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ABSTRACT

This thesis describes an architecture for a parallel microcomputer system
that permits a systematic and flexible approach to the emulation of a wide variety
of complex sequential and parallel intermediate machine languages in a dynami-
cally varying Processor-Memory-Switch (PMS) environment. This architecture
is based on the view that complex emulators can be best structured in terms of a
set of microprocessors that interact in a highly structure manner. These highly
structured interaction patterns are defined through the concept of a virtual PMS
environment., This concept embodies the capability for reconfiguring both the
internal and the external environment of a microcomputer system: the number
of internal working registers of each microprocessor; the structure of memory,
e.g., its size and word length; and the number of microprocessors and functional
units, and their interconnection and interaction patterns. The virtual PMS is
implemented in the microcomputer architecture by adding a new global level of
hardware control. A particular virtual PMS is dynamically defined by modifying
the syntax (i.e., the number of data elements and their relationship) of the data
structure for control used by this global hardware control level.

The representational capabilities of this architecture have been examined
through the microprogramming of an emulator for a sophisticated parallel
machine language, Adams' Graph Machine Language. The emulator of this
machine language has demonstrated the versatility and usefulness of the concept
of a virtual PMS by requiring less than 600 64-bit microinstructions to be pro-
grammed, while at the same time being able to exploit fully the implicit paral-
lelism of a graph machine program. In addition, the dynamic execution char-
acteristics of this architecture have been studied through the use of a detailed
simulator of a hardware organization for this microcomputer architecture. The
simulator has been used to verify quantitatively that this organization permits
paraliel activity on the virtual PMS to be mapped without significant overhead
onto the physical PMS. In particular, the simulation results indicate that where
sufficient parallel activity exists, the addition of microprocessors to the PMS
configuration will reduce in a linear way the time it takes to execute the compu-
tation. The simulation results have also indicated that the Iogical hardware
design, with the appropriate PMS configuration, can efficiently handle sustained
parallel activity, involving highly structured interaction patterns, of greater

than sixteen microprocessors.
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I. INTRODUCTION

"Pragmatically important problems such
as the design of programming languages appropriate
for given problem areas, design of computer
systems well matched to given programming
languages, and defining efficient structures for
translators are capable of |Dbeing adequately
handled only within a model that assigns similar
structures to programming languages and computer
languages both globally and locally". (Nar67)

I.1T Unification of Three Trends in Computer Architecture

Over the past few years, there has been a growing trend
toward the design of computers whose architecture differs considerably
from that of the classic vorn Neumann type computer*. This departure
from the von Neumann type computer architecture has oceurred on three
levels: 1) the Instruction-Set-Processor (ISP) level of which the
Burroughs B5500 is an example, 2) the PMS Processor-Memory-Switch
(PMS) level of which the ILLIAC-IV is an example, and 3) the Processor
Implementation Technique (PIT) level of computer design of which the

IBM 360/40 is an example (terminology from BEL70).

The first trend, that is on the Instruction-Set-Processor

level, has led to the development of computers whose machine languages

*A von Neumann type computer 1s considered to have a sequential
control structure, and instructions which operate on single units of
data accessed from a linear address space.
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are optimized for a particular higher level language or operating
system enviromment. This trend is exemplified in the languages of
machines such as the Burroughs B6500(HAV68) for Algol, Fairchild's
SYMBOL machine (RIC71) for string manipulation, Abrams' APL
machine (ABR70), Melbourne and Pugmire's Fortran machine (MEL65), etc.
These machine languages represent a broader class of languages than
are conventionally considered (von Neumann) machine languages. We
shall refer to this broader class as Intermediate Machine Languages
(IML). The tailoring of an IML to a specific higher level language is
accomplished by incorporating instructions and data types in the IML
which directly implement (i.e;, mirror) the primitive operations of
the higher level language. For instance, an ALGOL procedure call
including the modification of the addressing environment is directly
mirrored by the ENTER instruction in the B6500. Thus, instead of
implementing the semantics of higher level language primitive
operations through an unnecessarily long and complicated sequence of
instructions (see Figure 1a), the IML is designed so that there 1is a
single instructiom or, at worst, a short sequence of instructions that
efficiently carry out the primitive operation (see Figure 1b).-
Therefore, by tailoring a machine language more closely to a
particular higher level language, the mapping betwegn the higher level
language and the machine language is simpler and results in a more
compact and efficient generated code (MCK67). This trend should
accelerate as the cost of software is recognized as the major cost

component of a computer system (DEN71).
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f . *higher level language statement

(a)

—] sequence of instructions in a
m— conventional von Neumann machine

e sequence of instructions in IML
!———-—-—l\ machine tailored for this language
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*The length of the line is intended to give some relative
measure of the inherent computational activity involved in
the execution of a statement or machine instruction.

**The sequence of machine instructions is intended to indicate
the inefficient use of the computational activity of each
instruction, and the high overhead of instruction fetching
and decoding due to the large number of instructions
required to be executed.

Figure 1. Mapping of a Higher Level Language to a Machine
Language '
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The second trend, that is on the Processor-Memory-Switch
level, has led to the development of computers that are able to carry
out parallel activity at the functional unit level, instruction level,
or process level. These different levels of parallel activity are
exemplified by machines such as the CDC6600(THO64), which permits
clocked asynchronous parallel operation of functional units, the
ILLIAC-IV(SLO67), which permits lock-step execution of multiple copies
of a single instruction stream on 3identical processors and the
multiprocessor B825(AND62), which permits the execution of multiple
asynchronous dinstruction streams on identical CPU's. This trend
towards parallelism at the PMS level has occurred mainly in the design
of high performance computer systems. However, as LSI technology
brings down the cost of logic and as reliability of the computer
system becomes an important component of the design, this trend toward
parallelism should extend to many more types of computer

systems (BEL72).

These two design trends on the ISP and PMS 1levels are not
disparate but rather are separate aspects of a more general trend
towards the design of complex problem oriented computers whose
architecture departs considerably from a classical wvon  Neumann
architecture. The B6500, the ILLIAC~IV, and the SYMBOL machine
represent to varying degrees an integration of these two trends in
computer architecture. The B6500 configured as a multiprocessor
system permits the allocation of multiple processors to the exécution

of a single Algol oprogram, the ILLIAC-IV permits highly parallel
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execution of problems involving an array structured data base, and the
SYMBOL machine permits a set of non-identical processors to work in a
parallel coroutine structure to interpret and execute a scphisticated

IML instruction repetoire.

