R4 408 136 0.33 2814 0 0.00
7 R2 804 525 0.65 5758 2944 0.51
8 R3 126 0 0.00 3532 1096 0.31
9 R1 512 0 0.00 2548 0 0.00

10 R1 18498 17986 0.97 2114 0 0.00
11 R1 20359 19847 0.97 2931 817 0.28
12 R2 482 172 0.36 2527 0 0.00

Table 1.  Centralized and local views of variable tightness.

If variable tightness measures are used for parallel problem solving by two asynchronous agents, then

either an imbalance in variable tightness or asynchrony of the agents can cause tighter variables to be

assigned before looser ones.  With respect to asynchrony, if, in our example, Agent β makes its first

assignment before Agent α, then either Activity 10 or Activity 11 will be assigned before Activity 2.  If

agents carry out assignments at approximately the same rate, however, and if variables are divided more or

less evenly among agents with respect to variable tightness, then deviations from the centralized view

variable ordering due to asynchrony alone should be relatively minor.  If variables are not evenly divided

with respect to variable tightness, however, then large deviations can occur.  In this example, for the first

five (unordered) pairs of assignments carried out asynchronously by Agents α and β, we have (2 and 10/11)

- (4 and 10/11) - (3 and 7) - (5 and 12) - (1 and 6), which will be followed by Activities 8 and 9, in either

order, by Agent β.  Note that Activity 5 (variable tightness = 0.07), is going to be assigned before Activity

12 (variable tightness = 0.33) half the time, and before Activity 6 (variable tightness = 0.33) all the time.

This is an inherent imbalance in variable tightness, caused by the distribution of activities among the

agents rather than by lack of information.

Even if variables are distributed evenly among the agents with respect to global variable tightness,

locally-computed variable tightness measures can be quite different than global measures, such that an

information-based IVT can arise.  Table 1 also shows variable tightness measures for activities belonging to

each agent based on local views, that is, only the two orders that they know about.  The relative ranking of

activities has changed compared to the centralized variable tightness ordering.  Activities 4 and 10, which

should be among the first four activities assigned, are as likely to be assigned last based on local variable

tightness measures as the activities that belong there based on global variable tightness.
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For this problem, variance in variable tightness is 0.217 and 0.168 for Agents α and β, respectively,

giving a variance ratio Fs = 1.29, p(Fs) = 0.89, which is not significant.  A t-test for equality of means

resulted in ts = 0.403, p(ts) = 0.71.  Thus IVT = 1 - p(ts) = 0.29.

2.4  Evaluation

In order to evaluate the IVT texture as a predictor of problem solving efficiency in a distributed system,

we developed a simulation of distributed problem solving in the domain of scheduling, modeled closely after

Sycara et al.'s distributed constrained heuristic search system [Sycara et al. 1991], with a few exceptions.

One difference is that we have not included communication delays; rather, at this point we are looking at the

best case scenario of instantaneous communication, via a shared data structure.  In the future we will study

the relationship between problem structure, communication strategies, and problem solving efficiency, but

for looking specifically at the effect of IVT on problem solving efficiency, communication delays would be

a confounding factor.  Second, we have included in our simulation system the ability to do variable ordering

in any of four ways: by Sycara et al.'s method of information sharing; randomly; or in order of either the

local or the global variable tightness measures.  Similarly, for value ordering we can use either Sycara et

al.'s method or random value ordering.

In Sycara et al.'s system, it is sometimes the case that one or more agents can find no feasible solution

to their part of the problem while other agents have solved their parts easily, when in fact a feasible

solution to the problem does exist.  Because we wanted to measure the effort involved in finding a solution

using different scheduling orders, we could not allow a poor variable ordering to result in "no solution", so

we added an inter-agent backtracking protocol that is guaranteed to find a solution to problems for which a

feasible solution exists.  Our inter-agent backtracking protocol, though developed independently, is similar

to that described in [Yokoo et al. 1992]: it avoids infinite processing loops by using a total order

relationship among agents.  Our protocol is different in that agents are not restricted to one shared variable

and, since communication is via a shared data structure, agents do not have to know which agents they share

constraints with.

2.4.1  Experiment 1:  Inherent IVT and Problem Solving Efficiency

Our first experiment was designed to evaluate whether inherent IVT is a good predictor of problem

solving efficiency.  When inherent IVT is low, differences in variable ordering between distributed and

centralized systems are due mostly to agent asynchrony.  If the effect of agent asynchrony is relatively

minor, then when inherent imbalance is low, distributed system performance should come close to the ideal

of problem solving in order of exact global variable tightness.  Thus we predicted a negative correlation

between IVT and number of assignments required (including ones that were backed off) to find an overall

feasible schedule.  Note that we were not evaluating this method as a viable distributed problem solving

strategy, since computing the exact global variable tightness measures requires solving the problem

repeatedly, from a centralized point of view.  Rather, our goal is to understand the underlying relationship
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between the distribution of variables among agents with respect to global variable tightness and problem

solving efficiency.

