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ABSTRACT 

This thesis describes an architecture for a parallel microcomputer system 

that permits a systematic and flexible approach to the emulation of a wide variety 

of complex sequential and parallel intermediate machine languages in a dynami- 

cally varying Processor-Memory-Switch (PKS) environment. This architecture 

is based on the view that complex emulators can be best structured in terms of a 

set of microprocessors that interact in a highly structure manner. These highly 

structured interaction patterns are defined through the concept of a virtual PMS 
environment. This concept embodies the capability for reconfiguring both the 
internal and the external environment of a microcomputer system: the number 

of internal working registers of each microprocessor; the structure of memory, 

e.g., its size and word length; and the number of microprocessors and functional 

units, and their interconnection and interaction patterns. The virtual PMS is 

implemented in the microcomputer architecture by adding a new global level of 

hardware control. A particular virtual PMS is dynamically defined by modifying 

the syntax (i.e., the number of data elements and their relationship) of the data 
structure for control used by this global hardware control level. 

The representational capabilities of this architecture have been examined 

through the microprogramming of an emulator for a sophisticated parallel 

machine language, Adams’ Graph Machine Language. The emulator of this 
machine language has demonstrated the versatility and usefulness of the concept 

of a virtual PMS by requiring less than 600 64-bit microinstructions to be pro- 

grammed, while at the same time being able to exploit fully the implicit paral- 

lelism of a graph machine program. In addition, the dynamic execution char- 

acteristics of this architecture have been studied through the use of a detailed 

simulator of a hardware organization for this microcomputer architecture. The 

simulator has been used to verify quantitatively that this organization permits 
parallel activity on the virtual PMS to be mapped without significant overhead 

onto the physical PMS. In particular, the simulation results indicate that where 

sufficient parallel activity exists, the addition of microprocessors to the PMS 
configuration will reduce in a linear way the time it takes to execute the compu- 

tation. The simulation results have also indicated that the logical hardware 

design, with the appropriate PMS configuration, can efficiently handle sustained 

parallel activity, involving highly structured interaction patterns, of greater 

than sixteen microprocessors. 

. . . 
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I. INTRODUCTION 

"Pragmatically important problems such 
as the design of programming languages appropriate 
for given problem areas, design of computer 
systems well matched to given programming 
languages, and defining efficient structures for 
translators are capable of being adequately 
handled only within a model that assigns similar 
structures to programming languages and computer 
languages both globally and locally". (Nar67) 

I.1 Unification of Three Trends in Computer Architecture 

Over the past few years, there has been a growing trend 

toward the design of computers whose architecture differs considerably 

from that of the classic von Neumann type computer*. This departure 

from the von Neumann type computer architecture has occurred on three 

levels: 1) the Instruction-Set-Processor (ISP) level of which the 

Burroughs B5500 is an example, 2) the PMS Processor-Memory-Switch 

(PMS) level of which the ILLIAC-IV is an example, and 3) the Processor 

Implementation Technique (PIT) level of computer design of which the 

IBM 360140 is an example (terminology from BELJO). 

The first trend, that is on the Instruction-Set-Processor 

level, has led to the development of computers whose machine languages 

*A von Neumann type computer is considered to have a sequential 
control structure, and instructions which operate on single units of 
data accessed from a linear address space. 
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are optimized for a particular higher level language or operating 

system environment. This trend is exemplified in the languages of 

machines such as the Burroughs B6500(HAV68) for Algal, Fairchild's 

SYMBOL machine (RICJl) for string manipulation, Abrams' APL 

machine (AEiRJO), Melbourne and Pugmire's Fortran machine(MEL65), etc. 

These machine languages represent a broader class of languages than 

are conventionally considered (von Neumann) machine languages. We 

shall refer to this broader class as Intermediate Machine Languages 

mfL). The tailoring of an IML to a specific higher level language is 

accomplished by incorporating instructions and data types in the It% 

which directly implement (i.e., mirror) the primitive operations of 

the higher level language. For instance, an ALGOL procedure call 

including the modification of the addressing environment is directly 

mirrored by the ENTER instruction in the B6500. Thus, instead of 

implementing the semantics of higher level language primitive 

operations through an unnecessarily long and complicated sequence of 

instructions (see Figure la), the IML is designed so that there is a 

single instruction or, at worst, a short sequence of instructions that 

efficiently carry out the primitive operation (see Figure lb). 

Therefore, by tailoring a machine language more closely to a 

particular higher level language, the mapping between the higher level 

language and the machine language is simpler and results in a more 

compact and efficient generated code (MCK67). This trend should 

accelerate as the cost of software is recognized as the major cost 

component of a computer system (DENTS). 
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1-I *higher level language statement 
I 

(a) 

t 

I I 
I- ** sequence of instructions in a 

+-2-i conventional von Neumann machine 
I 

__- ______ ------------- ____ --_--- ----- 
I higher level language statement 

(b) 

I 
1 sequence of instructions in IML 

I machine tailored for this language 
I : \ I I 
-t-a 

*The length of the line is intended to give some relative 
measure of the inherent computational activity involved in 
the execution of a statement or machine instruction. 

**The sequence of machine instructions is intended to indicate 
the inefficient use of the computational activity of each 
instruction, and the high overhead of instruction fetching 
and decoding due to the large number of instructions 
required to be executed. m>>I* 

Figure 1. Mapping of a Higher Level Lanquage to a Machine 
Language 
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The second trend, that is on the Processor-Memory-Switch 

level, has led to the development of computers that are able to carry 

out parallel activity at the functional unit level, instruction level, 

or process level. These different levels of parallel activity are 

exemplified by machines such as the CDC6600(TH064), which permits 

clocked asynchronous parallel operation of functional units, the 

ILLIAC-IV(SLO67), which permits lock-step execution of multiple copies 

of a single instruction stream on identical processors and the 

multiprocessor B825(AND62), which permits the execution of multiple 

asynchronous instruction streams on identical CPU's. This trend 

towards parallelism at the PMS level has occurred mainly in the design 

of high performance computer systems. However, as LSI technology 

brings down the cost of logic and as reliability of the computer 

system becomes an important component of the design, this trend toward 

parallelism should extend to many more types of computer 

systems(BEL72). 

These two design trends on the ISP and PMS levels are not 

disparate but rather are separate aspects of a more general trend 

towards the design of complex problem oriented computers whose 

architecture departs considerably from a classical von Neumann 

architecture. The B6500, the ILLIAC-IV, and the SYMBOL machine 

represent to varying degrees an integration of these two trends in 

computer architecture. The B6500 configured as a multiprocessor 

system permits the allocation of multiple processors to the execution 

of a single Algol program, the ILLIAC-IV permits highly parallel 
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execution of problems involving an array structured data base, and the 

SYMBOL machine permits a set of non-identical processors to work in a 

parallel coroutine structure to interpret and execute a sophisticated 

IML instruction repetoire. 

In parallel with these first two trends, there has been a 

third trend towards providing a systematic and flexible technique for 

implementing a processor in hardware. This third trend, that is on 

the Processor-Implementation-Technique level, has led to the to the 

development of the concept of a microcomputer (WIL69, HUS70), which 

provides a systematic and regular technique for specifying control at 

the circuit gate level. The major use, to date, of microcomputers has 

been in the implementation (emulation) of the processor of a specific 

von Neumann twe computer; e.g. IBM 360/4O(IBK66), with the 

microcomputer usually having a read-only control memory. Recently, 

there have been the beginnings of an attempt to combine complex 

problem-oriented computer design with microcomputer design 

(WJZB67,ROS69), implementing a specific architecture by modifying the 

READ-WRITE control memory of the microcomputer. It is hoped that the 

goal of emulating a wide range of problem-oriented computers can be 

realized by dynamically modifying the control memory of a single 

microcomputer system. This goal cannot be effectively attained on 

microcomputers whose architecture is essentially designed for the 

emulation of the instruction set of a von Neumann type computer in a 

non-parallel PMS environment. This thesis offers an architecture for 

a microcomputer system that permits a systematic and flexible approach 
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to the emulation of a wide variety of complex sequential and parallel 

intermediate machine languages in a dynamically varying PMS 

environment which contains multiple microprocessors and functional 

units. 

1.2.1 Traditional Microcomputer Architectures 

The conceptual architecture of a conventional microcomputer 

system is shown in Figure 2. The memory subsystem contains a machine 

language program (and its corresponding data) which is to be executed 

on the emulated computer. The microprogram memory contains 

microinstructions that are used to interpret instructions of the 

emulated computer. The formats of microinstructions on existing 

microcomputers can be characterized into two general classes: 

horizontal and vertical microinstruction formats (see Figure 3 and 

Figure 4 respectively). In a microinstruction specified in terms of 

the horizontal format, each bit of the microinstruction word controls 

a particular internal operation of the microprocessor (e.g., the 

opening or closing of a hardware data path between internal working 

registers, or the arithmetic operation to be performed on a data 

path). The vertical format microinstruction word is broken into a 

series of fields as in a conventional machine instruction, where each 

field is used to specify either one of a set of internal registers or 

one of a set of built-in arithmetic operations. These 

microinstructions are executed on a single microprocessor which is 

connected to a set of functional units. The term functional unit is 
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used in a very broad context to refer to input/output devices, their 

corresponding controllers, and arithmetic units, such as a 

floating-point adder. In conventional microprocessors, the functional 

units connected are usually input/output devices or their 

corresponding controllers rather than arithmetic units. 

In order to perform an emulation using a conventional 

microcomputer architecture, the microprogrammer must first imbed the 

state image of the emulated computer, S(e), which includes the set of 

working registers of the computer (accumulator, index register, 

program counter, etc.) and its main memory into the state image of the 

microcomputer, S(m), which includes the Memory Subsystem and the 

internal state and working registers of the microprocessor. For 

efficiency, frequently accessed elements of S(e) (e.g. the program 

counter of the emulated machine, etc.) are stored, if possible, in the 

internal working registers of the microprocessor. An emulator 

constructed out of microinstructions has a conceptual microprogram 

structure shown in Figure 5. The "control process" activates the 

"decoding process" with data that identifies the next instruction of 

the emulated computer to be executed; the decoding process then 

analyzes the instruction to be executed so as to determine the 

"semantic routine" together with its appropriate calling sequence, 

whose activation will perform the semantics of the emulated 

instruction. After the appropriate semantic routine has been 

executed, the flow of control returns to the control process which, 

based on the results of executing the decoding process and the 
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semantic routine, selects the next instruction to be emulated. This 

basic cycle is conventionally called (TUC65) the "DO Interpretive 

Loop" (DIL). This two step design process for an emulator is 

represented in terms of a commutative diagram in Figure 6*. 

1.2.2 Basis for a New Microcomputer Architecture 

In microcomputers designed to emulate a specific computer 

architecture, or family of computers with similar architectures, the 

imbedding of the state image is straightforward. There are internal 

registers dedicated to holding commonly accessed state information of 

the emulated computer. The control and decoding processes of the 

emulator are usually directly implemented in the hardware taking their 

data from the dedicated internal registers. This control and decoding 

hardware is usually directly integrated into the microprocessor's 

control structure used for the sequencing of microinstructions so as 

to create an extended control structure. Through this concept of an 

extended control structure, the sequencing of microinstructions is 

driven directly by the sequencing of emulated instructions. In 

addition, the internal data paths and microperations are tailored so 

as to make microprograms that carry out the semantic phase of an 

*The left hand side of the commutative diagram represents the effect 
of executing an instruction of the emulated computer on the state 
image of the emulated computer. The right hand side represents the 
sequence of transformations that the microcomputer must perform on its 
own state image in order to emulate this instruction. 
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Figure 5. 
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emulation efficient and compact. Thus, a microcomputer is a flexible 

and efficient technique for emulating computers that have been 

anticipated. 

However, this tailored microcomputer architecture is 

inefficient when used to emulate a machine language (IML) that is 

dissimilar in its instruction format, control structure or instruction 

semantics to the machine languages anticipated by the designer. This 

inefficiency occurs because: 

1) the imbedding of the S(e) into S(m) is not 
straightforward (e.g., mapping a machine which has a 36 bit 
wide word into a microprocessor which has a 32 bit wide 
word) and dedicated (specific function) internal registers 
cannot be used directly to hold commonly accessed state 
information (TUC65); 

2) the hardware implementation of the control and decoding 
processes cannot be used directly; 

3) the microinstructions and the internal data paths they 
manipulate that were designed for a specific set of 
instruction semantics are clumsy when applied to the 
microprogramming of the control and decoding processes, and 
different instruction semantics. 

These problems with a tailored microcomputer architecture are 

analogous in many respects to the previously discussed problems with 

the execution of higher level languages on a von Neuman machine. 

In response to these problems with a conventional 

microcomputer architecture, new types of microcomputer architectures 

are beginning to be developed, most notably the Q&l (ROS71) and 

MLP-900 (bAW71), which are designed more for general purpose emulation 
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rather than for implementation of a specific processor. These new 

microcomputer architectures differ from conventional architectures by 

providing the capability of configuring a set of non-specific internal 

registers of the microprocessor and their corresponding 

interconnection pattern into the specific configuration appropriate 

for the emulation of a particular IML. Once the particular 

configuration is set, the semantics of the microinstruction, when 

executed, operate directly in the context of the chosen configuration. 

This flexible configuration capability, referred to in less general 

contexts as residual control (FLY71), leads to ease of representation, 

code compactness, and efficient use of microprocessor resources*. The 

concept of residual control represents a design trade-off between 

conventional microprocessors which are efficient but inflexible and 

non-specific microprocessor architectures which are flexible but 

inefficient because there is no specification of functions or internal 

resources for particular types of emulation. The cost of this 

capability for configurability is extra levels of hardware logic, and 

high speed memory to hold configuration specifications, which implies 

a slower microprocessor cycle time, and thus a more costly 

microprocessor. 

*The concept of residual control represents the extraction from the 
microinstruction of the enviromental information which remains static 
during the execution of a sequence of microinstructions. This 
environmental information specifies gating paths and adder 
configurations and modes, and is held in set-up registers which are 
used by the hardware to determine how to interpret a microinstruction. 
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This concept of dynamic reconfigurability for 

representational ease has also been employed in the design of other 

components of a computer system. In particular, the idea of virtual 

memory (DEN66) is directly analogous in its use and techniques for 

implementation to the idea of residual control. Both ideas represent 

attempts to match the structure of the computer system more closely 

(in this case, dynamically) to the structure of the problem to be 

programmed. 

The conventional microcomputer, augmented with the 

capability for dynamic configuration of bus interaction patterns 

(i.e., QM-1) and for generalized bit string extraction and 

manipulation (i.e., MLP-900, Bl7OO(WIL72)), provides an appropriate 

environment for emulating a wide range of machine languages which have 

simple control structures and instruction semantics that operate on 

simple data structures (e.g. von Neuman type computers). However, 

intermediate machine languages that are tailored for the execution of 

higher level languages or for the execution of operating system 

implementation languages are not so simple since the complexity of the 

higher level language operations is reflected in the semantics of the 

IKL instructions and control structure. If the current trend in the 

development of higher level languages is maintained, language-oriented 

IML's will employ increasingly more sophisticated control structures, 

such as recursion, coroutines, parallelism, etc., and instructions 

that access complex data structures, such as lists, trees,' arrays, 

etc., and perform operations such as sort (LEV72) matrix manipulation 

(GRA70, ABR70), etc. As will be argued below, these IML's call for a 

more sophisticated control structure in the microcomputer. 
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The control structure of a machine language or higher level 

language consists of a set of control rules(CR) and a data structure 

for control(CDS) commonly called Program Status Word(PSW) or processor 

state, on which the control rules operate. The control rules 

determine at each meaningful unit of activity of the language which 

statement or statements of the language will next be executed. For 

example, if the CDS of a simplified computer consisted of a program 

counter and an interrupt register, then the CR of this simplified 

computer might be the following paradigm: if there are no interrupts 

pending, then execute the instruction at the location specified by the 

program counter, otherwise, store the program counter at a fixed 

location in the program memory, reset the interrupt flip-flop, place 

the address of the interrupt handling routine in the program counter, 

and then execute the first instruction of the interrupt handling 

routine. This definition of a control structure makes a clear 

distinction between the control structure of a language and the 

execution of control statements of a language, e.g., conditional 

branch instructions, etc. The control statements of a language 

implicitly, rather than explicitly, affect sequencing by modifying 

only one part of the control structure, namely, the CDS; the actual 

sequencing of statements occurs only by the interpretation of the 

control data structure by the control rules. For example, consider 

the results of executing the control statement "BRANCH TO LOCATION X" 

in terms of the control structure of the simplified computer discussed 
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previously. The branch statement, when executed, places the address X 

in the program counter; however, the next instruction to be executed 

may not be at address X since during the time the branch instruction 

was executed an interrupt could have occurred. 

The simple sequential control structure of a conventional 

microcomputer is inappropriate for emulation of sophisticated IML's in 

a parallel PMS environment for the following reasons: 

1) The control structure component of the state image of 
sophisticated TiYL's is not easily imbedded in the control 
structure component of S(m); in particular, all parallel 
activity specified in the control structure component of 
S(e) must be sequentialized when imbedded in the control 
structure component of S(m); in essence, if the emulated 
machine contains instructions capable of fork-join type 
parallelism(CON68), there should be a simple and short 
sequence of microinstructions that modify control structure 
components of S(m) so that the microcomputer system will 
directly start to emulate in parallel the newly created 
instruction stream defined by the fork instruction. 

2) The control structure for sequencing the different phases 
(tasks) required in the emulation of sophisticated IML's may 
not be sequential: the instruction decode, and fetch, and 
semantics phases may be pipelined, as in the 360/91(AND67), 
or the phases may interact in a parallel or quasi-parallel 
coroutine as in the SYMBOL machine. 

3) The control structure may be required to represent the 
coordination, on a very fine interaction level, of multiple 
microprocessors and functional units, such as the lock-step 
execution of processors in the ILLIAC-IV, or scheduling of 
asynchronous functional units in the CDC-6600. 

Thus, the flexibility of the control structure of the microcomputer is 

crucial to the effective emulation of sophisticated TXL's. In 

particular, the control structure of a microcomputer should be able to 

be dynamically restructured, in a manner similar to but more general 
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than the reconfigurability specified through residual control and 

virtual memory, so that it more directly mirrors the control structure 

of the emulated machine and its emulator. 

1.2.3 A New Microcomputer Architecture 

The microcomputer architecture to be presented in this 

thesis is based on unifying in a single framework the concepts of 

residual control, virtual memory, and dynamic (restructurable) control 

structure. These concepts have been integrated through the idea of a 

virtual PMS environment; this idea embodies the capability for 

reconfiguring both the internal and the external environment of a 

microcomputer system. The concept of residual control as used in this 

context allows the varying of the number of internal working registers 

of each microprocessor; the concept of virtual memory in this context 

allows the varying of the structure of memory, e.g., its size and word 

length; the concept of a dynamic control structure allows the varying 

of the number of microprocessors and functional units, their 

interconnections and interaction patterns. 

The concept of a virtual PMS environment leads to a new view 

of emulation pictured in Figure 7a and Jb, where S(vm> represents the 

virtual state image of the microcomputer system created through the 

specification of a particular PMS environment and the additional level 

of hardware is used to map microoperations, performed in the context 

of the virtual PMS environment, onto the actual (physical) PMS 
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environment. This additional level of hardware is analogous to the 

hardware in a virtual memory system which manages the page tables and 

performs the mapping of virtual addresses to physical addresses. The 

extra dimension of representational freedom provided by the concept of 

a virtual PMS environment allows: 

1) The virtual state image of the microcomputer system, 
SC@, to be structured so as to make the imbedding of the 
state image of complex IHL's, S(e), straightforward; 

2) The microinstructions to operate directly in the context 
of an appropriate S(vm) so as to make the coding of the 
emulator compact and simple; 

3) The emulator to be coded so as to be independent of the 
physical PMS environment but, at the same time, exploit 
physical resources when available. 

The concept of a virtual PMS environment also leads to a new 

view, as pictured in Figure 8, of a microcomputer architecture. In 

this new architecture, there are two distinct hardware levels of 

control that are structured in a hierarchical fashion: the 

conventional level of control, contained in each microprocessor, for 

the sequencing of microinstructions, and a new level of control for 

the sequencing of microprocessors and functional units; thus, the 

microcomputer system contains both local, distributed control 

structures and a global, system-wide control structure. The control 

rules for this new level of control are implemented in hardware which 

is distributed in each microprocessor and in the controller for the 

bus(ses) which are used for inter-processor communication. This new 

level of control must be an integral part of the hardware organization 

for reasons which are analogous to the use of special mapping hardware 
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Figure 7a. A New View of Emulation Process 
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. . 
for virtual addressing. Otherwise, the overhead in implementing 

highly structured parallel interaction patterns*, where the parallel 

activity is of short duration, will overwhelm the inherent parallelism 

of the interaction patterns. The control data structure for this new 

level of control is contained in a separate memory called the Process 

Space Memory (M.PSM). 