In parallel with these first two trends, there has been a
third trend towards providing a systematic and flexible technique for
implementing a processor in hardware. This third tremnd, that is on
the Processor-Implementation-Technique level, has led to the to the
development of the concept of a microcomputer (WIL69, HUS70), which
provides a systematic and regular technique for specifying control at
the circuit gate level. The major use, to date, of microcomputers has
been in the implementation (emulation) of the processor of a specific
von Neumann type computer; e.g. IBM 360/40(IBM66), with the
microcomputer usually having a read-only control memory. Recently,
there have been the beginnings of an attempt to combine complex
problem-oriented computer design with microcomputer design
(WEB67,R0S69), implementing a specific architecture by modifying the
READ-WRITE control memory of the microcomputer. It is hoped that the
goal of emulating a wide range of problem-oriented computers can be
realized by dynamically modifying the control memory of a single
microcomputer system. This goal cannot be effectively attained on
microcomputers whose architecture 1is essentially designed for the
emulation of the instruction set of a von Neumann type computer in a
non-parallel PMS environment. This thesis offers an architecture for

a microcomputer system that permits a systematic and flexible approach
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to the emulation of a wide variety of complex sequential and parallel
intermediate machine languages in a  dynamically varying PMS
environment which contains multiple microprocessors and functional

units.

1.2.1 Traditional Microcomputer Architectures

The conceptual architecture of a conventional microcomputer
system 1s shown in Figure 2, The memory subsystem contains a machine
language program (and its corresponding data) which is to be executed
on the emulated computer. The microprogram memory contains
microinstructioné that are used to interpret dinstructions of the
emulated computer. The formats of microinstructions on existing
microcomputers can be characterized into two  general classes:
horizontal and vertical microinstruction formats (see Figure 3 and
Figure 4 respectively). In a microinstruction specified in terms of
the horizontal format, each bit of the microinstruction word controls
a particular internal operation of the microprocessor (e.g., the
opening or closing of a hardware data path between internal working
registers, or the arithmetic operation to be performed on a data
path). The vertical format microinstruction word is broken into a
series of fields as in a conventional machine instruction, where each
field 1is used to specify either one of a set of internal registers or
one of a set of built-in  arithmetic operations. These
microinstructions are executed on a single microprocessor which is

connected to a set of functional units. The term functional unit is
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used in a very broad context to refer to input/output devices, their
corresponding controllers, and arithmetic units, such as a
floating-point adder. In conventional microprocessors, the functional
units connected are usually input/output devices or  their

corresponding controllers rather than arithmetic units.

In order to perform an emulation wusing a conventional
microcomputer architecture, the microprogrammer must first imbed the
state image of the emulated computer, S(e), which includes the set of
working registers of the computer (accumulator, index register,
program counter, etc.) and its main memory into the state image of the
microcomputer, S{m), which includes the Memory Subsystem and the
internal state and working registers of the microprocessor. For
efficiency, frequently accessed elements of S(e) (e.g. the program
counter of the emulated machine, etc.) are stored, if possible, in the
internal working registers of the microprocessor. An  emulator
constructed out of microinstructions has a conceptual microprogram
structure shown in Figure 5. The 'control process'" activates the
"decoding process" with data that identifies the next instruction of
the emulated computer to be executed; the decoding process then
analyzes the instruction to be executed so as to determine the
"semantic routine" together with its appropriate calling sequence,
whose activation will perform the semantics of the emulated
instruction. After the appropriate semantic routine has been
executed, the £flow of control returns to the control process which,

based on the results of executing the decoding process and the
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semantic routine, selects the next instruction to be emulated. This
basic cycle is conventionally called (TUC65) the "Do Interpretive
Loop" (DIL). This two step design process for an emulator is

represented in terms of a commutative diagram in Figure 6%.

' T1.2.2 Basis for a New Microcomputer Architecture

In micrﬁcomputers designed to emulate a specific computer
architecture, or family of computers with similar architectures, the
imbedding of the state image is straightforward. There are internal
registers dedicated to holding commonly accessed state information of
the emulated computer. The control and decoding processes of the
emulator are usually directly implemented in the hardware taking their
data from the dedicated internal registers. This control and decoding
hardware is wusually directly iIntegrated dinto the microprocessor's
control structure used for the sequencing of microinstructions so as
to create an extended control structure. Through this concept of an
extended control structure, the sequencing of microinstructions is
driven directly by the sequencing of emulated instructions. In
addition, the internal data paths and microperations are tailored so

as to make microprograms that carry out the semantic phase of an

*The left hand side of the commutative diagram represents the effect
of executing an instruction of the emulated computer on the state
image of the emulated computer. The right hand side represents the
sequence of transformations that the microcomputer must perform on its
own state image in order to emulate this instruction.
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emulation efficient and compact. Thus, a microcomputer is a flexible
and efficient technique for emulating computers that have been

anticipated.

However, this tailored microcomputer  architecture is
inefficient when used to emulate a machine language (IML) that is
dissimilar in its instruction format, control structure or instruction
semantics to the machine languages anticipated by the designer. This
inefficiency occurs because:

1) the imbedding of the S(e} into S(m) is not

straightforward (e.g., mapping a machine which has a 36 bit

wide word into a microprocessor which has a 32 bit wide
word) and dedicated (specific function) internal registers
cannot be used directly to hold commonly accessed state

information (TUC65):

2) the hardware implementation of the control and decoding
processes cannot be used directly;

3) the microinstructions and the internal data paths they
manipulate that were designed for a specific set of
instruction semantics are clumsy when applied to  the
microprogramming of the control and decoding processes, and
different instruction semantics.

These problems with a tailored microcomputer architecture  are

analogous in many respects to the previously discussed problems with

the execution of higher level languages on a von Neuman machine.

In response to these  problems with a conventional
microcomputer architecture, mnew types of microcomputer architectures
are beginning to be developed, most notably the @M-1 (ROS71) and

MLP-900 (LAW71), which are designed more for general purpose emulation



PAGE 15

rather than for dimplementation of a specific processor., These new
microcomputer architectures differ from conventional architectures by
providing the capability of configuring a set of non-specific internal
registers of the microprocessor and their  corresponding
interconnection pattern into the specific configuration appropriate
for the emulation of a particular TML. Once the particular
configuration is set, the semantics of the microinstruction, when
executed, operate directly in the context of the chosen configuration,
This flexible configuration capability, referred to in less general
contexts as residual control (FLY71), leads to ease of representation,
code compactness, and efficient use of microprocessor resources¥*, The
concept of residual control represents a design trade-off between
conventional microprocessors which are efficient but inflexible and
non-specific microprocessor architectures which are flexible but
inefficient because there is no specification of functions or internal
resources for particular types of emulation. The cost of this
capability for configurability is extra levels of hardware logic, and
high speed memory to hold configuration specifications, which dmplies
a élower microprocessor cycle time, and thus a more costly

microprocessor.