We simulated distributed problem solving for 18 scheduling problems involving two agents doing

variable ordering based on global variable tightness measures.  Each agent was responsible for scheduling

one to three orders, each consisting of one to six activities.  All 18 problems had a total of 12 activities to

be scheduled.  Agents worked asynchronously and in parallel, choosing activities to schedule in order of

their global variable tightness measures, which were pre-computed and stored.  Once an activity was chosen,

agents selected a possible scheduling time at random.  Agents used exact global variable tightness measures

for variable ordering so that they had perfect information on variable tightness; thus the factors affecting

distributed problem solving efficiency in this experiment were problem distribution among the agents

(inherent IVT), agent asynchrony, and the random effect of random value ordering.  Our sample size for this

experiment was 1000 trials for each of the 18 problems.

We collected as raw data the number of reservations (variable assignments) made.  However, comparing

strategy efficiencies using reservations made was confounded by the fact that some problems were inherently

more difficult than others:  the mean number of reservations required to reach a consistent solution using a

trial and error approach (random variable and value ordering, 2000 trials) ranged from 32 to 2594 for the 18

problems (Table 2).  Therefore we measured the distributed system's performance as a relative gain measure:

a ratio of the distributed system's improvement over a baseline of random variable and value ordering and

the centralized system's improvement over the same baseline.  We can write this as:

 
relative  gain =

RCRR − RDGR

RCRR − RCGR

where the subscripts are as follows:  first position indicates Distributed or Centralized system; second

position indicates variable ordering based on Global variable tightness or Random; and third position

indicates Random value ordering.  Differences between the two gain measures will be due to differences in

variable ordering caused by agent asynchrony and uneven distribution of activities among agents with

respect to variable tightness.  This ratio would generally run from 0 to 1, although values of below 0

(distributed performance worse than random) or above 1 (distributed performance better than centralized) are

possible.

Table 2 shows mean number of reservations required to reach a consistent solution for the centralized

and distributed systems using variable ordering based on global variable tightness measures.  The data for

centralized problem solving using random variable ordering are included as a baseline of problem difficulty.

Medians, maximums and standard deviations are included as representative of typical performance, worst

performance, and variation in performance.  The best possible performance, finding a solution in 12

reservations, was observed at least once for every problem for all strategies.  The last column shows relative

gain over baseline for the distributed versus the centralized system.  As an example computation, Problem 1

gain ratio = 
57 −17
57 −13

=
40
44

= 0.91.
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Problem
Centralized/

Random
Centralized/
Global VT

Distributed/
Global VT

Gain
Ratio

1 57
(19, 1258, 107)

13
(13, 13, 1)

17
(18, 24, 4)

0.91

2 937
(183, 27413, 2304)

24
(24, 101, 7)

164
(68, 801, 180)

0.85

3 435
(23, 25934, 1790)

15
(14, 21, 2)

26
(14, 393, 52)

0.97

4 779
(15, 126239, 5449)

13
(13, 20, 2)

17
(17, 30, 5)

0.99

5 33
(13, 3478, 160)

12
(12, 12, 0)

13
(12, 21, 2)

0.95

6 2594
(638, 110638, 6421)

83
(84, 181, 41)

1394
(1286, 4676, 1387)

0.48

7 77
(16, 6112, 293)

14
(14, 16, 1)

25
(19, 61, 14)

0.83

8 216
(24, 16648, 814)

16
(16, 24, 4)

25
(20, 85, 14)

0.96

9 368
(16, 71417, 3143)

15
(13, 60, 7)

15
(13, 59, 7)

1.00

10 95
(16, 6740, 450)

13
(13, 16, 1)

17
(17, 27, 4)

0.95

11 34
(15, 1378, 84)

13
(13, 15, 1)

16
(16, 27, 4)

0.86

12 159
(17, 13031, 717)

12
(12, 12, 0)

13
(12, 22, 2)

0.99

13 344
(121, 5465, 588)

23
(23, 35, 9)

96
(81, 336, 71)

0.77

14 329
(42, 12829, 946)

18
(18, 29, 4)

17
(14, 29, 5)

1.00

15 32
(20, 570, 34)

22
(26, 31, 7)

33
(25, 82, 18)

-0.10

16 44
(25, 653, 54)

16
(16, 22, 3)

44
(26, 112, 32)

0.00

17 186
(17, 16161, 870)

14
(13, 18, 2)

22
(15, 67, 17)

0.95

18 1240
(161, 55524, 3632)

20
(16, 44, 10)

2316
(2011, 6197, 2204)

-0.88

Table 2.  Results of Experiment 1:  Mean (median, maximum, standard deviation) number of reservations
to find a consistent solution for centralized and distributed problem solving using variable ordering based on
global variable tightness measures, and the gain over centralized random variable ordering for distributed
versus centralized problem solving.