A particular virtual PMS environment is dynamically defined 

by constructing an appropriate global control structure for the 

microcomputer system. An appropriate global control structure is 

constructed by dynamically modifying the syntax, i.e., the number of 

data elements and their relationships, of the control data structure 

(CDS) contained in the Process Space Memory. In a conventional 

computer or microcomputer system, the data structure for control 

contains a fixed set of data elements whose relationships are 

predefined. Thus, in a conventional system, control can only be 

modified by changing the value of data elements in the CDS. The 

ability added here to modify the syntax of the data structure for 

control, as will be seen later, is the key to tailoring a virtual PMS 

environment for a particular emulated machine. 

~~~~~-------------~~~~~~~~~~~~~~~~~-~-~~~~~~~~~~~~~~~~~~~~~~~~~--~~~~~ 
*A highly structured interaction pattern among microprocesses implies 
that there is a high degree of coordination among microprocesses. 
This is in contrast to an unstructured interaction pattern which 
implies that once one microprocess has initiated the activity of 
another microprocess, there is no further coordination of the activity 
of these two microprocesses. 
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There are two general classes of microinstructions in the 

microcomputer. One class, called the Integer Function Language (IFL), 

deals with internal registers of the microprocessor, and are like 

conventional vertical microinstructions. The other class, called the 

Structure Building Language (SBL), deals with the external environment 

of the microprocessor by modifying the CDS contained in the Process 

Space Memory. The SBL can be thought of as a control structure 

definitional language which is designed so as to regularize control at 

the microprocessor/microprocessor interaction level, 

microprocessor/functional unit interaction level and 

microprocessor/Memory Subsystem interaction level. 

This new level of hardware control can also be thought of as 

a simple, hardware operating system which controls the scheduling and 

interactions among microprocessors and functional units. In this 

context, the CDS stored in the Process Space Memory (M.PSM) is 

analogous to the control blocks and queues that describe the 

interaction and existence of tasks (or processes) in a multiprogrammed 

operating system. The SBL statements are analogous to requests for 

those supervisor services that affect interprocess interaction 

patterns in such an operating system. The SBL can manipulate and 

build up the CDS only in ways understandable to the global control 

rules of the microcomputer system; the CDS, in a very general sense, 

can be considered a control structure definition program which, when 

interpreted by the global control rules of the microcomputer system, 

defines a particular sequential or parallel control structure for 

sequencing of virtual microprocessors (microprocesses*) and functional 
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units. The CDS can also be thought of as a variable structure 

template that defines a particular internal and external structure for 

the microcomputer system, thus the idea of a virtual RIS environment. 

An SBL program is quite different from a sequence of control 

statements since the control structure definition program (the CDS), 

constructed by the SBL, is external to the microprogram. The 

separation of the control structure definition program permits the 

static parts of the virtual PMS environment to be generated only once 

for repeated executions of emulation. 

SBL statements dynamically modify the CDS to directly 

reflect the state transitions occurring in the emulated computer. SBL 

statements reflect these state transitions by modifying the CDS so as 

to change: 1) the data environment of a microprocess, 2) the activity 

state of a microprocess, or 3) the interaction patterns among 

microprocesses (only this third case results in a modification of the 

syntax of the CDS). The CDS explicitly represents the relationship 

between the execution of a microprogram and the immediate data 

environment (parameters) in which the instructions of the microprogram 

operate. This relationship between the control and data environments, 

as will be seen in more detail later, allows 1) the representation of 

data environment interrelationships among microprocesses, and 2) the 

state of the emulated computer to be integrated directly into the CDS 

(e.g., the IML program counter could be a parameter of a microprocess 

~-~~~~---~~_---~~-~-~~~-~~~~--~-~~-~~~~~--~~~~---~~--~~~~~~~~~--~~~~~- 
*The relationship between a microprogram and microprocess is analogous 
to the relationship between a program and a process(LAM68). 
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defined in the CDS). Thus, an IML control statement, such as a 

conditional branch in a pipelined emulator, can be implemented by an 

SBL microinstruction that modifies the data environment (e.g., the IML 

program counter parameter) of the microprocess that asynchronously 

fetches the next instruction to be executed. Likewise, the processing 

of an IML interrupt can be handled by an SBL instruction that suspends 

the activity of the microprocess that emulates the IML interrupt 

handling process. IML control statements that specify the creation of 

new paths of controls (e.g., fork-join instruction , etc.) can be 

implemented by an SBL statement that builds up the appropriate 

structure in the CDS for emulating IML instructions along this newly 

created control path. Additionally, the SBL can be used to construct 

in the CDS: 1) control structures for sequencing microprocesses which 

carry out the semantics of emulated instructions, 2) control 

structures for I/O, and 3) control structures for data accessing 

operations. 

I.3 An Outline of the Justification for This 

New Microcomputer Architecture 

The remainder of the thesis will develop the following 

conclusions: 

1) The concept of a virtual PMS provides a representational 
framework in which a wide variety of sequential and parallel 
control structures can be easily expressed, 

2) The SBL can be used to simply and compactly code 
emulators for complex IM's. 
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3) A computer organization which implements the concept of a 
virtual PMS can be designed such that highly parallel 
activity specified on the virutal PXS can be translated 
without undue overhead into highly parallel activity on the 
physical PMS. 

Chapter II contains a detailed discussion of the SBL and the 

associated global control structure, and their applicability for 

representing particular types of control structures. 

Chapter III reviews in a step by step manner the design and 

coding of an emulator for a complex ML. The emulator for this 

complex IML represents a comprehensive test case that is used to 

illustrate how control structure concepts, such as distributed 

control, pipelining and recursion are coded in the SBL. 

Chapter IV discusses the computer organizational issues 

involved in implementing this proposed microcomputer architecture. 

Specifically, the following organizational issues will be discussed: 

1) the bussing structures to access memory, and for 
interprocessor communication; 

2) the hardware algorithm for scheduling of virtual 
microprocessors on actual microprocessors. 

3) the design requirements necessary to insure no hardware 
deadlocks are introduced which are not already present as 
software deadlocks. 

4) the issues involved in the use of a memory cache per 
microprocessor. 

5) the internal microprocessor organization necessary to 
implement the concept of a virtual microprocessor. 
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Chapter V contains an evaluation of the performance 

capability of a possible hardware implementation of this microcomputer 

architecture when executing the emulator discussed in Chapter III. 

This evaluation is based on statistics produced from a detailed 

hardware simulator which permits the varying of hardware parameters, 

such as the number of microprocessors, the number of busses, the 

interleaving of memory, the size of the cache, and the cycle times of 

a microprocessor, memory, or cache. This evaluation will attempt to 

indicate the crucial parameters that affect systems performance. 

Finally, Chapter VI summarizes the major results of the thesis. 
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II. Structure Building Language (SBL) 

and 

the Data Structure for Control (CDS) 

II.1 Motivation and Important Design Considerations 

The design of the SBL and its associated data structure for 

control is based on the view that complex emulators can be best 

expressed in terms of a set of (virtual) microprocessors that interact 

in a highly structured manner. Further, these highly structured 

interaction patterns (e.g., a virtual PMS environment) are different 

for different types of emulators. This view represents a modular, 

task oriented approach to managing the complexity of emulation, which 
. 

is, in fact, the technique used to design sophisticated computer 

organizations such as the IBM 360/91, CDC 6600, BCC-500(UM70) and the 

SYMBOL machine. 

The CDS has been defined so as to (1) allow the flexible 

structuring of a virtual PMS environment, and (2) insure that the 

hardware algorithm for the mapping of virtual microprocessor activity 

to actual microprocessor activity is straightforward. The SBL 

microinstructions are not oriented toward specifying any particular 

method of microprocessor interaction patterns, but rather are building 

blocks on which different interaction patterns can be defined. For 
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example, Dijkstra's semaphore (DIJ65), Saltzer's wakeup-waiting switch 

(SAL66) and message-queuing (SAA70,RID71) are all communication 

patterns that can be emulated by a short sequence of SBL 

microinstructions. However, SBL microinstructions are of sufficient 

complexity so as to provide information to the hardware mapping 

algorithm which allows the mapping algorithm to take advantage of 

similarities between the structure of the virtual PMS environment and 

that of the actual PMS environment. For instance, if it is desired to 

broadcast the same data to 64 virtual microprocessors and there are at 

least 64 actual microprocessors, then the mapping algorithm should be 

able to broadcast the data directly in one step to all 64 

microprocessors, rather than sequentially transferring the data to 

each microprocessor. 

The remainder of this chapter is divided into three 

sections: the Data Structure for Control, the Structure Building 

Language, and the Generation of the Data Structure for Control. The 

first section, on the CDS, describes the syntax of microprocess 

interaction patterns, e.g., "how" microprocesses can communicate and 

with "whom" they can communicate. The second section, on the SBL, 

describes the semantics of microprocess interaction patterns, e.g., 

"how" and "when" different syntactically defined interaction patterns 

are invoked. The third section, on the generation of the CDS by the 

SBL, describes how different syntactic interaction patterns are 

dynamically constructed. 
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II.2 Data Structure for Control (CDS) 

The CDS defines the syntax of microprocess interconnection 

and interaction patterns. The CDS consists of an arbitrary number of 

microprocess state vectors (MSV); each MSV has a structure, pictured 

in Figure 9a, which has 13 components; different microprocess 

interaction patterns are defined by varying the number of state 

vectors and the values their components. Changing the values of MSV 

components, as will be seen shortly, changes the relationship among 

microprocesses. 

A microprocess state vector is contained in two disjoint 

structures, a primary state vector (PMSV) having 7 components, and a 

state vector extension (EPSV) containing 6 components; these two 

disjoint structures are connected by a state vector extension pointer 

contained as a component of the primary state vector. The MSV is 

separated into two structures so as to allow the sharing of state 

vector extensions among microprocesses; the sharing of a state vector 

extension by two or more microprocesses defines a FORTRAN subroutine 

type control structure, i.e., each microprocess has its own local 

statically assigned storage and a common storage area for 

communication with other microprocesses. In addition, this separation 

allows the global environment within which a microprocess executes to 

be changed with the modification of a single pointer, i.e., the state 

vector extension pointer. One of the methods for microprocesses to 

interact is for the initiating microprocess to change the state vector 
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extension pointer of the microprocess to be activated, as will be 

discussed more fully in the next section. 

The remaining components of the microprocess state vector 

(MSV), for purposes of explanation, can be broken into two overlapping 

classes: external-environment components and internal-environment 

components. Each of these classes can be further subdivided into 

control-environment components and data-environment components. The 

external control-environment components define the set of 

microprocesses that a microprocess can directly communicate with. The 

external data-environment components define how other microprocesses 

can transfer data to a microprocess. The internal control-environment 

components define the local CDS for the sequencing of 

microinstructions of a microprocess. The internal data environment 

components define the internal working registers of the microprocess. 

Figure 9b contains a diagram of this categorization of the components 

of a MSV. 

The values of the components of an MSV are integers, 

pointers to MSV's, or pointers to registers that contain descriptors 

of either an array of registers or an array of MSV's. The Process 

Space Memory holds the collection of MSV's that define the CDS as well 

as the registers pointed to by components of the MSV's. The MSV, 

together with the registers it points to, define the state image of a 

virtual microprocessor S(vm>. 
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MSV-Components 

Externol- Int&nal- 
Environment Environment 

A A 
Control Data Control &to 

Local Process Env. Port 
Global Process Env. 

Entry Point Local Data Env. 
Global Data Env. Process Status Value Stack 

External Env. Pointer External Env. Pointer Processor Status 
Return Pointer Value Stack Program Counter 

Stack 1011*31 

Figure 9b. Functional Classification of Microprocess State 
Vector Components 
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X.2.1 External Control Environment 

There are four external control-environment components 

contained in an MSV: a local process environment pointer, a global 

process environment pointer, an extended environment pointer , and a 

return pointer. The first three of these configure the CDS in terms 

of a tree of microprocesses. In this context of a tree of 

microprocess state vectors, the local process environment component 

specifies a set of son MSV's, the global process environment component 

specifies a set of brother MSV's, and the external environment 

component specifies the father MSV. The external environment pointer 

provides a mechanism for tracing back up the tree so as to allow 

communication with the global process environment of the father, 

grandfather, great grandfather microprocesses, etc. The external 

environment pointer thus allows the nested structuring of control 

environments. 

Example 1: Consider the design of an emulator which works 
in a pipelined manner. In this pipelined emulator, there 
are separate, asynchronous microprocesses for fetching, 
decoding and carrying out the semantics of emulated 
instructions, for fetching and storing operands, and for 
controlling I/O channels. A possible CDS for this pipelined 
emulator is pictured in Figure 10. The microprocess 
computer controls the Channel-Controller microprocesses, and 
pipelined instruction emulator. The microprocess ISEQ 
(Instruction SEQuencer), IDECODE, and ITYPE-j implement, 
respectively, the control, decoding, and semantic processes 
of the pipelined emulator. 

The tree of microprocesses constructed by the first three components 

represents static control linkages among microprocesses, whereas the 
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return pointer component represents a dynamic control linkage. These 

static control linkages provide a syntactic framework for the 

specification of dynamic sequencing among microprocesses, whereas the 

return pointer provides a means for specifying a dynamic control 

connection between the initiating and initiated microprocesses. 

The CDS is in the form of a tree in order to easily specify 

control concepts such as hierarchical structure (functional 

decomposition), parallelism, coroutines, and recursion. 

Representation of hierarchical structure and recursion is possible 

because additional levels may be dynamically built in the tree by 

filling in the local process environment component of the MSV. 

Representation of parallel and coroutine structures is possible 

because brother MSV's in the tree may be treated as distinct, 

independent processes, each with its own state information. In 

addition, a set of brother microprocesses is a convenient framework 

for specifying multiple activation patterns, e.g., the 64 Processing 

Elements(PE) of an ILLIAC-IV can be thought of as a set of brothers 

which are executed together. Brother MSV's are stored in consecutive 

locations in the Process Space Memory. This method of storing 

brothers permits any brother to be accessed in one M.PSM memory 

reference*. 

*An arbitrary size block of MSV's can be specified in terms of three 
parameters: the beginning of the array of MSV's, the starting address 
in the array, and the length of the subarray. This concise 
representation of a block of MSV's could be possibly used to implement 
efficiently a hardware broadcast operation. 
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A tree data structure is also a convenient syntax framework 

(using father, son, and brother relationships among MSV's) for 

defining distributed control systems. The control structure of a 

complex system can sometimes be conveniently represented through a 

hierarchical structure where in each sibling set (or structural level) 

of the tree there is embedded a simple control rule (via a clocking 

process) (HOR69) that initiates the sequencing of its son 

microprocesses. If additional clocking processes are contained in the 

sibling set, control may pass to these son microprocesses after 

initialization. Thus, instead of one complex control rule for the 

entire system, the control can be distributed throughout the system. 

In addition, since the control rules can be coded such that their 

addressing structure is not based on their absolute locations in the 

tree, but only on their relative position in the tree, a single 

microprogram could be used by clocking processes throughout the tree. 

A distributed control structure can be used to define, 

depending upon the number of clocking processes that are 

simultaneously executed, either quasi-parallel (DAH~~) or parallel 

control structures. Further, many sequential control structures can 

also be easily defined in terms of a quasi-parallel control structure. 

For example, a subroutine call mechanism can be considered a quasi 

parallel control structure (BIN69): the execution of the subroutine 

call suspends the activity of the caller and activates the called 

subroutine; the return from the subroutine then terminates the 

activity of the subroutine and reactivates the caller. The block 
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structure and procedure calls of Algol and coroutines are other 

examples of sequential distributed control structures. In essence, 

the tree structure of the CDS allows the structure of a complex 

process to be functionally decomposed into a set of executions of less 

complex processes. 

11.2.2 External Data Environment 

There are four external data-environment pointers contained 

in a MSV: a port pointer, a global data environment pointer, a value 

stack pointer, and an external environment pointer. The port 

component, which specifies a block of up to four registers, allows the 

transfer of data to a microprocess to occur at the same time the 

microprocess is activated. In addition, the communicating 

microprocess does not have to know the location or structure of the 

port. The concept of a port allows for the construction of 

communication patterns where there are many possible microprocesses 

that may communicate and their sequence of communication is undefined. 

This type of communication pattern commonly occurs when a microprocess 

acts as synchronizing (clocking) process for asynchronously 

communicating microprocess e.g., Dijkstra semaphores, message queuing, 

etc. The port component may also be used to define broadcast control 

structure, e.g., multiple microprocesses having the same port. 

The global data environment component, which specifies a 

block of registers of arbitrary length, allows the transfer of data to 
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a microprocess to be separated from the activation of that 

microprocess. This type of communication pattern generally is used 

when 1) there are many microprocesses that access a single global data 

base, and 2) the values of the data base cannot be simultaneously 

modified by multiple microprocesses nor when other microprocesses are 

accessing those values. 

The value stack component allows two microprocesses to 

communicate in a coroutine manner. This coroutine communication 

pattern is defined by setting the value stack components of the MSV's 

of both microprocessors to the same value. 

The external environment pointer component, which points to 

an MSV, provides a mechanism for accessing the global data 

environments of a nested structure of microprocesses. This ability to 

define a nested structure of data environments is very useful in 

defining Algol-like (block) control structures. 

Example 2: Consider the pipelined emulator discussed in 
example 1. The microprocesses that make up this emulator 
could be structured so as to communicate with each other in 
two ways. One communication pattern is through a shared 
global data base where the frequently accessed data elements 
of the state image of the emulated computer are held. The 
other communication pattern is through the ports of each 
microprocessor. In particular, the microprocess, ISEQ, that 
asynchronusly fetches instructions transmits the fetched 
instructions, to the microprocess, IDECODE, through 
IDECODE's port. IDECODE, as will be discussed in more 
detail later, can define when a communication through its 
port from ISEQ will be consummated. In this way, the ISEQ 
microprocess does not have to worry about whether the 
IDECODE microprocess has already decoded the previously 
fetched instruction. However, if the fetched instruction 
was transmitted to the IDECODE microprocess through the 
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shared global data base then some explicit interlock 
mechanism would be needed to guarantee that IDECODE has 
already decoded the previously fetched instruction. 

11.2.3 Internal Control Environment 

There are four internal control-environment components 

contained in an MSV: an entry point component, a process status 

component, a processor status component, and a program counter stack. 

These four components define the microprocessor state. The entry 

point component specifies the beginning address of the microprogram 

that will be invoked when the microprocess is executed; the process 

status component specifies the execution status of the microprocess, 

and the activation-type requested of the microprocess (the process 

status will be discussed in detail in the next section); the processor 

status component specifies the internal status of the microprocessor, 

e.g., the condition code of the last arithmetic result; the program 

counter stack component specifies a block of registers that will be 

used as a stack to hold the microprocessor program counter when the 

microprocess is suspended or when a microprogram subroutine is 

invoked. h 

11.2.4 Internal Data Environment 

The remaining set of internal environment components defines 

the internal working registers of the microprocessor. The internal 

data environment is specified in terms of two components: a local 
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data environment component, and a value stack component. The local 

data environment component specifies a block of registers that can be 

directly addressed by a microinstruction. The local data environment 

is often used to hold data items that are not modified over repeated 

executions of the microprocess. Thus, it serves a function similar to 

the "STATIC VARIABLES" of a PL/I procedure. The value stack component 

specifies a block of registers that will be used as a stack to hold 

temporary results that are generated by the execution of 

microinstructions. 

II.3 Structure Building Language (SBL) 

The SBL consists of eight different types of 

microinstructions, as summarized in Table ‘I*. The SBL has two 

functions: a syntactic function and a semantic function. the 

syntactic function involves the dynamic construction of the CDS 

discussed in the previous section, while the semantic function 

involves the dynamic invocation of microprocess interaction patterns 

defined in the CDS. In essence, the syntactic microinstructions 

dynamically define static, time-independent interrelationships among 

*In the original formulation of the SBL discussed in (LES69), there 
was an additional SBL semantic microinstruction: SCP (Sequential 
Clocking Process) which was designed to iteratively activate an array 
of microprocess to simulate the effect of a sequential, parallel or 
overlap FOR statement. This SBL statement was removed because, 
through a combination of ASP, SEL and IFL microinstructions, the 
function of SCP statement could be easily implemented without 
significant affect in code density nor execution speed. 
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microprocesses. Whereas the semantic microinstructions use these 

syntactic interrelationships among microprocesses as a convenient 

representational framework within which to define dynamic, 

time-dependent interrelationships among microprocesses. The semantic 

microinstructions are similar in function to the control statements of 

a conventional computer since both implement different control 

structures by modifying values of data elements of CDS; except, the 

semantic microinstructions operate in the context of CDS which can be 

dynamically restructured. 

There is a clear distinction in the SBL between syntactic 

and semantic operations. This clear distinction allows semantic 

operations to be clearly divorced from syntactic modifications to the 

CDS. As will be discussed more fully in the next section, this 

divorce permits syntactic modification to the CDS to be generated only 

when absolutely necessary. 

Example 3: Consider the CDS for an IML emulator which 
allows fork-join type parallelism. The CDS for this 
emulator can be structured in two possible ways. One 
approach is to dynamically generate in the CDS an 
appropriate syntactic structure to interpret a new stream of 
emulated instructions every time a fork operation is 
emulated. The other approach is to allow only a fixed 
number of fork operations to be invoked at any one time; 
thus, a static syntactic structure can be generated, when 
the CDS for the emulator is initially constructed, that 
permits the interpretation of up to some fixed number of 
emulated instruction streams. In either of these 
approaches, the same set of semantic operations can be 
employed because of the clear separation of syntactic 
generation from semantic operations. 

The microinstructions under the category "Structure Building" in Table 

1 are classified as syntactic microinstructions while the remaining 
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microinstructions me are classified as semantic microinstructions. 

The syntactic microinstructions will be discussed in the next section. 

The same microinstruction internal representation is used 

for all SBL microinstruction types and is pictured in Figure 11. Each 

microinstruction word contains six mode bits and five syllables. The 

execution of SBL microinstructions has two phases: 1) the evaluation 

of the five syllables, and 2) the execution of a specific control or 

structure building operation based on the instruction We, computed 

syllable values and mode bits*. 

There are three dimensions to the specifications of dynamic 

interaction patterns among microprocesses: "when", "who", and "how". 

The "when" dimension, which has not been discussed up to now since it 

has no syntactic component, specifies at what time points in the 

activity life of a microprocess can certain types of communications be 

received. The "when" dimension is an integral part of the 

specification of highly structured interaction patterns; this is 

especially true since 1) the built-in communication mechanism is 

primitive, e.g., no message queuing, and 2) it is desired to be able 

_________________----------------------------------------------------- 
*The SBL microinstructions have been referred to in a previous 
paper(LES71) as SBL macros because of their two phase execution cycle. 
In this context, the microinstruction type can be considered to define 
a control structure definitional template (prototype) that is 
expanded, based on the values of the syllables of a microinstruction, 
when a microinstruction is executed. The specification of particular 
values for the parameters of the template then defines a particular 
instance of a basic control rule or structure building operator. 
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to emulate many different types of communication patterns. The "when" 

dimension is based on the execution-state of the microprocess that is 

to receive the communication, and the type of communication 

(activation-type) desired by the microprocess that is to initiate the 

communication. The set of possible execution states represent the 

different phases in the life cycle of a microprocess. The semantics 

of SBL microinstructions are defined so that communication between two 

microprocesses is only consummated when the execution-state and type 

of communication (activation-type) are agreeable for communication*. 

The agreeable states are specified in Table 2. The set of agreeable 

states is designed so that a microprocess can 1) sequentially accept 

and process multiple communications, 2) selectively accept only 

certain types of communications, and 3) asynchronously accept requests 

for communication. 

The ability to sequentialize the acceptance of multiple 

communications is crucial to the emulation of synchronization 

primitives such as the Dijkstra semaphore, message queuing, etc. This 

ability to sequentialize the acceptance of multiple communications, 

combined with the ability to transmit data to a microprocess through 

its port at the same time as an activation, provides a mechanism for 

creating a single non-interruptable data path to the controller of a 

-__-___________------------------------------------------------------- 
*During the period when a communication is checked whether it can be 
consummated and when the communication is being consummated, there are 
hardware locks on the Process Space Memory which guarantee that no 
other initiating microprocess can examine the MSV of the microprocess 
to be communicated to. 
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.- 
resource; the creation of a single non-interruptable data path to a 

resource controller is the basic building block of asynchronous 

synchronization mechanisms. 

Example 4: Consider the pipelined emulator discussed 
previously and pictured in Figure 10. The microprocess 
COMPUTER has the responsibility for controlling the 
microprocesses ISEQ and CEANNEL-CONTROLLER(l-c). Suppose 
two of the CHANNEL-CONTROLLER microprocesses are executing 
and when each terminates, it wants to signal this fact to 
the microprocess COMPUTER through an execute activation-type 
and also transmit the termination status of the I/O 
operation. In addition, suppose the execution-state of the 
COMPUTER microprocess is in a suspended execution-state 
after it has initiated the two CHANNEL-CONTROLLER 
microprocesses. Then the first CJJANNEL-CONTROLLER that 
finishes will be able to consummate a communication with the 
microprocess COMPUTER. However, not until the microprocess 
COMPUTER has finished processing of the first communication 
and set its execution-state to suspended can the other 
CEANNEL-CONTROLLER initiate a communication. 

The ability to selectively accept communications is 

important in the construction of hierarchical control structures, 

e.g., multiple levels of clocking (supervisory) processes. 

Example 5a: Consider the following hierarchical control 
structure where microprocess A is supervising microprocess 
B, which is, in turn, supervising microprocess C. Suppose B 
has initiated a communication with C and is waiting for a 
response from C before it continues executing 
microinstructions. Additionally, suppose A which controls 
B, happens to attempt to initiate a communication with B 
while B is waiting for a communication back from C. 
However, B may not want to accept the communication from A 
until the communication with C is completed. (This is 
especially true if C is a functional unit.) In addition, the 
complexity of B's coding may increase considerably if B 
needs to determine which microprocess, A or C, has initiated 
the communication, and to postpone the response to the 
communication if it was the inappropriate microprocess. 
Thus, there is needed some mechanism for B to selectively 
listen for only communications from C during certain time 
periods. 



PAGE 50 

This selective listening capability is accomplished by having two 

execution-states that indicate a microprocess has stopped execution of 

microinstructions but expects to be restarted: the "waiting" and 

"suspended" execution-states. Corresponding to these two 

execution-states, there are two activation-types: execute and wakeup 

type activations, respectively. By observing the agreeable states in 

Table 2, the desired selective listening will occur when microprocess 

A initiates communication with B with an execute activation-type, 

microprocess C initiates communication with B with a wakeup 

activation-type, and microprocess B when it only wants to receive a 

communication from C places itself in the waiting execution-state. 

In essence, through the use of agreeable-states approach for 

selective listening, a two level priority interrupt scheme is defined 

for message communication. The major differences between the 

agreeable states approach and the conventional implementation of 

priority interrupt schemes is that the agreeable-states approach 

associates priority with type of message rather than with the process 