'*The concept of residual control represents the extraction from the
microinstruction of the enviromental information which remains static
during the execution of a sequence of microinstructions. This
environmental  iInformation  specifies gating paths and adder
configurations and modes, and is held in set-up registers which are
used by the hardware to determine how to interpret a microinstruction.
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This concept of dynamic reconfigurability for
representational ease has also been employed in the design of other
components of a computer system. In particular, the idea of virtual
memory (DEN66) is directly analogous in its use and techniques for
implementation to the idea of residual control. Both ideas represent
attempts to match the structure of the computer system more closely
(in this case, dynamically) to the structure of the problem to be

programmed.

The conventional microcomputer, augmented with  the
capability for dynamic configuration of bus interaction patterns
(i.e., qQM-1) and ~ for generalized bit string extractiom and
manipulation (i.e., MLP-900, B1700(WIL72)), provides an appropriate
environment for emulating a wide range of machine languages which have
simple control structures and instruction semantics that operate om
simple data structures (e.g. von Neuman type computers). However,
intermediate machine languages that are tailored for the execution of
higher level languages or for the execution of operating system
implementation languages are not so simple since the complexity of the
higher 1level language operations is reflected in the semantics of the
IML instructions and control structure. If the current trend in the
development of higher level languages is maintained, language-oriented
IML's will employ increasingly more sophisticated control structures,
such as recursion, coroutines, parallelism, etc., and instructions
.that access complex data structures, such as lists, trees, arrays,
etc., and perform operations such as sort (LEV72) matrix manipulation
(GRA70, ABR70), etc. As will be argued below, these IML's call for a

more sophisticated control structure In the mierocomputer.
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The control structure of a machine language or higher level
language consists of a set of control rules(CR) and a data structure
for control(CDS) commonly called Program Status Word(PSW) or processor
state, on which the control rules operate. The control rules
determine at each meaningful unit of activity of the language which
statement or statements of the language will next be executed. TFor
example, if the CDS of a simplified computer consisted of a program
counter and an dinterrupt register, then the CR of this simplified
computer might be the following paradigm: if there are no interrupts
pending, then execute the Instruction at the location specified by the
program counter, otherwise, store the program counter at a fixed
location in the program memory, reset the interrupt flip-flop, place
the address of the Interrupt handling routine in the program counter,
and then execute the first dinstruction of the interrupt handling
routine. This definition of a control structure makes a clear
distinction between the control structure of a language and the
execution of control statements of a language, e.g., conditional
branch instructiomns, etc. The control statements of a language
implicitly, rather than explicitly, affect sequencing by modifying
only one part of the control structure, namely, the CDS; the actual
sequencing of statements occurs only by the interpretation of the
control data structure by the control rules. For example, consgider
the results of executing the control statement "BRANCH TO LOCATION X"

in terms of the control structure of the simplified computer discussed
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previously. The branch statement, when executed, places the address X
in the program counter; however, the next instruction to be executed
may not be at address X since during the time the branch instruction

was executed an interrupt could have occurtred.

The simple sequential control structure of a conventional
microcomputer is inappropriate for emulation of sophisticated IML's in

a parallel PMS environment for the following reasoms:

1) The control structure component of the state image of
sophisticated IML's 4is not easily imbedded in the control
structure component of S(m); 4n particular, all parallel
activity specified in the control structure component of
S{e) must be sequentialized when imbedded in the control
structure component of S(m); in essence, if the emulated
machine contains instructions capable of fork-join type
parallelism(CON68), there should be a simple and short
sequence of microinstructions that modify control structure
components of 8(m) so that the microcomputer system will
directly start to emulate in parallel the newly created
instruction stream defined by the fork instruction.

2) The control structure for sequencing the different phases
(tasks) required in the emulation of sophisticated IML's may
not be sequential: the instruction decode, and fetch, and
semantics phases may be pipelined, as in the 360/91(AND67)},
or the phases may interact in a parallel or quasi-parallel
coroutine as in the SYMBOL machine.

3) The control structure may be required to represent the
coordination, on a very fine interaction level, of multiple
microprocessors and functional units, such as the lock-step
execution of processors in the ILLIAC-IV, or scheduling of
asynchronous functional units in the CDC-6600.
Thus, the flexibility of the control structure of the microcomputer is
crucial to the effective emulation of sophisticated IML's. In

particular, the control structure of a microcomputer should be able to

be dynamically restructured, in a manner similar to but more general
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than the reconfigurability specified through residual control and
virtual memory, so that it more directly mirrors the control structure

of the emulated machine and its emulator.

I.2.3 A New Microcomputer Architecture

The microcomputer architecture to be presented in this
thesis 1is based on unifying in a single framework the concepts of
residual control, virtual memory, and dynamic (restructurable) control
structure; These concepts have been integrated through the idea of a
virtual PMS enviromment; this 4idea embodies the capability for
reconfiguring both the internal and the external environment of a
microcomputer system. The concept of residual control as used in this
context allows the varying of the number of internal working registers
of each microprocessor; the concept of virtual memory in this context
allows the varying of the structure of memory, e.g., its size and word
length; the concept of a dynamic control structure allows the varying
of the number of microprocessors and functional units, their

interconnections and interaction patterns.

The concept of a virtual PMS environment leads to a new view
of emulation pictured in Figure 7a and 7b, where S(vm) represents the
virtual state image of the microcomputer system created through the
specification of a particular PMS environment and the additional level
of hardware is used to map microoperations, performed in the context

of the wvirtual PMS environment, onto the actual (physical) PMS
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environment. This additional level of hardware is analogous to the
hardware in a virtual memory system which manages the page tables and
performs the mapping of wvirtual addresses to physical addresses. The
extra dimension of representational freedom provided by the concept of
a virtual PMS environment allows:

1) The virtual state 1mage of the microcomputer system,

S(vm), to be structured so as to make the imbedding of the

state image of complex IML's, S(e), straightforward;

2) The micreinstructions to operate directly in the context

of an appropriate S(vm) so as to make the coding of the

emulator compact and simple; :

3) The emulator to be coded so as to be indépendent of the

physical PMS environment but, at the same time, exploit

physical resources when available.