Gain ratios are plotted against IVT in Figure 3.  Efficiency does not correlate well with IVT.  The trend

toward a positive correlation between the problem solving efficiency gain measure and IVT is not

significant; a linear regression explains only 11% of the variance and has a probability of 0.178.  Thus

while there were dramatic differences in observed efficiencies, they did not seem to relate to this statistical

measure of imbalance in the distribution of variables among the agents with respect to variable tightness.

2.4.2  Experiment 2:  Information-Based IVT and Problem Solving Efficiency

Though the results of Experiment 1 were negative, we thought it worthwhile to test for a relationship

between information-based IVT and problem solving efficiency.  Experiment 2 was identical to Experiment

1 except that variable ordering in the distributed system was based on local rather than global variable
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Figure 3.  Relationship between IVT and distributed problem solving efficiency using
variable ordering based on global variable tightness, 95% confidence intervals.

Problem Distributed Local VT Gain Ratio

1 28 (20, 94, 17) 0.66

2 2512 (2584, 5982, 1922) -1.73

3 17 (14, 207, 16) 0.99

4 98 (23, 1822, 187) 0.90

5 17 (15, 39, 6) 0.77

6 1394 (1497, 4521, 1401) 0.48

7 28 (17, 307, 35) 0.77

8 45 (42, 118, 31) 0.85

9 15 (13, 59, 7) 1.00

10 18 (17, 31, 4) 0.94

11 18 (18, 34, 4) 0.73

12 14 (12, 20, 2) 0.99

13 178 (152, 559, 130) 0.52

14 16 (15, 29, 4) 1.00

15 52 (52, 101, 22) -2.12

16 45 (31, 172, 37) -0.04

17 18 (15, 53, 9) 0.98

18 786 (65, 5236, 1323) 0.37

Table 3.  Results of Experiment 2:  Mean (median, maximum, standard deviation) reser-
vations to find a consistent solution for distributed problem solving using variable ordering
based on local measures of variable tightness, and gain over centralized problem solving
using random variable relative to centralized problem solving.

tightness measures.  Thus in Experiment 2, the difference in problem solving efficiency from the centralized

system is due to agent asynchrony and distribution of variables among agents, as before, and in addition,
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Figure 4.  Relationship between IVT and distributed problem solving efficiency using variable ordering
based on local variable tightness, with 95% confidence intervals, p = 0.276, r2 = 0.074.

loss of constraint information due to local, subjective views.  The relative gain measure used in Experiment

1 was used again in Experiment 2 to assess problem solving efficiency.  Sample size was 1000 trials.

Not surprisingly, there was again no significant relationship between problem solving efficiency and

IVT.  Table 3 shows mean number of reservations to reach a consistent solution in the distributed system

using variable ordering based on local variable tightness, and the ratio of distributed gain over centralized

gain, relative to baseline of centralized problem solving using random variable ordering.  Minimum number

of reservations observed for all problems was 12, the minimum possible.

Figure 4 shows the gain measure as a function of IVT.  Just as for distributed problem solving using

global variable tightness measures for variable ordering, while there is a trend toward a positive

relationship, a regression analysis is not significant (p = 0.276), and only 7.4% of the variance is explained.

2.4.3  Discussion

In both Experiments, the same general effect was tested, namely the effect of agent asynchrony plus

distribution of variables among agents with respect to variable tightness on problem solving efficiency.  In

a distributed system, even when using global measures of variable tightness for value ordering, deviations

from the variable ordering that would obtain in a centralized system can occur because of agent asynchrony

and an uneven distribution, with respect to variable tightness, of variables among agents.  The more

unevenly variables are distributed with respect to variable tightness, the further the resulting (overall)

variable ordering will be from a centralized system doing variable ordering based on global variable

tightness.  The result of Experiment 1, that problem solving efficiency is not negatively correlated with

IVT, shows that even small deviations can have a major effect on problem solving efficiency, and



12

conversely, large deviations sometimes make little difference.

When using local variable tightness measures, deviations from global variable tightness ordering are

likely to be even larger, since in addition to the effect of variable distribution among agents, there is the

added effect of using subjective information, namely local variable tightness measures that may be based on

incomplete information and may differ substantially from global measures.  Experiment 2 tested the effect

of both information-based and inherent imbalances.  The results of Experiment 2 are consistent with those

of Experiment 1:  that small differences in variable ordering can sometimes have a large effect, and that

large differences can sometimes matter very little, such that a statistical measure of the distribution of

variables among agents is simply not predictive.

We know, however, that the order in which variables are assigned matters greatly.  This is demonstrated

empirically by the large differences in number of reservations needed to reach a consistent solution for

problem solving using random variable ordering versus variable ordering by global variable tightness (Table

2, second and third columns).  There must, then, be particular precedence relations within a variable order

based on global variable tightness that are significant, while others are not.  If these relations are maintained

in a variable order that otherwise differs markedly from that based on global variable tightness, problem

solving efficiency would remain high.  Conversely, a variable order that was identical to that based on

global variable tightness except for one reversal might result in extremely poor efficiency.  This idea is

explored in Section 3.