generating the message, and it has only two levels of priority. 

Associating priority with the message rather than the process allows 

for the building of a hierarchy of clocking processes since a clocking 

process must have one message priority for communiation with its 

supervisory process and another for the process it supervises; 

additionally, interrupt schemes which have n levels of priority can be 

emulated by constructing multiple levels of clocking processes, each 
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having two levels of priority. This multiple level approach is in 

contrast to the conventional approach of one centralized clocking 

process (e.g., the CPU of a computer) having n levels of priority. 

Example 5b: Consider the microprocesses COMPUTER, ISEQ and 
IDECODE in figure 10. Suppose the COMPUTER microprocess 
receives a signal from one of the CHANNEL-CONTROLLER 
microprocesses that an I/O operation is complete; the 
COMPUTER microprocess then wants to interrupt the current 
sequence of emulated instructions, and restart the 
sequencing of instructions at a different program location. 
The microprocess COMPUTER accomplishes this modification of 
sequencing by transmitting a message to the microprocess 
ISEQ. However, ISEQ may be waiting for a message from 
IDECODE specifying that IDECODE can accept another emulated 
instruction to decode. Thus, microprocesses COMPUTER, ISEQ, 
and IDECODE relate to each other in a similar manner to, 
respectively, microprocesses A, B and C discussed in example 
5a; consequently, a similar selective listening mechanism 
discussed previously can be used to handle these 
communication requirements of a pipeline emulator. 

The ability to accept requests for communication 

asynchronously allows for the construction of interrupt driven control 

structures; an interrupt driven control structure occurs when a 

microprocess continues to execute if no communication is pending, but 

if there is a communication pending, it puts itself into an 

appropriate state to receive the pending communication. This is in 

contrast to what will be called "message driven control structure" 

where the microprocess explicitly waits at certain time points for a 

communication to be received before continuing to execute 

microinstructions. 

Example 6: Consider the microprocesses COMPUTER and ISEQ 
discussed in the previous example. The microprocess ISEQ 
continues to fetch emulated instructions until it 
asynchronously receives a request for communication from 
microprocess COMPUTER. This communication from COMPUTER, 
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when accepted, specifies where ISEQ next fetches 
instructions from. However, ISEQ does not accept the 
communication until its dialogue with IDECODE is completed. 

An interrupt driven control structure is constructed using the 

execution-state "execute-single-cycle" and activation-type "suspend". 

A microprocess whose execution-state is execute-single-cycle indicates 

that the microprocess should suspend its activity in order to receive 

a communication. The suspend activation-type changes the 

execution-state of a microprocess from execute to 

execute-single-cycle. Once the suspend activation-type is 

consummated, the initiating microprocess may then perform the desired 

communication. It should be noted that the suspend activation-type is 

only consummated when the the microprocess to be communicated with has 

an execute execution-state. Once the suspend type of activation is 

consummated, no other suspend activation-type will be consummated 

until the execution-state of the microprocess to be communicated with 

returns to execute. Thus, when the microprocess to be communicated 

with eventually places itself in a position to accept the 

communication, only the microprocess which initiated the first suspend 

will be able to communicate. A microprocess that is in 

execute-single-cycle execution-state will automatically suspend its 

activity at the end of a microinstruction which has an appropriate 

mode-bit set or the microprocess may periodically examine its 

execution-state to determine whether a communication is requested. 

Though a use of an interrupt driver control structure has 

been detailed in the previous example, it is worthwhile to observe the 
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following: in a computer system where there are many processors and 

the cost of an individual processor is not significant, compared to 

the total system cost, message driven control structures may be 

preferable to interrupt driven control structures because of the ease 

and clarity of programming, and simpler hardware. This is the case, 

in fact, in the CDC 6600 where the 10 PPU's control I/O devices 

without an interrupt structure, each PPU being responsible for 

controlling only a single device at a time. The use of message driven 

control structures is very convenient in this microcomputer 

architecture because a virtual PMS can be dynamically constructed 

which contains an arbitrary number of virtual microprocessors, each 

dedicated to a specific control function. In addition, the built-in 

hardware scheduling algorithm will automatically deallocate a 

microprocess from the microprocessor to which it is connected to if 

the microprocess is inactive. 

There are three SBL microinstructions that, when executed, 

initiate communications among microprocesses: 

1) ASP (Activation and Synchronization Clocking Process) 
which is used to specify a single microprocess activation 
pattern. 

2) SEL (Select and Broadcast Clocking Process) which is used 
to specify a multiple microprocess activation pattern. 

3) FCP (Functional Unit Clocking Process) which is used to 
specify a sequence of activations between a functional unit 
and a set of microprocesses. 

The semantics of each of these microinstructions is based largely on 

the process-state component of the a microprocess state vector. The 
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structure of the process-state component is pictured in Figure 12. 

The internal-activation, return-condition, and type-of-transfer 

subcomponents of the microprocess state vector are used to provide 

additional information to the microprocess about the type of 

communication initiated by another microprocess or a functional unit. 

The internal-activation subcomponent is used to specify one of 16 

possible message types, and is generally used to indicate information 

about either the status of the initiating microprocess or the 

operation desired by a functional unit. The return-condition 

subcomponent is used to specify whether the microprocess should signal 

back to the initiating microprocess after it has, terminated its 

activity. The type-of-transfer subcomponent specifies whether the 

message to be communicated is a descriptor of the desired data or the 

actual data which can be up to four registers long. The bussing 

structure of the microcomputer is designed for direct communication 

between microprocesses, of up to 128 bits, thus the restriction on the 

size of the port to four registers. 

11.3.1 Single Microprocess Interaction Patterns 

The ASP microinstruction is the basic building block on 

which complex clocking processes are built. The ASP microinstruction 

combines the control functions of microprocess activation, including 

parameter passage, and microprocess synchronization. These control 

functions are implemented through modifications to the XV of the 

microprocess to be communicated with and that of the microprocess 
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which executes the ASP microinstruction. The microassembler syntax 

for the ASP microinstruction is the following: 

<ASP>:=<ACTIVATE> NODE (<Pl>) WITH INPUT = <PZ>, 
RETURN=<P3>, EPSV=<P4>; 

The <Pl> parameter specifies the address of the MSV of the 

microprocess to be communicated with. The <ACTIVATE> parameter 

defines a new process-state component for the MSV defined by the <PI> 

parameter. Specifically, the <ACTIVATE> parameter specifies the 

activation-type, return-condition, type-of-transfer, and 

internal-activation subcomponents of a process-state component. The 

activation-type parameter is used, as previously discussed, to 

determine whether the communication can be consummated. If the 

communication cannot be consummated, then the ASP microinstruction can 

be repeatedly retried (e.g., busy wait) or the next microinstruction 

will be skipped over; this option is specified by a mode-bit in the 

ASP microinstruction word. In addition, if the communication is 

consummated , the other mode-bits of a microinstruction word specify 

whether the initiating microprocess will continue to execute 

microinstructions, or go into a waiting or suspended execution-state. 

This latter option provides a mechenism for synchronization of the 

activity of the initiating microprocess with that of the initiated 

microprocess. The <P2> parameter specifies either an immediate data 

item or a descriptor of a data item that will be transferred to the 

port of the called microprocess. In the case that the <P2> parameter 

is a descriptor, the type-of-transfer specified by the <ACTIVATE> 
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parameter determines whether the descriptor or the data pointed to by 

the descriptor will be transferred. The <P3> parameter specifies the 

address of an MSV to be placed in the return pointer component of the 

MSV of the called microprocess. The <P4> parameter specifies the 

address of a state vector extension (EPSV) to be placed in the state 

vector extension pointer component of the MSV of the called 

microprocess. The <P3> or iP4> parameters may be null which implies 

that, respectively, the return pointer or the state vector extension 

pointer components of this called MSV are not modified. 

Example 7: Consider the implementation of Dijkstra's P and 
V semaphore operations in terms of ASP microinstructions. 
Let PV be a microprocess that implements the P and V 
semaphore operations. A microprocess M performa a P 
operation by executing the following ASP microinstruction: 

EXECUTE (BUSY-WAIT, WAIT-BESPONSE, VALUE, 
ACT_CODE=9) NODE(L(1)) WITH INPUT=S, 
BETUBN-ADDBESS=P(SELF); 

where L(1) is a local data register of M that contains the 
address of microprocess PV, and S is the top of the value 
stack that contains the descriptor of the semaphore 
variable. This ASP microinstruction initiates a 
communication with the PV microprocess with an execute 
activation-type, and internal-activation Code equal to 9. 
The internal-activation code is used to distinguish between 
a request for a P or V operation. In addition, it transmits 
a descriptor of the semaphore variable to PV's port and 
modifies the return pointer component of PV's MSV to point 
to the microprocess M. After the communication has been 
consummated, the execution-state of M is set to waiting. If 
the ASP microinstruction cannot consummate the 
communication, then the ASP microinstruction will be retried 
until consummation. However, the busy-wait is not on the 
semaphore variable but only on the microprocess which 
updates the semaphore. In addition, the hardware scheduling 
algorithm in this busy-wait situation till, if there are 
other uses for the microprocessor executing the microprocess 
M, reschedule M to run at some later time. The PV process, 
when activated for a P operation, checks whether the 
semaphore variable can be decremented; if it can, then the 
microprocess M iS restarted by the following 
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microinstruction: 

WAKEUP(SUSPEND) NODE(P(RETUBN)); 

and then the PV microprocess is suspended until another 
request is received. However, if the semaphore variable 
cannot be decremented, then the PV microprocess places the 
address of M in a queue associated with the semaphore 
variable, and then suspends itself without restarting M. In 
addition, if there is no more queue space in the data 
environment of PV to hold addresses of blocked 
microprocesses, then PV will Put itself in the 
execution-state waiting rather than that of suspended. As 
will be seen shortly, if PV is in execution-state waiting 
then only V type operations can be consummated which do not 
make any more demands for queue space (e.g., a nice use of 
selective listening). A V semaphore operation is specified 
by the following ASP microinstruction: 

WAKBUP(BUSYJAIT, CONTINUE, VALUE, ACT-CODE=lO) 
NODE (L(1)) WITH INPUT=S; 

This ASP microinstruction initiates a communication with the 
PV microprocess with a WAKEUP activation-type, and 
internal-activation code equal 10. In addition, it 
transmits a descriptor of the semaphore variable to PV'S 
port. After the communication has been consummated, the M 
microprocess continues to execute microinstructions. Thus, 
the V operation goes on in parallel with execution of 
microinstructions of M. The PV microprocess, when activated 
for a V operation, increments the appropriate semaphore 
variable, and checks whether there is a queued microprocess 
waiting on that semaphore variable. If so, an ASP 
microinstruction detailed previously, is used to restart the 
queued microprocess. 

11.3.2 Multiple Microprocess Interaction Patterns 

The SEL microinstruction is the basic building block of 

multiple microprocess activation patterns. These patterns include 

those generated by control structure concepts such as lock-step 

execution as used in the ILLIAC-IV, fork-join type parallelism, etc. 

The SIN., microinstruction activates in a broadcast manner a selected 
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subarray of microprocesses and then waits for an arbitrary number of 

these microprocesses to signal completion. A microprocess generally 

uses this microinstruction to control its son microprocesses. The 

microassembler syntax for the SEL microinstruction is the following: 

<SEL>:=<ACTIVATE> <P?> SONS STARTING AT SON (<PZ>) 
WITH INPUT=<P3> THEN MIT 
FOR <P4> SONS TO SIGNAL RETURN; 

The <PI> parameter specifies the number of sons the activation is 

broadcast to. The <P2> parameter specifies the number of the first 

son in the broadcast array. In essence, the <Pl> and <P2> parameters 

select a subarray of son microprocesses to initiate a communication 

with. The <ACTIVATE> parameter, which has an identical interpretation 

to the <ACTIVATE> parameter of the ASP microinstruction discussed 

previously, specifies the type of communication to be broadcasted to 

the subarray of microprocesses. The <P3> parameter specifies the data 

that is to be broadcast to the ports of these microprocesses. The 

<P4> parameter specifies the number of return signals to wait for, 

before executing the next microinstruction. 

Example 8: Consider the CDS pictured in Figure 13. The 
CONTROL-l microprocess implements the FORK-JOIN operation on 
microprocesses A and B through the execution of the 
following SEL microinstruction: 

EXECUTE 2 SONS STARTING AT SON(l) 
THEN WAIT FOR 2. SONS TO SIGNAL RETURN; 

The SBL microinstruction has been designed based on the view 

that the control primitives of 1) broadcasting data to n 
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microprocesses, and 2) waiting for k return signals are fundamental to 

the efficient implementation of highly structured parallel control 

structures. By imbedding these control primitives in the semantics of 

a microinstruction, it provides information to the hardware scheduler 

and bus-controller which can be used to more efficiently map parallel 

activity on the virtual PMS onto the physical PMS*. 

11.3.3 MicroprocessIFunctional-Unit Interaction Patterns 

The FCP microinstruction is used in the microprogramming of 

the semantics of I/O control structures; I/O devices in future 

discussions will be referred to as functional units. The 

microcomputer architecture can contain an arbitrary set of functional 

units**, Each of these units can be independently activated and can 

have an arbitrary number of inputs and outputs, where that number need 

not be fixed and may be data dependent. For example, a functional 

unit could be a floating-point multiplier, or more generally, an 

arbitrary input/output device such as a disk controller. A functional 

_________---_--------------------------------------------------------- 
*The use of this information has been postulated and proposed 
techniques developed, however, these proposed techniques are not 
incorporated into the computer organization to be discussed in Chapter 
IV. Especially interesting is how to design a bussing structure so 
that broadcast operations on the virtual PMS can be directly mapped on 
to the physical PMS when microprocessors are already connected to the 
microprocesses that will receive the broadcast operations. 

**The hardware scheduling mechanism used to schedule multiple 
microprocessors is also used to schedule identical functional units. 
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unit can receive input data from three sources: the memory subsystem, 

another functional unit, or the microprocessor subsystem. A 

functional unit obtains (and stores) data by requests to the 

microprocessor subsystem, which has complete responsibility for 

determining the source (or sink) of the data that are requested and 

for generating the appropriate control signals to accomplish the data 

transfer. In this manner, the microprocessor subsystem acts as a 

generalized I/O controller and separates the process of data accessing 

from that of computation. The idea of a generalized I/O control 

structure to control arithmetic units has been proposed in an earlier 

paper by the author(LES68) and by Lass(LAS68), as a basis of the 

design of a high-speed computer. 

The FCP microinstruction performs the following functions: 

1) creates a connection between a functional unit and the microprocess 

executing the FCP microinstruction; 2) activates the connected 

functional unit with control information specifying the desired 

operation; and 3) controls the generation of input and output data 

sets for the connected functional unit. The connected functional unit 

can be a physical functional unit or a virtual function unit, i.e., a 

microprocess programmed to behave like a functional unit. The input 

and output data sets are generated by the son microprocesses of the 

microprocess executing the FCP microinstruction. In essence, the FCP 

microinstruction is a clocking process which controls the interaction 

between the functional unit and the son microprocesses that fetch the 

inputs for the functional unit, and stores its outputs. A functional 
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unit requests a particular service from its clocking process by 

communicating with the clocking process through a wakeup 

activation-type. The particular service requested is specified by 

appropriately setting the internal-activation code (see Table 2). The 

FCP microinstruction has been parameterized so that both simple and 

complex interaction (handshaking) patterns between a functional unit 

and its input and output generating microprocesses can be specified in 

a uniform framework. 

The microassembler syntax for the FCP microinstruction is 

the following: 

<FCP>:= ACTIVATE FUNCTIONAL-UNIT (<Pl>) WITH 
CONTROL-INFORMATION = <P2> USING <P3> 
INPUT-GENERATORS INITIATED BY <ACTIVATE> 
COMMAND AND STORE STATUS IN <P5>. 

The <Pl> parameter specifies the number of a functional unit or the 

address of a microprocess. The <P2> parameter specifies control 

information to be transferred to the functional unit when initially 

connected. The <P3> parameter specifies the number of son 

microprocesses that will act as input generators, starting from the 

first son; the remaining son microprocesses are used as output 

generators. 

Example 9a: Consider the ITYPE-j microprocess in Figure 10, 
where the microprogram FUNCTIONAL-UNIT CONTROLLER is just a 
single FCP microinstruction. The <P3> parameter, in this 
case, would have the value 2 to indicate microprocesses 
FETCH-OPERAND 1 and FETCH-OPERAND 2 would generate the input 
data for the functional unit, and microprocess STORE-RESULT 
would store its output data. In addition, suppose the 
functional unit that is being controlled can perform a 
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floating-point add, a floating-point subtract or a 
floating-point multiply operation, then the <P2> parameter 
would specify which operation would be desired. 

The son microprocesses that generate the input data set are 

sequentially activated from the first input son to the last input son 

to generate input data; an analogous activation pattern is used for 

activating the son microprocesses that store the output data. The 

<ACTIVATE> parameter specifies the mode for activating the input and 

output generator microprocesses, e.g., EXECUTE, EXECUTE-SINGLE-CYCLE, 

RETRIEVE, and the mode of transferring (and fetching) data to (and 

from) microprocess, e.g., VALUE or REFERENCE. The EXECUTE mode 

indicates only one input or output value will be handled by each input 

and output generator, while the EXECUTE-SINGLE-CYCLE mode implies many 

values can be handled; the RETRIEVE mode indicates the desired input 

data has already been prefetched and resides in the microprocess's 

port; the VALUE mode indicates the FCP microinstruction will handle 

the transfer of data between the functional unit's port and son 

microprocess's port; while the REFERENCE mode indicates that son 

microprocess will directly handle the transfer of data between ports. 

The interaction patterns defined by these different modes are detailed 

in Tables 3 and 4, and Fiqures 14 and 15. The <P5> parameter 

specifies a descriptor of a register (or the address of a microprogram 

to be invoked) that status data is retrieved and stored from. This 

ability to invoke a microprogram to store the status information 

provides a convenient mechanism for the monitoring of special 

conditions. 
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1) 

2) 

3) 

4) 

5) 

Device requests clocking-process to generate an input;* 

Clocking- process activates next available input-generator microprocess 

to generate an input value; 

4 Clocking-process transfers address of device to input -generator’s 

port; 
Input-generator signals clocking-process that input is in the input- 

generator port; 

a) and whether more data can be generated; 

Clocking-process transfers data from input-gener,ator port to device’s 

port. 

Clocking-process updated address of next available input-generator. 

*Device can request next input as soon as the previously requested data has 
been stored in its port. 

Input Modes Phases Required 

EXECUTE (VALUE) Step 1, 2, 3, 4, 5 
EXECUTE (REFERENCE) Step 1, 2a, 5 

RETRIEVE Step 1, 4, 5 
EXECUTE-SINGLE-CYCLE (VALUE) Step 1, 2, 3, 3a, 4, 5 

EXECUTE-SINGLE-CYCLE (REFERENCE) Step 1, 2a, 3a, 5 

2022A34 

Table 3: Input Request Protocol for Control 
of Functional Unit 
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EXECUTE EXECUTE 
(VALUE) OR (VALUE) OR 
EXECUTE- EXECUTE- 
SINGLE- SINGLE- 
CYCLE CYCLE 
(VALUE) (VALUE) 

EXECUTE 
(Reference) 

signal completion 
r----(4)----T 
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Figure 14. Schematic of Input Request Protocol 
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1) Device requests clocking-process to store output;* 

2) Clocking-process requests output-generator node to store output; 

a) clocking-process transfers address of device to output 

generator’s port; 

b) clocking-process initiates transfer to data in device’s port to 

output-generator’s port; 

cl clocking-process initiates transfer of data to its own port; 

3) Output-generator signals clocking-process that it has completed transfer, 

and that it can or cannot accept more data; 

4) Clocking-process updates address of next available output-generator. 

*Device can request to store next output as soon as data is removed from its 

port. 

Possible Output Modes Phases Required 

EXECUTE (VALUE)/RETRIEVE 1, 2, 2h, 4 

EXECUTE-SINGLE-CYCLE (VALUE) 1, 2, 2b, 3, 4 

EXECUTE (REFERENCE) 1, 2, 2a, 4 

EXECUTE-SINGLE-CYCLE (REFERENCE) 1, 2, 2a, 3, 4 

PIPELINE 1, 2c 2022AJS 

Table 4: Output Request Protocol for Control 
of Functional Unit 
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Example 9b: Consider again the microprocess ITYPE-j 
discussed in the previous example, except this time with a 
FUNCTIONAL-UNIT CONTROLLER microprogram which is more 
complex. In this case, it is desired not to connect 
(reserve) the floating-point functional unit until the input 
operands have arrived from the Memory Subsystem; this We 
of functional unit control scheme, commonly called 
reservation station concept, is used in pipelined computers 
such as the IBM 360/91 where there may be many 
instructions competing for the same resource; this control 
scheme can be implemented by two SBL microinstructions, the 
first an SEL microinstruction activates simultaneously 
microprocesses FETCH-OPERAND 1 and FETCH-OPERAND 2, and then 
waits until both microprocess signal completion; the two 
input microprocesses,when they are complete, leave their 
fetched data in their ports. The second SBL 
microinstruction would be an FCP microinstruction 
parameterized as in Example 3, except with its <ACTIVATE> 
parameter specifying a RETRIEVE operation. 

The FCP microinstruction semantics clearly separate the operation of 

data accessing from the computational algorithm requesting the data. 

This separation facilitates the definition of control structures that 

I) directly emulate different types of IYL instruction formats, e.g., 

one address, two address, etc.; 2) specify dynamic data 

interconnection patterns among functional units*, e.g., a pipeline of 

functional units, a tree of functional units, etc.; and 3) allow the 

incorporation of functional units into the functional unit subsystem 

that have complex input and output requirements, e.g., a matrix 

multiply unit. 

*The method generating a CDS for these alternative functional unit 
control structures is discussed more fully in an earlier paper by the 
author (LES70). 
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11.3.4 Microprocess/Nemory Subsystem Interaction Patterns 

The MM microinstruction defines an access path between a 

microprocess and the Memory Subsystem. This path is used to fetch 

(store) data into (from) the microprocess's port from (into) the 

Memory Subsystem. The Memory Subsystem is bit addressable, and can be 

activated to store or retrieve a bit string of up to 128 bits. The 

memory subsystem is bit addressable so as to simplify the embedding of 

the state image of an emulated machine S(e) into the virtual state 

image of the microcomputer S(vm), and to allow in a single memory 

operation the fetching of the appropriate unit of data to be worked 

on. Once the data has been fetched into the working registers of the 

microprocessor, IFL masking operations can be used to perform bit 

extraction on 32 bit length registers. 

Example 10: Consider an emulated computer whose instruction 
word is 48 bits long with an opcode field in the first six 
bits. A single MEM operation is used to extract the desired 
instruction from the Memory Subsystem into two consecutive, 
32 bit working registers of the microprocess. The opcode of 
the emulated instruction is then extracted, by a single IFL 
SHIFT-MSK operation (See Table 6), from the first working 
register of the microprocess's port. 

This two level bit extraction scheme represents a compromise among the 

high overhead cost of accessing a bit-addressable memory, the ease of 

programming and the hardware efficiency of internal microprocessor 

operations on fixed size data elements. 

The MEM microinstruction is parameterized so as to allow for 

the automatic hardware mapping of the address space of a wide variety 
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of emulated machines directly into the physical address space in the 

Memory Subsystem. This capability permits addresses in the address 

space of the emulated machine to be directly manipulated without first 

converting these addresses into addresses in the address space of the 

microcomputer. This automatic hardware mapping capability of the MEM 

microinstruction represents how the concept of virtual memory can be 

used in the context of emulation. 

The microassembler syntax for MEM microinstruction is the 

following: 

<MEM>:= "READ/STORE" ELEMENT (<PI>) WITH FORMAT 
= <P2> AND LENGTH = <P3>) "FROM/INTO" 
MEMORY ARRAY (DESCRIPTOR = <P4>, 
OFFSET=<P5>); 

The <P4> parameter specifies a descriptor of a memory array (i.e., (1) 

base, (2) dimension, and (3) size of data element) in the Memory 

Subsystem, and the <P5> parameter specifies an offset quantity with 

respect to the base of this memory array. These two parameters define 

the physical address space in the Memory Subsystem that the virtual 

address will be mapped into. The <PI> parameter specifies an index of 

a data element in the offset memory array, i.e., the address of the 

data element in the emulated machine space; the <P3> parameter 

specifies the length of the data element, e.g., for an IBM 360 whether 

data is 1, 2, 4 or 8 bytes long; and the <P2> specifies the format of 

the data element. These five parameters are used to map a data item 
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in the virtual address space into a data item in the physical address 

memory space. This mapping function defines a bit string of, P3 x 

(P4:size of data element), bits starting at bit address, (P4:base) + 

(Pl+P5) x (P4:size of data element) in the Memory Subsystem. If this 

bit string lies outside the bound of the memory array, a condition 

code is set in the processor status, and the memory operation is 

bypassed. 

The MEM microinstruction may also be used, depending upon 

the process-state, to fetch or store the data for a functional unit. 

In this mode of operation, the format and length parameter is 

transmitted along with the data to the functional unit. The use of a 

formal field in the specification of both the input and output data 

allows the functional unit to be very sophisticated in being able to 

perform, if desired, arithmetic operations involving operands and 

results of different types and lengths(HAU68). 

11.3.5 Microprogram Invocation 

The MSC microinstruction performs a microprogram subroutine 

call. The MSC microinstruction is mainly used in conjunction with the 

GEN-EPSV microinstruction to define what will be called a microprocess 

prologue (discussed in the next section). The MSC microinstruction in 

the prologue context is used to initialize the data environment of 

microprocess before the execution of the main microprogram body of the 
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microprocess. The microassembler syntax for the MSC microinstruction 

is the following: 

<HSC>:= INVOKE MICROPROGRAM (<Pl>) WITH 
PROCESSOR STATUS=<PZ>, INDEX=<P3>, 
VALUE_STACK=<P4>, INITIALIZE~ROUTINE 
=<P5>; 

The <Pl> parameter specifies the address of a microprogram subroutine. 

The remaining parameters initialize the data environment before 

invoking of the microprogram. The <P2> parameter specifies the 

initial setting of the condition codes specified in the 

processor-status. The <P3> parameter specifies an initial value for 

the index register. The index register is not specified in terms of a 

unique register location in the MSV, but rather is pushed and popped 

on the program counter stack at the same time the program counter is 

pushed or popped. The <P4> parameter specifies a value for the top of 

the value stack and the <P5> parameter specifies another microprogram 

which is invoked to initialize the local data environment and 

miscellaneous working registers. 

II.4 Generation of Data Structure for Control 

The CDS is dynamically generated in the form of a tree of 

microprocesses through the execution of syntactic SBL 

microinstructions; however, this method of generating the CDS does not 

necessarily reflect the dynamic activity patterns of microprocesses. 

The separation between the generation and sequencing of microprocesses 

is possible because the execution of a microprocess is factored into 
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. . three discrete, separable phases: a binding phase, an expansion 

phase, and an activation phase. The generation of a CDS caused by the 

binding and expansion phases can thus be separated from the sequencing 

of a CDS caused by the activation phase, detailed in the previous 

section. This separation is extremely important because once the 

overhead cost has been incurred for defining the CDS, there is little 

overhead cost for each dynamic interaction pattern invoked. 

The binding phase of a microprocess involves the generation 

and storage in the Process Space Memory of the microprocess state 

vector that defines the microprocess. At the completion of the 

binding Wse, the microprocess's execution-state is set to 

unexpanded. For example, the binding phase analog for an ALGOL 

procedure is the allocation of memory for the local variables of a 

procedure, and the setting up of the static linkage pointers required 

for uplevel addressing in the block structure. 

The expansion phase of a microprocess involves the 

generation of the microprocess' local process environment, e.g., its 

son microprocesses, the initialization of its working registers, and 

the specification of the microprocess entry point e.g., the initial 

value of the microprogram counter. Thus, the expansion phase of a 

microprocess results in the completion of the binding phase of its son 

microprocesses whose expansion will, in turn, generate additional 

microprocesses. This recursive sequence of microprocess binding and 

expansion phases leads to a dynamic tree generation mechanism for 
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constructing the CDS. This dynamic mechanism for generating the CDS 

is somewhat similar to the concept of run time macro expansion or 

dynamic compilation. For example, the expansion phase of an ALGOL 

procedure would be the generation of procedure substructure and the 

initialization of the local variables of the procedure. 

The activation phase, which has been discussed in the last 

section, involves the execution of microinstructions starting at the 

specified entry point. For example, the activation phase analog in an 

ALGOL procedure is the transferring of parameters to the procedure and 

the execution of machine code for the procedure. 

Example 11: Consider the CDS pictured in Figure 13; the 
three phases of execution of microprocess FOlXA,B are 
pictured in Figure 16. The binding phase results in the 
generation of microprocess state vector that defines the 
microprocess FORKA,B. The expansion phase results in the 
generation of the son microprocesses A and B. Finally, the 
activation phase results in the execution of microprogram 
CONTROL-1 which contains the SEL microinstruction that 
performs the FORK-JOIN control operation. 

The expansion phase of a microprocess, which is indicated Sy 

execution-state "expanding", occurs when a microprocess is in an 

"unexpanded" or "terminated" execution-state and is initiated with an 

activation-type of expand, execute or execute-single-cycle. The 

expand activation-type explicitly separates the expansion phase from 

the activation phase; this separation permits the expansion phase to 

be initiated with different parameters than the activation phase. In 

addition, based on the rebuild-condition subcomponent of a MSV, part 