The concept of a virtual PMS environment also leads to a new
view, as pictured in Figure 8, of a microcomputer architecture. In
this new architecture, there are two distinet hardware levels of
control that are structured in a  hierarchical fashion: the
conventional 1level of control, contained in each microprocessor, for
the sequencing of microinstructions, and a new level of control for
the sequencing of microprocessors and functional units; thus, the
microcomputer system contains both  local, distributed control
structures and a global, system—wide control structure. The control
‘rules for this new level of control are impiemented in hardware which
is distributed in each microprocessor and in the controller for the
bus(ses) which are used for inter-procéssor communication, This new

level of control must be an integral part of the hardware organization

for reasons which are analogous to the use of special mapping hardware
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for virtual addressing. Otherwise, the overhead in implementing
highly structured parallel interaction patterns*, where the parallel
activity is of short duration, will overwhelm the inherent parallelism
of the interaction patterns. The control data structure for this new
level of control is contained in a separate memory called the Process

Space Memory (M.PSM).

A particular virtual PMS environment is dynamically defined
by constructing an appropriate global control structure for the
microcomputer system. An appropriate global control structure 1is
constructed by dynamically modifying the syntax, i.e., the number of
data elements and their relationships, of the control data structure
(CDS) contained in the Process Space Memory. In a conventional
computer or microcomputer system, the data structure for control
contalns a fixed set of data elements whose relationships are
predefined. Thus, in a conventional system, contrel can only be
modified by changing the value of data elements in the CDS. The
ability added here to modify the syntax of the data structure for
control, as will be seen later, is the key to tailoring a wvirtual PMS

enviromment for a particular emulated machine.

*A highly structured interaction pattern among microprocesses implies
that there is a high degree of coordination among microprocesses.
This is in contrast to an unstructured interaction pattern which
implies that once one microprocess has initiated the activity of
another microprocess, there is no further coordination of the activity
of these two microprocesses.
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There are two general classes of microinstructions in the
microcomputer. One class, called the Integer Function Language (IFL),
deals with dinternal registers of the microprocessor, and are like
conventional vertical microimstructions. The other class, called the
Structure Building Language (SBL), deals with the external environment
of the microprocessor by modifying the CDS contained in the Process
Space Memory. The SBL can be thought of as a control structure
definitional language which is designed so as to regularize contrel at
the microprocessor/microprocessor interaction level,
microprocessor/functional unit interaction level and

microprocessor/Memory Subsystem interaction level.

This new level of hardware control can also be thought of as
a simple, hardware operating system which controls the scheduling and
interactions among microprocessors and functional units. In this
context, the CDS stored in the Process Space Memory (M.PSM) is
analogous to the control blocks and queues that describe the
interaction and existence of tasks {or processes) in a multiprogrammed
6perating system. The SBL statements are analogous to requests for
those  supervisor services that affect interprocess dinteraction
patterns in such an operating system. The SBL can manipulate and
build up the CDS only in ways understandable to the global control
rules of the microcomputer system; the CDS, in a very general sense,
can be considered a control structure definition program which, when
interpreted by the global control rules of the microcomputer system,
defines a particular sequential or parallel control structure for

sequencing of virtual microprocessors (microprocesses*) and functional
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units. The CDS can also be thought of as a wvariable structure
template that defines a particular internal and external structure for
the microcomputer system, thus the idea of a virtual PMS environment.
An SBL program is quite different from a sequence of control
statements since the control structure definition program (the CDS),
constructed by the SBL, 1s external to the microprogram. The
separation of the control structure definition program permits the
static parts of the virtual PMS enviromment to be generated only once

for repeated executions of emulation.

SBL statements dynamically modify the CDS to directly
reflect the state transitions occurring in the emulated computer. SBL
statements reflect these state tramsitions by modifying the CDS so as
to change: 1) the data environment of a microprocess, 2) the activity
state of a microprocess, or 3) the interaction patterns among
microprocesses (only this third case results in a modification of the
syntax of the CDS}. The CDS explicitly represents the felationship
between the execution of a microprogram and the immediate data
environment (parameters) in which the instructions of the microprogram
operate. This relationship between the control and data enviromments,
as will be seen in more detail later, allows 1) the representation of
data environment interrelationships among microprocesses, and 2) the
state of the emulated computer to be Integrated directly into the CDS

(e.g., the IML program counter could be a parameter of a microprocess

- — ——— ——— . ——

*The relationship between a microprogram and microprocess is analogous
to the relationship between a program and a process (LAM68).
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defined in the CDS). Thus, an IML control statement, such as a
conditional branch in a pipelined emulator, can be implemented by an
SBL microinstruction that modifies the data environment {e.g., the IML
program counter parameter) of the microprocess that asynchronously
fetches the next instruction to be executed. Likewise, the processing
of an IML interrupt can be handled by an SBL instruction that suspends
the activity of the microprocess that emulates the IML interrupt
handling pfocess. IML contrel statements that specify the creation of
new paths of controls (e.g., fork-join dinstruction , etc.) can be
implemented by an SBL statement that builds up the appropriate
structure in the CDS for emulating IML instructions along this newly
created control path. Additiomally, the SBL can be used to construct
in the CDS: 1) control structures for sequencing microprocesses which
carry out the semantics of emulated instructions, 2) control
structures for I/0, and 3) control structures for data accessing

operations,

I.3 An Outline of the Justification for This

New Microcomputer Architecture

The remainder of the thesis will develop the following
conclusions:

1) The concept of a virtual PMS provides a representatiocnal

framework in which a wide variety of sequential and parallel

control structures can be easily expressed,

2) The SBL can be used to simply and compactly code
emulators for complex IML's.
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3) A computer organization which implements the concept of a
virtual PMS can be designed such that highly parallel
activity specified on the virutal PMS can be translated
without undue overhead into highly paralliel activity om the
physical PMS,

Chapter II contains a detailed discussion of the SBL and the

associated global control structure, and their applicability for

representing particular types of control structures.

Chapter III reviews in a step by stép manner the design and
coding of an emulator for a complex IML. The emulator for this
complex IML represents a comprehensive test case that 1s wused to
illustrate how control structure concepts, such as distributed

control, pipelining and recursion are coded in the SBL.

Chapter IV discusses the computer organizational issues
involved in implementing this proposed microcomputer architecture.

Specifically, the following organizational issues will be discussed:

1) the bussing structures to access memory, and for
interprocessor communication;

2) the hardware algorithm for scheduling of  virtual
microprocessors on actual microprocessors.

3) the design requirements necessary to insure no hardware
deadlocks are introduced which are not already present as
software deadlocks.

4) the issues involved in the use of a memory cache per
microprocessor.