3 Precedence Relationships Among Variables
Consider the meaning of variable tightness:  a tight variable is one that, when assigned last, is unlikely

to have any value remaining in its domain that is consistent with the rest of the solution; that is, there is a

high probability that assignments to other variables will have eliminated all of its domain values as viable

possibilities.  The earlier tight variables are assigned, the higher the probability that feasible solution

values will not already have been eliminated by assignments to other variables.  Probabilistically, over all

possible solution paths, backtracking is minimized by assigning variables in order of variable tightness.

In any given constraint satisfaction problem, however, not every variable is necessarily interdependent

with every other.  Thus it is not necessarily the case for each variable that every other variable of lower

variable tightness will remove feasible solution values from its domain; rather, some variables do, while

others do not.  Although a given variable may be very tight, it is really only important that its assignment

precede assignments to those variables that reduce its domain by values that could appear in a solution.  Its

order of assignment relative to other variables that do not affect its domain, regardless of their variable

tightness, is irrelevant to problem solving efficiency.  We refer to constraints among variables that remove

solution values from domains as negative.  Negative constraints are the underlying cause of variable

tightness.
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Additionally, constraints among variables can be positive: variables may remove non-solution values

from the domains of other variables, with a positive effect on problem solving efficiency.  Since we are

looking for important precedence relations between variables, we consider that the precedence of one variable

before another may be an important one if the former removes non-solution values from the domain of the

latter.

We define significant precedence relations to be those that, when honored, improve problem solving

efficiency over random variable ordering, and when violated, have a detrimental effect on problem solving

efficiency.  We conjecture that significant precedence relations can be identified by determining those pairs

of variables in which one member can remove either solution or non-solution values from the domain of

the other.  Specifically, we hypothesize that if any assignment to a variable w can remove one or more

values that ever appears in a solution from the domain of a variable v, then v before w  is a significant

precedence relation, and similarly, if any assignment to a variable v can remove one or more values that

never appears in a solution from the domain of a variable w, then v before w is a significant precedence

relation.  Furthermore, the contribution of significant precedence relations to problem solving should be

quantifiable, based on the frequency with which solution and non-solution values are removed over all

solution paths.

3.1  Experiment 3:  Significant Precedence Relations

In order to test the significance of precedence relations generated according to these definitions, we

generated all precedence relations fitting the definitions above for Problem 1 from the 18 scheduling

problems used in Experiments 1 and 2, and evaluated the significance of each using a controlled, paired

analysis.  When negative or positive constraints were bi-directional, or when negative and positive

constraints suggested precedence constraints in opposite directions, a precedence relation was created in the

direction in which the constraints were stronger.  To test each relation A before B, we ran paired trials

matched for variable ordering except for swapping activities A and B, which were adjacent.  The same

random state was used at the start of both members of a paired trial.  Problem 1 was a fairly easy problem

(57 reservations on average using random variable ordering).

To test the significance of individual precedence relations, we could not simply generate a large number

of trials using random variable and value ordering and, for each precedence relation, compare the numbers of

reservations made in those runs in which the precedence relation was met with those runs in which it was

not.  This is not really indicative of the significance of the precedence relation in question for the following

reason:  suppose we are looking at the precedence relation A before B, and we compare those runs in

which A precedes B with those in which B precedes A.  But note that in the set of runs in which A precedes

B, A is assigned on average earlier than it is in the set in which B precedes A.  Not only B, but every

variable is more likely to follow than precede A in the A before B set, because A is assigned on average

earlier in that set than in the other set.
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This problem was remedied by doing paired trials, in which A and B were adjacent to each other but

with order reversed in the two trials.  In these matched trials, the variables that preceded A in one trial were

identical to those that preceded A in the other, except for B.  Any difference in the paired trials could only be

due to the relative order of A and B, and to chance due to the effect of different (randomly generated) value

orderings.  In order to reduce the effect of chance, we began both members of a pair of trials with the same

random state, so that the trials were completely identical up to the point at which the first of A or B was

assigned.  Beyond that point, there was, of course, no way to make the trials identical, so we used statistical

analyses to pick the effect of the precedence relation out of the noise.

For Problem 1, with a sample size of 500 paired trials for each of 11 precedence relations predicted to

be significant, six precedence relations had a highly significant beneficial effect on the number of

reservations made (Wilcoxon 2-sample test, p ≤ .01), four had no significant effect (p > .05), and one had a

highly significant detrimental effect (p < .001).

The precedence relation with the negative effect, Activity 4 before Activity 5, was a puzzle:

while the precedence relation was in the opposite direction than one would predict based on variable

tightness (Activities 4 and 5 had variable tightness measures of 0.00 and 0.99, respectively), Activity 4

acted only as a positive constraint on Activity 5, and Activity 5 did not constrain Activity 4 at all.