or all aspects of the expansion phase can be bypassed when a 
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(a) BINDING-PHASE: (FORK) 

(b) EXPANSION-PHASE: 

(c) ACTIVATION-PHASE: ( FORK A B ) 

[L-“Yr5j (+I *] ----- 
2022A.26 

Figure 16. Three Phases of Microprocess Execution 
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microprocess is re-expanded when in the "terminated" execution-state. 

This ability to control the activity of the expansion phase permits 

the rebuilding of the CDS only when the microprocess's substructure 

will vary on repeated executions of the microprocess. Thus, the 

static aspects of the CDS once defined need not be regenerated. 

The expansion phase is specified in terms of a set of 

microinstructions that will be called the microprocess prologue. The 

starting address of the microprogram that defines the prologue is 

specified by the entry point component of a MSV. The microprocess 

prologue consists of a two microinstruction sequence: a GENJMSV 

microinstruction followed by a MSC microinstruction. The execution of 

the GEN_PMSV microinstruction will generally, in turn, result in the 

execution of the two other types of syntactic microinstructions: 

GEN-EPSV and GEN-REG. The GEN-PMSV microinstruction, when executed as 

part of the microprocess prologue, fills in the local process 

environment component of a MSV with a pointer to a descriptor of an 

array of MSV's. This array of MSV's defines the son microprocesses. 

In addition, one of the mode bits of the GEN-PMSV microinstruction 

specifies the rebuild-condition of the microprocess: static or 

dynamic. If the microprocess is re-expanded at some later time and 

the rebuild-condition is set to static, then the GEN-PMSV 

microinstruction of microprocess prologue will be bypassed. Thus, the 

microprocess substructure will not be rebuilt in this case. 
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The MSC microinstruction, when executed as part of the 

prologue, is only partially executed during the expansion phase; only 

the syllables of MSC microinstruction that do not have their defer bit 

set will be evaluated. The syllables of the MSC microinstructions 

that are deferred will be evaluated only when microprocess begins its 

activation phase. This two step evaluation scheme provides a 

mechanism for selective initialization of the environment of the 

microprocess each time it is executed. For example, the microprocess 

entry point address could be recalculated for each execution of the 

microprocess or calculated once for all executions. In the same 

manner, the local data environment could be re-initialized for each 

execution or initialized only once when the MSC microinstruction is 

executed for the first time. Thus, the concept of microprocess 

prologue provides a simple mechanism for specification of the 

particular initialization sequence required by a microprocess. , 

There are three syntactic microinstructions; GEN_PMSV, 

GEN-EPSV, and GEN-REG. The GEN-PMSV microinstruction allocates and 

initialzes an array of primary microprocess state vectors in the 

Process Space Memory. In addition, at the completion of the execution 

of a GEM_PMSV microinstruction, a descriptor (or pointer to the 

register containing the descriptor) for this PMSV array, is placed on 

the top of the value stack of the microprocess that executed this 

microinstruction. As mentioned previously, if GEN PMSV is executed as _ 

' part of the microprocess prologue, the local process environment 

subcomponent is initialized with a pointer to the descriptor of the 

array of MSV's. The GEN PMSV does not have to bc executed in the - 
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context of a microprocess prologue. Thus, alternative means of 

generation of a CDS can be programmed instead of the tree generator 

scheme previously described. However, when an alternative means of 

generation is used, there are no automatic mechanisms for specifying 

when structures will be rebuilt or reinitialized. The microassembler 

syntax for the GEN_PMSV microinstruction is the following: 

<GEN PMSV>:= S= SUBSTRUCTURE CONTAINS <Pl> SONS - 
WITH PROGRAM = <P2>, PORT = <P3>, 
LOCAL_DATA = <P4>, EPSV=<P5>; 

The <PI> parameter specifies the number of elements in the array of 

primary microprocess state vectors. The other four parameters define 

the value of, respectively, the entry point, the port, local data 

environment, and extended process state vector pointer components of a 

PMSV. These parameters are re-evaluated for each PMSV in the array if 

the defer bit of the syllable associated with parameter is set to 1. 

Otherwise, the same parameter value is used to initialize all PMSV's 

of the array. 

The GEN-EPSV microinstruction allocates and initializes an 

extended state vector in the Process Space Memory. At the completion 

of its execution, a pointer to the EPSV is placed on the top of the 

value stack. The microassembler syntax of the GEN EPSV - 

microinstruction is the following: 

<GEN-EPSV>:= S= P(EPSV WITH GLOBAL DATA=<Pl>, 
GLOBAL PROCESS=<P2, 
VSTACK%P3>, 
PSTACK=<P4>, 
EXT_ENV=(<P5>)); 
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The five parameters, respectively, define pointers to the global-data 

environment descriptor, global-process environment descriptor, value 

stack descriptor, program counter stack descriptor and a pointer to 

PMSV that defines the first level of extended environment. If a 

parameter is left out then value of the corresponding component of 

EPSV of the microprocess executing this microinstruction is used. 

The GEN-REG microinstruction can be used either to allocate 

an array of registers in the Process Space Memory or to create a 

descriptor for a subarray of registers which have already been 

allocated. In addition, the GEN RRG microinstruction can be used to - 

create a descriptor for an array of words in the Memory Subsystem. At 

the completion of the execution of a GEN REG microinstruction, a - 

descriptor (or pointer to the register containing the descriptor) for 

the array of registers is placed on the top of the value stack. There 

are three types of register descriptors: a register-block descriptor, 

a stack descriptor, and an I/O descriptor. Each of these descriptors 

specify the base and dimension of a block of registers in the Process 

Space and information which specifies how the block of registers can 

be accessed. the access-control information specifies an access mode 

attribute, e.g., read, read/write, or write, and a "sharability" 

attribute, e.g., local, coroutine or global. The "local" attribute 

indicates that only one microprocess will ever access this data, the 

"coroutine" attribute indicates that only one microprocess at a time 
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will access the data, and the "global" attribute indicates that 

multiple microprocess may simultaneously access the data*. In 

addition, the stack descriptor contains a component which indicates 

the current top of stack, while the I/O descriptor contains components 

that specify the format and length of the data; in the latter case, 

the value of the format and length components are specified through 

the MEM microinstructions. The I/O descriptor is generally used to 

define the port of a microprocess that is used in the generation for 

input or output data sets for a functional unit. 

The microassembler syntax for the GEN-REG microinstruction 

is the following: 

<GEN>EG>:= S=DESCRIPTOR OF "MEMORY/REGISTER-BLOCK/ 
STACK/IO-BLOCK" DEFINED FROM 
(DESCRIPTOR=<P~>, OFFSET=<P~>) wIm 
DIMFNSION=<P3>, ACCESS_CONTROL=<P4>, 
"WORD_LENGTH/INITIAL POSITION"=<PS>; - 

The <Pl> and <P2> parameters specify the beginning address of a 

subarray of registers that were previously allocated in the Process 

Space Memory. If these two parameters are null, then a new block of 

registers will be allocated in the Process Space Memory rather than 

using previously allocated registers. The <P3> parameter specifies 

the number of registers in the block; the <P4> parameter specifies the 

access control attributes; and the <P5> parameter specifies either the 

*The sharability attributes are used to specify the store through mode 
of data when a cache per microprocessor organization scheme is 
employed; this concept of cache per microprocessor will be discussed 
more fully in Chapter IV. 
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initial position of the top of the stack or the word length of a 

memory array in the Memory Subsystem. 
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III. A COMPREHENSIVE TEST CASE 

This chapter reviews in a step by step manner the 

design and the coding of an emulator for a complex IML. The choice of 

an IML was not based on the practicality of the IML as a machine 

language, but rather on its appropriateness as a vehicle to test: 

1) The sufficiency of the SBL and the associated global 
control structure to represent a wide variety of sequential 
and parallel control structures. 

2) The suitability of the SBL for the compact and simple 
coding of IML emulators. 

The IML chosen is based on an asynchronous parallel 

programming schema (language) developed by D. Adams (ADA68) called 

the Adams' Graph Machine Language (AGML). The use of the AGML as an 

IML forms an appropriate test case because the emulator for the AGML 

can be designed to employ the following control structure concepts: 

distributed parallel control, pipelining, recursion, finite resource 

scheduling, message queuing, and the reservation station approach to 

the scheduling of arithmetic units. Furthermore, the emulator for 

this IML is interesting in its own right because "no computing systems 

have yet been designed or translators created according to the 

principles of asynchronous programming" (ERS72). In addition, the 

AGML permits the direct expression of highly parallel algorithms whose 

emulation provides an interesting set of simulation test cases for 

evaluating certain aspects of the computer organization to be 

discussed in the next chapter. 
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III.1 Discussion of Adams' Graph Machine Language 

The AGML is based on a data flow model (KAR66,ROD67) for 

representing the sequencing aspects of a computation. In a language 

based on a simple data flow model for sequencing, the instructions of 

the language can be thought of as nodes of a graph, where the nodes 

are connected to each other through links. These links are 

uni-directional data paths where one terminal point of the link is 

denoted as an output link of a node while the other terminal point is 

denoted as an input link of a node. An instruction (node) is executed 

when each of its input links contains a data item; a node executes by 

removing the input data from its input links, performing a calculation 

on this data, and storing the output of the calculation on zero or 

more of the output links. After the node has stored the results of 

the calculation on its output links, the node can be re-executed when 

each of the input links again has data items. An example of a graph 

program is shown in Figure 17. 

The data flow model for sequencing allows the implicit 

expression of parallel activity because if there exists no data 

dependencies among a group of nodes, then these nodes may be executed 

simultaneously. For example, the two multiplication nodes in Figure 

17 can be executed simultaneously whereas the plus node must await the 

completion of both multiplication nodes. A data flow model can also 

be thought of as a distributed control system since each node can 

independently decide, based on local information, whether it should 

execute. 
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(a xb) + (cxd) 

Figure 17. A Simple Graph Program 
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Adams' formulation of a graph machine language, AGHL, is an 

extension of the simple data flow model previously described. The 

simple data flow model has been extended in the following ways by 

Adams' so as to increase the expressible parallelism and to simplify 

the coding of algorithms:. 

1) links between nodes are fifo (first-in-first-out) queues; 

2) there are three types of nodes: parallel, procedure, and 
sequential nodes; 

3) a data item can be an array of data items. 

The parallel node allows for the expression of pipeline (vector) 

parallelism. The parallel node is defined so that it may be 

immediately re-executed rather than waiting for the compututation to 

complete. This re-execution of the parallel node can occur once the 

input data items have been removed from their links provided there is 

another set of input data items on the input links. Thus, multiple 

instances of a node may be concurrently executing giving the effect of 

a pipeline. The procedure node allows for the expression of recursive 

control structures. The procedure node instead of invoking a 

primitive arithmetic operation, causes the invocation of a graph 

procedure. The input parameters of the invoked graph procedure are 

the input data items of procedure node. The invoked graph procedure 

may, in turn, contain procedure nodes, thus leading to a recursive, 

parallel control structure. Finally, the sequential node allows for 

the expression of data-dependent sequencing of the graph, e.g., 
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. . 
loop-control, etc. The sequential node is defined so that its 

semantics are affected by its previous execution history. In 

particular, the execution history is used to select, for the next 

execution of the sequential node, a subset of its input data links 

from which input data will be accepted. 

The version of the AGML that was emulated as an IML differs 

in two ways from Adams' original formulation discussed above: 

1) the data items are single units rather than arrays of 
data items; 

2) the conditions for termination of a graph procedure have 
been changed. 

The first difference does not impact the basic organizational 

structure of the emulator but does simplify the coding of the 

primitive node operations, and the dynamic space allocation algorithm. 

However, the second difference does impact the basic organizational 

structure of the emulator. In Adams' original formulation of the 

AGFL, a graph procedure is terminated when all the nodes of the graph 

procedure are inactive. This termination condition has been changed 

so that now a graph procedure is terminated when there is a data item 

on each of the external output links. An external output link is a 

link of the graph procedure.that is not connected as an input link to 

any node in the graph procedure. These external output links are used 

to transmit the output of the graph procedure to the procedure node 

that invoked the graph procedure. Thus, if there is an infinite loop 

in a graph procedure, which does not affect the generation of the 
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outputs of the procedure, then this graph procedure would never be 

terminated based on Adams' original termination condition, whereas 

this graph procedure would eventually terminate based on this new 

termination condition*. Otherwise, the termination conditions are 

identical. 

This new termination condition was introduced so that the 

AGMI could be emulated in a highly parallel manner. Monitoring for 

Adams' original formulation of the termination condition is very 

difficult to do in a highly parallel manner. This is especially true 

if no assumptions are made about the actual number of physical 

microprocessors. In essence, the monitoring process overlays the 

highly parallel distributed control structure of the graph machine 

with a control structure which requires sequential accessing of a 

shared , global data base. In contrast, the monitoring process for the 

new termination condition does not affect the basic distributed 

control nature of the AWL. In fact, the process of monitoring for 

this new termination condition is precisely the same as the process of 

monitoring for whether a node is ready to execute. 

-__--_-_--_----------------------------------------------------------- 
*The new termination condition makes the AGML only output determinate 
rather than completely determinate. 
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III.2 The Design of an Emulator for the Adams' Graph 

Machine Language 

A modular task oriented approach has been used in the design 

of the AGML emulator. The main emphasis in the design of this 

emulator has been the exploitation of the implicit parallelism of an 

AGML program. This exploitation of parallelism has been accomplished 

by: 

1) making parallel, whenever possible, the overhead 
functions required to sequence an AGML program; 

2) dynamically tailoring of the CDS, not only to the 
structure of AGNL emulator, but also to the structure of the 
specific AGML program to be emulated. 

This tailoring of the CDS for a specific graph program is accomplished 

by creating a separate, distinct control structure for sequencing each 

node of the graph. This control structure for sequencing each node is 

tailored to the particular type of node and the node's input and 

output requirements. Thus, the CDS for the AGML emulator closely 

mirrors the distributed control structure of the particular AGML 

program. In addition, the CDS may be dynamically modified during the 

execution of a graph program so as to take advantage of the potential 

parallel activity that is generated when a graph procedure is 

dynamically invoked. 
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111.2.1 Machine Language Format and Memory Layout 

The first step in the design of the emulator is choosing an 

internal representation (machine language format) for specifying a 

graph program to the emulator. A graph program consists of one or 

more graph procedures, where the format of a graph procedure is 

pictured in Figure 18a. The graph procedure description is broken 

into three sections: a node definition section, a link-initialization 

section, and an external-link definition section. 

The node definition section begins with two bytes that 

specify the number of links (nl) and the number of nodes (nn) in the 

graph procedure. The remaining part of the first section specifies 

the format of each of the nn nodes of the graph procedure (see Figure 

18b). The first byte of each node description indicates the type of 

node, e.g., parallel, procedure or sequential, the operation code, and 

the type of arithmetic unit this operation code can be executed on. 

The second byte specifies the number of input links (IN) and the 

number of output links (OUT) of the node. The third byte in the case 

of a procedure node is concatenated with operation code of the 

procedure node to specify the beginning address of the graph procedure 

to be invoked. In the case of a sequential node, the third and fourth 

bytes define the initial input link status of the node. This link 

status information determines from which input links data will be 

accepted on the first execution of the node. The remaining bytes of 

the node description specify the names of the input and output links. 
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- node description 
sect ion 

link-initialization 
section 

I: [-Z+q Neil - number of external 

0 34 7 input links 

Neol- number of external 
output links 

I 
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Figure 18a. Machine Language Format for a Graph Procedure 
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The link initialization section specifies initial data for 

the links of the graph procedure. The first byte specifies the name 

of the links to be initialized. If the name is zero, then the link 

initialization section is terminated. Otherwise, the next byte 

specifies the number of initial data items to be stored on the link. 

The remaining bytes specify the initial data items as 64 bit values. 

The external link definition section specifies the names of 

the external input and output links. The external input links are 

those links that will receive the initial input data items transmitted 

by procedure node that invokes the graph procedure. The external 

output links are those links that will hold the output of the graph 

procedure. At the termination of the graph procedure, this output 

data will be transmitted back to the invoking procedure node. The 

first byte of this section specifies the number of external input and 

output links. The remaining bytes specify the names of these links. 

An example of a graph program and its corresponding machine language 

format is detailed in Appendix D. 

The internal representation of the AGML program is stored in 

the Memory Subsystem. The Memory Subsystem is also used to store the 

data held on the links. All the other state information of the 

emulator is held in the Process Space Memory. 
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111.2.2 The CDS for AGHL Emulator 

The second step in the design of the emulator is the 

specification of the emulator's CDS. The CDS provides a syntactic 

framework within which the emulator can be conveniently microcoded. 

This syntactic framework has been constructed so as to strongly 

reflect a task oriented approach to the design of the emulator. 

The 'CDS of the AGML emulator can be thought of in terms of 

two parts: 1) a CDS for resource management (e.g., the dynamic 

allocation of memory in the Memory Subsystem for link queue space) and 

2) a CDS for sequencing of a graph program. These two parts of the 

emulator's CDS form a two level hierarchy where the CDS for resource 

management is at the top level. The CDS for resource management is 

implemented as a fixed structure which is independent of the 

particular AGML program being emulated, whereas the CDS for sequencing 

of the graph program has a dynamic structure which is dependent on the 

particular graph procedures currently being executed. 

111.2.2.1 The CDS for Resource Management 

The CDS for resource management is pictured in Figure 19a. 

The resource management functions are carried out by the 

SPACE-MANAGER, and SCHEDDLER(l-Ns) microprocesses. The SPACE-MANAGER 

microprocess dynamically allocates blocks of storage in the Memory 

Subsystem for link queue space. Each link is allocated a fixed length 

block of 16 64-bit words in the Memory Subsystem. This storage 

allocation cannot be done statically since graph procedures can be 
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dynamically invoked during the execution of a graph program. In 

addition, there can be many graph procedures which are simultaneously 

requesting storage for their links. Thus, the storage allocation has 

to be done dynamically in a central place. As discussed in Chapter 

II, the SPACE-MANAGER microprocess, by appropriate manipulation of its 

execution-state, can sequentialize the acceptance and processing of 

communications which either request the allocation of storage or 

specify the release of previously allocated storage. 

The scheduling function of the resource manager is 

implemented through a set of SCHEDULER microprocesses where each type 

of primitive node operation could conceivably have its own SCHEDULER 

microprocess. A SCHEDULER microprocess is used to assign, depending 

upon the type of operation, either a functional unit or a microprocess 

to carry out the primitive operation of a node. Each SCHEDULER 

microprocess has a fixed length queue to hold requests for a device 

(e.g., functional unit or microprocess) that cannot be currently 

honored. If this queue becomes full, then the SCHEDULER microprocess 

will employ the "waiting" execution state that permits selective 

listening rather than the suspended state. In this selective 

listening state, a communication to the SCHEDULER that requests a 

device will not be consummated, whereas a communication to the 

SCHEDULER that specifies the termination of a device will be 

consummated. 
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The AGML emulator could have been organized without this 

centralized scheduling function. In essence, the centralized 

scheduler is scheduling virtual microprocesses which are in turn being 

scheduled on physical microprocessors by the built-in hardware 

scheduler. Thus, the emulator could have been organized so as to use 

the built-in scheduler alone. There are two main reasons for taking 

the centralized scheduler approach. The first reason stems from the 

simplicity of the built-in hardware algorithm for scheduling. 

Specifically, the two level scheduling approach allows the design of a 

sophisticated graph scheduler which takes into account the structure 

of the graph procedure so as to utilize available microprocessors* 

more efficiently(REL72). The second reason stems from the semantics 

of the parallel node that permit the concurrent initiation of an 

arbitrary number of primitive operations for each parallel node. In 

order to take advantage of this potential parallelism of the parallel 

node in a non-centralized scheduling approach either 1) each tine a 

primitive node operation was initiated, the sequencer of a parallel 

node would have to dynamically generate the MSV of a microprocess to 

carry out the operation; or 2) the fixed CDS structure of the 

appropriate SCHEDULER microprocess would have to be duplicated for 

each parallel node in the graph procedure. Thus, either the structure 

building overhead involved in sequencing of the graph procedure would 

greatly increase or the size of the CDS for the graph procedure would 

greatly increase. On the other hand, a centralized scheduler has a 

*The virtual scheduler could query the hardware system to find out the 
number of physical processors, and uses this information as a 
Parameter in the scheduling function. 
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fixed CDS structure which does not vary during the execution of the 

graph, and there is only one MSV for each device that can be 

scheduled. For these reasons, a centralized scheduling approach was 

used. 

111.2.2.2 The CDS for Sequencing of a Graph Procedure 

The sequencing of a graph procedure is implemented through 

the microprocess GRAPH-PROCEDURE. This microprocess generates the CDS 

for sequencing of a graph procedure, initializes and allocates storage 

for the links of the graph procedure, and monitors for the termination 

of the graph procedure. The CDS for sequencing of a graph procedure, 

as previously discussed, is tailored to the particular graph procedure 

being emulated. The template for a tailored CDS is pictured in Figure 

19b. This tailored CDS contains nl LINK microprocesses and nn NODE 

microprocesses, where there are three types of node microprocess: 

PARALLEL, SEQUENTIAL and PROCEDURE. This CDS for sequencing of a 

graph procedure has been designed so that once generated its structure 

need not be modified. Thus, the structure building overhead is only 

incurred once and consequently is not a function of the number of node 

executions. In addition, the generation of the CDS for all NODE 

microprocesses can be done in parallel. 

The LINK microprocess is responsible for retrieving and 

storing data from a link's queue space in the Memory Subsystem and 

updating the queue pointers. The LINR microprocess acts as a 
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semaphore process for controlling access to the link's queue space. A 

semaphore process is required for controlling access to a link queue 

because, at the same tine, one node may desire to place data on the 

queue while another node may desire to remove data from the queue. 

The LINK microprocess is also used to avoid "busy waiting" when a node 

desires a data item and the link queue is empty. In this case, 

instead of the node repeatedly querying the LINK microprocess whether 

input link data is available, the LINK microprocess will accept a 

request for data from the node and then when the data is available, 

transfer the data to the node which is in a waiting execution-state. 

Thus, as will be seen in more detail later, the LINK microprocess 

allows the trigger function of a node (i.e., deciding when a node is 

ready to execute) to be monitored in a non-busy way. A similar 

handshaking mechanism is used to avoid a node "busy waiting" until 

there is room on the link to store output link data. In addition, the 

LINK microprocess allows the updating of queue pointers to go on in 

parallel with a node's further processing. 

The NODE microprocess implements the following overhead 

operations required to sequence a node: 1) fetching the input data 

items from the appropriate input links, 2) deciding when the node 

operation is ready to be executed, 3) transferring the input data 

items to the appropriate microprocess that will perform the node 

operation, and 4) transferring the output of the node operation to 

appropriate output links. The CDS associated with each NODE 

microprocess is designed so that as many of these overhead operations 
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can be either done in parallel or overlapped between consecutive 

executions of a node. 

The overall CDS for the AGML emulator is pictured in Figure 

19c. This section has presented the AGML emulator in terms of a set 

of microprocesses that each performs a small independent task. The 

next section will discuss how this set of microprocesses dynamically 

interact to perform the emulation of a graph program. These 

interaction patterns will be detailed through a discussion of the 

PAFALLEL-NODE microprocess. 

1X1.2.3 The Mcrocoding of the Parallel Node 

The PARALLEL-NODE whose CDS is pictured in Figure 20a, is 

the most complex of the three types of NODE microprocesses because of 

the control structures required to generate and keep track of the 

multiple concurrent initiations of the primitive operations of the 

node. In order to generate multiple initiations, the fetching of 

input link data for an operation, which is done by the INPUT-PWODE 

microprocess, is separated from the storing of output link data for an 

operation which is done by the OUTPUT-PNODE microprocess. This 

separation of the input and.output phases of a PARALLEL-NODE permits 

the fetching of input data for one operation to be performed 

concurrently with the storing of output data for a previously 

initiated operation. In order to insure the output-determinancy of 

the graph procedure, multiple initiations of an operation must 
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terminate in the same order as they were initiated. The PARALLEL-NODE 

maintains the correct ordering of multiple initiations through a 

queuing mechanism which holds up the storing of the output of an 

operation until the output of all previously initiated operations have 

been stored. 

The PARALLEL-NODE interacts directly with the following 

microprocesses: GRAPH-PROCEDURE, SCHEDULER, INPUT-PNODE, 

OUTPUT-PNODE, and PROCESSOR(l-n). The interaction patterns of the 

PARALLEL-NODE with these microprocesses is indicated in Figure 21. 

The control and data environment interrelationships among these 

microprocesses are pictured, respectively, in Figure 20b and 20~. 

Figure 20b indicates how the PARALLEL-NODE microprocess and its son 

microprocesses locate the addresses of the microprocesses that they 

will communicate with. The PARALLEL-NODE control environment is a two 

level hierarchy of global process environments. The top level allows 

for access to SCHEDL%ER microprocesses while the lower level allows 

for access to the LINK microprocesses. For example, the FETCH-OPERAND 

microprocesses pictured in Figure 20b locate the appropriate LINK 

microprocesses by accessing their global process environment 

descriptor, while the PARALLEL-NODE locates the appropriate SCHEDULER 

microprocess by indirectly accessing through its external environment 

pointer the global process environment descriptor of the 

GPAPH-PROCEDURE microprocess. Figure 2oc indicates how the 

PARALLEL-NODE microprocess and its son microprocesseses communicate 

data with each other. Each of these microprocesses contains its own 
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PORT which is located in its local data environment. In addition, 

there is a global data environment which these microprocesses all 

share, This global data environment contains the description of the 

particular PARALLEL-NODE in the graph procedure that is being 

executed. 

The GRAPH-PROCEDURE microprocess initiates the PARALLEL-NODE 

microprocess, and then when the graph procedure termination condition 

has been met, signals the PARALLEL-NODE to terminate. The 

PARALLEL-NODE after it has received the terminate signal, waits until 

all outstanding node operations are completed, and then signals back 

to the GRAPH-PROCEDURE its termination. 

The PARALLEL-NODE, once initiated, activates the INPUT-PNODE 

microprocess to fetch the input data from the appropriate input links 

(see Figure 22). After receiving the prefetch complete signal from 

the INPUT-PNODE, the PARALLEL-NODE then activates the appropriate 

scheduler microprocess to assign a PROCESSOR to perform the 

operation*. In this way, a PROCESSOR is not assigned to perform a 

node operation until the data necessary for the operation has been 

fetched. This technique for scheduling a processor is called the 

"reservation station concept". 

*The PROCEDURE-NODE is precisely the same as the PARELLEL-NODE except 
that the PROCEDURE-RODE, instead of calling the SCHEDULER 
microprocess, generates an XSV of the GPtiH-PROCEDURE microprocess. 
The address of this newly defined GRAPH-PROCEDURE microprocess is then 
treated in the same way as the address of the assigned PROCESSOR 
microprocess. 
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The PARALLEL-NODE, after receiving the address of the 

assigned PROCESSOR from the SCHEDULER microprocess, queues the address 

and activates the INPUT-PNODE with this address. The INPUT-PNODE then 

transfers the prefetched input data to the assigned PROCESSOR. After 

the input data has been transferred, the INPUT-PNODE attempts to 

prefetch the input data for the next operation. 

The PROCESSOR(i) microprocess, after completing the desired 

'operation, signals back to PARALLEL-NODE that the output data is 

ready. The PARALLEL-NODE then checks whether PROCESSOR(i) is at the 

top of the initiation queue. If PROCESSOR(i) is at the top of the 

queue, then the address of PROCESSOR(i) is transferred to the 

OUTPUT-PNODE microprocess. Otherwise, an indicator is set in the 

initiation queue that PROCESSOR(i) is ready to store its output data. 

Thus, through the initiation queue mechanism, the outputs of the 

PARALLEL-NODE are FIFO ordered so as to make the PARALLEL-NODE 

determinate. 

The OUTPUT-PNODE microprocess, upon receiving the address of 

PROCESSOR(i), transfers PROCESSOR(i)'?. output data to the appropriate 

output links. After the completion of this transfer, the 

PARALLEL-NODE is notified. The PARALLEL-NODE then examines the 

initiation queue to determine whether the PROCESSOR(j) at the top of 

the queue has already signaled that its output is ready. If so, then 

the OUTPUT-PNODE is reactivated with the address of PROCESSOR(j). 
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These interaction patterns allow the fetching of input link 

data, storing of output link data, the execution of an arbitrary 

number of primitive node operations, and the processing of requests to 