5) the internal microprocessor organization necessary to
implement the concept of a virtual microprocessor,
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Chapter V contains an evaluation of the performance
capability of a possible hardware implementation of this microcomputer
architecture when executing the emulator discussed in Chapter III.
This evaluation is based on statistics produced from a detailed
hardware simulator which permits the varying of hardware parameters,
such as the number of microprocessors, the number of busses, the
interleaving of memory, the size of the cache, and the cycle times of
a microprocessor, memory, or cache. This evaluation will attempt to
indicate the erucial parameters that affect systems performance.

Finally, Chapter VI summarizes the major results of the thesis.
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II. Structure Building Language (SBL)
and

the Data Structure for Control (CDS)

I1.1 Motivation and Important Design Considerations

The design of the SBL and its associated data structure for
control is based on the view that complex emulators can be best
expressed in terms of a set of (virtual) microprocessors that interact
in a highly structured manner. Further, these highly structured
interaction patterns (e.g., a virtual PMS environment) are different
for different types of emulators. This view represents a modular,
task oriented approach to managing the complexity of emulation, which
is, in fact, the technique used to design sophi;ticated computer

organizations such as the IBM 360/91, CDC 6600, BCC-500(LAM70) and the

SYMBOL machine.

The CDS has beén defined so as to (1) allow the flexible
structuring of a virtual PMS environment, and (2} insure that the
hardware algorithm for the mapping of virtual microprocessor activity
to actual microprocessor activity i1s straightforward. The SBL
microinstructions are not oriented toward specifying any particular
method of microprocessor interaction patterns, but rather are building

blocks on which different interaction patterns can be defined. For
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example, Dijkstra's semaphore (DIJ65), Saltzer's wakeup-waiting switch
(SAL66) and message-queuing (SAA70,RID71) are all communication
patterns that can  be emulated by a short sequence of SBL
microinstructions. However, SBL microinstructions are of sufficient
complexity so as to provide information to the hardware mapping
algorithm which allows the mapping algorithm to take advantage of
similarities between the structure of the virtual PMS environment and
that of the actual PMS environment. For instance, if it is desired to
broadcast the same data to 64 virtual microprocessors and there are at
least 64 actual microprocessors, then the mapping algorithm should be
able to broadcast the data directly in one step to all 64
microprocessors, rather than sequentially transferring the data to

each microprocessor.

The remainder of this chapter d1is divided dinto three
sections: the Data Structure for Control, the Structure Building
Laﬂguage, and the Generation of the Data Structure for Control. The
first section, on the CDS, describes the syntax of microprocess
interaction patterns, e.g., "how'" microprocesses can communicate and
with "whom" they can communicate. The second section, on the SBL,
describes the semantics of microprocess interaction patterns, e.g.,
"how'" and "when" different syntactically defined interaction patterms
are invoked. The third section, on the generation of the CDS by the
SBL, describes how different syntactic interaction patterns are

dynamically constructed.
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1I.2 Data Structure for Control (CDS)

The CDS defines the syntax of microprocess interconnection
and interaction patterms. The CDS consists of an arbitrary number of
microprocess state vectors (MSV); each MSV has a structure, pictured
in Figure 9%a, which has 13 components; different microprocess
interaction patterns are defined by varying the number of state
vectors and the values their components. Changing the values of MSV
components, as will be seen shortly, changes the relationship among

microprocesses.

A microprocess state vector is contained in two disjoint
structures, a primary state vector (PMSV) having 7 components, and a
state vector extension (EPSV) containing 6 components; these two
disjoing structures are connected by a state vector extension pointer
contained as a component of the primary state vector. The MSV 1is
separated dnto two structures so as to allow the sharing of state
vector extensions among microprocesses; the sharing of a state vector
extension by two or more microprocesses defines a FORTRAN subroutine
type control structure, i.e., each microprocess has 1its own local
statically assigned storage and a common storage area for
communication with other microprocesses. In addition, this separation
allows the global enviromment within which a microprocess executes to
be changed with the modification of a single pointer, i.e., the state
vector extension pointer. One of the methods for microprocesées to

interact is for the initiating microprocess to change the state vector
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extension pointer of the microprocess to be activated, as will be

discussed more fully in the next section.

The remaining components of the microprocess state vector
(MSV), for purposes of explanation, can be broken into two overlapping
classes: external-environment components and internal-environment
components. Each of these classes can be further subdivided into
control-environment components gnd data-environment components. The
external control-environment components define the set of
microprocesses that a microprocess can directly communicate with. The
external data-environment components define how other microprocesses
can transfer data to a microprocess. The internal control-environment
components define the local CDSs for the  sequencing of
microinstructions of a microprocess. The iInternal data environment
components define the internal working registers of the microprocess.
Figure 9b contains a diagram of this categorization of the components

of a MSv.

The values of the components of an MSV are integers,
pointers to MSV's, or pointers to registers that contain descriptors
of either an array of registers or an array of MSV's. The Process
Space Memory holds the collection of MSV's that define the CD$ as well
as the registers pointed to by components of the MSV's. The MSV,
together with the registers it points to, define the state image of a

virtual microprocessor S{(vm).
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MSV-Components

External - Internal-
Environment Environment
Control Data Control Data
Local Process Env, Port Entry Point Local Data Env.
Global Process Env. Giobal Data Env, Process Status Value Stack
External Env, Pointer External Env. Pointer Processor Status
Return Pointer Value Stack Program Counter
Stack 20224312
Figure 9b. Functional Classification of Microprocess State

Vector Components
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IT.2.1 External Control Environment

There are four external control-environment components
contained in an MSV: a local process environment pointer, a global
process environment pointer, an extended environment pointer , and a
return pointer. The first three of these configure the CDS in terms
of a tree of microprocesses. In this context of a tree of
microprocess state vectors, the local process environment component
specifies a set of son MSV's, the global process environment component
specifies a set of brother MSV's, and the external environment
component specifies the father MSV. The external environment pointer
provides a mechanism for tracing back up the tree so as to allow
communication with the global process environment of the father,
grandfather, great grandfather microprocesses, etc. The external
environment pointer thus allows the nested structuring of control

environments.

Example 1: Consider the design of an emulator which works
in a pipelined mamner. In this pipelined emulator, there
are separate, asynchronous microprocesses for fetching,
decoding and carrying out the semantics of emulated
instructions, for fetching and storing operands, and for
controlling I/0 channels. A possible CDS for this pipelined
emulator 1is pictured in Figure 10. The microprocess
computer controls the Channel-Controller microprocesses, and
pipelined  dinstruction emulator. The microprocess ISEQ
(Instruction SEQuencer), IDECODE, and ITYPE-j implement,
respectively, the control, decoding, and semantic processes
of the pipelined emulator.