(Constraint relationships can be asymmetrical when, due to other constraints, one activity is prevented from

taking on values that constrain the other.)  Activity 5 had a domain of three values, only one of which was

ever included in any consistent solution.  In 10 of the 15 different consistent solutions to the problem,

Activity 4's assignment blocked one of the two infeasible assignments for Activity 5, and in 14 of the 15

consistent solutions, it blocked both; these were positive constraints.  In addition, no value in Activity 4's

domain was inconsistent with the single solution value in Activity 5's domain, that is, there were no

negative constraints.  Therefore, how could it possibly be detrimental for Activity 4 to precede Activity 5?

Since Activity 5 was a very tight variable, the later it came in the ordering of assignments, the more

likely it was that it would not have a consistent assignment remaining in its domain, and the longer the

paths involved in backtracking repeatedly to find a combination of assignments for earlier variables that

would allow it a consistent assignment.  Since Activity 4 was not one of the variables that was negatively

constraining Activity 5, its preceding Activity 5 only increased the length of the path from Activity 5 back

to the activity or activities that were negatively constraining it.  Thus the precedence relation Activity 4

before Activity 5 was negative in a context in which some activities that should have followed Activity

5 did not necessarily do so.  When we repeated the paired trials for this precedence relation in a context in

which all four of the other precedence relations involving Activities 5 and 4 were met, the precedence

relation Activity 4 before Activity 5 became highly significant (p < .001) in the right direction.

What about the four non-significant precedence relations?  Evaluating them in context as above, they

still showed no significant effect, and close examination of their negative and positive constraint effects

over all solution paths did not suggest they should be weaker relations.  A possible explanation is that the
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importance of these particular precedence relations is superseded by other precedence relations, and that once

those are met, these precedence relations have no additional effect.  As evidence for this, we observed that in

the vast majority of paired runs, the exact same number of reservations were made for the precedence met

and precedence violated members of the pair for these four relations (range was 462 - 485 out of 500 paired

trials), meaning that there was no effect at all.  This degree of exact matching was not characteristic of the

paired trials for these relations not involving "context"; in those, the number of trials in which the pair

members matched exactly with respect to number of reservations varied from 366 to 439 out of 500 paired

trials: more than for the precedence relations that showed significant effects, but not as high as "in context".

In the paired trials in which these precedence relations were tested without controlling their context, it is

possible that the superseding precedences happened to be met often enough to wash out the effect of the

precedences being tested.

From this analysis it was clear that the contribution of individual precedence relations can sometimes

depends on context.  We next decided to evaluate whether sets of predicted precedence relations worked well

together as a whole.  We generated precedence relations using a method combining the idea of domain

reductions with that of variable tightness:  we found all pairs of variables that reduced each others domains

at all and generated a precedence relation for each pair in the direction of decreasing variable tightness.  For

each problem we looked at efficiency of problem solving using random variable ordering within the

constraint of meeting the set of precedence relations, a strategy we call random-constrained, or rand-con.

Table 4 shows problem solving efficiency for each problem for variable ordering done (1) randomly, (2)

based on global variable tightness measures, and (3) using the rand-con strategy.  Sample sizes were 2000

trials for random ordering and 1000 for the other methods.

The column "# Orderings" shows the number of different variable orderings possible using each

variable ordering method.  For 12 activities ordered randomly, there are 12! or 479,001,600 possible orders.

There are many fewer possible orderings based on global variable tightness: between 4 and 1440, varying

with the problem.  Using the rand-con method, there remain thousands of possible orderings for each of

these 18 problems.  The difference in problem solving efficiency between using the rand-con method and

using global variable tightness varies between none and substantial.  For seven of the 18 problems (1, 4, 5,

11, 12, 15, and 17), the rand-con method performed within 10% of variable ordering using global variable

tightness.  For the others, however, although the rand-con method was substantially better than random

ordering, it was sufficiently poor relative to global variable tightness variable ordering that all precedence

information important to performance must not have been captured, or alternatively, that precedence

relations within the generated sets exhibited conflicts.  Careful examination of the order of variable

assignments in runs that exhibited large amounts of backtracking showed that there were no binary

precedence orderings that always occurred in inefficient runs versus efficient ones, or vice versa, although

there were some that were observed infrequently in one or the other case.
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Problem Method # Orderings Mean Maximum Median Std. Dev.
1 random 479,001,600 57.2 1,258 19 107.4

global VT 720 13.0 14 13 0.8
rand-con 97,545 12.7 14 12 0.8

2 random 479,001,600 936.8 27,413 182.5 2303.8
global VT 12 23.6 101 24 6.8
rand-con 34,477 159.9 2903 53 305.6

3 random 479,001,600 435.2 25,934 23 1789.7
global-VT 240 14.7 21 14 2.1
rand-con 1,663,200 18.9 1180 15 45.0

4 random 479,001,600 779.5 126,239 15 5448.9
global VT 6 13.4 20 13 1.6
rand-con 54,120 13.5 20 13 1.6

5 random 479,001,600 33.0 3,478 13 160.0
global VT 720 12.0 12 12 0.0
rand-con 475,200 12.0 12 12 0.0