store the output of an operation to all proceed in parallel. In 

addition, the INPUT-PNODE fetches in parallel, through the use of a 

broadcast operation, the input link data (see Figure 23). The 

different types of communications that a PARALLEL-NODE microprocess 

can receive are distinguished by the particular internal-activation 

code used in the communication. The PARALLEL-NODE uses this code to 

jump indirectly in a single microinstruction to the particular 

microcode routine that handles the communication. The PNODE-CLOCKER 

microprogram, which is the collection of these microcode routines for 

handling communications to the PARALLEL-NODE, is less than 70 

microinstructions long, and is detailed in Appendix C. 

III.3 An Evaluation of the Suitability of the SBL for 

the Coding of the Graph Machine Emulator 

This chapter has reviewed the design and coding of an 

emulator for a complex IML, i.e., the Adams' Graph Machine Language. 

The complete microprogram for the AGML emulator is presented in 

Appendix C. This emulator has been tested, using a simulator of the 

logical design, on a variety of graph programs under varying PMS 

configurations in order to validate the emulator's correctness. These 

test cases, which indicate the dynamic behavior of the AGML emulation, 

will be discussed in Chapter V. 
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The AGHL emulator has demonstrated the versatility and 

usefulness of the SBL and the concept of a dynamically restructurable 

CDS in the following ways: 

1) It has shown how an S(vm) can be constructed so as to 
make the embedding of the state image of a complex IML, 
S(AGML), straightforward. In particular, it has indicated 
how a CDS can be tailored so that it directly mirrors the 
distributed control structure of the AGXL. 

2) It has shown that an emulator can be compactly and simply 
coded when the microinstructions directly operate in the 
context of the appropriate S(vm). The microprogram memory 
required for the AGHL emulator microprogram, including the 
storage for constants, is less than 600 microinstruction 
words*. 

3) It has shown how a CDS can be dynamically structured so 
as to easily represent a wide variety of different types of 
control structures, i.e., distributed control, semaphore 
processes, message queuing, broadcast control, etc. 
Further, it has indicated how these different types of 
control structures can be integrated together in a single 
CDS. 

4) It has shown how a modular task approach to design of an 
emulator can be implemented naturally within the framework 
of a restructurable CDS. 

_---------~~_--~~~-L----~----------~~~~~~~---~----~----~~~--~---~----~ 

*Of the 600 microwords, approximately 220 are used to hold the 
microinstructions for building up the CDS, 300 to hold 
microinstruction for dynamic control, and the remainder to hold data 
constants. 
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IV. A Hardware Implementation of the 

Microcomputer Architecture 

"Adequate performance of parallel processing 
systems is.... ..predicated on an appropriately 
low level of overhead. Allocation, scheduling, 
and supervisory strategies, in particular, must 
be simplified and the related procedures 
minimized to comprise a small proportion of the 
total activity in the system...........thus a 
unified and integrated design approach is 
required in which software and hardware, 
operating system and processing units, lose 
their separate identities and merge into one 
overall complex, for which allocation and 
scheduling procedures, for example, are as basic 
and as critical as arithmetic operations." 
(LEH66) 

The main thrust of this chapter is to demonstrate that the 

microcomputer architecture presented in this thesis can be implemented 

in hardware in such a way that parallel activity expressed on the 

virtual PMS level can be mapped, without significant overhead, onto 

parallel activity on the physical PI% level. In addition, the 

hardware organization must guarantee that the mapping (scheduling) of 

virtual activity to physical activity neither introduces hardware 

resource deadlocks nor changes a deterministic virtual activity into a 

non-deterministic physical activity. In particular , the latter 

requirement implies that SRL synchronizing primitives must work 

correctly, independent of the number of physical microprocessors and 

the particular interconnection pattern of these microprocessors to 

microprocesses. 
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The hardware organizational problems of minimizing overhead, 

guaranteeing no resource deadlocks, and correctly implementing 

synchronization mechanisms are all faced in the design of a 

conventional multiprocessor (LOR72). However, these design problems 

are significantly magnified in the context of this new microcomputer 

architecture since microprocessor interaction patterns can be very 

highly structured and can occur on very fine time grain, i.e., the 

time between successive interactions can be of very short duration. 

Thus, there is a greater likelihood for microprocessors to interfere 

with each other when they 1) access the Microprogram Memory for 

microinstructions, 2) access the Process Space Memory for shared data 

items, and 3) communicate with one another. In addition, the time to 

perform a context switch in a microprocessor from one microprocess to 

another is especially critical because of the potential for a high 

rate of context switches. A high rate of context switches may occur 

because 1) the time between successive interactions of the 

microprocess is generally of short duration, and 2) in order to avoid 

a deadlock in mapping virtual activity to physical activity, the 

microprocessor must be multiprogrammed when there are more active 

microprocesses than microprocessors. Thus, when a microprocessor is 

connected to a microprocess that is waiting for a response to a 

communication, the microprocessor is context switched if an active but 

not connected microprocess exists. 

These conventional problems in the design of a 

multiprocessor are overlayed with problem of efficiently implementing 
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the concept of a virtual PMS. The efficient implementation of the 

concept of virtual PMS implies that: 

1) There is a built-in hardware scheduling algorithm. 

2) The internal working registers of a microprocessor are 
dynamically reconfigurable so as to conform to the 
particular microprocess being executed. 

3) Microprocess interaction patterns whenever possible, 
dependent upon the particular connection between the virtual 
PMS and physical PMS at the time of the interaction, are 
directly implemented as microprocessor interaction patterns 
rather than indirectly implemented as modifications to the 
Process Space Memory. 

The remainder of this chapter will be a discussion of the 

hardware organization for the microcomputer architecture. This 

organization demonstrates that there exists a plausible solution to 

the design problems previously outlined and, further, that this design 

is a coherent, integrated solution to these problems. However, this 

chapter will not discuss the hardware technology required to implement 

the bus structure and memories specified in the 

design(REL71,LOR70,MIL70), but rather, this chapter will focus on the 

interconnection patterns and interaction protocols among the "black 

boxes" that define the PMS environment of the microcomputer 

architecture, i.e., the logical hardware organization. The next 

chapter will, however, investigate the dynamic aspects of the designed 

system in order to justify the claim that virtual microprocess 

activity can be mapped without significant overhead into physical 

microprocessor activity. In addition, this next chapter will examine 

how varying the interleaving, access paths and access time 

characteristics of the memories, and the bandwidth and access time 
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characteristics of the bussing structures affect the performance of 

the microcomputer architecture. 

IV.1 A PMS Configuration for the Microcomputer Architecture 

An overview of the PMS configuration for the microcomputer 

computer architecture is pictured in Figure 23 (notation is that of 

Bell and Newell, BEL70). This configuration consists of NP 

microprocessors and ND devices (functional units) which can directly 

communicate with each other over an Interprocessor Bus (IB). The 

Interprocessor Bus is 128 bits wide so as to allow the transfer of an 

MSV, an EPSV, or up to 4 data words in one cycle. Each microprocessor 

and functional unit has separate control hardware, respectively K.IBP 

and K.IBD, for interacting with the IB. The overall control of IB 

resides in the Virtual Interaction Controller, K.VIC. K.VIC, together 

with the K.IBP and K.IBD, represent the hardware for maw im 

microprocess interaction patterns into microprocessor interaction 

patterns. 

There are three external memories contained in the PF"S: 

M.PSX, M.MPM, and M.MEM. M.PSPI, which is the Process Space Memory, 

holds the global CDS. A microprocessor directly accesses M.PSM in 

order to retrieve and modify the working registers of the microprocess 

it is executing. A microprocess indirectly accesses the X.PSM through 

K.VIC in order to obtain an MSV. The M.mM, which is the Microprogram 

Memory, is accessed by microprocessors directly in order to fetch 
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microinstructions. The M.MEM, which is the main Memory Subsystem, is 

a bit addressable memory. The K.MEM is the control circuitry required 

to perform the appropriate shifting to align the desired bit string. 

The Memory Subsystem is accessible by all the microprocessors and some 

of the functional units. The normal operation mode for a functional 

unit assumes that a microprocessor performs all the fetching and 

storing of data required by the functional unit. This normal mode, as 

discussed in Chapter II, permits a functional unit to be used in the 

emulation of many computers since it does not have to be preprogrammed 

to be aware of the location of its input and output data. Thus, a 

functional unit in this mode of operation does not need a direct path 

to the Memory Subsystem. However, there may be functional units which 

require a very high data rate which cannot be sustained in this normal 

mode of operation; therefore, some functional units may require a 

direct path to the Memory Subsystem. 

The PMS configuration presented in Figure 23 does not 

indicate the number of independent communications that a bus can 

handle, nor the interleaving of a memory. These PMS characteristics 

have been purposely omitted because they can be varied in the 

simulator. In addition, the simulator permits the reconfiguration of 

the bussing structures so that the bussing structure for 

interprocessor communication can have the additional function of being 

an access path to any one of the three external memories. In this 

manner, the PMS can be configured to have from 1 to 4 independent 

bussing structures. 
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A more detailed configuration of the PMS for the 

microcomputer architecture is pictured in Figure 24. In this 

configuration, there are no functional units and 16 microprocessors. 

Each microprocessor is connected to the Interprocessor Bus which can 

sustain. up to 8 communications simultaneously. The Interprocessor Bus 

also serves as the access path from the microprocessors to M.PSM and 

M.MPM. The M.PSM is 16 way interleaved on lower order address bits, 

and is connected to Interprocessor Bus through an 8 x 16 crosspoint 

Switch, S.PSM. The M.MPM is 8 way interleaved and is connected to the 

Interprocessor Bus through an 8 x 8 crosspoint switch, S.MPM. The 

Memory Subsystem, M.MEM, has its own separate bussing structure which 

can sustain up to 4 communications simultaneously. M.Mk7-f is 4 way 

interleaved and is connected to bussing structuure through a 4 x 4 

crosspoint switch. 

IV.2 The Interprocessor Communication Structure and the 

Virtual Interaction Controller 

This section will discuss the major logical design issues 

involved in mapping virtual PMS activity to physical PMS activity: 

1) The bussing structure for interprocessor communication. 

2) The design requirements necessary to insure no hardware 
deadlocks are introduced which are not already present as 
software deadlocks. 

3) The hardware algorithm for scheduling of microprocesses 
on microprocessors. 
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Figure 24. A Detailed PKS for Microcomputer Architecture 
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One of the major considerations in this design is to 

multiprocess rather than to multiprogram virtual microprocessor 

activity whenever possible. The design of the Interprocessor Bus (IB) 

strongly reflects this major design consideration. The IB is designed 

so that, whenever possible, microprocess interaction patterns are 

directly implemented as microprocessor interaction patterns. The IB 

transforms a microprocess interaction pattern directly into a 

microprocessor interaction pattern by acting in a manner similar to 

the common data bus on 360/91 (AND67) or equivalently the TJNIBUS on 

PDP-ll(DEC69); a similar technique for handling interprocessor 

communications has also been suggested by Lehman(LEH66). 

A microprocessor Pl, when executing a microprocess Vl that 

desires to initiate a communication with another microprocess V2, 

sends out a request on IB for the MSV of microprocess V2. Each 

request sent out on the IB is scanned by the control circuitry K.IBP, 

associated with each microprocessor, in order to determine whether 

that microprocessor is currently connected to the microprocess V2. If 

a microprocessor P2 is connected to microprocess V2 and is not 

currently involved in a dialogue with another microprocessor, then 

microprocessor P2 will honor the request for the MSV of V2 and 

transmit this MSV directly over IB to microprocessor Pl. However, if 

there exists no microprocessor to honor the request, then the Virtual 

Interaction Controller will take over responsibility for fetching the 

MSV of V2 from the M.PSM and then transmitting this MSV to 

microprocessor PI. Once a connection has been established between 
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microprocessor Pl executing microprocess Vl and microprocessor P2 

executing microprocess V2, the IB can be used to transmit a 

comunica t ion between microprocesses Vl and V2 directly. In 

particular, if a communication can be consummated between Vl and V2 

then the IB can be used to transmit the new MSV of V2, and the data to 

be stored in the port of V2. After the communication has been 

consummated, a signal is sent by Pl to P2 on the IB to break off the 

connection between the microprocessors so that microprocessor P2 can 

again directly receive communications from other microprocessors. 

This ability to implement microprocess communications directly 

significantly decreases the time required to perform a communication 

in comparison to the time required to implement the communication 

indirectly through multiple fetches and stores to the M.PSM. 

The Virtual Interaction Controller(K.VIC), when it receives 

a request for a MSV, checks before fetching the MSV from the M.PSN 

whether some other microprocessor is currently accessing the desired 

MSV, or the desired MSV is currently connected to a microprocessor. 

The latter case implies that another microprocessor is already 

involved in a dialogue with the microprocessor connected to the 

desired MSV. If either case is true, the Virtual Interaction 

Controller will place on a FIFO queue associated with the locked-out 

MSV the address of the microprocessor requesting access. The request 

to access the locked-out MSV will then eventually get honored when 

that request is at the head of the queue and the microprocessor 

currently accessing the MSV again permits access to the MSV. Only one 
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microprocessor can access an MSV at a time because of the semantics of 

the SBL microprocess interaction patterns which specify that a 

microprocess can only receive one communication at a time. Thus, a 

microprocessor must wait until the microprocessor, which is currently 

attempting to communicate with the desired microprocess, either 

decides that communication cannot be consummated or completely 

consummates the communication. 

The FIFO queues associated with the locked-out MSV's are 

contained in a local storage area associated with K,VIC. In addition, 

this local storage contains the current activity status of each 

microprocessor and functional unit, and the M.PSM addresses of the 

MSV's that are currently connected to microprocessors. The maximum 

number of requests that can be queued is, NP+ND-I, since a 

microprocessor or functional unit can only initiate a single 

communication at a time. Thus, the size of the local storage area 

required by K.VIC is only a small linear multiple of the number of 

microprocessors and functional units. 

A request for an MSV, if it cannot be immediately honored, 

is queued rather than being reissued by the requesting microprocessor 

at some later time for two reasons. The first and most important 

reason is that queuing eliminates the potential for a microprocessor 

resource deadlocks. A simple example where microprocessor resource 

deadlock can occur when there is no queuing of requests is the 

following*. 



PAGE 125 

Example 12: Consider four microprocesses A,B,C, and D, 
where microprocesses B,C, and D are all connected to 
microprocessors and are all simultaneously attempting to 
initiate a communication with A. Suppose that microprocess 
A is not in the appropriate execution-state to receive a 
communication from B or C, but is in an appropriate 
execution-state to receive a communication from D. Given 
this situation there then exists the possibility that every 
time microprocess D attempts to fetch the MSV of A, 
microprocess B or C has locked the MSV of A in an attempt to 
determine whether A is in an appropriate execution-state to 
receive a communication. Thus, microprocess D never 
consummates a communication with A and A never alters its 
execution-state so that B or C can consummate a 
communication. Therefore, without a queuing mechanism there 
exists the potential for introducing in the mapping of 
virtual PMS activity to physical PMS activity, a hardware 
deadlock which is not present as a software deadlock. 

The situation described in the example is not unrealistic where there 

are highly structured interaction patterns among a large number of 

microprocesses. In addition to the queuing mechanism contained as 

part of the K.VIC, there is also a need for a bus control mechanism 

e.g., a bus commutator, to guarantee that eventually a microprocessor 

will be able to get a free bus cycle in order to send out a request 

for an MSV. 

The second reason for queuing requests for a locked-out MSV 

rather than a microprocessor repeatedly reissuing the request relates 

to interference on the Interprocessor Bus. The repeated reissuing of 

__________--__-____--------------------------------------------------- 
*Knuth (KNlJ66) has discussed a similar result with respect to 
Dijkstra's P and V semaphore operations. In particular, if the P and 
V operations are implemented without queuing, then there exists the 
possibility that a process Q(i) which performs a P operation will 
never consummate the operation. This case occurs when there are 
multiple processes Q(l-n) that attempt to perform a P operation, and 
there are unbounded number of P operations to be performed. 
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the request until satisfied would greatly increase the traffic on the 

Interprocessor Bus and activity of K.VIC. Such an increase in traffic 

implies a higher probability of a request for an MSV being delayed 

because either the bus is fully loaded or the K.VIC is busy. 

IV.2.1 Microprocessor Scheduling Strategy 

The Virtual Interaction Controller is also responsible for 

dynamic hardware resource allocation in the microcomputer system. 

There are three types of resources that can be dynamically allocated: 

1) blocks of registers in the M.PSM, 2) microprocessors, and 3) 

functional units. The allocation strategy used for the M.PSM will not 

be discussed further, except to mention that there does exist hardware 

implementable techniques for managing the storage of the M.PSW(RIC72, 

KNU68). 

The Virtual Interaction Controller dynamically allocates 

microprocessors and functional units in a manner analogous to how the 

data elements of a cache are allocated (GIB67). In particular, the 

Interprocessor Communication Structure is analogous to a cache in the 

following ways: 

1) The relationship between a data element in the cache and 
its corresponding data element in the large primary memory 
is analogous to the relationship between a microprocessor 
contained in the physical PMS and its connected microprocess 
defined by the virtual PMS. 
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2) The association of a data word in the cache with a word 
in the large primary memory is analogous to the connection 
of a microprocessor to the a microprocess. 

3) A direct hit to the cache is analogous to a microprocess 
interaction pattern being directly implemented over the 
Interprocessor Bus. 

4) A miss in the cache which then requires access to the 
large primary memory is analogous to a microprocess 
interaction that cannot be implemented directly over the 
Interprocessor Bus but instead must be indirectly 
implemented through modifications to the Process Space 
Memory. 

5) Associating a data word in the cache with a different 
word in the large primary memory, is analogous to context 
switching a microprocessor to another microprocess. 

6) An empty data word in the cache is equivalent to a 
microprocessor which is not connected to any microprocess ; 
a read only data word in the cache is equivalent to a 
microprocessor which has performed all the work necessary 
for a context switch, but has not yet been switched to 
another microprocess; and, a read-write data word in the 
cache is equivalent to a microprocessor which is currently 
executing a microprocess. 

This analogy has been explored in depth because it provides a 

convenient framework within which to think about how to schedule 

microprocesses on microprocessors. In addition, this analogy leads to 

some interesting ways of looking at the relationship between the 

number and structure of microprocesses, and that of microprocessors. 

In particular, the concept of "working set"(DEN68) which is normally 

applied to data, seems applicable also to microprocesses, i.e., 

"control working set"; and, the concept of fetching multiple 

consecutive data items for each line of a cache can also be applied to 

context switching a group of microprocesses rather than a single 

microprocess. Though these ideas have not been explored further in 
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their implication on the hardware organization, simulation data will 

be presented which explores the phenomenon of the "control working 

set". 

The allocation (scheduling) mechanism of the Virtual 

Interaction Controller is invoked when a request is received to write 

into the Process Space Memory an MSV which is not currently connected 

to a microprocessor. If there exists a microprocessor which is not 

currently connected, then this microprocessor is connected to the MSV. 

Otherwise, the MSV is connected to the least recently used 

microprocessor whose associated microprocess is in an expanded, 

waiting, or suspended execution-state. If there exists no 

microprocessor whose microprocess satisfies this execution-state 

condition, then the address of the MSV is placed on a FIFO queue 

stored in M.PSM until a microprocessor is available. 

A microprocessor that is executing a microprocess that 

reaches the terminated execution-state first unloads into the M.PSM 

all the context information (local and global data environment 

registers) associated with the connected microprocess and then signals 

the Virtual Interaction Controller that it is disconnected from the 

microprocess. A microprocessor that is executing a microprocess that 

reaches the expanded, waiting, or suspended execution-state, first 

signals the Virtual Interaction Controller that it is in an inactive 

state, and then begins to unload all the context information 

associated with the microprocess. However, during this unloading 
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period and until the microprocessor is connected to another 

microprocess, K.IBP is still scanning requests on the Interprocessor 

Bus which permits the microprocess to be restarted directly over the 

Interprocessor Bus by another microprocessor. A microprocess also 

becomes a candidate for being context switched when it gets into a 

busy-wait state, i.e., when it repeatedly attempts to initiate a 

communication with a microprocess which is not in an appropriate 

execution-state to receive the communication. If the queue of 

microprocesses which desire scheduling is not empty , then this 

microprocess in a busy-wait state will be disconnected from its 

microprocessor and put on the scheduler queue. Otherwise, after a 

suitable number of bus cycles, so as not to saturate the 

Interprocessor Bus, the busy-waiting microprocess will again attempt 

to consummate the desired communication. However, a microprocess 

which is attempting to communicate with a microprocess whose MSV is 

currently locked-out will not be considered a candidate for 

disconnection from its microprocessor. This scheduling strategy 

distinction between a microprocessor waiting to access a locked-out 

MSV and a microprocessor busy-waiting on an execution-state of an MSV 

is made because there is some short bound (in part, because of the 

queuing of locked-out requests) on the maximum time required for an 

MSV to become unlocked, whereas there is no bound on the time required 

for an MSV to change to the desired execution-state. 

In summary, this scheduling strategy, implemented in the 

Virtual Interaction Controller for microprocessors is simple, 
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independent of the number of microprocessors, and also maps virtual 

PMS activity into physical PMS activity without introducing deadlocks. 

In addition, this scheduling strategy, in conjunction with the 

Interprocessor Bus, attempts to maximize the number of microprocess 

interaction patterns that can be directly implemented as 

microprocessor interaction patterns. As will be seen in the hardware 

simulation results, this scheduling strategy will take advantage of 

additional microprocessors added to the microcomputer system to 1) 

increase the parallel activity of the microcomputer system, 2) 

increase the number of microprocess interaction patterns that can be 

directly implemented, and 3) decrease the number of context switches. 

IV.3 The Microprocessor Organization 

The microprocessor organization has been designed based on 

the following goals: 

1) to configure the internal registers of a microprocessor 
so as to match the particular internal register 
configuration of the virtual microprocessor (microprocess) 
being executed. 

2) to reduce the interference among microprocessors caused 
by accessing of the Microprogram Memory and the Process 
Space Memory. 

3) to make the overhead time required to context switch 
small. 

The first goal is necessitated by the ability to define an arbitrary 

number of registers that will be contained in the local and global 

data environment, port, value stack and program counter stack of a 
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virtual microprocessor. Thus, the conventional solution of assigning 

a fixed set of microprocessor hardware registers for each of these 

data structures cannot be used in this context. The second goal is 

necessitated by the fact there may be 32 or more microprocessors all 

attempting to access the Process Space Memory and Microprogram Memory, 

possibly some of these microprocessors attempting to access the same 

microinstruction. Conventional solutions of interleaving memory and 

multiple access paths to memory are only partial solutions because of 

the very high traffic to these memories. Thus, some technique is 

required for cutting down the total traffic to these memories. The 

third goal is necessitated by the requirement to multiprogram 

microprocess activity in order to avoid deadlocks. This requirement 

to multiprogram combined with the short length of the computational 

activity of a microprocess between successive waits for a 

communication from other microprocesses leads to a high number of 

context switches. Thus, a short time for a context switch is quite 

important. These three design goals can all be satisfied through the 

concept of a cache per microprocessor. 

The microprocessor organization contains an extremely small 

number of dedicated (specific function) internal hardware registers. 

The remainder of the internal storage of the microprocessor is 

structured as a memory cache. The memory cache is used to hold either 

microinstructions or M.PSM registers which contain the local and 

global data environment, port, value stack and program counter stack 

of a virtual microprocessor. The cache per microprocessor concept 
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satisfies the three design goals mentioned previously in the following 

ways: 

1) It permits the internal hardware registers to be 
configured so as to match the register configuration of a 
particular virtual microprocessor; the cache accomplishes 
this configuring by attaching tag information to each 
internal register of the cache; this tag information 
dynamically associates the contents of a cache register with 
the contents of a particular M.PSM register of the virtual 
microprocessor; these internal registers are associatively 
addressed, based on the tag information, in order to access 
the contents of a particular M.PSM register. 

2) It reduces the traffic to the Microprogram Memory and the 
Process Space Memory by allowing a percentage of the 
accesses and stores of M.PSM registers and the accesses of 
microinstructions to be accomplished without interaction 
with the Microprogram Memory and Process Space Plemory. In 
addition, it reduces the likelihood of two microprocessors 
simultaneously attempting to access the same location in the 
Microprogram Memory since a copy of the desired 
microinstruction may already reside in one of the 
microprocessors. 

3) It reduces significantly the time to context switch 
because only the M.PSM registers that have been changed need 
be stored, and only the registers that are required to 
execute the microprocess need be loaded into the 
microprocessor. In addition, a microprocessor may 
immediately begin executing a microprocess as soon as the 
MSV has been read out of the M.PSM. 

The implementation of the cache and its associated control 

in each microprocessor differs in two ways from how caches are 

conventionally implemented. The first difference stems from the fact 

that this microcomputer system contains multiple microprocessors. 

These multiple microprocessors can be simultaneously executing 

microprocesses that are communicating through a shared data area in 

the Process Space Memory. A copy of the contents of these M.PSM 

registers contained in a shared data area cannot be held in the cache. 
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If copies of these registers are held in the cache, then there exists 

the possibility that contents of these cache copies are incorrect 

because during the period a copy of the register resides in the cache 

another microprocessor could have modified the original register in 

the M.PSM. The problem of deciding whether a M.PSM register should be 

stored in the cache is solved by requiring all accesses and stores of 

M.PSM registers to be indirect through a descriptor. A M.PSM 

descriptor specifies among other things the "sharability attribute" of 

the M.PSM register to be accessed or modified. There are three modes, 

as previously described, of the sharability attribute: global, 

coroutine, and local. A register of the virtual microprocessor which 

has the global attribute will never be held in the cache; a register 

which has the coroutine attribute may reside in the cache until the 

virtual microprocessor either is about to enter the waiting, 

suspended, expanded, or terminated execution-state or is disconnected 

from its microprocessor. The coroutine attribute indicates that only 

one virtual microprocessor at a time will access the shared data. 

Thus, while the virtual microprocessor is in an active 

execution-state, the coroutine data may reside in the cache. The 

local attribute indicates that the data may reside in the cache as 

long as the virtual microprocessor is connected to a microprocessor 

since no other virtual microprocessor can access the data. 

The second difference from a conventional implementation of 

the cache stems from efficiency considerations. The data environment 

of a virtual microprocessor is specified by the components of an MSV 
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which, in turn, point to M.PSM descriptors. The M.PSM registers that 

holds these descriptors are stored in the cache like any other M.PSEl 

register. However, they are being accessed on each microinstruction 

in order to generate a M.PSM address, for instance, of an element in 

the local data environment or the top of the value stack, etc. A 

cache access is normally broken up into two steps: I) determine 

whether and where the desired element is in the cache, 2) if it is, 

then fetch or modify this desired element. In order to make the 

accessing of the M.PSM descriptors pointed to by the MSV more 

efficient, the first step required in cache accessing is bypassed. 

This step is bypassed by having a special set of registers that 

indicate whether the M.PSM descriptor is in the cache and if it is, 

then its address in the cache. Thus, the M.PSM descriptors which 

define the data environment of the microprocess can be directly 

accessed in the cache eliminating the time required for the 

associative search step. Additionally, if a M.PSM descriptor is not 

needed, then it is not brought into the cache. 

In addition to these new issues discussed above that arise 

in implementing a cache memory in the context of this microcomputer 

system, there are also the following more conventional design issues: 

1) The number of registers in each line of the cache. 

2) The number of lines in the cache. 

3) The technique for line replacement in the cache. 

4) The store-through mode, i.e., when a register in the 
cache is modified, the time at which its corresponding 
register in the M.PSM is updated. 
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The technique used for line replacement in the cache is a modified 

least-recently-used algorithm, where a read-only line will always be 

replaced before a line which has been modified. The store-through 

mode, the dimension of the cache, and the size of each line has not 

been fixed, but rather are parameters that can be set in the simulator 

of the microprocessor organization. There are three possible 

store-through modes: never store through until context switch, store 