The tree of micreprocesses constructed by the first three components

represents static control linkages among microprocesses, whereas the
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return pointer component represents a dymamic control linkage. These
static control 1linkages provide a syntactic framework for the
specification of dynamic sequencing among microprocesses, whereas the
return pointer provides a means for specifying a dynamic control

connection between the initiating and initiated microprocesses.

The CDS is in the form of a tree in order to easily specify
control concepts such as hierarchical structure (functional
decomposition), parallelism, coroutines, and recursion.
Representation of hierarchical structure and recursion is possible
because additionai levels may be dynamically built d4in the tree by
filling in the 1local process environment component of the MSV.
Representation of parallel and coroutine structures 1s possible
because brother MSV's in the tree may be treated as distinct,
independent processes, each with its own state Iinformation. In
addition, a set of brother microprocesses is a convenient framework
for specifying multiple activation patterns, e.g., the 64 Processing
Elements (PE) of an ILLIAC-IV can be thought of as a set of brothers
which are executed together. Brother MSV's are stored in consecutive
locations in the Process Space Memory. This method of storing
brothers permits any brother to be accessed in one M.PSM memory
reference*.

-— ——

*An arbitrary size block of MSV's can be specified in terms of three
parameters: the beginning of the array of MSV's, the starting address
in the array, and the 1length of the subarray. This ~concise
representation of a block of MSV's could be possibly used to implement
efficiently a hardware broadcast operation.
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A tree data structure is also a convenient syntax framework
(using father, son, and brother relationships among MSV's) for
defining distributed control systems. The control structure of a
complex system can sometimes be conveniently represented through a
hierarchical structure where in each sibling set (or structural level)
of the tree there is embedded a simple control rule (via a clocking
process) (HOR69) that initiates the sequencing of its son
microprocesses. If additional clocking processes are contained in the
sibling set, contrel may pass to these son microprocesses after
initialization. Thus, instead of one complex control rule for the
entire system, the control can be distributed throughout the system.
In addition, since the control rules can be coded such that their
addressing structure is not based on their absolute locations in the
tree, but only on their relative position in the tree, a single

microprogram could be used by clocking processes throughout the tree.

A distributed control structure can be used to define,
depending upon the number of cleocking processes that are
simultanecusly executed, either quasi-parallel (DAH66) or parallel
control structures. Further, many gequential control structures ¢an
also be easily defined in terms of a quasi-parallel control structure.
For example, a subroutine call mechanism can be considered a quasi
parallel control structure (BIN69): the exeéution of the subroutine
call suspends the activity of the caller and activates the called
subroutine; the return from the subroutine then terminates the

activity of the subroutine and reactivates the caller. The block
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structure and procedure calls of Algol and coroutines are other
examples of sequential distributed control structures. In essence,
the tree structure of the CDS allows the structure of a complex
process to be functionally decomposed into a set of executions of less

complex processes.

II.2.2 External Data Environment

There are four external data-environment pointers contained
in a MSV: a port pointer, a global data environment pointer, a value
stack pointer, and an external enviromment pointer. The port
component, which specifies a block of up to four registers, allows the
transfer of data to a microprocess to occur at the same time the
microprocess is activated. In additionm, the communicating
microprocess does not have to know the location or structure of the
port. The concept of a port allows for the construction of
communication patterns where there are many possible micfoprocesses
that may communicate and their sequence of communication is undefined.
This type of communication pattern commonly occurs when a microprocess
acts as synchronizing  (clocking) process for asynchronously
communicating microprocess e.g., Dijkstra semaphores, message queuing,
ete, The port component may also be used to define broadcast control

structure, e.g., multiple microprocesses having the same port.

The global data environment component, which specifies a

block of registers of arbitrary length, allows the transfer of data to
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a microprocess to be separated from the activation of that
microprocess. This type of communication pattern generally is used
when 1) there are many microprocesses that access a single global data
base, and 2) the values of the data base cannot be simultaneously
modified by multiple microprocesses nor when other microprocesses are

accessing those values.

The value stack component allows two microprocesses to
communicate in a coroutine manner. This coroutine communication
pattern is defined by setting the value stack components of the MSV's

of both microprocessors to the same value.

The external environment pointer component, which points to
an MSV, vprovides a mechanism for accessing the global data
environments of a nested structure of microprocesses. This ability to
define a nested structure of data enviromnments is very useful in

defining Algol-like (block) control structures.

Example 2: Consider the pipelined emulator discussed in
example 1. The microprocesses that make up this emulator
could be structured so as to communicate with each other in
two ways. One communication pattern Is through a shared
global data base where the frequently accessed data elements
of the state image of the emulated computer are held. The
other communication pattern is through the ports of each
microprocessor. In particular, the microprocess, ISEQ, that
asynchronusly fetches 1instructions transmits the fetched
instructions, to the microprocess, IDECODE, through
IDECODE's port. IDECOCDE, as will be discussed in more
detail later, can define when a communication through its
port from ISEQ will be consummated. In this way, the ISEQ
microprocess does not have to worry about whether the
IDECODE microprocess has already decoded the previously
fetched dinstruction. However, if the fetched instruction
was transmitted to the IDECODE microprocess through the
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shared global data base then some explicit interlock
mechanism would be needed to guarantee that IDECODE has
already decoded the previously fetched instruction.

11.2.3 Internal Control Environment

There are four internal control-environment  components
contained in an MSV: an entry point component, a process status
component, a processor status component, and a program counter stack,
These four components define the microprocessor state. The entry
point component specifies the beginning address of the wmicroprogram
that will be invoked when the microprocess is executed; the process
status component specifies the execution status cf the microprocess,
and the activation-type requested of the microprocess (the process
status will be discussed in detail in the next sectiomn); the processor
status component specifies the internal status of the microprocessor,
e.g., the condition code of the last arithmetic result; the program
counter stack component specifies a block of registers that ﬁill be
used as a stack to hold the microprocessor program counter when the
microprocess 1s suspended or when a microprogram subroutine is

invoked. ¢

II.2.4 Internal Data Environment

The remaining set of internal environment components defines
the internal working registers of the microprocessor. The internal

data environment 1is specified in terms of two components: a local
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data environment component, and a value stack component. The local
data environment component specifies a block of registers that can be
directly addressed by a microinstruction. The local data environment
is often wused tc hold data items that are not modified over repeated
executions of the microprocess. Thus, it serves a function similar to
the "STATIC VARIABLES" of a PL/I procedure. The value stack component
specifies a block of registers that will be used as a stack to hold
temporary  results that are generated by the execution of

microinstructions.