6 random 479,001,600 2593.7 110,638 637.5 6421.0
global VT 288 83.1 181 83.5 41.1
rand-con 6036 119.9 828 99 107.1

7 random 479,001,600 77.4 6112 16 295.5
global VT 24 13.7 16 14 1.1
rand-con 26,433 18.3 66 14 9.7

8 random 479,001,600 215.8 16,648 24 814.4
global VT 120 15.7 24 16 3.6
rand-con 29,304 62.5 4089 13 273.1

9 random 479,001,600 368.1 71,417 16 342.6
global VT 48 15.1 60 13 6.8
rand-con 285,560 22.3 1169 13 72.2

10 random 479,001,600 94.8 6740 16 450.4
global VT 6 13.4 16 13 1.2
rand-con 21,450 19.2 125 13 19.3

11 random 479,001,600 33.5 1378 15 83.8
global VT 24 12.9 15 13 0.8
rand-con 171,640 12.9 15 13 0.9

12 random 479,001,600 159.4 13,031 17 717.4
global VT 1,440 12.0 12 12 0.0
rand-con 38,720 12.0 12 12 0.0

13 random 479,001,600 344.4 5465 120.5 588.3
global VT 120 23.1 35 23 8.6
rand-con 16,524 27.0 58 27 12.6

14 random 479,001,600 329.4 12,829 42 945.7
global VT 120 17.9 29 18 3.6
rand-con 121,528 157.9 1404 48.5 221.2

15 random 479,001,600 31.6 570 20 34.3
global VT 24 21.9 31 26 6.9
rand-con 172,620 17.4 50 16 5.1

16 random 479,001,600 43.9 653 25 53.7
global VT 4 15.8 22 16 2.5
rand-con 231,075 21.4 95 16 12.8

17 random 479,001,600 185.9 16,161 17 869.8
global VT 24 13.8 18 13 1.6
rand-con 4,869 14.6 27 14 3.0

18 random 479,001,600 1240.1 55,524 160.5 3631.6
global VT 96 20.3 44 16 9.6
rand-con 35,412 284.0 4379 54 555.1

Table 4.  Relative effectiveness of the rand-con strategy (random variable ordering constrained by a set of
precedence relations based on positive and negative constraints among the variables).

While the rand-con method is not fully as good as variable ordering by global variable tightness in a

centralized system, in a distributed system the rand-con method is generally better in efficiency than variable

ordering by either local or global variable tightness.  Although problem solving might proceed faster in a
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distributed system because of parallel problem solving, efficiency measures for rand-con obtained in a

centralized setting measured in terms of number of reservations would be unaffected by moving to a dis-

tributed system.  Thus we can compare the numbers obtained above with the numbers of reservations made

in a distributed system using global variable tightness for variable ordering (Table 2) or in a distributed

system using local variable tightness (Table 3).  Rand-con performs better than global variable tightness for

14 out of 18 problems, and better than local variable tightness for 13 out of 18.  The overlap of three

problems for which rand-con does not outperform either variable tightness method, Problems 8, 9, and 14,

again suggests that not all of the important precedence information has been captured by the rand-con

strategy.

To ensure that our rand-con results were not affected adversely by our inclusion of precedence relations

based on a combination of domain reductions and variable tightness, we carefully computed precedence

relations using the exact definitions of negative and positive domain constraints.  In the case of bi-

directional constraints, or where negative and positive constraints suggested opposite precedence relations,

we chose based on the stronger constraints, ignoring variable tightness.  For Problems 1 and 2, these sets

of precedence relations were much worse, and we did not pursue this any further.

3.1  Discussion

The results of Experiment 3 and the follow-up experiments described suggest that considering binary

precedence relations in isolation is not powerful enough to capture the important relationships among

variables that can affect problem solving efficiency.  We have seen that the effect of a particular precedence

relation can depend additionally on context, meaning where in the order of assignments the precedence

relation falls with respect to other precedence relations that are also important.  This conclusion is

supported by the observation that no binary order relationships occurred exclusively in trials that exhibited

large amounts of backtracking versus trials that found solutions in a small number assignments; perhaps

instead certain partial orders are detrimental in the context of other particular partial orders.  In addition, we

have found that using all precedence relations that should improve problem solving together as a set does

not necessarily have the desired beneficial effect.  It is possible that some precedence relations are in conflict

with others, such that for maximal efficiency some subset should be adhered to, but not all, and that the

effect of some precedence relations is superseded by others.  Within the set of precedence relations for a

problem, it is likely that some are more critical than others, such that when that information is available,

they should be adhered to while others are ignored.  However, in the case of incomplete information about

relationships among precedence relations, it may be better to include the weaker precedence relations than to

leave them out.