through only when bus and memory are free, and always store through. 

The next chapter will examine the effect of varying these cache 

parameters on the performance of the microcomputer system. 

In summary, this chapter has indicated a coherent and simple 

design for the microcomputer system which allows parallel activity on 

the virtual PMS level to be mapped correctly and without significant 

overhead onto parallel activity in the physical PMS level. The main 

design techniques applied were: 

1) An Interprocessor Bus and its associated control which 
works like a common data bus so as to map whenever possible 
microprocess interaction patterns into microprocessor 
interaction patterns. 

2) A built-in FIFO queue mechanism in the Virtual 
Interaction Controller for ordering access to a locked-out 
MSV so as to guarantee that no resource deadlock will be 
introduced in the mapping of virtual activity to physical 
activity. 

3) A memory cache per microprocessor which allows the 
internal registers to be configured so as to match the 
particular microprocess being executed and to reduce the 
memory interference among microprocessors and the time to 
context switch. 
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The next chapter will demonstrate these conclusions by examining the 

results of simulating this microcomputer organization while running 

the microprogram emulator of Adams' Graph Machine Language described 

in Chapter III. 
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V. Simulation Results 

This chapter justifies in a quantitative way, through data 

gathered from a simulator of the hardware organization* discussed in 

the previous chapter, the following conclusions: 

1) The emulator for Adams' Graph Machine language is 
correct, takes advantage of implicit parallelism of a graph 
procedure, and performs in a parallel manner the overhead 
operation required to sequence a graph procedure. 

2) The logical hardware design maps virtual PMS parallel 
activity correctly and without significant overhead into 
equivalent parallel activity on the physical PMS. 

This chapter also examines the effect of varying such paramaters as 

the number of microprocessors, the number of busses, the interleaving 

of memory, the size of the cache, and the cycle time of the Process 

Space Memory on the performance of the microcomputer system. In 

addition, experimental data that indicates the phenomenon of the 

"control working set" is presented and discussed. 

--------------------______^_____________------------------------------ 
*The simulator does not simulate exactly the hardware organization 
described in the previous chapter. In particular, all microprocess 
interactions are implemented indirectly through the Virtual 
Interaction Controller rather than some directly over the Interprocess 
Bus. However, a count is made of the number of interaction patterns 
that could be directly consummated over the Interprocessor Bus. In 
addition, the overhead required for allocation of storage in the M.PSM 
is not counted; this variation does not affect the experimental 
results to be reported since storage allocation in AGML emulation is 
only done at the beginning of the run, rather than distributed 
throughout. 
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V.l The Simulator 

The simulator is written in PL/I and is structured as a set 

of coroutine procedures. Each component of the PFS of the 

microcomputer system that operates asynchronously is simulated by a 

distinct coroutine procedure. A simulation is performed by executing 

in a round robin fashion each of these coroutine procedures. Each 

coroutine procedure is executed until communication to or from another 

coroutine is desired. Each coroutine keeps track of its internal 

simulated time, and will not be allowed to consummate the desired 

communication until its simulated time is equal to the simulated time 

of the coroutine to which it communicates. 

V.I.1 Configuring the Simulator 

The input data required by the simulator are (1) a 

microprogram to be executed, which is stored in the Microprogram 

Memory, (2) a program and its data to be emulated, which is stored in 

the Memory Subsystem, (3) a detailed specification of the PM'S 

configuration to be used as an environment within which to execute the 

microprogram, and (4) trace level specification. The microprogram 

inputs to the simulator are created by a microassembler. The 

microassembler program, which is also coded in PL/I, takes as input a 

symbolic microprogram whose syntax is described in Appendix B. The 

trace level specification allows the level of summarization of the 
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output data to vary from tracing each bus request to summary 

statistics for each independent component of the P?!S. This trace 

information has been extremely helpful in debugging the simulator, the 

hardware design, and the Adams' Graph Machine emulator. 

The parameters used to construct a particular PMS 

configuration for the simulator are shown in Figure 25. These 

parameters define the number of microprocessors, the cycle time of 

each microprocessor, the number of functional units and their type, 

the number of busses to be used for interprocessor communication, the 

characteristics of the Process Space ?iemory (M.PSM), Microprogram 

Memory (M.MPM), and Memory Subsystem (M.MEM), (i.e., their cycle 

times, interleaving, and the number of requests that each can handle 

simultaneously), and the characteristics of the cache associated with 

each microprocessor. If the "NUMBER OF THE INDEPENDENT ACCESS PATHS" 

parameter is set to -1, then the Interprocessor Bussing Structure is 

also used to access the desired memory instead of a separate bussing 

structure dedicated only to that memory. The "CACHE STORE THROUGH 

MODE" parameter can specify one of four ways of maintaining the cache: 

(1) always store through, (2) only store through non-descriptor 

registers, (3) never store through and (4) only store through when bus 

and memory module are free. The PMS configuration, pictured in Figure 

24, is specified by Figure 25. 
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v.l.2 Summary Statistics of the Simulator 

The statistics produced from the execution of the simulator 

display (1) the resource utilization of all components of the PMS 

configuration, (2) the effect of interference among microprocessors, 

and (3) the dynamic activity of the computation. An example of the 

statistics produced from simulating the PMS configuration defined in 

Figure 25 are displayed in Figures 26a, b, c, and d. 

The primary measurements of systems performance are shown in 

Figure 26a. The "TOTAL TIME TO EXECUTE" indicates the number of bus 

cycles required to execute the microprogram. The 

"MICROPROCESSOR~ACTIVITY/TIME" indicates the average number of 

microprocessors executing during each cycle. This measure of 

microprocessor activity is referred to as the "allocated parallel 

activity" of the system. The "INSTRUCTION RETRIES" indicates how many 

times an ASP or SEL microinstruction was reexecuted, without an 

intervening context switch, because the communication could not be 

immediately consummated. The 'NUMBER OF MICROPROCESSES GENERATED" 

indicates the number of MSV's that were created during the simulation, 

and the 'NUMBER OF M.PSM REGISTERS ALLOCATED" indicates the register 

storage required to define the data environment of these 

microprocesses. The "QUEUE HISTOGRAM" data indicates the fraction of 

the "TOTAL TIME TO EXECUTE" during which exactly i microprocesses were 

queued waiting for an available microprocessor. The "USACE OVER TIME" 7 

indicates the' fraction of the "TOTAL TIME TO EXECUTE" during which 



H
*C

R
oP

R
cl

C
Es

M
R

 
S”

BS
YS

TE
II 

PE
R

FO
Ll

llm
cE

 
---

---
_-

---
---

---
-- 

Fi
gu

re
 

26
a.

 
An

 
Ex

am
pl

e 
of

 
M

ic
ro

pr
oc

es
so

r 
Su

bs
ys

te
m

 
Pe

rfo
rm

an
ce

 
St

at
is

tic
s 



P
S

M
 

SL
BS

YT
EM

 
PE

R
FO

R
M

AN
C

E 

LU
C

BE
R

 
C

F 
ST

C
R

AG
E 

AC
C

ES
SE

S=
 

21
70

9 

hi
LM

6E
R

 
C

F 
ST

O
R

ES
= 

10
23

0 

N
LM

BE
R

 
O

F 
ST

AC
K 

D
ES

C
R

IP
TO

R
 

AC
C

FS
SE

S=
 

43
53

3 

AC
C

ES
S/

TI
M

E=
 

0.
76

 

AC
C

ES
SE

S/
AC

TI
VE

_P
R

O
C

ES
SO

R
_T

1H
Er

 
C

l.1
7 

AV
ER

PG
E 

ST
O

R
AG

E 
C

EL
AY

 
PE

R
 

AC
C

ES
S=

 
0.

58
 

AV
ER

AC
E 

AC
C

ES
S 

PA
TY

 
IN

TE
R

FE
R

EN
C

E 
PE

R
 

AC
C

ES
S=

 
0.

01
 

hb
M

R
EF

 
C

F 
R

FT
R

IE
S 

O
U

E 
TO

 
ST

O
R

AG
E 

LU
C

K=
 

33
9 

M
AX

IC
U

P 
YI

ZF
 

O
f 

ST
O

R
AG

E 
LO

C
K 

AR
R

AY
.=

 
9 

W
AI

T 
PF

R
 

LC
:K

EO
 

D
Pt

R
AT

lO
hl

= 
13

 

H
PW

 
SU

BS
YT

EH
 

PE
R

FO
R

M
AN

C
E 

--
--

--
--

--
--

--
- 

N
LH

BE
F 

O
F 

ST
O

R
AG

E 
AC

C
ES

SE
S=

 
38

29
 

AC
C

ES
S/

T 
IM

E=
 

C
-1

3 

AC
C

ES
SE

S/
AC

TI
VE

~P
R

O
tE

SS
O

R
_T

IH
F=

 
0.

03
 

AV
ER

AG
E 

ST
O

R
AG

E 
D

EL
AY

 
PE

R
 

AC
C

ES
S=

 
0.

06
 

AV
EU

PC
F 

PC
C

ES
S 

Pd
TH

 
IN

TE
R

FF
R

EN
C

E 
PE

R
 

AC
C

ES
S=

 
0.

01
 

20
22

d5
4 

Fi
gu

re
 

26
b.

 
An

 
Ex

am
pl

e 
of

 
M

.P
SV

 
an

d 
FI

.M
PF

! 
Pe

rfo
rm

an
ce

 
St

at
is

tic
s 



M
EY

 
SU

BS
YT

EM
 

PE
R

FO
R

M
AN

C
E 

---
---

 
---

---
- 

N
U

t’6
EF

 
C

F 
ST

O
R

AG
E 

AC
C

ES
SE

S=
 

10
4 

AC
C

ES
S/

T 
IM

E-
 

0.
00

 

AC
C

ES
SE

S/
AC

TI
VE

,P
R

O
C

ES
SO

R
,T

IM
EI

 
0.

00
 

AV
ER

AG
E 

ST
O

R
AG

E 
O

EL
AY

 
PE

R
 

AC
C

ES
S=

 
0.

00
 

AV
ER

AG
E 

AC
C

ES
S 

PA
TH

 
IN

TE
R

FE
R

EN
C

E 
PE

R
 

AC
C

ES
S=

 
0.

00
 

N
C

O
U

LE
 

1 
2 

3 
4 

hU
l’B

ER
_O

F-
AC

C
ES

SE
S 

43
 

40
 

18
 

3 

Fi
gu

re
 

26
~.

 
An

 
Ex

am
pl

e 
of

 
M

.M
EM

 
Pe

rfo
rm

an
ce

 
St

at
is

tic
s 

20
22

A5
-3

 



>.
...

...
...

...
.* 

...
...

...
...

. 
...

< 
Ya

...
...

...
...

...
...

...
.. 

...
...

...
...

...
...

.. 
...

< 
,..

...
...

...
...

...
..*

 
...

...
...

...
. 

...
< 

,..
...

...
...

...
...

.* 
...

...
...

...
...

...
...

...
...

.. 
...

< 
,..

...
...

...
..a

 
...

...
...

...
...

...
...

...
...

.. 
...

< 
>.

...
...

...
...

...
...

..*
 

...
...

...
...

...
...

...
 

...
< 

>.
...

...
...

...
* 

...
...

...
...

...
...

...
...

...
...

...
...

.. 
>.

...
...

...
...

...
...

...
* 

...
...

...
...

...
...

...
...

...
...

...
.. 

...
< 

>.
...

...
...

t 
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

 
...

< 
, .

...
...

.. 
l 
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.. 
...

< 
> .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. 
...

< 
,..

...
...

...
* 

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.. 
...

< 
, 

...
. 

l 
...

...
...

.. 
< 

>.
 

...
. 

l 
...

...
...

. 
< 

,..
.* 

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
 

...
< 

> .
 ..

a.
. 

...
...

...
. 

c 
> .

 ..
*. 

...
...

 
c 

,.*
 

...
...

 
...

< 
,..

...
...

* 
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. 
...

< 
>.

* 
...

...
 

...
< 

>.
 ..

. 
*. 

...
...

...
. 

< 
,..

...
L 

...
...

...
...

...
...

...
...

...
...

...
...

. 
...

...
...

...
...

...
...

...
...

...
...

 
. 

>.
..*

 
...

...
...

 
...

< 
>.

 
...

 
l 

...
...

...
.. 

< 
,..

..*
 

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.. 
...

< 
,..

...
.* 

...
...

 
...

< 
>.

I..
 

...
...

. 
< 

>.
...

.*
 

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. 
...

< 
> 

...
...

...
.. 

< 
> 

. 
..a

.. 
...

...
...

. 
< 

, 
..*

. 
...

...
. 

< 
,..

...
...

...
...

...
...

...
...

...
...

...
...

...
* 

...
...

...
...

...
...

...
...

...
...

. 
...

< 
,..

...
...

...
...

...
...

...
...

...
...

...
...

...
* 

...
...

...
...

...
...

...
...

...
...

. 
...

< 
> 

...
...

...
...

...
...

. 
..*

...
...

...
...

...
...

...
...

...
..<

 
m

m
.a

i 

Fi
gu

re
 

26
d.

 
An

 
Ex

am
pl

e 
of

 
Pr

oc
es

so
r 

U
til

iz
at

io
n 

St
at

is
tic

s 



PAGE 146 

exactly i microprocessors were executing. The "(MICROPROCESS) QUEUE 

HISTOGRAM" and "(MICROPROCESSOR) USAGE ovm TIME" statistics combined 

together provide a good measure of the distribution of parallel 

activity on the virtual PMS level. 

The performance measurements of the memories and bussing 

structures are pictured in Figures 26b and 26~. The "ACCESS/TIME" 

indicates the average number of requests per bus cycle that each 

memory received. The "ACCESS/ACTIVE-PROCESSOR-TIME" is a 

normalization of the "ACCESS/TIME" statistics based on the average 

allocated parallel activity. The "AVERAGE STORAGE DELAY PER ACCESS" 

indicates the average time requests to memory were delayed in 

servicing because of hardware interference. There are two points at 

which interference is measured: (1) access to the bussing structure 

which connects to the memory and (2) access to a particular module of 

the memory. The "AVERAGE ACCESS PATH INTERFERENCE PER ACCESS" 

separately specifies the interference caused by overloading the 

bussing structure to memory. The "NUMRER OF RETRIES DUE TO STORAGE 

LOCK" indicates how many requests for MSV's, from the M.PSW, were 

queued by the Virtual Interaction Controller. The "MAKIMUM SIZE OF 

STORAGE LOCK ARRAY" indicates the maximum number of microprocessors 

that were simultaneously waiting for access to locked-out MSV's. The 

"WAIT PER LOCKED OPERATION" indicates the average time a request for 

an MSV spent on the queue before it was serviced. In addition, there 

is data available on the distribution of these queued requests based 

on MSV's. 
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The dynamic activity of the computation is characterized by 

Figure 26d. The dynamic activity is plotted by displaying the minimum 

(>I, maximum (<), and average (*) number of microprocessors that were 

utilized during the lifetime of the computation. This microprocessor 

utilization curve is based on a time period of 500 bus cycles. In 

addition, statistics are available for constructing the activity curve 

for each microprocess that was created during the computation. In 

particular, these statistics specify the total time spent in executing 

a microprocess, and the time periods in which a microprocessor was 

executing this microprocess. 

V.2 The Dynamic Performance Characteristics of the 

AGML Emulator and the Hardware Organization 

The first step in evaluating the performance of the AGML 

emulator and the hardware organization for the microcomputer 

architecture, is to verify their correctness. Their correctness was 

experimentally verified by simulating, on a wide range of PMS 

configurations, the AGML emulator emulating a variety of graph 

programs. The performance statistics to be presented in the remainder 

of the chapter are based on two of these graph programs, Figures 27 

and 28. 

The first graph program, Sum-Squared in Figure 27, 

calculates the sum of the squares of the elements of a vector of 

numbers; the vector is placed on the external input link with its last 
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OUTPUT LINK 2022A47 

Figure 27. Sum-Squared Graph Program 
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Figure 28. Sum-Eighth-Power Graph Program 
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element being zero. The node "2 copies" copies the data on its input 

data link to its two output links. The node "Branch and Route" routes 

the data on its first input link (connected to the "+" node) to the 

external output link if its second input link (connected to the Q-J" 

node) contains a true value; otherwise, the output data from the "+" 

node is routed back to the I'+" node for continued summing. The 

computational structure of this graph program can be thought of as a 

three level pipeline that flows into an iterative summation network. 

The second graph program, Sum-Eighth-Power in Figure 28, 

calcuiates the sum of the eighth power of the elements of a vector of 

numbers. The computational structure of this second graph program is 

similar to that of the first graph program except that the pipeline 

part of the computation has seven levels. This extension of the 

pipeline, as will be verified by performance statistics, increases the 

inherent parallelism of the Sum-Eighth-Power graph program in 

comparison to that of the Sum-Squared program. 

V.2.1 Measuring Parallel Activity 

The parallel activity of an AGMI, graph program can be 

measured on three "levels of abstraction"(RID71,HOR70), as pictured in 

Figure 29. The comparison of parallel activity among these three 

levels is used to justify the conclusion stated at the beginning of 

the chapter. 
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The first measure of parallel activity, "algorithmic 

parallelism", is based soley upon the sequencing rules of the AGML, 

i.e., the rules which define when a node may execute. The algorithmic 

parallelism does not take into consideration any of the bookkeeping 

operations, both software and hardware, required to implement the 

parallel activity of the graph program, e.g., the fetching and storing 

of data on links, the monitoring for when a node can fire. The 

algorithmic parallelism of the AGML program, as a function of the 

number of processors, can be measured through the use of a simulation 

technique developed by Nelson(NEL70)". 

The second measure of parallel activity, "program 

implementation parallelism" is based on the parallel activity on the 

virtual PI% level of the AGML emulator when emulating the graph 

program. The program implementation parallelism takes into 

consideration the bookkeeping operations at the programming level 

required to implement a graph program but does not take into 

consideration (1) the bookkeeping operations at the hardware level 

required to map virtual PMS activity into physical PMS activity, (2) 

the hardware interference among microprocessors caused by simultaneous 

access to a memory module or the bussing structure, and (3) the 

program interference among microprocesses caused by a microprocess 

repeatedly attempting to communicate with another micorprocess which 

*In using Nelson's simulator to compute the algorithmic parallelism, 
it has been assumed that all node operations require the same amount 
of time. 
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is not in the appropriate execution-state to receive a communication, 

i.e., the number of instruction retries. 

The program implementation parallelism of the AGML program 

cannot be precisely measured through statistics produced by the 

simulator. Thus, instead of a precise measurement, an approximation 

of the program implementation parallelism has been obtained by 

altering a graph program to reflect the major bookkeeping operations 

at the programming level. A graph program has been altered by adding 

dummy nodes along the links of the graph program so as to reflect the 

overhead operation of fetching and storing of link data (see Figure 

30). The algorithmic parallelism of this altered graph program is then 

used as an approximation to the program implementation parallelism*. 

The third measure of parallel activity, "hardware 

parallelism", is based on statistics produced by the simulator 

interpreting the AGML emulator when emulating the graph program. 

There are three related measures of hardware parallelism that are 

important to the evaluation of the performance of logical hardware 

design: 1) the "throughput parallel activity" which is calculated by 

dividing the "TOTAL TIME TO EXECUTE" for n microprocessors by that for 

a single microprocessor; 2) the "effective parallel activity" which is 

-----------------------~~~~~~~~~~~~-~--------------~--~~~------------- 
*In computing the program implementation parallelisms, it has been 
assumed that the overhead operation represented by dummy nodes 
requires twice as much time as a regular node operation. This 
relationship of overhead to computation was determined experimentally 
through statistics produced by the simulator on how much real-time 
each microprocess took to compute. 



Figure 30. Modification to Sum-Squared Graph Program to 
Program Implementation Parallelism 
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Measure 
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calculated by normalizing the "allocated parallel activity" by the 

results of dividing the "AVERAGE INSTRUCTION EXECUTION TIME" for a 

single microprocessor by that for n microprocessors; 3) the "allocated 

parallel activity" which, as previously described, is a measure of the 

actual parallel activity exhibited by the microprocessors. The effect 

of program interference as a function of the number of microprocessors 

can then be observed by comparing the throughput hardware parallelism 

to the effective hardware parallelism. In the same way, the effect of 

hardware interference and hardware bookeeping operations as a function 

of the number of microprocessors can be observed by comparing the 

effective hardware parallelism to the allocated hardware parallelism. 

V.2.2 The Performance Characteristics of the AGML Emulator 

The performance characteristics of the AGML emulator have 

been evaluated by comparing the algorithmic parallelism, the program 

implementation parallelism, and the hardware throughput parallelism of 

the Sum-Squared graph with a 5 element vector. The graphical display 

of each of these parallelism measures as a function of the number of 

available (micro)processors is pictured in Figure 31. A comparison of 

these parallelism curves indicates the following conclusions 

concerning the performance of the AGML emulator: 

1) The emulator takes advantage of the implicit parallelism 
of a graph program (compare algorithmic to throughput 
curve); 

2) The emulator performs in a parallel manner the overhead 
operations required to sequence a graph program (compare 
algorithmic to virtual and throughput curves). 
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In addition, the comparison between the virtual and throughput 

parallelism curves indicates that the logical hardware organization 

configured appropriately can map virtual PMS activity to physical PVS 

activity without significant overhead. 

These conclusions can be substantiated on a more 

quantitative basis by examining the fit(DER69) of the throughput 

parallelism curve to the following hyperbola: 

T(n)= a+b/(n-c), 

where n is the number of microprocessors and T(n) is the run time in 

terms of units of a 1000 bus cycles. The result of the fitting is: 

T(n)= 30 + 12O/(n-0.19). 

A similar curved fitting to the throughput curve of the 

Sum-Eighth-Power graph with a 10 element vector, pictured in Figure 

32, is: 

T(n)= 40 + 270/(n-0.1). 

Both curve fittings, which at maximum varied less than 3 percent from 

the experimental data, indicate that a major part of the computational 

activity of the AGML emulator can be performed in a parallel way as a 

function of l/N. 
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The dynamic performance characteristics of the AGML emulator 

can also be observed by examining the Microprocessor Utilization 

Curves of the Sum-Eighth-Power graph program in Figures 33a-e. The 

dynamic activity of the AGML emulator can be partitioned in terms of 

six sections, as labeled in Figure 33a. The activity of the first 

section, which is mostly sequential, represents the dynamic 

construction of the CDS for the particular graph program being 

emulated. The activity of the second section represents the 

initiation of all nodes in the graph, and their subsequent activity 

involved with determining whether they can execute. The activity of 

the third section mirrors the gradual initiation of the pipeline part 

of the graph computation. The activity of the fourth section mirrors 

the execution of a fully loaded pipeline. The activity of the fifth 

section mirrors the unloading of the pipeline part of the computation 

followed by the iterative summation part of the computation. Finally, 

the activity of the sixth section represents the termination of all 

the nodes of the graph after the final output appears on the external 

output link. This sequence of microprocessor utilization curves 

indicates that an AGML emulator can use available microprocessors, 

where sufficient parallelism exists, to reduce in a linear way the 

time it takes to complete each of the sections of the curve. In 

addition, Figure 33d indicates that the logical hardware design can 

efficiently handle sustained parallel activity, involving highly 

structured interaction patterns, of greater than sixteen 

microprocessors. 
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V.2.3 The Performance Characteristics of the 

Hardware Organization 

The previous section showed that the virtual PMS activity 

can be mapped without significant overhead into equivalent parallel 

activity on the physical PMS. This section will discuss, in detail, 

how this overhead varies as a function of the amount of parallel 

activity and the number of microprocessors. 

The two components of overhead, hardware interference and 

program interference, are analyzed by comparing the three measures of 

hardware parallelism: throughput, effective and allocated hardware 

parallelism. These three measures are plotted as a function of the 

number of microprocessors for the Sum-Eighth-Power graph program in 

Figure 32. 

The first observation which can be made from Figure 32 is 

that the hardware interference and program interference increase as a 

function of the number of microprocessors. This observation on 

hardware interference can be explained in the following way: the more 

microprocessors, the more virtual PW parallel activity that can be 

exploited as physical P?IS parallel activity; in turn, the more 

physical PMS activity increases the likelihood of overloading the 

bussing and memory structures; this overloading leads to a longer time 
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to execute microinstructions in the more highly parallel sections of 

the emulator activity; therefore, the allocated parallelism which 

measures the amount of parallel microprocessor activity increases in 

relation to the effective parallelism which measures the amount of 

parallel microprocessor activity normalized to the the average 

execution time of a microinstruction. 

The increase in program interference can be explained in a 

similar way, except in this case, the resource causing interference is 

a microprocess: in a computation involving highly structured 

interaction patterns, the more parallel activity leads to the greater 

likelihood that a microprocess will attempt to communicate with 

another microprocess which is busy; thus, there will be an increase in 

busy-waiting time caused by repeatedly attempting to consummate a 

communication. This busy-waiting time is reflected as an increase in 

the number of microinstructions executed, which causes the increasing 

difference between the throughput and effective parallelism curves. 

The second observation which can be made from Figure 32 is 

that the difference between the allocated and effective parallelism 

above sixteen microprocessors decreases rather than increases or 

remains constant, as would be expected. This anomaly occurs because 

the difference between the allocated and effective parallelism, 

pictured as curve 1 in Figure 34, not only is a measure of hardware 

interference but also measures the hardware overhead functions 

involved in mapping virtual PMS activity onto physical PMS activity. 
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The major components of this hardware overhead are the time to context 

switch and the time to fetch data for a miss in the cache. As seen 

from Figure 34, these two components of hardware overhead (see Curves 

2 and 4) decrease above sixteen microprocessors counter-balancing the 

effect of increasing hardware interference (see Curves 3 and 5). The 

proportional decrease in time spent doing hardware overhead functions 

can be explained in terms of the "control working set" phenomenon 

previously discussed in Chapter IV. 

The phenomenon of the control working set is graphically 

displayed in Figure 35: above 16 microprocessors there is a sharp 

drop off in the number of context switches, the number of 

microprocesses queued, and a correspondingly sharp increase in the 

number of direct activations over the interprocessor bussing 

structure. The decrease in the time spent on hardware overhead 

function is thus easily explained: 

1) The decrease in the time spent on context switching 
occurs because there are significantly fewer context 
switches. 

2) The decrease in time spent on fetching data for a 
microprocessor's cache occurs because there is a much higher 
probability that a microprocess can remain connected to a 
microprocessor while waiting for a communication. The data 
working set of microprocesses will thus have to be 
reassembled much fewer times. This phenomenon is 
substantiated on another level through looking at the cache 
miss ratio which significantly decreases with more than 
sixteen microprocessors, i.e., 13 percent to 10 percent. 

This control working set phenomenon of a sharp decrease in hardware 

overhead above a certain number of microprocessors is directly 
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LiUMBER OF MICROPROCESSORS 

TA(n) = (Time to run with n microprocessors) x 
(Average allocated parallel activity) 

1 (Average instruction execution time for single microprocessor)/ 
(Average instruction execution time for n microprocessors) 

2 (Time required to fetch data on cache miss for n 
microprocessors)/TA(n) 

3 (Time caused by PSM interference for n microprocessors)/TA(n) 

4 (Time caused by delay in accessing locked MSV for n 
microprocessors)/TA(n) 

5 (Time required to context switch for n microprocessors)/TA(n) 
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Figure 34. Distribution of Hardware Interference for Sum-Eighth-Power 
Graph Program(l0) 
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analogous to the data working set phenomenon of thrashing which occurs 

when there are too few physical data pages to hold the data working 

set of the program. 

V.2.4 Future Research -- Choosing a PMS Configuration 

A major research area that needs further exploration is the 

development of techniques for choosing an optimal PMS configuration. 

The choice of an optimal PMS configuration is very difficult 

considering the large number of parameters that must be set in order 

to specify a configuration. The configuration that was used for the 

simulation results presented in the previous section is pictured in 

Table 5. This configuration was chosen through a trial and error 

approach, together with some systematic varying of parameters, shown 

in Figures 36a, b, and c. 

Some tentative conclusions from this trial and error search 

are the following: 

1) The interprocessor bussing structure configured to handle 
8 bus requests simultaneously with at least up to 16 
microprocessors connected, can be used as the access path to 
the M.PSM and M&PM without major interference problems. 

2) The cache store through mode of never storing through 
unless necessary seems to be optimal. The mode of only 
storing through when there are available bus and memory 
cycles is surprisingly not the best. The explanation seems 
to be that though the memory is available, the storing into 
memory will tie up the memory for cycles in the future, thus 
causing interference for future accesses. However, if the 
storing through is allowed in some fraction of the available 
bus cycles, rather than on every available cycle, then this 
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mode approaches (or could be possibly better than) the never 
store through mode. 

3) The interleaving of the Process Space Memory should be at 
least as much as the average allocated parallelism expected 
in the system. 

4) A cache of 128 32 bit words configure as 32x4 seems 
appropriate for handling microprograms of short duration 
with small data working sets. A cache configuration of 64x2 
has significantly lower cache hit ratio. 

5) The proportional effect of varying M.PSM cycle time on 
throughput seems to be independent of the number of 
microprocessors. 

These conclusions are extremely tentative because of the small sample 

space of microprograms that were emulated. There should be future 

research directed toward a more careful examination of these 

conclusions. 
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Figure 36~. Effect of Process Space Memory Cycle Time on Throughpu? 
of Sum-Squared Graph Program(5) 



PAGE 175 

SYSTEM’S CONFIGURATION 
~-------------------- 

CYCLE TIPE CF YICROPRGCSSSCP= 1 

NUMBER CF FUhCTICNAL UNITS= C 

NUMBER CF @LSES= 8 

FSV REPC/WRITF CYCLE TIME= 2 
NUMREF CF PSC MCCULES~INTFKLFPVF=It 
YI;Mf+ER OF INCEPENDtbT PSM ACCEbS f’ATHS=-1 

MFM REbC/WRITE CYCLE TIb!E= 2 
NUMBER CF CPP MCDULFS-INTERLEAVE= i3 
hUnBER CF IhCEPENUEMT YPb’ ACCESS f’ATHS=-I 

CEM RE!G/kRITE CYCLE TI,c(E= 2 
NUMPEF CF MEW MODULES-INTERLtAVE’ 4 
NUMBER CF IhDEPENDENT ?!EY ACCtS-C PATHS= 1 

CACPE QEAD/hRITE CYCLE TINE= 1 
CACHE SIZE=32 
LINE SIZE CF CACFE= 4 
CACI-E STCRE THRGUGH MOPE=3 

Table 5: PMS Configuration Used for Simulation 
Results 
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VI. Summary Comment and Conclusions 

This thesis has described an architecture for a parallel 

microcomputer system that permits a systematic and flexible approach 

to the emulation of a wide variety of complex sequential and parallel 

intermediate machine languages in a dynamically varying 

Processor-Memory-Switch(P?ZS) environment. This architecture has been 

based on the view that complex emulators can be best structured in 

terms of a set of microprocessors that interact in a highly structured 

manner. Further, these highly structured interaction patterns are 

different for different types of emulators but for a particular 

emulator generally remain static. This view represents a modular, 

task oriented approach to managing the complexity of emulation. 

These highly structured interaction patterns are dynamically 

defined through the concept of a virtual PMS environment. This 

concept embodies the capability for reconfiguring both the internal 

and the external environment of a microcomputer system: the varying 

of the number of internal working registers of each microprocessor; 

the varying of the structure of memory, e.g., its size and word 

length; and the varying of the number of microprocessors and 

functional units, and their interconnections and interaction patterns. 

This extra dimension of representational freedom provided by the 

concept of a virtual PMS environment allows: 

1) The virtual state image of the microcomputer system, 
S(m), to be structured so as to make the imbedding of the 
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state image of complex IML's, S(e), straightforward; 

2) The microinstructions to operate directly in the context 
of an appropriate S(vm) so as to make the coding of an 
emulator compact and simple; 

3) The emulator to be coded so as to be independent of the 
physical PMS environment but, at the same time, exploit 
physical resources when available. 

In this way, the microcomputer architecture can be dynamically 

reconfigured so that it directly mirrors the structure of the IML to 