II.3 Structure Building Language (SBL)

The SBL consists of eight different types of
microinstructions, as summarized in Table 1*. The SBL has two
functions: a syntactic function and a semantic function. the
syntactic function involves the dynamic construction of the DS
discussed in the previous section, while the semantic function
involves the dynamic invocation of microprocess interaction patterns
defined in the CDS. In essence, the syntactic microinstructions

dynamically define static, time-independent interrelationships among

*In the original formulation of the SBL discussed in (LES69), there
was an additional SBL semantic microinstruction: SCP (Sequential
Clocking Process) which was designed to iteratively activate an array
of microprocess to simulate the effect of a sequential, parallel or
overlap FOR statement. This SBL statement was removed because,
through a combination of ASP, SEL and IFL microinstructions, the
function of GSCP statement could be easily implemented without
significant affect in code density nor execution speed.
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microprocesses. Whereas the semantic microinstructions use these
syntactic interrelationships among microprocesses as a convenient
representational framework within which to define dynamic,
time~dependent interrelationships among microprocesses. The semantic
microinstructions are similar in function to the control statements of
a conventional computer since both implement different control
structures by modifying values of data elements of CDS; except, the
semaﬁtic microinstructions operate in the context of CDS which can be

dynamically restructured.

There is a clear distinction in the SBL between syntactic
and semantic operations. This clear distinction allows semantic
opérations to be clearly divorced from syntactic modifications to the
CDS. As will be discussed more fully in the next section, this
divorce permits syntactic modification to the CDS to be generated only

when absolutely necessary.

Fxample 3: Consider the CDS for an IML emulator which
allows fork-join type parallelism. The CDS for this
emulator can be structured in two possible ways. One
approach is to dynamically generate in the CDS an
appropriate syntactic structure to interpret a new stream of
emulated instructions every time a fork operation is
emulated. The other approach i1is to allow only a fixed
number of fork operations to be invoked at any one time;
-thus, a static syntactic structure can be generated, when
the CDS for the emulator is initially constructed, that
permits the interpretation of up to some fixed number of
emulated dinstruction  streams. In either of  these
approaches, the same set of semantic operations can be
employed because of the clear separation of syntactic
generation from semantic operatioms.

The microinstructions under the category ''Structure Building" in Table

1 are classified as syntactic microinstructions while the remaining
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microinstructions type are classified as semantic microinstructions.

The syntactic microinstructions will be discussed in the next section,

The same microinstruction intermal representation 1s used
for all SBL microinstruction types and is pictured in Figure 11. Each
microinstruction word contains six mode bits and five syllables. The
execution of SBL microinstructions has two phases: 1) the evaluation
of the five syllables, and 2) the execution of a specific control or
structure building operation based on the instruction type, computed

syllable values and mode bits¥*.

There are three dimensions to the specifications of dynamic
interaction patterns among microprocesses: "when'", "who', and "how".
The '"when" dimension, which has not been discussed up to now since it
has no syntactic component, specifies at what time points in the
activity life of a microprocess can certain types of communications be
received. The fwhen" dimension 1is an integral part of the
specification of. highly structured interaction patterns; this is
especially true since 1) the built~in communication mechanism is

primitive, e.g., no message queuing, and 2) it is desired to be able

*The SBL microinstructions have been referred to in a previous
paper (LES71) as SBL macros because of their two phase execution cycle.
In this context, the microimstruction type can be considered to define
a control structure definitional template (prototype) that 1is
expanded, based on the values of the gyllables of a microinstruction,
when a microinstruction is executed. The specification of particular
values for the parameters of the template then defines a particular
instance of a basic control rule or structure building operator.
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to emulate many different types of communication patterns. The "when"
dimension is based on the execution-state of the microprocess that is
to receive the  communication, and the type of communication
(activation-type) desired by the microprocess that is to initiate the
communication. The set of possible execution states represent the
different phases in the life cycle of a microprocess. The semantics
of SBL microinstructions are defined so that communication between two
microprocesses 1is only consumméted when the execution-state and type
of communication (activation-type) are agreeable for communication#*,
The agreeable states are specified in Table 2. The set of agreeable
states is designed so that a microprocess can 1) sequentially accept
and process multiple communications, 2) selectively accept only

certain types of communications, and 3) asynchronously accept requests

for communication.

The ability to sequentialize the acceptance of multiple
communications dis crucial to the emulation of synchronization
primitives such as the Dijkstra semaphore, message queuing, etc. This
ability to sequentialize the acceptance of multiple communications,
combined with the ability to transmit data to a microprocess through
its port at the same time as an activation, provides a mechanism for

creating a single non-interruptable data path to the controller of a

*During the period when a communication is checked whether it can be
consummated and when the communication is being consummated, there are
hardware locks on the Process Space Memory which guarantee that no
other initiating microprocess can examine the MSV of the microprocess
to be communicated to.
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resource; the creation of a single non-interruptable data path to a
resource controller is the basic building block of asynchronous

synchronization mechanisms.

Example 4: Consider the pipelined emulator discussed
previously and pictured in Figure 10. The microprocess
COMPUTER has the vresponsibility for controlling the
microprocesses ISEQ and CHANNEL-CONTROLLER(1-c). Suppose
two of the CHANNEL-CONTROLLER microprocesses are executing
and when each terminates, it wants to signal this fact to
the microprocess COMPUTER through an execute activation-~type
and also transmit the termination status of the I/0
operation. In addition, suppose the execution-state of the
COMPUTER microprocess is in a suspended execution-state
after it has dinitiated the two CHANNEL-CONTROLLER
microprocesses. Then the first CHANNEL-CONTROLLER that
finishes will be able to consummate a communication with the
microprocess COMPUTER. However, not until the microprocess
COMPUTER has finished processing of the first communication
and set its execution-state to suspended can the other
CHANNEL-CONTRCLLER initiate a communication.

The ability to selectively accept = communications is
important in the . construction of hierarchical control structures,

e.g., multiple levels of clocking (supervisory) processes.

Example 5a: Consider the following hierarchical control
structure where microprocess A is supervising microprocess
B, which is, in turn, supervising microprocess C. Suppose B
has initiated a communication with C and is waiting for a
response from c before it continues  executing
microinstructions. Additionally, suppose A which controls
B, happens to attempt to initiate a communication with B
while B dis waiting for a communication back from C,
However, B may not want to accept the communication from A
until the communication with C is completed. (This is
especially true if C is a functional unit.) In additiomn, the
complexity of B's coding may increase considerably if B
needs to determine which microprocess, A or C, has initiated
the communication, and to postpone the response to the
communication if 1t was the inappropriate microprocess.
Thus, there 1s needed some mechanism for B to selectively
listen for only communications from C during certain time
periods,
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This selective listening capability is accomplished by having two
execution-states that indicate a microprocess has stopped execution of
microinstructions but expects to be restarted: the "waiting" and
"suspended"  execution-states. Corresponding to these two
execution-states, there are two activation-types: execute and wakeup
type activations, respectively. By observing the agreeable states in
Table 2, the desired selective listening will occur when microprocess
A initiates communication with B with an execute activation-type,
microprocess C  initiates communication with B with a wakeup
activation-type, and microprocess B when it only wants to receive a

communication from C places itself in the waiting execution-state.