4 Summary:  Implications and Future Directions
In this paper we defined a texture measure appropriate for distributed systems, called Imbalance in

Variable Tightness, or IVT, as a measure of the unevenness in distribution of variables among agents with
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respect to variable tightness.  In experiments to evaluate this texture, however, we found that its predictive

ability was low, not because variable order is unimportant, but because as a statistical measure it was not

able to capture the violation of or adherence to particular partial orders among variables that were important

to problem solving efficiency.  Closer examination of the importance of particular binary precedence

relations showed that even that level of analysis was too crude to predict problem solving efficiency.

Rather, the contribution of binary precedence relations to problem solving efficiency depended on context

with respect to other variable assignments or other groups of variable assignments.

This work suggests that to understand the relationship among search space, problem solving strategies,

and problem solving efficiency, it is important to consider not only first-order precedence relationships

among variables, but second-order effects, that is, the effect of partial orders on each other, as well.  We are

in the process of categorizing these relationships and developing a terminology within which to describe and

quantify their effect on problem solving efficiency.  The observation that these higher-order relationships

among variables can be important in determining problem solving efficiency has implications for task

decomposition in distributed systems, for timing of communication of partial results, for interpretation of

partial results, for when synchronization might be important, for information that could be exchanged that

would speed up problem solving, and for choosing what activities may be contributory, and what activities

may be futile, to pursue at any given time in problem solving.

5 Appendix:  The 18 Scheduling Problems

Problem 1: 15 solutions IVT = 0.77
Agent Order Deadline Activities With Resource and Time Requirements

α 1 19 A1 (R1 for 2) → A2 (R3 for 4) →  A3 (R3 for 3) →
     A4 (R3 for 4) →  A5 (R2 for 2) → A6 (R1 for 2)

β 2 19 A7 (R3 for 2) → A8 (R2 for 4) → A9 (R1 for 2) →
     A10 (R1 for 3) → A11 (R2 for 4) → A12 (R2 for 2)

Problem 2: 512 solutions IVT = 0.74
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1(R2 for 4) → A2 (R1 for 5) → A3 (R2 for 2)
α 2 8 A4 (R1 for 2) → A5 (R4 for 2)
β 3 16 A6 (R4 for 4) → A7 (R2 for 3) → A8 (R3 for 2) →

     A9 (R1 for 2)
β 4 16 A10 (R1 for 4) → A11 (R1 for 3) → A12 (R2 for 4)

Problem 3: 2450 solutions IVT = 0.98
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R2 for 2)
α 2 20 A2 (R3 for 4) → A3 (R4 for 3) → A4 (R4 for 3) →

     A5 (R2 for 3) → A6 (R2 for 4)
β 3 16 A7 (R1 for 4) → A8 (R3 for 4) → A9 (R3 for 4)
β 4 16 A10 (R1 for 4) → A11 (R3 for 4) → A12 (R1 for 2)
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Problem 4: 25837 solutions IVT = 0.54
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R2 for 2) → A2 (R1 for 2)
α 2 16 A3 (R2 for 2) → A4 (R3 for 2) → A5 (R3 for 5)
β 3 8 A6 (R4 for 4) → A7 (R2 for 2)
β 4 20 A8 (R1 for 5) → A9 (R1 for 2) → A10 (R4 for 3) →

     A11 (R2 for 2) → A12 (R2 for 4)

Problem 5: 2289 solutions IVT = 0.50
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R3 for 4) → A2 (R2 for 2)
α 2 20 A3 (R4 for 4) → A4 (R3 for 4) → A5 (R3 for 4) →

     A6 (R3 for 2) → A7 (R1 for 2) → A8 (R4 for 2)
β 3 8 A9 (R2 for 2) → A10 (R1 for 3)
β 4 8 A11 (R1 for 2) → A12 (R1 for 2)

Problem 6: 91 solutions IVT = 0.77
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R4 for 4) → A2 (R3 for 2) → A3 (R3 for 4)
α 2 16 A4 (R2 for 4) → A5 (R3 for 2) → A6 (R3 for 2)
β 3 16 A7 (R3 for 4) → A8 (R4 for 5)
β 4 16 A9 (R4 for 5) → A10 (R3 for 2) → A11 (R1 for 2) →

     A12 (R2 for 3)

Problem 7: 955 solutions IVT = 0.19
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R3 for 5) → A2 (R1 for 4) → A3 (R2 for 3)
α 2 16 A4 (R1 for 3) → A5 (R3 for 5)    Agent 2
β 3 8 A6 (R1 for 2) → A7 (R2 for 4)
β 4 20 A8 (R4 for 3) → A9 (R4 for 5) → A10 (R4 for 2) →

     A11 (R3 for 5) → A12 (R2 for 4)

Problem 8: 7028 solutions IVT = 0.47
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R2 for 2) → A2 (R1 for 3) → A3 (R4 for 5)
α 2 16 A4 (R3 for 5) → A5 (R3 for 5)
β 3 20 A6 (R4 for 2) → A7 (R2 for 3) → A8 (R1 for 3) →

     A9 (R4 for 4) → A10 (R4 for 4)
β 4 16 A11 (R2 for 5) → A12 (R1 for 5)