be emulated. A close mirroring between the structure of the 

microcomputer and that of the emulated machine is the key to efficient 

emulation. 

A virtual PMS is implemented in the microcomputer 

architecture by adding a new global level of hardware control. By 

making the virtual PMS an integral part of the microcomputer 

architecture, the overhead in implementing highly structured parallel 

interaction patterns, where the parallel activity is of short 

duration, does not overwhelm the inherent parallelism of the 

interaction patterns. This new level of hardware control can be 

thought of as a simple, hardware operating system which controls the 

scheduling and interactions among microprocessors and functional 

units. A particular virtual PMS is dynamically defined by 

constructing an appropriate global control structure for the 

microcomputer system. An appropriate global control structure is 

constructed by dynamically modifying the syntax, i.e., the number of 

data elements and their relationships, of the control data structure 

(CDS) for this new global level of control. In a conventional 
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computer or microcomputer system, the data structure for control 

contains a fixed set of data elements whose relationships are 

predefined. Thus, in a conventional system, control can be modified 

only by changing the value of data elements in the CDS, e.g., changing 

the program counter. The ability added here to modify the syntax of 

the data structure for control is the key to tailoring a virtual PMS 

environment for a particular emulated machine. 

The CDS has been defined so as to allow the flexible 

structuring of a virtual PMS environment, while at the same time 

permitting the hardware algorithm for the mapping of virtual 

microprocessor activity to actual microprocessor activity to be 

straightforward. The CDS consists of an arbitrary number of 

microprocess state vectors (MSV); each MSV has a structure which has 

13 components; different microprocess interaction patterns are defined 

by varying the number of state vectors and the values of their 

components which change the relationships among microprocesses. The 

components of the microprocess state vector can be broken into two 

overlapping classes: external-environment components and 

internal-environment components. Each of these classes can be further 

subdivided into control-environment components and data-environment 

components. The external control-environment components define the 

set of microprocesses that a microprocess can directly communicate 

with. The external data-environment components define how other 

microprocesses can transfer data to a microprocess. The internal 

control-environment components define the local CDS for the sequencing 
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of microinstructions of a microprocess. The internal data environment 

components define the internal working registers of the microprocess. 

Thus, by dynamically altering the number of MSV's and their 
.rl 

components, a virtual PMS can be tailored to a particular emulated 

machine. 

There are two major tasks in emulation: performing address 

arithmetic computations (e.g., computing the address of an operand, 

decoding of an instruction format) and sequencing among the different 

tasks (e.g., control, decoding, semantic routine) required in 

performing an emulation. Corresponding to these two tasks areas, 

there are respectively two general classes of microinstructions in the 

microcomputer. One class, called the Integer Function Language (IFL), 

deals with internal registers of the microprocessor, and are like 

conventional vertical microinstructions. The other class, called the 

Structure Building Language (SBL), deals with the external environment 

of the microprocessor by modifying the CDS . The major emphasis in 

this thesis has been on the SBL because the flexibility of the control 

structure of the microcomputer is crucial to the effective emulation 

of sophisticated IML's. This flexibility of control structure is the 

major feature lacking in existing microcomputer architectures. 

The SBL microinstructions are not oriented toward specifying 

any particular method of microprocess interaction patterns, but 

rather are building blocks by which different interaction patterns can 

be defined. The key to the design of the SBL is to imbed, in a 
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parameterized way, in a small number of microinstruction types the 

essential aspects of a wide variety of interaction patterns. In 

addition, SBL microinstructions are designed so as to provide 

information to the hardware mapping algorithm which allows the mapping 

algorithm to take advantage of similarities between the structure of 

the virtual PMS environment and that of the actual PMS environment. 

The SBL, which consists of eight microinstruction types 

listed in Table 1, has two functions: a syntactic function and a 

semantic function. The syntactic function involves the dynamic 

construction of the CDS while the semantic function involves the 

dynamic invocation of microprocess interaction patterns defined in the 

CDS. In essence, the syntactic microinstructions dynamically define 

static, time-independent interrelationships among microprocesses. The 

semantic microinstructions use these syntactic interrelationships 

among microprocesses as a convenient representational framework within 

which to define dynamic, time-dependent interrelationships among 

microprocesses. The separation between the definition of interaction 

patterns and their invocation is possible because the execution of a 

microprocess is factored into three discrete, separable phases: a 

binding phase, an expansion phase, and an activation phase. The 

generation of a CDS caused by the binding and expansion phases can 

thus be separated from the sequencing of a CDS caused by the 

activation phase. This separation is extremely important because once 

the overhead cost has been incurred for defining the CDS whose 

structure generally remains static during an emulation, there is 
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little overhead cost for each dynamic interaction pattern invoked. 

A key aspect of microprocess interaction patterns is 

specifying at what time points in the activity life of a microprocess 

certain types of communications can be received. This aspect of 

microprocess interaction is accomplished through the concept of 

agreeable communication states: the semantics of SBL 

microinstructions are defined so that communication between two 

microprocesses is only consummated when the execution-state and type 

of communication(activation-type) are agreeable for communication. 

The set of agreeable states is designed so that a microprocess can 

1) sequentially accept and process multiple communications, 

2) selectively accept only certain types of communications, and 

3) asynchronously accept requests for communication. 

The feasibility of this microcomputer architecture has been 

demonstrated by examining its representational capabilities, its 

hardware organization, and its dynamic execution characteristics. 

The representational capabilities of this architecture have 

been examined through the microprogramming of an emulator for a 

sophisticated parallel machine lwww, Adams' Graph Machine 

Language(AGML). The emulator of this machine language has 

demonstrated the versatility and usefulness of the SRL and the concept 

of a dynamically restructurable CDS in the following ways: 

1) It has shown how an S(vm) can be constructed so as to 
make the embedding of the state image of a complex I?%, 
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S(AGML), straightforward. In particular, it has indicated 
how a CDS can be tailored so that it directly mirrors the 
distributed control structure of AGHL. 

2) It has shown that an emulator can be compactly and simply 
coded when the microinstruction directly operates in the 
context of the appropriate S(vm). The microprogram memory 
required for the AGML emulator microprogram, including the 
storage for constants, is less than 600 microinstruction 
words. 

3) It has shown how a CDS can be dynamically structured so 
as to easily represent a wide variety of different types of 
control structures, i.e., distributed control, semaphore 
processes, message queuing, broadcast control, etc. 
Further, it has indicated how these different types of 
control structures can be integrated together in a single 
CDS. 

4) It has shown how a modular task approach to design of an 
emulator can be implemented naturally within the framework 
of a restructurable CDS. 

The examination of a harware organization for this 

architecture has indicated that a coherent and simple logical design 

can be constructed which allows parallel activity on the virtual PMS 

level to be mapped correctly and without significant overhead onto 

parallel activity in the microcomputer system. The main design 

techniques used were 

1) An Interprocessor Bus and its associated control which 
works like a common data bus so as to map directly, whenever 
possible, microprocess interaction patterns into 
microprocessor interaction patterns. 

2) A built-in FIFO queue mechanism in the Virtual 
Interaction Controller for ordering access to a locked-out 
MSV so as to guarantee that no resource deadlock will be 
introduced in the mapping of virtual activity to physical 
activity. 

3) A memory cache per microprocessor which allows the 
internal registers to be configured so as to match the 
particular microprocess being executed and to reduce the 
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memory interference among microprocessors and the time to 

context switch. 

The dynamic execution characteristic of this architecture 

have been studied through the use of a detailed simulator of the 

logical hardware organization. This simulator has been used to 

quantitatively verify that the graph machine emulator is correct, and 

that parallel activity on the virtual PMS can be mapped without 

significant overhead onto the physical PM.?. In particular, a major 

part of the computational activity of the AGML emulator can be 

performed in a parallel way as a function of l/n: where sufficient 

parallel activity exists, the addition of microprocessors to the PMS 

configuration will reduce in a linear way the time it takes to execute 

the computation. The simulation results have also indicated that the 

logical hardware design, with the appropriate PMS configuration, can 

efficiently handle sustained parallel activity, involving highly 

structured interaction patterns, of greater than sixteen 

microprocessors. In addition, the phenomenon of the 'control working 

set' has been experimentally verified: the hardware overhead required 

to map virtual PMS activity onto physical PMS activity significantly 

decreases when the PMS configuration contains more than a certain 

number of microprocessors. 

In summary, this thesis has demonstrated that a new type of 

microcomputer architecture, employing the concept of dynamic control 

structures, permits the effective (ease of representation, code 

density, and low hardware overhead) emulation of complex problem 
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oriented computers whose architecture departs from a classical von 

Neumann architecture. This thesis has also verified that a modular 

task oriented approach to managing the complexity of emulation is 

feasible at both the hardware and software level. 
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APPENDIX A 

The Integer Function Language (IFL) 

Class of Microinstructions 

The microcomputer contains, as previously discussed, two 

general classes of microinstruction: SBL and IFL microinstructions. 

A microprogram consists of an arbitrary inter-mixture of these two 

classes of microinstructions. In fact, the SBL and IFL 

microinstructions have the same format (see Figure 11 and Figure 37). 

The distinction between these two classes of microinstructions stems 

from a desire to clearly distinguish microperations which directly 

manipulate the external environment of the microprocess from those 

that manipulate the internal environment of the microprocess. This 

distinction leads to more efficient utilization of a microinstruction 

word and to microprograms which are more compact, more modular, and 

more easily understood and debugged. Thus, the SBL microinstructions, 

which deal with external environment, have a minimal set of internal 

sequencing rules (i.e., either execute the next microinstruction or 

terminate sequencing), and can only modify the internal environment of 

microprocessors by leaving a descriptor on the top of the value stack. 

On the other hand, the IFL microinstructions, which deal with internal 

environment, can modify the external environment of the microprocess 

only indirectly by storing data in the global data environment of the 

microprocess. 
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IFL microinstructions are specifically designed for the 

address arithmetic computations required in emulation: computing the 

effective address of an operand, decoding an instruction format, and 

emulating the action of an arithmetic unit, i.e., a floating-point 

adder. In order to accomplish these functions, the IFL has been 

designed to: 

1) extract or store an arbitrary field of a 32 bit register 
in a single microinstruction. 

2) directly perform arithmetic operations on aligned or 
unaligned fields of from 1 to 32 bits in length (same 
technique as used in MLP-900 (LAW71)). 

3) test for an arbitrary condition and then jump 
appropriately in a single microinstruction. 

4) evaluate indirectly fields of a microinstruction: an 
inline function call mechanism in which a microinstruction 
may invoke a microprogram in order to generate the value of 
a field. 

The format of an IFL microinstruction (see Figure 37) 

resembles a vertical microinstruction format except that each field, 

instead of directly specifying a register or arithmetic operation, 

contains a syllable (See Figure 11 and B6700 (HAU68)). These five 

syllables fields, when evaluated, define five values which are used to 

specify an operation code, two operands, an index register modifier, 

and a program counter modifier*. This syllable approach introduces a 

level of indirection in the execution of a microinstruction which 

allows for very compact and modular code. In addition to the five 

syllables, there are five mode bits contained in the microinstruction 
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word. These mode bits specify whether the arithmetic operation will 

result in a modification to the "processor-status", whether execution 

will be suspended after the completion of this microinstruction if the 

process-state is execute-single-cycle, whether the value of the 

jump-modifier syllable will be added to the program counter (i.e., a 

relative jump) or used to replace its contents (i.e., an absolute 

jump), whether the value of index-modifier will be added to the index 

register or replace its contents, and whether the value stack will be 

popped at the completion of the microinstruction. 

The execution of an In microinstruction is broken up into 

three steps: 

1) evaluate all non-deferred syllables, and place their 
values on the program counter stack. If the index modifier 
syllable is not deferred, then the index register is 
immediately modified. The defer bit of index modifier 
syllable allows for either post- or pre-indexing operations. 
In addition, the defer bit of the jump modifier permits the 
new program counter address to be computed before or after 
the execution of an arithmetic operation. 

2) evaluate all deferred syllables which involve a function 
call. The result of each function call is placed on the 
program counter stack. 

3) perform the arithmetic operation specified by the 
operation-code syllable, and modify the index register and 
the program counter. 

_------____---______~~~~~~~~~~~~~~~~------~~~~~---------~~~----------~ 
*The current program counter and index register are conceptually the 
top two registers of program counter stack; however, for 
implementation efficiency these two registers are held directly in 
internal registers in the microcomputer so as to avoid any cache 
accesses. The index register is used as a scratch pad register and is 
pushed down, together with the program counter, on the program counter 
stack when a function call is invoked. The index register is used 
also to hold a mask operand for masking operations. 
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The first two steps of execution are skipped if all syllables are 

deferred and there are no function calls. The results of an 

arithmetic operation is placed on the top of the value stack. If the 

program-counter modifier specifies a null value, then current program 

counter and index register are replaced by the top two elements of the 

program counter stack, and top of the value stack is transferred to 

the top of the program counter stack. Through this mechanism, the 

results of an inline function call is returned to the invoking 

microinstruction so that it may complete its execution. 

The format of a syllable and its evaluation procedure are 

specified in Figure 11. A syllable is eleven bits long and contains 

three subfields: DEFER, DESCRIPTOR and ICONSTANT. The DEFER subfield 

is used to specify when a syllable will be evaluated, e.g. p pre- or 

post-indexing. The DESCRIPTOR subfield indicates which one of the 

four possible evaluation modes is to be used to compute the value of 

the syllable. The ICONSTANT subfield specifies an 8 bit 2's 

complement integer which is used as an operand to the syllable 

evaluation procedure. These are four possible modes of evaluating a 

syllable: 

1) Immediate operand -- return ICONSTANT subfield as value 
of syllable 

2) Inline functional call -- use ICONSTANT plus the current 
program counter address to specify the starting address of a 
microprogram function. This microprogram function is 
invoked and the last result produced by this microprogram 
becomes the value of the syllable. 
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3) Register operand -- return the value of operand located 
in the local or global data environment of the microprocess. 
The index into the data array is specified by ICONSTANT and 
its sign indicate whether the local or global array will be 
used. 

4) Long Constant or Internal State Register -- based on the 
sign of ICONSTANT return either a 32 bit constant stored in 
the Microprogram Memory or an internal state register (i.e., 
the program counter, the index register, the top two 
elements of the value stack, or any field or the 
Microprocess State Vector). 

This four mode evaluation procedure provides a flexible but, at the 

same time, concise way of computing a syllable value. 

The operation-codes fall into two classes : integer 

arithmetic operations and descriptor based operations. The integer 

arithmetic class of operations contains the conventional arithmetic, 

logical and shifting operations, whereas the descriptor based class of 

operations are used to access and store information from an array of 

data registers which are specified through a descriptor. The power of 

this set of operation codes for address arithmetic and bit extraction 

and manipulation, comes from the ability to augment these basic 

operations with a mask operand which is implicitly specified to reside 

in the index register. Table 6 contains a list of these 

operation-codes and their semantics. 

The microassembler syntax for the IFL microinstructions is 

contained in appendix B. Appendix C contains numerous examples of how 

the IF'L is used for address arithmetic computations, and how the IPL 

leads to compact microprograms. 
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E~T(OPR(l),OPR(2))= 
(E~(Om(l),Om(2))b 7M4sK) Y 
((TOP OF “AmE STACK)& MASK) 
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<MICRO PROGRAM> := - 

<sTMTs> := 
:= 

<LSTMT> := 

APPENDIX B 

SYNTAX OF MICROASSEMBLER 

<sTMT> := 
:= 
:= 

<SBL STMT> := - := 
:= 
:= 
:= 
:= 
:= 
:= 

<MEM STMT> - 

<ACCESS> 

<DIRECTION> 

<FCP STMT> - 

BEGIN <STMTS> END 

<LSTMT> ; 
<LSTMT> ; <sTMTs> 

<LABEL> <STMT> 

<IFL sTMT> ; 
<SBL-STMT> ; 
<CON% STMT> ; - 

<MEM sTMT> 
<FCP-STMT> 
<SEL-STMT> 
<ASP-STMT> 
<MSC-STMT> 
<GEN-PMSV> 
<GEN-EPSV> 
<GEN-REG> - 

:= <ACCESS> ELEMENT ( <SYL> ) WITH FORMAT = 
<SYL> AND LENGTH = <SYL> <DIRECTION> 
MEMORY ARRAY ( DESCRIPTOR = <SYL> , 
OFFSET = <SYL> ) 

:= READ 
:= STORE 
:= READ/STORE 

:= FROM 
:= INTO 
:= FROM/INTO 

:= ACTIVATE FUNCTIONAL_ITNIT ( <SYL> ) WITH 
CONTROL-INFORMATION = <SYL> USING <SYL> 
INPUT GENERATORS <ACTIVATE> AND STORE STATUS 
IN <SyL> 

:= ACTIVATE FUNCTIONALJNIT ( <SYL> ) WITH 
CONTROL INFORMATION = <SYL> USING <SYL> 
INFUT~GkRATORS <ACTIVATE> 
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<SEL STMT> - 

<SONS> 

<ASP STMT> 

<ASP PARAMS> 

<ASP PARAM> 

<MSC STMT> 

<MSC PARAMS> 

<MSc_pARAM> 

:ZZ <ACTIVATE> <SONS> WITH INPUT = <SYL> 
:= <ACTIVATE> <SONS> WITH INPUT = <sYL> 

THEN WAIT FOR <SYL> TO SIGNAL RFTURN 

:= SON ( <SYL> ) 
;= SONS ( <SYL> TO <SYL> ) 

:' <ACTIVATE> NODE ( cSYL> ) WITH <ASP PARAMS> 

:!Z <ASP PARAM> 
:= <ASP-PARAM> - , <ASP PARAMS - 

:= INPUT = <SYL> 
:' RETURN-ADDRESS = <SYL> 
:= EPSV = <SYL> 

:= INVOKE PROGRAM ( <SYL> > WITH <MSC PARMS> 

:= <MSC PARAM> 
:= <MSC-PRAM> - , <MSC PARAMS> - 

:= STACK-TOP = <SYL> 
:= INDEX = cSYL> 
:= PROGRAM-STATUS = <SYL> 
:' INITALIZE-ROUTINE = <ADDRESS> 

<GEN PMSV> := S = P ( DESCRIPTOR OF <GEN?MSVl> ) 
:= S = P ( <GEN_PMSVl> ) 
:= <REBUILD> PROCESS WHOSE <GEN PMSVl> - 

AND <CLOCK_PROCESS> 

<REBUILD> := STATIC 
:= DYNAMIC 

<GEN PMSVl> := SUBSTRUCTURE CONTAINS <SYL> SONS 
WITH <STATE-PARAMETERS> 

<STATE PARAMETERS> := <STATE-PARAM> 
:= <STATE PARAM> , <STATE PARAMETERS> 

<STATE PARAM> - := PROGRAM = <SYL> 
:= PORT = <SYL> 
:= LOCAL-DATA = <SYL> 
:' EPSV = <SYL> 

<CLOCK PROCESS> := - CLOCKING PROCESS = <SBL STMT> 

<GEN EPSV> := s = P ( EPSV WITH <EPSVJIST> ) 
:= RETURN ( P ( EPSV WITH <EPSV_LIST> ) ) 
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<EPSV LIST> - 

<EPSV PAR> - 

<GEN REG> - 

<GEN-REGl> 

<GEN_REG2> 

<DESC TYFE> - 

:= 
:= 

:= 
:= 
:= 
:= 
:= 

:= 
:= 

:= 
:= 

:= 

:= 

:= 
:= 
:= 
:= 

<DESC LIST> := - 
:= 
.= 
:= 

<DESC> :x2 
:= 
:' 

<AC MODE> := - 
:= 
:= 

<ACTIVATE> := 
:= 

<TYPE-OF-ACTIVATION> := 
:= 
:= 
:= 
:zz 
:= 
:= 
:= 

<EPSV PAR> = <SYL> 
<EPSV-PAR> = <SYL> , <EPSV LIST> - - 

GLOBAL DATA 
VSTACK- 
PSTACK 
GLOBAL-PROCESS 
EXTERNAL-ENV 

S = <GEN-REGl> 
RETURN ( <GEN-REGl> ) 

P ( DESCRIPTOR OF <GEN_REG2> ) 
P ( <GEN_REG2> ) 

<DESC-TYPE> DEFINED FROM ( 
DESCRIPTOR = <SYL> , OFFSET = 
<SYL> ) WITH <DESC LIST> 
<DESC TYPE> WITH <i?ESC LIST> - - 

REGISTER-BLOCK 
STACK 
IO-BLOCK 
MEMORY ARRAY - 

<DESC> = <SYL> 
<DES0 = <SYL> 
ACCESS-CONTROL 
ACCESS-CONTROL 

DIMENSION 
WORD_LENGTH 

, <DESC LIST> 
= <AC MODE> 
= <AC-MODE> , <DESC LIST> - - 

INITIAL POSITION - 

LOCAL 
GLOBAL 
COROUTINE 

<TYPE OF ACTIVATION> 
<TYPE-OF-ACTIVATION> ( <ACT-MOD> > - - 

EXPAND 
EXECUTE 
EXECUTE-SINGLE-CYCLE 
SUSPEND 
TERMINATE 
RETRIEVE 
WAKEUP 
NULL-ACTIVATE 
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<ACT-MOD> 

<MODA> 

<IFL sTMT> - 

<LABEL> 

<RET ST-NT> - 

<SEQ STMT> - 

<FUNC INDEX> - 

<FUNC STMT> - 

<OPERATION> 

<MOD LIST> - 

RIODIFIER> 

<INDEX-Sm> 

:= 
:= 

:= 

:= 

:= 

:= 

:= 

:= 

:= 

:= 

:= 

:= 

:= 

:’ 

:= 

:= 

:= 

:= 
:= 

:= 

:= 
:= 

:= 
:= 

:= 

:= 

:ZZ 

:= 

:’ 

:” 

:= 

:” 

:I 

:= 
:= 

:’ 

:= 

:= 

<MODA> 
<MODA> , <ACT MOD> - 

REFERENCE 
VALUE 
RETURN 
NO RETURN 
c0NT1NuE 
WAIT RESPONSE 
TRANSFERJATA 
STORE-DATA 
TRANSFER STATUS 
STORE-STATUS 
NO TRANSFER 
BUSY WAIT 
NO BUSY WAIT 
PARALLEL 
ACT-CODE = <INTEGER> 

<SEQ_STMT> 
<RET STMT> - 

ISYMBOL> : 

<INDEX STMT> RETURN ( <OPERATION> ) 
RETURN-( <OPEiATION> ) 

aJNcINDEX~,amPsTm> 
aJMP--sTMT> 

- 
- 

<FUNC STMl'> , <INDEX STMT> 
<FlJNC-STMl'> 

- 

<INDEX_STMT2 

S = <OPERATION> 
S = ( <OPERATION> , <MOD LIST> ) - 
<OPERATION> 
( <OPERATION> , <MOD_LIST> ) 

COP CODES> ( <SYL> , <SYL> ) - 

<MODIFIER> 
<MODIFIER> , <MOD LIST> - 

POP STACK 
MODk STATUS - 

I = I -I-<sYL> 
I = <SYL> 
I = I - <INTEGER> 
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c.nJMP sTMT> := - GO TO <ADDRESS> 

<ADDRESS> := *+<SYL> 
:= <sYL> 
:= * - <INTEGER> 
:= cmfBOL> 

<SYL> :e 
:= 

<Fax> := 

:= 

:= 

:= 

:= 

:= 

:’ 

:Z 

:ZZ 

:ZX 

:= 

:= 

:= 

:= 

:= 

:= 

:’ 

:= 

:= 

:= 

:= 

:2X 

:= 

:= 

<POINTERS> := 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:' 

<sx> 
csx> 
<INTEGER> 
- <INTEGER> 
<BIT STRING> 
L ( (INTEGER> ) 
G ( <INTEGER> ) 
L(I) 
G(I) 
F (* + <SYLI) 
F ( <SYMBOL> ) 
CONS( <SYMBOL> ) 
CONS( * -t <INTEGER> > 
S 
s ( POP ) 
SC-11 
P ( <POINTERS> ) 
C ( <CONDITIONS> ) 
I 
-I 
I.BEG 
I.END 
RESULT 
PC 
PC1 
ACT-CODE 

NULL 
LOCAL-DATA 
LOCAL-PROCESS 
GLOBAL-DATA 
GLOBAL-PROCESS 
RETLJRN 
EPSV 
SELF 
VSTACK 
PSTACK 
EXTERNAL ENV 
PORT - 
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<CONDITIONS> := 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 

<OPCODES> 

<OPC> 

:= <OPC> 
:= MASK- <OPC> 

:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
.- .- 
:= 

<BIT_STRING> := 

<BITS> := 
:= 

<BIT> := 
:= 
:= 
:= 

<CONS STMT> := - 

<CONSTANTS> := 
:= 
.- .- 
:= 

=: 
-= 
> 
-> 
< 
'< 
I=0 
I"=0 
<INTEGER> 

SF0 
sso 
INDEX 
ACCESS 
STORE 
STORE INDEX 
SHIFT- 
SHIFT MASK 
LOAD CONSTANT 
SET WTE 
ADD- 
SUBTRACT 
MULTIPLY 
SHIFT 
LOGICAL-AND 
COMPARE 
LCOMPARE 

' <BITS> ' 

<BIT> 
<BIT> , <BITS> 

0 
1 
o ( <INTEGER> ) 
1 ( <INTEGER> > 

CONSTANTS ( <CONSTANTS> ) 

<LABEL> <CONSTANT> 
<LABEL> <CONSTANT> , <CONSTANTS> 

<CONSTANT> 
<CONSTANT> , <CONSTANTS> 
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<CONSTANT> := <INTEGER> 
:= <SYMBOL> 
:= <BIT STRING> 
:' * + INTEGER> 
:= * - <INTEGER> 
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APPENDIX C 

ADAM’S GRAPH MACHINE EJ’ULATCR 

/BEGIN/ 

/* WAPH MACHINELVERSION MAY 25,1972) */ 

GRAPH-MACHINE: 
DEFINE STATIC PROCESS HHPSE SUBSTRUCTLRE CCNTAINS 

F(S3) SONS hITH 
PROGRAM= FL SDN SGM 1, 
LOCAL-DATA=F( LOCAL-SON SGMI , 
PORT= F LPOR T-SON SGM 1, 
EPSV=FLEPSV,SONSGMJ 

AND 
CLOCKING PRDCESS=INMKE PROGRAMIGRAPH-CLOCKER) ; 

GRAPH-CLOCKER: 
S=INDEX(:PILDCAL_PROCESSJ,3); 
EXECUTELWAIT-RESPONSE,NO-RE TURN) NODE(S) : 
/* SIGVAL GRAPH PROCEDURE TO -EGIN,ECLIVALEhT TC FCP TRANSFER 

OF C@NTRDl INFORMATION */ 
EXECUTELWAIT-RESPflNSF,NO_RETURN) NODE(S) ; 
/* GRAPH PROCEDURE RESPONDS AND THEN SUSPEhDS ITSELF WHEN 

ALL INPUTS HAVE BEEN FETCHEDrMUST REAWAKED AT THIS PCINT 
TO SIMULATE CONNECT TO FCP TO GEhERATE CUFUT */ 

NULL-ACTIVATEIWAIT-RESPONSE J NODELPLSELFJ J ; 
/* THIS NULL ACTIVATE SIMULATES kAIT AFTER STATUS RECIEVED */ 
WAKEUPLWA IT-RESPONSE,NO-RETURN,POP) NCDEL St AND THEN RETJJRN; 
/* RESULTS OF COMPUTATION I S HELD I h FCRT */ 

/* LOCAL ENVIRONMENT OF GRAPH MACHENE 

1 DESCRIPTOR OF MA IN MEMORY 
2 WORKING REGISTER 

PDRT-4 REGISTERS */ 

s 3: 
S=P(DESCRIPTOR DF REGISTFR-BLOCK hITH DIMEhSICh=2, 

ACCESS,CONTRflL=CLOBALJ : 
/* DEFINE GLOBAL DATA ENVIRONMENT */ 
S=DESCR. IP ;OR OF MEMORY-ARRAY DEFINED FROM{ 

DESCRIPTClR=LI l),OFFSET=O) WITH DIJ’ENSIOh=CChSLPROGRAM-AREA), 
WORD-L ENGTH= R; 

LSTDRELSL 11rlJrPOPSTACKJ; 
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S= DESCR IPTOR OF MEMORY-ARRAY DEFT NED FROM 
(ilESCRIPT3R=L~lJ,OFFSET=LflNS(PROGRAf’-AREA)) WITH 
DIMENSIDN=CONSTOATA-AREA) (WORD-LENGTH=8 i 

(STDRE(S( 1),2),POPSTACK)i 
/t INITIALIZED GLCBAL DATA CNVIRONMENT CF GRAPH-PROCEDURE */ 
(STOREfPLLOCAL-DATA),Zt,POPSTACKf i 
/* SAVE POINTER OF ENVIRONMENT IN L(21 */ 
RETURN(SFOt3,NULLJ); 
CONSTA1TS (PROGRAM-AREA: 2048,DATA,AREA :3D?2C) ; 

/* DATA AREA SHOULD BE 9hO*NUMBER_CF_LINKS */ 

SONSGC: 
RETURNLLIIAD-CONSTANT(PC 1,I .HEGb) ; 
CIlNSTANTStSPACE~MANAGER,PROCES5OR~SCHEDULERr 

GRAPH-PROCEDURE J ; 

LOCAL-SONSGM: 
GO TO *+I.BEGi 
LOCAL-SM : 

RETURY LP (DESCR IPTOR DF PEG1 STER,BLCCK hI TH 01 t’ENSION=6) 1; 
LOCAL-PS: 

RETURYtPLDESCRIPTOR OF REGISTER,BLCCK WITH CIf’ENSION=ll)); 
LOCAL-GP: 

S=PIDESCRIPTOP OF RFGISTER-BLOCK k: TH 01 l’ENSICN=lO); 
STORE, INDEX1 S, 3 ),1=-O; 
/* INIT PROGRAM ADDRESS=0 */ 
RETURNLLSFOI S,NULL),POPSTACK)) ; 

PORT-SONSGM: 
S=ACCESS(PIPSTACK)r-2)r GO TO ++I.BEG i 
PORT-SM: 

RETURN (P (DESCR IPTOR OF REGI STER-BLOCK DEFINED FRGM 
(DESCRIPTOR=S(POP),OFFSET=C) hITH DIf’ENSION=2)); 

PORT-PS : 
RETURN{{ INDEXIS,lL),POPSTACK1) i 

PORT-GP : 
RETURV (P (DESCR IPTOR OF REGI STER-BLCCK DEFINED FROM 

(DESCRIPTOR=S1POP),UFFSET=C) hITH OIt’ENSION=2)): 

EPSV-SONSGM: 
GO TO *+I.BEG; 
EPSV-SM: 

RETURNLP (EPSV WITH PSTACK=F( STACK41 rVSTACK=F(STACK2). 
GLOBAL_DATA=L(2) ,GLIJBAL-PRCCESS=Sb) ; 

EPSV-PS: 
RETURY(P(EPSV WITH PSTACK=F( STACK61 ,bSTACC=F(STACK4) t 

GLOBAL-DATA=L(ZJ ,GLOBAL-PRCCESS=SJ) ; 
EPSV,GP : 

RETURYLPtEPSV WITH PSTACK=F( STACKlC) ,VSTACK=F(STACK6), 
GLOBAL_DATA=L(21 ,GLIlBAL-PRCCESS=SI J ; 
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SPACE-MANAGER: 

/* LOCAL-ENVIRONMENT 
l-2 PDRT 
3 CURRENT SPACE ALLOCATION INIT 
4-6 WORK ING REGISTERS 

ACT IVAT lON_CODE= 
8 REQUEST STORAGE-POR TL l)=RUMBER CF 64 @IT WCRDS 
9 RELEASE STORAGE-PORT(l)=NUMRER OF 64 BIT WORDS 

PORT(Z)=BASE CF SPACE ALLOCATED */ 

STORE-INDEXLP (LOCAL-DATA) ,3),1=-O; 
REQUEST-LOOP : 

(COYPARELACT-CODE,8),MDDIFY_STATUS) ,GC TO r+C(=i; 
GCI TO R EL EASE-STORAGE i 

REQUEST-STORAGE: 
S=SHIFTLLLl)r-6): 
WAKEUPfCONTINUE) NODE(P(RETURN)J WITH IhPUT=L(3); 
S= (ADDI S,Lt 3) ),POPSTACK); 

LT [ME-GRAIN): 
LSTORELPILDCAL-OATA),3) ,POPSTACK) *GO 70 RECUEST,LOOP; 

R ELEASE,STORAGE: 
(T IY E,GRA IN J: GO TO REQUEST-LOOP; 
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PROCESSOR-SCHEDULER: 

/* LOCAL DATA ENVIPONMENT OF SCHEDULER-PROCESSOR 
1 Al HEAD IL:41 INIT(2). 

61 TAIL (5:8) INITflI, 
Cl CURRENT-SIZE (9:12t INIT( 
D) FREE-LIST (17:32) 

2-9 

10 

11 

IN IT( ’ l(NUMBER OF PROCESSORS) ‘B) 

QUEUE OF PENDING REQUESTS 

QUEUE OF CORRESPONDING INITIATICK KUf’BERS(8) BIT(4) 

PORT */ 

DEFINE STATIC PROCESS WHOSE SUBSTRCCTlRE CCKTAINS 
CDNS(NUMBER-PRDCESSflRS) SONS WITH 

PRDGRAM=CONS( SDNSP 51, 
LOCAL,DATA=F(LOCAL-SONSPS), 
PORT=F(PORT-SONSPSI, 
EPSV=Fl EPSV,SONSP St 

AND 
CLOCK ING PROCESS=INVOKE 
PROGRAM($CHEOULER-CLOCKER) WITH INITIALIZE,ROUTINE=FIINIT-PSI: 

IN IT-PS: 
I=-CONS( INIT-QUEUESPS), 
RETURN(STORE-INOEX(P(LOCAL-DATA) rll) i 

LOCAL-SDNSPS: 
S=P( DESCR IPTOR OF REGISTER-BLOCK LtI TH DfPEhSIOK=lO) : 
S=SHIFTl I-BEG,-41, I=‘lf4)0(4) ‘Bi 
(MASK,STORE(S( Ll,5), POPSTACK) i 
RETURNf (SM(S,NULL IrPOPSTACK) 1 ; 
/* IN ITIAL IZE PROCESSOR NUMBER*/ 

PORT- SON SP S: 
S=ACCESS(P(PSTACK),-2)i 
RETURN(P(DESCRIPTOR OF IO-BLOCK DEFINED FRCM(DESCRIPTOR=S(POP)t 
TlFFSET=OI WITH DIMENSION=2)); 

EPSV-SONSPS: 
RETURN(P( EPSV WITH 

VSTACK=F( VS-PROCE SSOR) ,PSTACK= 
F(PS-PRDCESSORI,EXTERNAL-ENV= P(SELF)!)‘, 
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IT IY E-GRA IN 1: 
GO-TO SCHEDULER-CLOCKER: 

/* SIJSPEND IJNTIL NEXT REQUEST */ 

NUlL~ACTIVATE(WAIT~RESPONSE, NODEtPtSELF)); 
/* hAIT NEXT REQUEST SO WILL NOT GE 1 AHCTHER PRCCESS OR REQUEST */ 
GO TO PROCESSOR-COMPLETE i 

PROCESSOR,COMPLETE: 
(MASK-CDHPARE(L( l),O), MODIFY,STATlS), f=,CChS(MASK-C), 

GO TO **CL=); 
GO TO ASS IGN-PROCE SSOR; 

S=SUBTRACTl 1rLL 11) ); 
S=LSHIFT(‘l’B,S),POPSTACK1, I=RESULTi 

(TIME-GRAIN): 
tMASKK_STOREtPILOCAL-DATAI,l),PDPSTACK) , GC TC SCHEDULER-CLOCKER; 

ASS IGN-PROCESSOR : 
S=SUBTRACT(9rF(HEADt); 
S= (SHIFT1 SI- 2J,POPSTkCK~,I=‘L14)‘B; 
S= (SHIFT-MASKILL lO),St rPOPSTACKJ i 
/* COMPUTER ADDRESS OF PROCESSOR TC BE ALLCCATED */ 
S= INDEXfPLLOCAL-PROCESS) rLt 11) 1 rI=FtHEAD) : 
/* INITIALIZE PROCESSOR WITH ADDRESS CF NCDE Ah0 INIT NUMBER */ 
EXPAND{ CONT INuE,NO,RE TLJRN) NODE{ S) k1 TH I NPUT=S (1) , 

RETURN,ADDRESS=L( 11; 
/* S IGNAL NODE WITH PROCESSOR */ 
MAKEUPIACT-C3DE=‘),REFERENCE,CONTINUE,PCP) hGGEIL(I)) WITH INPUT=Si 

/* UP DATE L-EAD */ 
(MASK-COMPAREIL I l),CONS(H9) ),MODIFY,S7AlLS ,PCPSTACK), 

IT-CONSfMASK-H),GO TO *+CI ,=I i 
S=SHIFT(2,-281, GO TO *+2; 
S=MASK-ADDLL( l)rCONSI Hl) 1 i 
(MASK-STOREtP (LOCAL-DATA), 11, POPSTACK) ; 
S=MASK-SUBTRACT(L( 1)~ CONS( , I=-CCLSICASK,Cl i 

(TIME-GRAIN): 
(MASK-STOREtP (LOCAL-DATA),11 ,POPSTACK) , CC TC SCHEDULER-CLOCKER; 

CONSTANTSL SONSPS: 
PROCESSOR,INIT-QUEUESPS: ‘001000010~810(10)1 (61 ‘Bt 

NUMBER_PROCESSORS:6J i 
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SCHEDULER-CLOCKER : 
ICOMPAREIACT-CODEr9Ir MODIFY-STATUS), 
GO TO * +CI= Ii 
GO TO PROCESSOR-COMPLETE i 

REQUEST-PROCESSOR: 
S=(LOGICAL,ANDIL(l),CONSILl6)J, MODIFY-STATUS), I=l,GO TO *+Cb=Ii 
(COMPARE(NULL~NULLlrPOPSTACKI rG0 TO NC,FREE-FRCCESSORi 
fLCOMPARE(S,’ 1’8 ),MOOIFY-STATUSI ,GO TC ++C(-=I : 
S=(SHIFT(S* l)~POPSTACK~~I=I+lrGO TO *-li 

FREE-PRDCESSOR: 
S=(INDEX(PILOCAL-PROCESS1,Il,POPSTACK1rI=Z-1; 
EXPANOfCONT INUE,NO-RETURN) 
NODE(S) WITH INPUT=LI 111, 

RETURN,ADDRESS=PfRETURNJ; 
WAKEUPIACT,CODE=9,REFERENCE,CONTINLEl 

NODE(P (RETURN I J HITH INPUT=Si 
S=(SHIFTI~l’E,-IlrPOPSTACKI, I=RESLLT; 
S= IS FOI 0,NULL JrPOPSTACKl : 

(TIME-GRAIN): 
(MASK-STOREIP(LOCAL-DATA)rL)r POPSTACK) 9 GC TC SCHEDULER-CLGCKERi 

NO-FREE-PROCESSOR: 
S=MASK-ADD(L( l),CONSfCl)), I=-CCLS(MASK-Cl: 

/*c=c+1+/ 
(MASK-STOREIP (LOCAL-DATA) 111 9 PCPSTACKI i 
(MASK-CDMPARE(L( 1) ,CONSf T9I I, MODIFY,STPTLSI , I=-CONS (MASK-Tlr 

GO TO *+Cfq=li 

/+T=END OF LIST*/ 
S=SHIFT(2,-24), GO TO *+2; 
S=MASK-ADDIL ( lI,CONSI Tl) 1 i 

/*STORE T*/ 
MASK-STORE(P(LOCAL,OATAl rll i 

S= (MASK-SHIFTI St 24) ,POPSTACKJ t I=PI RE TLRNI i 
STORE-INDEXIPILOCAL-DATA)rS)i 

/* NEED TO QUEUE UP REQUEST */ 

S=ISIJBTRACTfSr9JrPOPSTACKJ i 
S=(SHIFTIS,-21tPOPSTACKIr I-RESULT: 
S=(SHIFT(‘~(~J’BII JrPOPSTACKJ i 
S=SHIFT(L( l.l)r 119 I=SIPOPI i 
(MASK-STORE1P (LOCAL-DATA) ,101 rPOPSTACl0 i 

/* STORE AWAY INITIATION NUMBER */ 

(MASK-COMPARE(L( 11,CONSIC 8) ),MOOlFY-STATUS), I=-CCNS(HASK,CIr 
GO TO *+C(=Ii 
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PRdtESSDR: 

/* LOCAL DATA ENVIRONMENT OF PROCESSCR 
1-2 PORT 
3 ADDRESS OF CONNECTED NODE 
4 INPUT-L INK-STATUSL 1:16), 

OUTPUT-L INK-STATUSL 17:32) 
5 CONTROL,INFORMATILJN~ l:lb) 

PROCESSOR,NUMBERI 25:281 
IN ITIATION,NUMBER{ 29:32) 

6- 10 WORKING REGISTERS 
*/ 

DEFTNE DYNAMIC PROCESS WHOSE SUBSTRCCTURE COhTAINS 0 SONS 
AND 

CLOCK ING PROCESS= 
INVOKE PROGRAMLPSEUDO-FUNCTION) k1Tl-i IhITIALIZE~ROUTINE 
=,F( INIT-PROCESSOR); 

IN IT-PROCESSOR : 
STORE_INOEX(P(LOCAL_DATA)r3), I=-PLRElURN); 
S=SFO(LIL),NULL)r 1=‘1(41’Bi 
RETURN( (MASK-STOREfPtLOCAL-DATA) 15) ,PCPSTACK)) i 

/*STORE AWAY CONNECTED-NODE ADDRESS AhC INITIPTICN NUMBER */ 

PS ElJDO-FUNCT ION: 
S=SHIFTiLLtl,-lb), I=CONSLUl6); 
(MASK-STORELP tLOCAL_DATA) ,51 ,POPSTACK) ; 
S=LClAD-CONSTANTtPC 1.L i 111, I=RESULT* GC! TC FTJUMP; 
/a STORE CONTROL-INFOPMATILIN */ 

FUNCT ION-TABLE : 
CONSTANTS1 

FADO, 
FSUBTRACT, 
FTWO-COP IES, 
FDRANCH-ROUTE, 
FNEGATIUN, 
FM INUS- L, 
FCOND-ROUTE, 
FMULT IPL Y, 
FZERO-TEST, 
FLOOP-CONTROL 

1; 

FTJUMP: 
(COPPAP ELNULL ,NULL 1 ,POP STACK) , GO TC I : 
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FSUBTRACT: 
FAOO: 
FBRANCH-ROUTE: 
FMULT IPL Yt 
FCOND-RO UT E: 
FETCH-TWO-OPERANDS: 

WAKEUPLFETCH-INPUTqWAIT,RESPONSE1 NCDEIPLRETURh)); 
STORE,INDEXLP LLOCAL,DATA),6), 1=-L(2) i 
/* STORE AUAY OPERAND L L I */ 

FTWO,COP IES: 
FZERO-TEST: 
FM INUS-1: 
FNEGAT ION: 
F ETCH-ON E-OP ER AND : 

WAKEUPLFETCH,INPUT,WAIT,RESPOMSE) NCDEtPLRETCRhlli 
/*SIGNAL INPUT PHASE COMPLF TE */ 
WAKEUPfRET-TERMrCDNTINUEJ NODETPLRETLPNJJ : 
S=SHIFT-MASKTLT 5),16), I=,'lt 5) '8; 
S=LLOAD-CONSTANTLPClrSJ ,POPSTACKl, GC TO RESLLT; 
CONSTANTSLADD, 

SUBTRACT, 
THO,COP IES, 
RRANCH-ROUTE, 
NEGATION, 
MINUS-l, 
COND-ROUTE, 
MULTIPLY, 
2 ERO,TEST 