Problem 9: 24820 solutions IVT = 0.78
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R2 for 5) → A2 (R1 for 3)
α 2 16 A3 (R2 for 3) → A4 (R2 for 5) → A5 (R4 for 2)
β 3 16 A6 (R4 for 3) → A7 (R4 for 2) → A8 (R4 for 4) →

     A9 (R1 for 3)
β 4 8 A10 (R1 for 2) → A11 (R3 for 2) → A12 (R3 for 2)
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Problem 10: 2016 solutions IVT = 0.66
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R1 for 2) → A2 (R1 for 2)
α 2 8 A3 (R1 for 2) → A4 (R4 for 2)
β 3 16 A5 (R2 for 2) → A6 (R4 for 4) → A7 (R3 for 4) →

     A8 (R4 for 4)
β 4 20 A9 (R2 for 5) → A10 (R2 for 5) → A11 (R1 for 4) →

     A12 (R2 for 2)

Problem 11: 190 solutions IVT = 0.22
Agent Order Deadline Activities With Resource and Time Requirements

α 1 20 A1 (R4 for 5) → A2 (R4 for 3) → A3 (R2 for 4) →
     A4 (R4 for 4) → A5 (R4 for 2) → A6 (R2 for 1)

α 2 8 A7 (R3 for 2) → A8 (R3 for 4)
β 3 8 A9 (R2 for 2) → A10 (R3 for 2)
β 4 16 A11 (R2 for 5) → A12 (R1 for 5)

Problem 12: 832 solutions IVT = 0.58
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R3 for 3) → A2 (R4 for 2)
α 2 8 A3 (R4 for 2) → A4 (R1 for 3) → A5 (R4 for 2)
β 3 16 A6 (R1 for 2) → A7 (R1 for 3) → A8 (R3 for 5) →

     A9 (R2 for 2)
β 4 16 A10 (R2 for 5) → A11 (R4 for 2) → A12 (R1 for 4)

Problem 13: 265 solutions IVT = 0.85
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R3 for 5)
α 2 16 A2 (R1 for 4) → A3 (R3 for 2) → A4 (R4 for 3) →

     A5 (R1 for 2)
β 3 16 A6 (R2 for 3) → A7 (R3 for 3) → A8 (R4 for 4) →

     A9 (R4 for 2)
β 4 16 A10 (R1 for 5) → A11 (R3 for 2) → A12 (R2 for 3)

Problem 14: 366 solutions IVT = 0.98
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R2 for 3) → A2 (R1 for 5) → A3 (R3 for 3)
α 2 16 A4 (R4 for 3) → A5 (R3 for 4) → A6 (R4 for 2) →

     A7 (R2 for 5)
β 3 16 A8 (R1 for 3) → A9 (R4 for 4) → A10 (R4 for 3)
β 4 8 A11 (R2 for 3) → A12 (R4 for 3)

Problem 15: 2 solutions IVT = 0.24
Agent Order Deadline Activities With Resource and Time Requirements

α 1 8 A1 (R3 for 3) → A2 (R1 for 3)
α 2 8 A3 (R2 for 2) → A4 (R4 for 4)
β 3 8 A5 (R2 for 2) → A6 (R1 for 2) → A7 (R2 for 3)
β 4 20 A8 (R3 for 4) → A9 (R1 for 4) → A10 (R3 for 3) →

     A11 (R4 for 2) → A12 (R2 for 4)
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Problem 16: 26 solutions IVT = 0.59
Agent Order Deadline Activities With Resource and Time Requirements

α 1 20 A1 (R1 for 3) → A2 (R3 for 2) → A3 (R1 for 3) →
     A4 (R4 for 3) → A5 (R2 for 5) → A6 (R1 for 3)

α 2 16 A7 (R2 for 5) → A8 (R2 for 3)
β 3 16 A9 (R1 for 3) → A10 (R3 for 5)
β 4 8 A11 (R2 for 3) → A12 (R3 for 3)

Problem 17: 12563 solutions IVT = 0.88
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R1 for 2) → A2 (R4 for 3) → A3 (R3 for 3)
α 2 20 A4 (R4 for 4) → A5 (R1 for 2) → A6 (R4 for 5) →

     A7 (R4 for 2) → A8 (R3 for 5)
β 3 8 A9 (R3 for 2) → A10 (R2 for 5)
β 4 16 A11 (R3 for 5) → A12 (R2 for 3)

Problem 18: 1042 solutions IVT = 0.48
Agent Order Deadline Activities With Resource and Time Requirements

α 1 16 A1 (R3 for 5) → A2 (R1 for 2) → A3 (R2 for 2) →
     A4 (R2 for 3)

α 2 8 A5 (R4 for 2) → A6 (R1 for 2)
β 3 16 A7 (R2 for 3) → A8 (R4 for 5)
β 4 16 A9 (R4 for 4) → A10 (R2 for 2) → A11 (R4 for 4) →

     A12 (R3 for 3)
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