1; 

ADO: 
S=(AODIL(6)rLL21),POPSTACKJ, GO TC SlCRE,CFERl; 

SUBTRACT: 
S= (SUBTRACT(LL6J,LL 2) ),POPSTACKJ , GC 7C STCRE,CPERli 

TWO-COPIES: 
S= (SFDLLL2JtNULL ),PCJPSTACKJ,CO TO STCPE,CPERZ: 

BRANCH-ROUTE: 
S=LSFOLLL2JrNIJLLJ,POPSTACK); 
(CflMPARELL(61,O),MODIFY,STATUSJ ,GO TC **CL=); 
GO TO STORE,OPER 1; 
S=SHIfT (’ Ol’Bs- 141, I=CONSLL161 ,GO TC S7CRE_OLTPUT,STAT; 

ZERO, T EST: 
N EGAT ION : 

(COMPARELLL 2J,D),POPSTACK,MODIFY,STATLST ,GC TC *+CL=J i 
S=SFO(O,NULL I tG0 TO STORE-OPERl ; 
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S=SFflI 1,NULL J,GO TO STORE,OPERI; 

MIYUS-1: 
S= ISUBTRACT(L I ZJ, LJtPOPSTACKJ ,GU 10 STCRE-CPERL; 

COND-ROUTE: 
ICOMPARE(LI6J,OJ~POPSTACK,HODIFY,STATCSJ rGC TC *+CI=J; 
S=SFCIL (r?J,NULL J,GO TO STORE,OPERL i 
S=SFOIO,NULLJ, I=CONSIL16J ,Gfl TO STQRE,CLTPLT,STAT; 

MULTIPLY: 
S= IYUCT IPLY IL I 61 ,L (21 J ,PCIP STACK) ,GO TC STCRE,CPERL; 

FL flOf’-CONTROL : 
WAKEUPIFETCH-INPlJT,WAIT-RESPONSE1 NCDEIPIRETURKJJ; 
WAKEUPISTORE-STATUS,CClNTINUEJ NODEIPIRETURLI J 

WITH INP!JT=CONSI LUXJ i 
STOP.E_INDEX(P!LOCAL_nATA) ,4J ~I=,COKSILUXJ *GO TC TRANSFER-RESULT; 
CONSTANTSILUX: 'ClO( 14110(151 ‘BJ i 

STORE,OP ERO: 
S=SFO(O,NULL J, I=CONSfL16J,GCl TO STCRE-CUTPLT-STAT; 

STI?RE-OP ER 2: 
S-SHIFT I‘ ll'B,- 14J, I=CONS(L16J ,GO TC SlCRE,CLTPUT,STAT: 

STORE-DP ER 1: 
S=SHIf=Tt’l’B,-15J, I=CONS(L16J i 

ST OF F-OUTP UT-S TA T : 
(MASK-STOREIP (LOCAL-DATA) ,4J ,POPSTACKJ ; 
/* SET OUTPUT L INK STATUS */ 
/* FETCH IN IT IATION NUMBER */ 
S= LOGICAL_ANDtLi5J,‘lI41’B)i 
/* SIGNAL NODE OI;TPUT READY */ 
WAKEUPtACT-CODE=lO,SUSPEND,POPJ NODELLI3JJ WITH INPUT=S; 

/* STORE OUTPUT LINK STATUS */ 
WAKEUPISTORE-STATUS,CONTINUEJ NODEIPIPETURhJ J kITH INPUT=LI4J; 

/* NUT SORE WHETHER LEAVE DATA IN PCRT CR TPALSFER */ 
ISTOREIPILOCAL-DATAJ,ZJ,POPSTACKJ i 

/* STORE OUTPUT IN PORT */ 
TRANS FER-RESUL T: 

S=ISHIFT_MASK~LI4J,14J,MODIFY,STATUSJ ,I=,'ll'B,GO TO *+CIq=J: 
GO TO SENO-COMPLETE-SIGNAL; 
WAKEUPtSTflRE-OUTPUT,WAIT,RESPONSEJ KCCEIPIFETURKJJ; 
(COMPAREIS, 3J,MODIFY_STATUSJ ,GO TO *+CLl=J ; 
WAKEUP~STORE~ClUTPUT,WAIT~RESPONSEJ NCDELPIRETURhJJ; 

SEND-COMPLETE-SIGNAL: 
WAKEUPIRET-TERM,CONTINUE,PnPJ NODEIPIRETURKJ Ji 

/*S iGNAL PROCESSOR SCHEDULER COMPLETE */ 
S=SHIFT-MASK(L( 5Jr41, I=-‘114) ‘I!; 
WAKEUPtACT-CODE=B,CONTINUE,POPJ NflDEtFIEXTERhAL-ENVJ J WITH INPUT=S 

AND THEN RETURN: 
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GRAPH-PROCEDtJRE: 

/* LOCAL DATA ENVIRONMENT OF GRAPH PROCEDURE 

I-2 PORT 
3 ADDRESS OF PROLOGL 16) ,NUH-LI KKS (8) ,hLJ”‘,ACOES (8 J 
4 BASE OF LINK AREA IN MAIN MEKCRY 
5 OUTPUT-LINK-STATUS{ 16) ,PROCESS,hLM(8J ,hEILt4J rNECJL(4J 
6 ADDRESS OF PROCEDURE NODE CLCCKER 
7-10 INSTRJXTION BUFFER AREA IIiJ...IINEILJ , 

Otl)...CtNECLJ 
*/ 

/* GLOBAL DATA ENVIRONMENT 

1 DESCRIPTOR OF PROGRAM AREA IN MEJ’CRY SUEtSYSTEM 
2 DESCRIPTOR OF DATA AREA IN MEMORY SUBSYSTEF! 

DEFINE DYNAMIC PROCESS WHOSE SUBSTRLCTURE COhTAINS FtLIhK-NODES) 
SONS WITH PROGRAM=F( SONS-GPJ , 

LOCAL-DATA=FL LOCAL,SONS-GP J PORT=FI PCRT,SChS-GPJ , 
EPSV= FL EP SV-SON S,GP J , 

AN D 
CLOCK ING PROCESS-INVOKE PRCJGRAMLPROCEDURE,CLCCKERJ WITH 

INIT IAL IZE-ROUTINE=-F( IN1 TIALI ZE,LINKS) i 
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LINK-NODES: 
READ ELEMENTLFIPADDRESSJJ WITH LENGTH=16 FRCC MEMORY ARRAY 

Ih: L(3)/116:0)*/ 

1, I =CCAS(U16) ; 

(DESCR IPTClR=G( 11 ,flFFSET=CJ ; 
/*STORE AWAY NUMBER OF LINKS AND READ 

S=SHIFT(L(lJ, 16J,I=CONS(Ll6Ji 
(MASK-STOREIP (LOCAL-DATA) ,3J ,POPSTACK 

/*ADD 2 TO PADDRESS+/ 
S=MASK-ADOLL{ 3J,CDNS(C2UJ J; 
(MASK-STOREIP (LOCAL-DATA) r3J ,POPSTACK 

/*CALL SPACE-MANAGER*/ 
S=SHIFTIFINUMBER-L INKS),-4) ; 
S= INDEXtP IGLOBAL,PP.OCESSJ ,lJ: 

J ; 

EXECUTE-S iNGLE_CYCLEI WAIT-RESPONSE ,NC-RETURN,ACT-CODE=8 ,POPJ 
NODEI-SIPOP JJ WITH INPUT=S,RETURN,ADDRESS=FISELFJ; 

/*CALL SPACE MANAGER, AND THEN STORE ALAY BASE CF LINK-AREA IN 
MEMORY-SUBSYSTEM*/ 
STORE-INDEXIPLLOCAL-DATAJ,4J, I=-LIlJ ; 

/*SET PORT TOO*/ 
STORE-INDEXtP (LOCAL-DATA) ,lJ, 1=-O; 

/*COMPUTE NUMBER OF LINKS AND NODES ANC THEh RETURN*/ 
RETUR.NtADDIF(NlJMBER-LINKS), FINUMBER-KODESJJ J; 

PADDRESS: 
RETURN{ SHIFTtLI 3J, 16) 1; 

NUMBER-L INKS: 
I=-‘LLRJ’B, RETURNISHIFT-MASKLLI3J,8JJ; 

NUMBER-NODES: 
RETURN(LOCICAL-ANDILL 31,‘1(8J ‘BJJ : 

NODE-TYPE: 
RETURNISHIFTILL lJr30JJ; 

NOtIE-TYPEI: 
S=SHIFTIL(lJr301: 
RETURNI (ADDIS, 11,POPSTACKJJ; 

/*CREATE PROGRAM ADDRESS OF LINK OR PhCDE, FRCC-NODE* SNCCEJ*/ 

SONS-GP : 
(COMPAREI I.BEG,F(NUMBER-LINKS.1) ,MODIFt-STATUS) , GC TO *+Ct>J; 
RETURN{ SFOICONSILINK-PROGRAM) , NULLJ J ; 

/*IF NDDE THEN READ FIRST TWO BYTES CF hCDE DEfIhITION*/ 
READ EL EMENT( FtPADDRESS) J WITH LENGTH=16 FROb’ MEMORY ARRAY 

IDESCRXPTOR=Gl lJ, OFFSFT=OJ ; 
/*LOAD APPROPR IATE PP.OGRAM ADDRESS*/ 

RETURNLLOAD-CONSTANTIPCL,F(NODE_TYPEL))) ; 
CtlNSTANTStL INK-PROGRAM:LINK-PROCESS,PARALLEL_hCDEI 

PROCEDURE-NODE ,SEQUENTIAL,KCDEJ ; 
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LOCAL-SONS,Gf’: 
GO TO * +F(NODE,TYPEl); 

LOCAL-L INK : 
S=SUBTRACTI I.BEG,l), GO TO LOCAL-LIhK-CChT; 

LOCAL,PNODE: 
RETURNIP (DESCRIPTOR OF REGI STER,BLCCK KITH DIHENStON=11~ 1; 

LOCAL,PROC-NODE: 
RETURNLPfDESCRIPTOR OF REGI STERJLCCK XITH DIMENSION=ll) 1; 

/*CREATE LOCAL-DATA-ENVIRONMENT FOR LIhK AhD IhITIALIZE REGISTER 
TO DESCR IPTOR OF LINK AREA*/ 

LOCAL-SNODE: 
RETURNLPLDESCRIPTOR OF REGISTER-BLCCK kITH DIMENSION=Z))i 

LOCAL-L INK-CON T: 
S=P(DESCRIPTOR OF REGISTER-BLOCK kITH DINEhSION=5); 
LSTOREIPLLOCAL,DATA),Z) ,POPSTACKl ; 
S=LMULTIPL YL S,CONS(LENGTH-QUEUE) 1 ,FCPSTACK) ; 
S=(ADD(S,LL41 ),POPSTACK); 
S=DESCRLPTOR OF MEMORY,APRAY DEFIKED FRCt’LDESCRIPTOR=GL21r 

DFFSET=S(POP )) WITH DIHENSION=CCkSc,LENGTH-CUEUE) ,WORD_LENGTH=64: 
LSTOREtL (21.21,POPSTACKt i 
RETURNLSFDLLt Z),NULLl); 

PORT,SONS,GP: 
S=ACCESSLP(PSTACK),-21, GO TII *+FLNCDE-TYPEl): 

/*GET DESCRIPTOR OF LOCAL ENV*/ 

PORT-L INK: 
RETURNLP (DESCRIPTOR OF IO-BLOCK DEFINED FRCCLDESCRIPTOR=S L POP)r 

OFFSET=B) WITH DIMENSION=2, kCRD_LENGTH=64)); 

PORT-PNODE: 
RETURN L INDEX{ Si POP 1, 11) ) : 

PORT-PROC,NODE: 
RETURNfINDEXISlPOP)r~L)); 

PORT- SND DE : 
RETURNLINDEXLSLPOP)rl))i 

EPSV,SONS,GP: 
GO TI: * +FLNUDE-TYPEl); 

EPSV,L INK : 
RETURNLPfEPSV WITH PSTACK=F(PS,LIhK~, VSTbCK=FLVS,LINK)r 

GLOBAL-PROCE SS=Sl) ; 
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EPSV-PNODE: 
KETURNtPtEPSV WITH PSTACK=F(STACKlC), VSTACK-FLVS-PNODE)r 

GLOBAL_DATA=F(GLUBAL_PNODE1, GLClBAL,FRCCESS=Ss 
EXTERNAL-ENV=PL SELF 1 1 1 ; 

EPSV-PROC-NO DE: 
PETURNLPLEPSV WITH PSTACK=FLSTACKlC), VSTACK=FIVS-PNCDEI, 

GLOBAL-DATA=F L GLOBAL,PNODE ) , G LOBA L,FRCCESS=S, 
EXTERNAL-ENV=PL SELF 1 1 1 ; 

EPSV,SNO DE: 
RFTURNLPLFPSV WITH PSTACK=FLSTACKlCb, VSTACK=f iSTACK4)r 

GLOBAL-DATh=FlGLOBAL,PNODF), GLOBAL,FRCCESS=S, 
EXTERNAL-ENV=P I SELF 1 1 1 ; 

PS-L INK: 
PS-PNODE: 
PS-FETCHOP : 
PS-PR.OCESSOR : 
PS-STOREOP : 
ST AC< 6: 

RETURNLPLDESCRIPTOR OF STACK WITH DIMENSICh=6)); 
STACK 8: 

RETURNLPtDESCRIPTOR OF STACK WITH DIMEKSICh=8)); 
STACK 10: 

RETURNLPLDESCRIPTOR OF STACK WITH DIMEhSICh=lO)j; 
VS-L INK.: 
VS-PNODE: 
VS,FETCHOP: 
VS- IPNODE: 
VS-PROCESSDR : 
STACK4: 

RETURN LP (DESCRIPTOR OF STACK WI TH DIHEttSI Ch=4) 1 ; 
STAC< 2: 

RETURNLP LDESCRIPTDR OF STACK WITH CIMEKSICh=2) 1 ; 

GLOBAL-PNOUE: 
S=P(DESCRIPTOP OF REGISTER-BLOCK kITH DIt’EhSICh=6, 

ACCESS-CONTROL=GLOBAL) i 
/*INITIALIZE REGISTER 2 TO PROLOG ADDRESS/FIRST 16 BIT OF INS*/ 

LSTOREtP (LOCAL-DATA), 2) ,POPSTACK) ; 
S=SHIFTLL( 11, 16)~ I=CONSLL.lbt ; 
(MASK_STORELLL2),2L,PDPSTACK); 
S=SFOLL L 3 )e NULL 1 t I=CONS( U161 i 
(MASK-JTORETL IZ)rZ),PDPSTACK); 

/*UPDATE PADDPESS, : PADDRESS +IN+OLT+hCDE-TYFE*/ 
S=S;rIFT~MASK~L~11ricI,I=,‘1~4~‘B; 
S=SHIFTJlASKLL( 1),20); 
S=ADD(SLPOP),S(POP))r I=F(PADDRESSJ i 
S=ADD(FfNODE-TYPEl),SlPOP)) t I=I+RESLLT; 
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S=tSHIFT( I,- L41,POPSTACK~; 
(MASK-STORELP (LOCAL-DATA) ,31 ,POPSTACKI ,I=-CCFS(Ul6) ; 
RETURN(SFOIL(21,NULL)I; 

IN IT I AL IZ E-L INK S: 
STORE-INDEX(P (LOCAL-DATA) ,6) ,I=-PIRETLRNJ ; 

INTERNAL,INITIALIZE: 
READ ELEMENTLFLPADDRESS) J WITH LENGTH=16 FROC PEMDRY 

ARRAYLDESCRIPTOR=GL 11 ,OFFSET=O) ; 
/*INCREMENT PADDRESS BY 2*/ 

S=ADD(LL31,CONSLC2Ul); 
(MASK-STOREtP LLOCAL,DATA),3), POPSTACK), I =-CChSIU16) ; 

/*CHECK TO SEE WHETHER ANY MflRE LINKS TO IhITIALIZE*/ 
S=LSHIFTLL( 1),24),MODlFY_STATUS1, GO TC *+CL-5); 
(COMPARELNULL,NULL 1,POPSTACK) ,GO TO NLLL; /* FINISH EXPANSION */ 

/*GET NUM OF DATA ITEMS TO BE PLACED CP LIAK+/ 
S-SHIFT-MASKL1.L l), 161, I=-'lt 81 ‘B; 

DATA-TRANSFER-LOOP: 
READ ELEMENTLFLPADDRESS)t WITH LENGTH=64 FRCC PENORY 

ARRAYIDESCP IPTOR=GL 11 ,DFFSET=Ol ; 
/*CALL L INK*/ 

EXECIJTE-SINGLE-CYCLE{ VALUE,NO,RETURh,STCRE-OUTPUT) SONtStl)) 
WITH INPUT=PtPORTJ THEN WAIT FOR 1 SCFS TC SIGhAL RETURh; 

/*UPDATE PADDRESS BY t3*/ 
S=ADD(LL3~,CONS(C8U)~,I=CONSLUl6l; 
(MASK-STORELP (LOCAL-DATA) ,3) ,POPSTACK) ; 
S=LSUBTRACTLS, ll,POPSTACK, MODIFY,STATLS) , GC TO -CL=); 
GO TO DATA-TRANSFER-LOOP; 
COMPARELSLPOP ),SLPOP) ),GO TO INTERNAL~INITIALIZE; 

/* THIS SECTION OF CODE EXECUTED AFTER EXPAhSICh PHASE */ 
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.- 
PROCEDURE-CLOCKER: 

S=SHIFT_MASK1Lll),lE),I=-‘l(8)‘B; 
/* EXTR.ACT NEIL-NEOL */ 

MA%-STORELP(LOCAL,DATAl,5); 
S= (SHIFT{ S, 4J,POPSTACK,MODIFY,STATLSJ ,GD TC *+CL-=I; 
(COMPARELNOLL ,NULL ),POPSTACKl ,GO TO BEG1 N-GRAPH; /* NO INPUTS */ 

/* RFAD IN IILJ...I(NEILJ */ 
S=SFOLPLPORT),NULLJ; 
S=PLDESCRIPTDR OF REGISTER-BLOCK DEFIhED f=RCFICESCRIPTOR= 

PLLUCAL_DATA),OFFSET=6) kITH DIb’EhSICh=4li 
SET-STATE1 IrSLPOP 1); 

/* MULT NEIL BY 8 TO GET BIT LENGTH */ 
S=(SHIFTLS,-3JrPOPSTACKJ: 
READ ELEMENTLFLPADDRESS)) MITH LENGlH=S FRCM J’EPORY ARRAYL 

DESCRIPTOR=Gt 1) ,OFFSET=O) ; 
/* RESET PORT TO LOCAL,UATALl-2) */ 

SET-STATEL 1rSLPOPJ 1; 
/* UPDATE PADDRESS */ 

S= LSHIFTL S,- 13)rPOPSTACKI ; 
S=fMASI(-ADD(S,L(3)l,POPSTACK),I=CONS(L16); 
MASK-STORE(P(LOCAL-DATA ),3) ; 

FETCH- INPUT-DATA: 
WAKEItP(FETCH-INPUT,CDNTINUEJ NODELPLRETURh)): 

/* OVERLAP FETCH OF DATA WITH CQMPLTATICN CF LIhK ADDRESS */ 
/* COMPUTE AUDRESS OF INPUT LINK TO 5E INITIALIZED */ 

S=SHIFT~MASK~C~5~r6~,1=~‘1~2~‘B; 
S= IADDL S, 71,POPSTACKI ; 

/* S=NEIL/2+7 */ 
S=LACCESSLP(LOCAL-DATAJ,Sl,POPSiACKJ; 
S=SHIFT-MASK(L( 5),4)rI=RESULTi 
S=(LOAD-CONSTANT1C@NSISHIFT-BYTE) ,I) ,PCPSTACK) ,1=X+-l; 

(TIME-GRAIN): 
S= (SHIFT-MASK IS,- SLPDPJ JrPOPSTACKi ,I=,‘lI8J’B; 

/* S=NUMBER DF L INKI II JJ 1 */ 
EXECUTE-S INGLE-CYCLEL VALIJE,NO,RETLRh , ‘TCRE-CUTPUT ,POP) SON (S I 
W ITH INPIJT=PI PORT) THEN WAIT FOR 1 SCPS TC SIGhAt RETURN; 

/* !tPDATE NEIL */ 
S= (MASK-SUBTRACTLLL 5J,‘lOL41 ‘BJ ,MODIFY-STATUS) ,1=,‘1(4JOi4J’B, 

GO TO *+C(=); 
(MASK-STOREIP ILOCAL-DATA) ,5J ,POPSTACKJ ,GC TC FETCH-INPUT-DATA; 

/* SFND LNPUT TERMINATE SIGNAL */ 
WAKFUPLRET-TERM t NODF~P(PETURNJ 1 ; 



PAGE 219 

BEGIN-GRAPH: 

S=LOGICAL-ANDLLT 3),‘118)‘B),I=‘1(81 ‘0; 
S=SHIFT,MASKILT ?),81; 
S= IACIDT S, lJ,POPSTACKT; 

/* St-lI=NUM,L INSal,S=NUM-NODE S */ 
/* ACTIVATE ALL NODES */ 

EXECUTELNO-RETURN,POP) S SONS STARTING AT SOht-StPOP)) 
THEN WAIT FDR 0 SONS TO SIGNAL RElCRP; 

/* DETERMINE WHEN TO TERMINATE GRAPH */ 
RETURN-NO DES: 

S=SFO(PTPORT),NlJLL 1; 
S=PLDESCRIPT@R Of R.EGISTER-BLOCK DEFIhEO FROP(DESCRIPTOR= 

PTLOCAL-DATAT,DFFSET=61 kITH OICEhSIOK=41 i 
SET-STATE(l,STPOP~~,I=‘114)0(3) ‘Bi 
S=SHIFT-MASKfLI 5),-3); 
READ EL EMENTI FLPADDRE SS) I WITH LENGTH=SIPCFI FPCM 

MEMORY ARRAY (DE SCR IPTOR=G( I) ,IIFF SE T=C) ; 
/* RESET PORT */ 

SET-STATEf LrSLPOP) I; 
/* GET EXTERNAL OlJJ’uT LINK STATLS */ 
/* IN tTIAL IZE OUTPlJT LINK STATUS=0 */ 

S=SFOLO,NULL b, I=CONSt Ulbi ; 
(MASK-STORETP (LOCAL-DATA) ,S),POPSTACK) ; 

/* COMPUTE ADDRESS OF OUTPUT LINK TO FfhO STATUS */ 
FETCH-OUTPUT-STATUS: 

S=SHIFT_MASKIL(5),2),1=-‘l(2)‘Bi 
S= LAODT Se 7)rPOPSTACK) ; 
S= (ACCESS (P (LOCAL-DATA), SJ ,PCJPSTACKI i 
S=LOGICAL-ANOTLT 51,‘112)‘B),I=RES~CT; 
S= (LOAO-CONSTANT(CONS(SHCFT,BYTE) ,I 1 ,FGPSTPClo ,1=1+-l; 
S=(SHIFT~MASK~S~,STPOP~),POPSTACK),I=,’l(B~’B; 

/* S=NUMBER OF LINKTO 1 */ 
EXECUTE-S INGL E-CYCLE{ FETCH-INPUT,NO,RETURK ,PCPt SCN(SI 

THEN WAIT FOR 1 SONS TO SIGNAL RE'IlRk:; 
(COMPARE(LL21,O~rMODIFY-STATUS), GO TC *+Ct,=); 
GO TO UPDATE,NEOL; 

/* MOOIFY OUTPUT STATUS LINK */ 
S=LOGICAL-AND(L( 5),'1(4)'B),I=RESULl; 
S=~SHIFT~‘1’B,I),POPSTACK),I=I--32; 
(MASK-STORE(PtLOCAL,DATAlr5)rPOPSTACKT,I=-S; 

UP DATE,NEOL : 
S=~MASK,SUBTRACT~Ll5~,l~,HOPIFY~STATLS~rI=~’1~4~‘Rr 

GO TO ++C(=ii 
(MASK,STORE(P (LOCAL-DATA) ,5) rPOPSTACI0, 

GO TO FETCH-OUTPUT-STATUS; 
SIGNAL-OUTPUT-R EAOY: 

(MASK-STOREtP (LOCAL-DATA) ,5) ,POPSTACKl ,I ='1(81 ‘8: 
S=SHIFT-MASKILI 51,Bli 

/* S=PRDCESSOR NUMBER IN PARALLEL NODE INCTIATfCh CUElJE */ 
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WAKEUPfACT-CODE=lO,SUSPEND,POP) NODEtL(61t WITH INPUT=S; 
/* SEND OUTPUT LINK STATUS TO OUTPCT-PhCDE 4/ 

S=SHIFT(L(S), 161; 
WAKEUPLSTDRE-STATUS,CONTINUE ,POP1 NCDE1P(RETLRh)l WITH INPUT=S; 

S=~LOGICAL~AND~L~51,CONS~U16~~,M(JDIFY,STATLS~rI=O,GO TO *+C(p=); 
(CflMPAREINULL,NULL 1,POPSTACK) ,GO TO TERMIhATE,CUTPUT; 
S= (SHIFT( S,- 11,POPSTACK,MODIFY-STATLSl,I=I+i ,GC TC ++-Cl<); 
GO TO *-1; 
S=SFO(I,NIILL),I=‘1(4)‘Bi 
S=(MASK_ACD(L151,S1,POPSTACK); 
(MASK-STORELP (LOCAL-DATA) ,S),POPSTACK) ,I=CCNS(Ut61; 
(MASK_STOREfP(LOCAL_DATA1,51,POPSTACK1: 

/* COMPUTE ADDRESS OF OUTPUT LINK */ 
S=SHtFT_MASK(I.L5~t2),1=_‘112~‘B; 
S= (ADD{ St 71 ,PDPSTACKI i 
S= LACCESStP (LOCAL-DATA) ,S) ,POPSTACK) i 
S=LOGICAL-ANDLLI 51,‘lfL)‘B) ,l=RESLiLT: 
S=tLOAD-CONSTANT(CCJNStSHIFT-BYTE) ,I) ,FCPSTPClo tI=I+,l; 
S=ISHIFT-MASKtSr-S(POP)1,POPSTACK1,1=-’1~8~’B: 
EXECUTE-SINGLE-CYCLEIFETCH-INPUT,NO-RETURN,PCP) SCNlSl 

THEN WAIT FDR 1 SONS TO SIGNAL RETLRF; 
/* STDRE IN (TUTPUT-PNUDE DATA FETCHED FRCK LIhK */ 

WAKEUPfSTORE-OUTPUT,WAiT-RESPONSE1 hCCE(PIPETURh11 i 
GO TO FETCH-L) UTP UT-DA TA ; 

/* HAVE COMPLETED TRANSFERJNC DATA, hCb MUST TERKINATE */ 
T ERMINAT E-OUTPUT: 

S=SHIFT(F!NIJMBEF?-L INKS) ,-41 ; 
(STDKE~PIl.OCAL_DATAl,l) ,PDPSTACK) ; 
STDRE-INDEXLP (LOCAL-DATA) (21 ,1=-L(4) ; 
S= I~DEX(P(GLOBAL_PROCESS)I1) ; 
WAKEUP(Ci-lNT INiJE,NCl-RETUHN,ACT-CCDf=9,\ALUE ,PCP) NODE(S) 

WITH INPUT=P(PORT1,KETUPN-ADDRESS=PISFLF) ; 
/I NEED TO CALL SPACE MANAGER AT THIS TO UEALLCCATE SPACE */ 

S=ADDLF!NUMBE9-LINKS1,F~N~JMBER-NODESt1; 
f* SIGNAL ALL LINKS AND NODES TO TERt’I FATE */ 

EXECIJTE-SINGLE-CYCLE(ACT_CDDE=L2,NO_RETURNl S SCNS STARTING AT 
SUN I11 THEN WAIT FOR FiNUMBER-NODES) SOhS TC SIGNAL RETURN: 

TERM INATELPOP 1 -S SUNS STARTING AT SCh(1) 
THEN WAIT FUR S SONS TO SIGNAL RETLRh; 

LdAKEUP(RET_TFKM,CDNTrN~JEr NUDEiPiRETLRh)) AND THEN RETURN: 

CONSTANTSLCZU:‘O( 14tlOt 171’B, U16:‘1L1610(161’8, 
LL6:'C~16)1~16~'B,C8U:'C~l2110~19t'Pr 
LENGTH-QUEUE :1024 ) ; 

/* LENGTH-QUEUE SHOULD BE 960 */ 
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L INK-PROCESS: 

/* LDCAL DATA ENVIRONMENT OF LINK-PRCCESS 
1 QUEUE-STATUS 

A) HEAD-QUEUEI 1:4J INITII) t 
6) TAIL-QUEUEL 5:8J INITL OJ, 
CJ CURRENT-QUEUE,SIZEI 9:12) INlliO) , 
D T INPIJT-REQUEST,READY{ 13:13J I KIT(O), 
E) OUTPUT-REQUEST-PENDI NGL 14:14) I NI T(O), 
F) TERM INATE,CONDITION~22:22) IhIT( 

2) DESCRIPTOR FOR QUEUE AREA 
3) PENDING REQUEST ADDRESS, 
4-51 PORT: 

ACTIVAT ION,MDE= 3,FETCH_OPERAND, 
= 4, STORE-OUTPUT? 
= TERMINATE */ 

L INK,WAK EUP: 
(COYPAREI 3, ACT-CODE ),MODIFY-STATUS) ,GC TG *CL-=) i 
GO TO L INK-FETCH; 
(COMPARE(4,ACT,CODE),MODIFY,STATUS~ ,GC TC *+C(-=J: 
GO TO L INK-STORE; 

/* SET UP TERM INATE-CONDI TIUN */ 
L INK-T ERM INATE : 

S=SFO(CONSLTERMINATE,COND),NULLJ ,i=RESLILT; 
(MASK-STOREIP (LOCAL-DATA) ,lJ ,PUPSTACK) ; 
(MASK-COMPARELLI l),OJ,MODIFY,STATUSJ, 

I=-CONSIMASK-IRP), GO TO *+CI=J; 
GO TO IRP-DSET; 

IT IME-GRAIN): 
GO TD LINK-MAKEUP; 

L INK-FETCH: 
(MASK-COMPARELLL lJ,OJ,MODIFY-STATiiSJ, 

I=,CONSLTERMINATE-CONDJ, GO TO *+CT=) i 
DUMMY-TRANSFER : 

GO TO TRANSFER-L INK-DATA; 
/* CHECK WFETHER QUEUE IS EMPTY */ 

(MASK-COMPARELLL lJ,OJ,HODIFY,STATUSJ , 
I=-CONS(MASK,PUEUE,SIZE t, GO TO ++C(-=) ; 

L tNK_QUEUE,EMP TY: 
STORE-INDEXTP (LflCAL-DATA, ,3J,I=-PLRETlFNJ , GC Tt LQE,CONT: 

/* SAVE ADDRESS OF PEPSON REQUESTING $1 
FETCH-QUEUE: 

S=SHIFT,MASKLL( lJ,28J,I=,‘1(4) ‘8; 
READ ELEMENTL S(POP) 1 WITH LENGTH=64 FPCP KEMCFY ARRAYi 
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DESCRIPTOR=L t 2) ,OFFSET=-64) ; 
/* UPDATE QUEUE POINTERS */ 

S=MASK-SUBTRACTTLt l),CONS(Cl)),I=,CChS(MASK_C): 
(MASK-STORFIP ILDCAL-DATA 1.1 I ,POPSTACK) i 
(MASK-COMPAREtCt ll,I),MODIFY,STATUS), 

I=,CONS(HASK,Hf; 
S=SHIFT ( I,- 2R).GO TO *+CI=); 
S=(MASK,ACPtLf lJ,SI,POPSTACK) i 
(MASK-STORETP (LOCAL-DATA) ,l) ,POPSTACKl ; 

TRANSFER-L INK-DATA: 
WAKEUP{ STORE-OUTPUT,VALUE ,CONTINUE) hCDE(PTRETURNJ 1 

WITH INPUT=P (PORT); 
/* CHECK FOR ORP SET */ 

(MASK-COMPARETLT l~,O~,MODIFY,SlATUS). 
I=,CO’USLMASK,ORP), GO TO *+Ct,=l; 

(TIME-GRAIN): 
GO TO L INK-WAKEUP; 

WAKEUPTCONT INUE T NUDETLT 3) 1 i 
S=SFOtO,NUL 1 i 

(T IME,GRAIN): 
(MASK-STDRETPTLOCAL-DATA),l),POPSTACKl ,GC TC LIhK-HAKEUP; 

L QE-CUNT : 
S=SFDICONSLMASK-IRP),NULL),I=RESULT: 

(TIME-GRAIN): 
(MASK-STORETP (LOCAL-DATA I,11 ,POPSTACK) rGG TC LI &K-WAKEUP; 

L INK-STDRE: 
(MASK-COMPAREILt l),O),MODIFY-STATLS) t 

[=-CONS ( TERM INATE-CON0 1 ,GO TO *+C T =I ; 
DUMMY-STORE: 

GO TO STORE-COMPLETE; 

(MASK-COMPAREILL l),O),MODIFY,STATUS), 
I=-CONSTMASK-IRP), GO TO *+C1=) i 

GO TO IRP,SET; 

STORE-QUEUE: 
(MASK-COMPARETLi Il.1 b,MODIFY,STATUS) , 

I=-CONSIMASK-T): 
S=SFOICONS(Tl),NULLb,GO TO *+C(=) i 
S=IMASK,ADD(L T i),S),POPSTACK) ; 
(MASK-STORFTP (LOCAL-DATA),l),POPSTACK) i 
/* TAIL OF LINK-QUEUE IS UPDATED */ 

S=SHIFT-MASKTLT 1),24),1=-‘l(4)‘Bi 
STORE ELEMENT(S(POP)) WITH LENGTH=64 INTC T’EPCHY ARRAY{ 

DESCRIPTOR=L (21 ,OFFSET=-641 ; 
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I* UPDATE QUEIJE SIZE */ 
S-MASK-ADDLLL lI,CONSiCl) 1 ,I=,CONSi MASK-C) ; 
MASK-STORELPLLOCAL-DATA),ll; 
/* CHECK WHETHER QUEUE IS FULL */ 
(MASK,COMPAREtS,Ij,POPSTACK,MODIFY~STA7LS~, 

GO TO *+Ci-= 1: 
GO TO SET-ORP ; 

STORE-COMPLETE: 
HAKEUPLCONTINUE) NODELPLRETURNI 1 ; 

(TIME-GRAIN): 
GO TO L INK-WAKEUP; 

S ET,ORP: 
(MASK-STOREfPILDCAL,DATA),l),POPSTACKJ; 

(TIME-GRAIN): 
STORE-INDEXLPILOCAL-DDAfA)r3)rI-_PIRETLRN) t 

GO TO LINK-WAKEUP; 

IRP,S ET: 
WAKEUPLCONTINUE b NODELPLRETURN)l ; 
/* TURN OFF IRP */ 

IRP-DSET: 
S=SFO(O,NULL 1, I=CONSL MASK-IRP) : 
(MASK-STORETP (LOCAL-DATA) rl) ,POPSTACK) : 
WAKEUPLSTURE-OUTPUT,VALUE,CONTINUE) ACDEILL3)) 

W ITIi INPUT=PLPORT); 
iTIME_GRA IN): 

GO TO L INK-WAKEUP; 
CONSTANTSI LINK,QUEUE:‘OL3110i28) ‘B, 

MASK~IRP:‘0112~lOL19~‘Br 
MASK,QUEtJE,SIZE:‘Ot8,lL4~QL20~ ‘B, 
MASK,ORP:‘OL13~LOi 18) ‘B J i 
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PAR ALL EL-NO DE : 

/* GLOBAL DATA ENVIRONMENT 

1 NIILLL L6l,GUPUT-LiNK~STATUS~161 
2 INSTRUCTION-ADGRESSf 16) ,OPCGDE(@),INL4) ,CUT(4) 
3-6 INSTRUCTION BUFFER AREA I(lJ...I(IN), 

0(1)...C(GUT): 

LOCAL DATA ENVIRONMENT 
1 QUEIJE STATUS 

A) HEADt I:41 INIT 
B) TAILt5:8, INIT 
C) CURRENT_SIZE19:12) INIT 
D) GUTPUT~PEADY~LISTL13:20l IhIT(‘O(8) ‘8) 
E) SCHFDULER~CALL~POSTPGNED(21:21) I FITt’O’B) 
F 1 TERM INATE-CONI’I TI ONi 22 :22 1 1 NI T t ‘0 ‘6) 
C) PREFETCH_CGMPLETF123:23) IhIT(*O’@); 

2-9 IN IT IATInN QUFUE 
10 SCHEDULER ADDRESS 
11 PORT 

ACT IVAT TGN-CODES FOR CALL PARALLEL hCDE 
R PR EFETCH CCIMPLE TE 
9 PRGCESSGR ASSIGNED 
13 OUTPUT READY 
11 DUTPUT COMPLETE 
12 TERM INATE 

a/ 

DEFINF STATIC PROCESS WHOSE SUBSTRUCTURE CCF;TAIhS 2 SONS WITH 
P RGGRAM= F I SON SP 1, 

LOCAL-DATA=F(LDCAL-SONSPI, PORT=F(PORT-- CONSPI, EPSV=F(EPSV-SGNSP) 
AND 

CLOCKING PROCESS= 
INVCK E PR@GRAM(PNUDE-CLOCKER) HI TH 

INIT IAL IZE-RDUTINE=-F( INIT,PNODE) : 
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SONSP: 
RETURN~LOAO~CONSTANT(PC l,I.REGJ J ; 
CONSTANTSt INPUT-PNODE, OUTPUT-PNODE J ; 

LOCAL-SONS’: 
RETlJRN(P(DESCRIPTOR OF REGISTER-BLCCK klTH DICENSION=lJ Ji 

/*ALLOCATE SINGLE REGISTER*/ 

PORT-SDNSP : 
S=ACCESS(P(PSTACK),-2); 
RETURNt INDEX{ S(f’OP I, 1) t ; 

/*SAME AS LOCAL ENVIRONMENT, ACCESS CFf PSTACK*/ 

EPSV-SONSP : 
GO TO *+I.BEG; 
RETURNLPfEPSV WITH VSTACK=f(VS-IPNCDEI, PSTACK=F(STACKBJJI; 
RETURNtPfEPSV WITH VSTACK=F(STACK6), FSTACK=f(STACK8))); 

/*EXPAND SON NODES, INIT LOCAL ENV 9 E XECCTE I hPUT_PNODE*/ 

IN IT-PNUDE: 
EXPANDtRETIJRN J SON{ 1) THEN WAIT FOR 1 SCKS 
TO SIGNAL RETURN; 
EXPAND(RETURN I SON{ 2i THEN WAIT FCR 1 SChS 
TO SIGNAL RETURN: 

/* INIT QUE,STATUS*/ 
STORE-INDEXLP (LOCAL-DATA) ,lJ, I=,COhS(CUE-STAT): 

/*GET ADDRESS OF SCHEDULER*/ 
S=NASK-SHIFT(GlZJ,B), I=-CONSIMASK-CP); 
S=ISURTRACT(S,32J,POPSTACK,MODIFY~STATLSt ,GC TC *+Ct>=J; 
S= (S FOL 1,NULL J, POPSTACKJ ; 
S= (INDEX/P( EPSVJ ,-2),POPSTACKJ,[=C; 
S= I INDEX( S, I J ,POPSTACKI ,1=1+-l ; 
(STORE( P (LOCAL-DATA 19 101, POP STACK) ; 
EXECUTE~StNGLE,CYCLE~CONTINUE,NO-RETLRhJ SCh(l) AND THEN RETURN; 
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PNOI-JE,CLOCK ER : 
WA IT-WAKEUP : 

NULL,ACTIVATF(SUSPENDL NODELPtSELF)) ; 
S=LUAD-CONSTANT(CONSLTABLE1 ,ACT-CCDE) , GC TO RESULT: 

CONSTANTS lTAHLE : +-3, 
PRFFETCH-COMPLETE, DEVICE-ASSIGNED, CLTPUT-READY, OUTPUT-COMPLETE, 
TERM INATE-NODE 1; 

PREFETCH-COMPLETE: 
S= (SFOi CONStMASK,PREFETCH) ,NULL) ,PCPSlACK) 91 =RESULT: 
(MASK-STOREfP(LOCAL-DATA),11,POPSTACK); 
/* SET PREFETCH,COMPLETE */ 
(MASK-CflMPARE(L (1). CONS(C8)) 0 MODIFY,STATLS), 

[=-CON S( MA SK-C 1, GU TO *+C L ,=I ; 

SCHEDULER-POSTPONED: 
S=SFD(CONS(MASK-SCPI,NlJLLi,I=RESULT,GC TC SP-CCNT; 

UPDATE-QUEUE: 
(MASK-COMPARELLt ll,O),MODIFY,STATUS), 

I=-CON S L TERM [NATE-COND 1 ,GO TO *+C ( =I ; 
GO TO CHECK-TERM INATE i 
S=MASK-ADD(L( 11,CONS(ClI 1, I=-CONS(YAc,K-CL ; 

/*c=c+1*/ 
(MASK-STORE(P(LOCAL-DATA),lL, POPSTACK) ; 
IMASK-COMPARE(L [ l),CONSL T9) 1, MODIFY-‘TATLS) , I=-CONS (MASK-T), 

Go TO ++C(p=); 
/*T=END OF LIST*/ 

S=SHIFT(2,-241, GO TO *+2; 
S=MASK-ADC(L( l),CC’NSt T11 1; 

/*STORE T*/ 
MASK-STOREtPtLOCAL-DATA),l) i 

CALL-SCHEDULER: 
S= (MASK-SHIFT( 5,24),POPSTACK) ; 
EXECUTE-SINGLF,CYCLE( VALUE,CONTINUE,hC,RETLRh,ACT_CODE=9,POP) 

NCJDEtL f 1C) 1 WITH INPUT=S, RETURN-ADDPESS=FLSELFti 
GO TO kAIT_WAKEUP; 

S P-CONT: 
(MASK~STOREfP(LOCAL~DATA),L)~POPSTACK) ,GC TC kAIT,WAKEUP: 

DEV ICE-ASS ICNED: 
S=(MASK-SHIFT(L( 1),24J,POPSTACK),f=,CChS(C4SK_T)i 
ISTDKE~INDEX~PtLOCAL~DATA~ rS) ,POPSTACk), I=-Cell); 
/* SET PREFETCH NOT CDH-CETF: */ 
S=SFO(O,NULLt, I=CDNS(MASK,PREFETCH) ; 
(MASK-STOREtP (LOCAL-DATA) rl) ,POPSTACK) : 
EX~ClITE_SINGLE_CYCLF1CC)NTINUE,REFEREhCE,NC_RETURN1 SON(l) 

W ITH INPUT=L t 11); 
GCI T~I WAIT-nAkEUP; 
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OUTPUT-READY: 
S= ISIJBTRACTTL ( 111,21J ,POPSTACKJ ; 
S=(SHlFT( l,SJ,POPSTACKl ,I=RF.SULTi 
(MASK-STORETP (LOCAL-DATA) 91) rPOPSTACKJ ,GC TO AB; 

OUTPUT-COMPLETE: 
(MASK-COMPARETLT lJ,OI,POPSTACK,MODIFY~STATLiSJ ,I=-CONSTHASK-SCPJ, 

GO TO *+CI=J; 
GO TO CALL-SCH-POST; 

/*c=c- 1*/ 
S=MASK-SURTRACT(L( 1Je CONSICLJJ 9 I=-CChSLMASK-CJ; 
IMASK-STORFTP (LOCAL-DATA J ,lJ ,PflPSTACKJ , GC TC UPDATE-HEAD; 

/* I F T-ERM INA TECPREFE TCH,COHPLE TE AK0 QUEUE=0 
THEN TERM INA TE SON NODE S */ 

CHECK-TERM INATE: 
(MASK-COMPAREtLI lJ,IJ,MODIFY-STATUS) ,I=-CChSTCASK-TCPFJ, 

GO TO *+C(l= J; 
(MASK,COMPAREIL (1) ,OJ ,MODIFYiSTATUSJ ,I=,CCbS1MASK-CJ , 

Go TO *+CT=J; 
GO TO WAIT-WAKFUP; 

TERM-NODE: 
TERM INATEtRETURNJ 2 SONS STARTING AT SONil) THEN 

WATT FOR 2 SONS TO SIGNAL RETURN; 
WAKEUP(RET-TERM) NODETPLEXTERNAL-ENLJ J AND THEh RETURN; 

CALL-SCH-POST:. 
S=SFn(O,NULL J; 
LMASK,STOREtPTLOCAL-DATAJ,lJ,POPSTACKJ; 
S=MASK,SHTFTtLT LJ,4Ji 
MASK-STOREIPtLOCAL-DATA),l), I=-CGhStCASK-TJ i 
S= (MASK-SkIFT( S, 24J,POPSTACKJ i 
EXECUTE-S INGLE-CYCLE( VALUE ,CONTINUE ,hC,RETLRh,ACT,CODE=9,PCPJ 

NODETL T 10) J W ITH INPUT=S, RE TURN-ADDPESS=FI SELF) ; 

UPDATE-HEAD: 
(MASK-COMPARETLI lJ, CONSTH9JJ, MOOIFY-STATLSJ, I=, CONSOrASK-HJt 

GO TO *+C(y=J; 
S=SHIFTtZ,-28J, GO TO *+2; 
S=MASK-AOC1 L ( lJ, CONST t-i1 J J ; 
(MASK-STORE(P (LOCAL-DATA J , 1 J , POPSlACK) : 

AB: 
S=SUBTRACTT F( HEACJJ,21J; 
S=(SHIFT(l,SJrPOPSTACKJ,I=RfrSLLTi 
(MASK-COMPAREtLL lJ,OJ,POPSTACK,MODIFY_STATLSJ, 

CO TO *+C(-= J; 
Xl Tfl CHECK-TERM INATE ; 
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/* RESET ORL */ 
S=SFOTO,NULL J; 
(MASK-STORE(P(LOCAL,DATAJ,lJ,POPSTACKJ; 
S=ACCESSLPTLOCAL-DATA), FTHEADJJ ; 
EXFCUTE~SINGLE~CYCLEtREFERENCE,NO~RETlRN,PCPJ SONi2J WITH INPUT=Si 
GO TO WAIT-WAKEUP; 

HEAD: I=,CONSTMASK-HJ, RETURNTMASK-SHIFT(L(lJ, 28)); 

TERMINATE-NODE: 
S= ISFOTCONSTTEPMINATE~CONDJ,NULLJ ,PCPSTACKJvI=RESULT: 
(MASK-STORETP (LOCAL-DATA) ,lJ,POPSTACKJ tGC TO CHECK-TERMINATE; 
/* SET TERM INATE CONDITION */ 

CONSTANTS(MASK_H:‘lT4J0128J 'B,Hl:'OCOlC(28J '01 
H9: ‘lOOlO(28J ‘BtHASK-T:‘C(4Jl(410124) ‘8, 
T1:‘0l4100010124J’B,T9:‘0~4J10010~24J ‘8, 
MASK~C:'0~RJ1~4)0(20J%,C1:'C(8100010~20t'Bt 
C8:‘0(8,10000~20J’B,MASK~SCF:‘0~20110~11J’Br 

TERMINATE-COND: ‘OT21tlCTlCJ ‘B, 
MASK_TCPF:‘OI21Jlt2J00 ‘B,~ASK_FREFETCH:‘O(:22Jl0(9 J’BJ; 
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INPUT-PNO DE: 

/* LOCAL DATA ENVIRONMENT 
1 PORT 

GLOB4L UATA ENVIRONMENT SAME AS PARALLEL hCDE */ 

DEFINE STATIC PROCESS WHOSE SLBSTRLCTCRE CCNTAI hS FT I NJ SONS WITH 
PROGRAM= CON SI SON SIP J , 
LOCAL-DA TA=F( LOCAL-SONS1 P J , 
PORT=F(PORT-SONSIP J, 
EPSV=F(EPSV,SONSIP J, 

AND 
CLOCKING PROCESS=INVOKE PROGRAM{ PI NPLl,CLCCKERJ WITH 

IN IT I AL IZ E,ROUTINE=J ( I NI T-1 PNODE J ; 

IN: I=-CONSTHASK-IN), RETURNTMASK-SHIFlTGt2Jr 4JJ; 

INX8: I=-CONSTMASK-IN), RETURNLMASK,SHIFT(GT2J, 1JJ: 
CONSTANTSTSONSIP: FETCH-OPERAND, NASK,Ih: ‘0/24J11110(4J’BJ; 

LOCAL-SONS IP: 
S=PfDESCR IPTOR OF REGISTER-BLOCK HI Tti DICEhSICh=31 i 
S=SFOI I .BEG, NULL); 
TSTORELST IJrlJ, POPSTACKJ i 
RETURN((SFD(S, NWLlrPGPSTACKJJ; 

/*ALLOCATE 3 REGISTER SET FIRST REGISTER TC LIhK hUMBER*/ 

PDRT-SONS IP : 
S=ACCESS(P(PSTACKJc2J; 
RETURN(P(DESCRJPTOR OF IO-BLOCK DEFINED FRCM 

tDESCRIPTUR=S(POPJ ,OFFSET=lJ hITH DIJ’EhSICh=2JJ i 

EPSV-SONS IP : 
RETURNTPLEPSV WITH VSTACK =F(VS-FETCHCFJ, FSTACK =FtPS,FETCHOPJJJ; 

/*FETCH 1~ . ..I.N AND EXPAND SONS*/ 

IN IT- IPNO DE: 
S=Pt DESCR IPTOR OF IO-RLOCK DEFINED FRCCLDESCPI PTOR=PTGLOBAL,OAT AJv 
OFFS ET= 2 1 W ITH D IMENSION=4J ; 
SET,STATET 1, S(POP J Ji 

/*CHANGE PORT TO GLOBAL ENV. 3-631 
READ ELEMENTT2) HITH FORMAT=NULL AND LENGTH=FIINXEiJ FROM MEMORY 

ARRAYIDESCRIPTOR=F(MEM-DESCJ, flFFSET=FIJhS-PDCJJ; 
EXPANDLRETURN J FJINJ SONS STARTING AT SCNTlJ 
THEN WAIT FOR FTINJ SONS TO SIGNAL RElLR’t; 
RETURNT SET-STATET lr P (LOCAL,DATA) J J i 

/*ACCESS EXT ENV TO GET ELEMENT OF GLCBAL DATA EN’/*/ 
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MEM- DESC: 
S=INDEXtPlEPSVt,21; RETURN(ACCE SS( SLPCP) 91)) ; 

INS-ADC: 
X=-CONS (MASK-INS-ADD), RETURNt MASK-SHIF 7(6(Z), 13)): 

DP-CODE: 
I=-CONS tMASK_OPCODE 1, RETURN1 MASK-SHIFT 
CDNSTANTSSMASKKINN-ADD: ‘1L 16)0f 16) ‘R, 
MASK-DPCODE: ‘OI 19)1( 5JOt @l’B,; 

P INPUT-CLOCKER: 
EXECUTE(WAIT-RESPONSE I F( IN) SONS STARTING AT SCNIl) 
THEN WAIT FOR Ft IN b SONS TO SIGNAL RE’ILRK; 
WAKEUPtACT_CDDE=8,SUSPEND) NODE(P(RETCRh)) ; 
ACTIVATETNO,CONNECT) FUNCTIONAL-UN1 TfL(1) 1 kITH CONTROL-INFCRMATION= 

FLOP-CODE) USING Ft IN) INPUT,GENERATCRS I hITIATE0 8Y 
RETR IEVEtND-RETURN) COMMAND; 

GO TO P INPUT-CLOCKER; 

?ROCEDURE-NODE: 

/* EXACTLY SAME CODE AS PARALLE,NODE, EXCEPT 
TH4T INSTEAD OF CALLING SCHEDULER TC ASSIGh 
A PROCESSOR, AN MSV FOR A GRAPH-PROCECURE 
IS GENERATED. THE ADDRESS OF TtiI S GRAFH,PRCCEDUPE 
IS THEN TREATED IN THE SAME WAY AS THE ADDRESS CF 

THE PROCESSOR RETURNEO E!Y THE SCHEDLLER. 
THIS YODIFICATION TO THE CODE OF THE FARALLEL,hODE 
WOULD BE AT LOCATION CALL-SCHEDULER. THE CCDE FCR 
GENERATING THE MSV OF THE GRAPH PROCECLRE IS VERY 
SIMILAR TO THE CODE USED BY THE GRAPH-MACHIhE TC 
GENERATE THE MSV OF THE MAIN GRAPH PRCCEDURE. */ 
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S EQU ENT IAL-NODE : 

/* GLIIBAL DATA ENVIRONMENT 

1 INPUT-L INK-STATUS{ 16) ,OLP~T_LIhr_STAIUS(16J 
2 INSTRUCTION-ADDRESSL16J rOPCODE(BJrIhL41 ,CUT(4J 
3-h INSTPUCTIDN BUFFER AREA I(lJ...I(Ih), 

(l(l) .*.CIOI;TJ; 

LOCAL DATA ENVIRONMENT 

1 PORT 
2 SCHEDULER ADORE SS */ 

DEFINE STATIC PRDCESS WHOSE SLEi STRUCTLRE CCKTAINS 2 SONS rlITH 
PROGRAM=F(SONSSJ,LOCAL-DATA=F(LCCAL,SCNSSJ , 
PORT= -F(PORT-SONSIPJ,EPSV=F(EPSV,SOlYSPJ 

AND 
CLOCKING PROCESS= 

INVOKE PROGRAMt SNODE-CLOCKER) k1 TH 
IN ITIAL IZE,ROUTINE=-F( IN1 T-SNODEJ ; 

SONSS: 
RETURN{ LOAD-CONSTANT(PC~TI.BEGJJ ; 
CDNSTANTSL INPUT-SNODE,STORE-OPERAND) ; 

LOCAL-SONSS: 
GO TO *+I.REG; 
RETIJRNLf’(OESCRIPTDR OF REGISTFR-RLCCK WITH DIT’EhSION=lJJ; 
RETURNtPLDESCRIPTOR OF REGISTER-BLCCK kIlH DIt’EkSION-3)): 

IN IT-SNODE: 
EXPANDLRETURN J SONL 1) THEN WA1 T FCR 1 SONS 
TO SIGNAL RETURN: 

/*GET ADDRESS OF SCHEDULER*/ 
S=MASK,SHIFT(GLZJ,RJ, I=-CONSLMASK-CPJ; 
S= (SUBTRACT(S,32J,POPSTACK,MODIFY,ClAlLSJ *GO TC *+CO=J : 
S= LSFOL L,NULL Jr POPSTACKJ ; 
S=tINDEXIP(EPSVJ,-2J,POPSTACKJ,I=S; 
S=(INDEX( S, IJ,PDPSTACKJ,I=I+,l; 
RETURN{ (STORE(P(LOCAL-DATA) ,ZJ ,POPSlACKJ J ; 

CONSTANTS ( 
QUE-STAT: 'OOlOCCO10(24J'B, 
MASK-OP: ‘O(ltJJlL6JCL 8J’BJi 
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. . 
SNODE,CLOCKER: 

EXECOTELNO-RETURN) SLINL 1) ;NULL-ACTILATE(SUSPEhDJ NODEfPLSELFJ J: 
LCOMPARELACT-CDDE,RJ,MIlDIFY-STATUS), GO TC *+CL-=Ji 
GO TO *+3; 
NULL-ACTIVATELSUSPENDJ NIlDE(PLSELFJJ; 
GO TO T ERM-ND DE; 
/* CALL SCHEDULER */ 
EXFCIJTE-S INGL F-CYCLE1 VALuE,WAI I-RE SFChSE ,NC_RETURN,ACT_CODE=9 J 

NODE{1 12)) W ITH INPUT=l,RETURN-ADDPFSS=PISELFT i 
ACTIVATELNO-CONNECT) FUNCTIONAL-UNITLLLlJJ hITH 
CONTRflL~INFDRMATION=FLOP~CODEJ CSIKG 1 IhPLT,GEhERATORS INITI4TED W 

EXECUTE-S INGLE-CYCLE(RETURN,VALLEJ CCMMAhD THEN STORE STATUS 
IN FLSTATUS-ADDRESS); 

GO TO SNODE,CLOCKER; 
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INPUT-SNODE: 

/* LOCAL DATA ENVIRONMENT 

1 WORKING REGI STER S 

GLOBAL DATA ENV IRONHEN T 
SAME AS SEQUENTIAL NODE */ 

DEFINE STATIC PROCESS WHOSE SUBSTRLCTCRE CChTAIAS F(INJ SONS WITH 
PROGRAM= CONS( SON SSP J , 
LDCAL-DATA=F(LOCAL,SONSI PJ t 
PDRT=F(PORT-SONSIP J, 
EP SV=F(EPSV,SONSIP J , 

AND 
CLOCK iNG PROCESS= 

INVOKE PROGRAM( SINPUT-CLOCKER) kI 1H 
INITIALIZE,ROUTINE=-F(INTT,ISNCDEJi 

/REFILL/ 

IN IT- ISNO DE : 
S=P(DESCR IPTOR OF REGTSTFR-RLOCK DEFIhED FRCP 

(DESCRIPTDR=P(GLOBAL,DATAJ ,OFFSEl=OJ kITH DIMENSIObi=lJ; 
SET-STATf(l,S(POPJJi 
READ ELEMENTL2J WITH FORMAT=NULL AND LENGTH=16 FRCM MEMORY 

ARRAY (OESCR IPTOR=F( MEM_DESCJ ,OFF SET=F (INS,ADCJJ ; 
/* SET IN IT IAL STATE OF LOCKS */ 
S=P( DESCR IPTCJR OF IO-BLOCK DEFINED FRCM (DESCRI PTOR=P(GLCBAL,UATAJ, 
OFFSET= 21 WITH 0 IMENSION=4J ; 
SET-STATE( ir SIPOP I J; 

/*CHANGE PORT TO GLOBAL ENV. 3-6*/ 
READ ELEMENT( 4) WITH FORMAT=NULL AN0 LENGTH=F(IhXBJ FROM MEMORY 

4RPAY(DESCRIPTDR=F(MEM-DESCJ, OFFSET=FlIhS,4DOJJ; 
EXPAND(RETURN J F( IN) SONS STARTING AT SChll, 
THEN WAIT FOR F( INJ SONS TO SIGNAL REltRh; 
S=ADD(F( INJ,4J; 
READ ELEMENT(S(POP JJ WITH FORMAT=hULL AhO LEhGTH=F(OUTXBJ 
FROM MEMORY ARRAY 

(DESCRIPTDR=F(MEM-DESCJ,OFFSET=F(IhS,ACDJJ; 
RETURN( SET-STATE{ 1, P(LOCAL-DATA) J J ; 
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S INPUT-U DCKER: 
STORE-INDEXI PILOCAL-DATA),11 ,1=-O; 
S=(LOGICAL-ANO(GLl),CONS(UX16)) rMODIFY_STATUS) rGD TO *+c(,=-); 
(COMPAR EINULL ,NULL t,PflPSTACK1 ,GO TC NCLL; 

FINOJJNLDCKED-[EDGE: 
S= (SHIFT(S,-l),POPSTACK,MODlf Y,STATCS), 

I= 1+1, GO TO *+-CL<): 
GO TO e-1; 
S=ADDfl,L(l)); 
~STI1RE~P~LOCAL-DATA~,l~,POPSTACK~ i 
EXECUTE(CONTINUE) SON(I t THEN U(AI T FCR 0 SCKS TC SIGNAL RETURhi 
GO TO **CL= 1; 
GO TO F IND-UNLOCKED-IEDGE ; 

NULL-ACTlVATE(WAITJ?fSPONSE) SON(l) THEk hAIT FCR 
LILl SONS TC’ SIGNAL RETURN: 

/* THEN SIGNAL PREFETCH COMPLETE */ 
W AKEtIPL ACT-CDDE= 8, SUSPENDt NODEl PL RETLRN) b i 
S=INDFXLPLLOCAL_DATA),l1; 
SET-STATE(Z,S(POP)l; 
S=tLOGICAL~AluD~GIl~,CONSIUX16~~r~~OD~FY~ST4TUS,PCPSTACK~ ,I=Oi 

FINO-U IE: 
S=LSHIFT(S,-1t,POPSTACK,MODIFY~STATLS),I=I+l,GC TO *+-C(<)i 
GO TO e-1; 
S=INDEXtP(LOCAL-PFOCESS)rIt; 
1STJRE(PILnCAL_DATA)ll) ,POPSTACK) ; 
GO TO *+CL= I; 

tTIME_GRAIN): 
Gfl TO FINE-tlIE; 

IT IM E-GRA IN 1: 
ICOMPARE(NlILL,NlJLl ),POPSTACKJ ,GO TO SINPliT-CLCCKER; 
CONSTANTS~UX16:’ I( 16tOL 16) ‘B rSONSSP:FETCH-CPERAND): 
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FETCH-OPERAND: 
DEFINE STATIC PROCESS HHOSE SUBSTRLCTLRE CCATAINS 0 SONS 

AND 
CLOCKING PROCESS=EXECUTE_SINGtE_CYCLEo\C,RETL‘Rh,FETCH_Ih’WT) 
NODE(-FLL INK-ADD)) WITH RETURN,ADORESS=PISELF) ; 

/* LOCAL. DATA ENVIRONMENT 
1 LINK ADDRESS IL J) 
2-3 PORT 

GLOBAL DATA ENVIRONMENT SAME AS PARALLEL NCOE */ 

LINK-ADO: 
S=SHIFTLL (1). 21, I=RESULT; 
S= (ACCESStP (GLORAL,DATA) , I), POPSTACK), I =I +,3; 

/*EXTRACT GL 3) +I MOOt 4)) FIELD*/ 
S=LOGICM_4NOtL! 1),‘1(2)‘B),I=RESLLTi 
S= ~LOAO~CONSTANTLCONS( SHIFT-BYTE) ,I) ,FCPSTAClo rI=I+,l: 
S=ISHIFT~H4SK~S,,SLPOP)~,POPSTACK),1=,’1f8)’@; 
RETURNI~iNOEX~P~GLO64L~PROCESS~, Str PCPSTACK)); 
CONST~TSS(M4SK~BYTE:M4SK~8BITS,SHIFT~BYTE:SHIFT,8BITS~i 

MASK-8BITS: 
CONSTANTSt’OL 24)1(8)‘B,‘lL8)0(24) ‘B, ‘C(8)118)01161’B1 

'Of lb)l~e,or8~'B,; 
SHIFT-8B ITS: 

CONSTANTS(Ot24,16,81; 
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OUTPUT-PNODE: 

/4 LDCAL DATA ENVIRONMENT 
1 PORT 

GLOB4L DATA ENVIRONMENT SAME AS PARALLEL hCDE */ 

DEFINE STATIC PROCESS rlHClSE SLRSTRLCTLRE CCKTAIhS 1 SONS WITH 
PROGRAM= CON St SONOP ) , 
LOCAL-DATA=FTLOCAL-SONSIP), 
PORT=FtPORT,SflNSIP I, 
EPSV=F(EPSV,SONOP) 

AND 
CLOCK ING PROCESS 

=INVOKE PROGRAMtPIJtJTPUT-CLOCKER, CITH INITIALIZE-ROUTINE=,F 
( IN IT-OPNODE ii 

EPSV-SONOP : 
RETURNIPt EPSV WITH VSTACK=F(STACK61 ,F’TACK=F(STACKBb)); 

IN IT-OPND DE: 
S=P( DESCRIPTOR OF IO-BLOCK DEFINED FRCClDESCPI PTOR=PiGLCBAL,OATA), 
OFFSET= 2) WITH D tMENSION=4I ; 
SET-STATEI 1, SlPOP ) ); 

/*ChANGE PORT TO GLOBAL ENV. 3-6*/ 
S=ADD(FL IN1.2); 
READ El. EMENT( S(POP 1) WITH FORMAT-hL’L1 AND LELGTH=F(OUTXB) 
FROM MEMORY ARRAY 

(DESCRIPTDR=F(MEM-DESC~,OFFSET=FIIhS,ACD~~; 
RETURNt SET-STATE{ 1, PiLOCAL-DATA) 1) : 

OUT: I=-CONS(MASK-OUT), RETLRNTMASK-SHIFT(G(21 ,Ol); 

OUTXR: I=-CONSt MASK-OUT), RETURN{ MASK-SHIFT (G(2) ,-3) i ; 

CONSTANTS( SONDP:STORE-OPERAND, MASK-CLT: ‘O(2811f4) ‘61 ; 

POIJTPIJT-CLOCKER: 
ACTIVATELNO-CONNECT) FUNCTIONAL-UN1 T(L(1)) hITH CONTROL~INFORF”ATION= 

NULL USING 0 INPUT-GENFRATtlRS INITIATED BY I 
EXECUTE-S INGLE-CYCLEI VALUE ,NO-RETCRbl CCCt’AhC THEN STCRE STATUS 

IN F 1 STATUS,AODRESSl; 
WAKEUPtACT-CODE=Ll,CONTINUE) NODE(P(RETURh1) ; 

iT [ME-GRAIN I: 
GT) TO POUTPUT-CLOCKER; 

STATUS-ADDRESS: 
RETURU (INDEXIPTGLOBAL,DATAI,l) 1; 
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STORE-OPERAND: 

/* LDCAL DATA ENVIRONMENT 
1 LINK ADDRESS IIJJ 
2-3 PORT 

GLOBAL DATA ENVIRONMENT SAME AS PARALLEL NCDE */ 

IN IT-SOPER: 
/*S=GLlJr I=0 */ 

S= (SHIFTL GI LJ ,- 16J,MODIFY,STATUSJ, I-C ,GC TC ‘J+CLl=J: 
RETURN{ LSFO(O,NULL J, POPSTACKJJ i 

FIN C-0 EDGE: 
S=(SHIFTLS,-lJ,POPSTACK,MODIFY-STATLSJrI=I+l,GC TC *+aC(O; 
Go TO *-1; 
STORE,INDEXIPLLOCAL,DATAJ,lJ; 

STORE-OUTPUT: 
EXECUTE-S INGLE-CYCLETNO-RETURN, VALLE *STORE-CUTPUTJ 
NDDELFIL INK-ADDJ J WITH INPUT=P(PORTJ ,RETURF-ADDRESS=PTSELFJ; 

GO Tfl *+C(= Ji 
(TIME-GRAIN): 

GO TO FIND-DEDGE; 
RETURNL (SFD(O,NULL J, POPSTACKJ J i 

/END/ 
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APPENDIX D 

The Internal Format of Sum-Squared Graph Program(S) 
(Figure 27) 

Memory Subsystem 

(Start, End, Value) 

Comments 

Node Description Section 

1 8 10 nl 
9 16 6 nn 

17 18 
19 24 
25 28 
29 32 
33 40 
41 48 
49 56 

Node 1 2 copies 

IN 
OIJT 
11 
01 
02 

57 58 
59 64 
65 68 
69 72 
73 80 
81 88 
89 96 

Node 2 2 copies 

IN 
OUT 
11 
01 
02 

97 98 
99 104 

105 108 
109 112 
113 120 
121 128 
129 136 

Node 3 * 

IN 
OUT 
11 
12 
01 

137 138 
139 144 
145 148 
149 152 
153 160 
161 168 
169 176 

Node 4 + 

IN 
OUT 
11 
12 
01 

177 178 1 
179 184 4 

Node 5 BR 
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185 188 2 IN 
189 192 2 OUT 
193 200 10 11 
201 208 7 12 
209 216 8 01 
217 224 6 02 

225 226 1 
227 232 9 
233 236 1 
237 240 1 
241 248 9 
249 256 10 

Node 6 -0 

IN 
OUT 
11 
01 

257 264 8 
265 272 1 
273 304 0 
305 336 1 

337 344 6 
345 352 1 
353 384 0 
385 416 0 

417 424 1 
425 432 6 
433 464 0 
465 496 1 
497 528 0 
529 560 2 
561 592 0 
593 624 3 
625 656 0 
657 688 4 
689 720 0 
721 752 5 
753 784 0 
785 816 0 

Link Initialization 

Link 8 
1 Data Item 

Link 6 
1 Data Item 

Link 1 
6 Data Items 

External Link Specification 

817 824 0 
825 828 0 
829 832 1 
833 840 8 