In essence, through the use of agreeable-states approach for
selective listening, a two level priority interrupt scheme is defined
for message communication. The major differences between the
agreeable states approach and the conventional implementation of
priority interrupt schemes is that the agreeable-states approach
associates priority with type of message rather than with the process
generating the message, and it has only two levels of priority.
Associating priority with the message rather than the process allows
for the building of a hierarchy of clocking processes since a clocking
process must have one message priority for communiation with its
supervisory process and another for the process it supervises;
additionally, interrupt schemes which have n levels of pricrity can be

emulated by comstructing multiple levels of clocking processes, each
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having two levels of priority. This multiple level approach is in
contrast to the conventional approach of one centralized c¢locking

process {e.g., the CPU of a computer) having n levels of priority.

Example 5b: Consider the microprocesses COMPUTER, ISEQ and
IDECODE in figure 10, Suppose the COMPUTER microprocess
receives a signal from one of the CHANNEL-CONTROLLER
microprocesses that an I/0 operation is complete; the
COMPUTER microprocess then wants to interrupt the current
sequence of emulated instructions, and restart the
sequencing of iInstructions at a different program locationm.
The microprocess COMPUTER accomplishes this modification of
sequencing by transmitting a message to the microprocess
ISEQ. However, ISEQ may be waiting for a message from
IDECODE specifying that IDECODE can accept another emulated
instruction to decode. Thus, microprocesses COMPUTER, ISEQ,
and TIDECODE relate to each other in a similar manner to,
respectively, microprocesses A, B and C discussed in example
5a; consequently, a similar selective listening mechanism
discussed previously can be used to handle these
communication requirements of a pipeline emulator.

The  ability to  accept requests for communication
asynchronously allows for the construction of interrupt driven control
structures; an interrupt driven control structure occurs when a
microprocess continues to execute if no communication is pending, but
if there is a communication pending, it puts itself into an
appropriate state to receive the pending communication. This is in
contrast to what will be called "message driven control structure"
where the microprocess explicitly waits at certain time points for a
communication to be received before continuing to  execute
microinstructions.

Example 6: Consider the microprocesses COMPUTER and ISEQ

discussed in the previous example. The microprocess ISEQ

continues to fetch emulated dinstructions until it

asynchronously receives a request for communication from
microprocess COMPUTER. This communication from COMPUTER,
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when  accepted, specifies  where ISEQ next fetches

instructions from. However, ISEQ does not accept the

communication until its dialogue with IDECODE is completed.
An interrupt driven control structure is constructed using the
execution-state "execute-~single-cycle" and activation-type 'suspend'.

A microprocess whose execution-state is execute-single-cycle indicates

that the microprocess should suspend its activity in order to receive

a communication. The suspend activation-type changes the
execution-state of a microprocess from execute to
execute-single-cycle.  Once the suspend activation-type is

consummated, the initiating microprocess may then perform the desired
communication. It should be noted that the suspend activation-type is
only consummated when the the microprocess to be communicated.with has
an execute execution-state. Once the suspend type of activation is
consummated, no other suspend activation-type will be consummated
until the execution-state of the microprocess to be communicated with
returns to execute. Thus, when the microprocess to be communicated
with eventually places itself iIn a position to  accept the
communication, only the microprocess which initiated the first suspend
will be able to communicate. A  microprocess that is in
execute~-single~cycle execution-state will automatically suspend its
activity at the end of a microinstruction which has an appropriate
mede-bit set or the microprocess may periodically examine its

execution-state to determine whether a communication is requested.

Though a use of an interrupt driver control structure has

been detailed in the previous example, it is worthwhile to observe the
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following: in a computer system where there are many processors and
the cost of an individual processor is not significant, compared to
the total system cost, message driven contrel structures may be
preferable to interrupt driven control structures because of the ease
and clarity of programming, and simpler hardware, This is the case,
in fact, in the CDC 6600 where the 10 PPU's control I/0 devices
without an interrupt structure, each PPU being responsible for
controlling only a single device at a time, The use of message driven
control  structures is very convenient in this microcomputer
architecture because a virtual PMS can be dynamically constructed
which contains an arbitrary number of virtual microprocessors, each
dedicated to a specific control function. In addition, the built-in
hardware  scheduling algorithm will automatically deallocate a
microprocess from the microprocessor to which it is connected to if

the microprocess is inactive.

There are three SBL microinstructions that, when executed,
initiate communications among wmicroprocesses:

1) ASP (Activation and Synchronization Clocking Process)

which 1is wused to specify a single microprocess activation

pattern.

2) SEL (Select and Broadcast Clocking Process) which is used
to specify a multiple microprocess activation pattern.

3) FCP (Functional Unit Clocking Process) which is wused to
specify a sequence of activations between a functiomal unit
and a set of microprocesses.

The semantics of each of these microinstructions is based largely on

the process-state component of the a microprocess state vector. The
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structure of the process-state component is pictured in Figure 12.
The internal-activation, return-~condition, and type-of-transfer
subcomponents of the microprocess state vector are used to provide
additional dinformation to the microprocess about the type of
communication initiated by another microprocess or a functional unit.
The internal-activation subcomponent is used to specify one of 16
possible message types, and is generally used to indicate iInformation
about either the status of the initiating microprocess or the
operation desired by a functional wunit. The return-condition
subcomponent is used to specify whether the microprocess should signal
back to the initiating microprocess after it has. terminated its
activity. The type-of-transfer subcomponent specifies whether the
message to be communicated is a descriptor of the desired data or the
actual data which can be up to four registers long. The busging
structure of the microcomputer is designed for direct communication
between microprocesses, of up to 128 bits, thus the restriction on the

size of the port to four registers.

II1.3.1 Single Microprocess Interaction Patterns

The ASP microinstruction is the basic building block on
which complex clocking processes are built. The ASP mieroinstruction
combines the control functions of microprocess activation, including
parameter passage, and microprocess synchronization. These control
functions are implemented through modifications to the MSV of the

microprocess to be communicated with and that of the microprocess
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which executes the ASP microimstruction. The microassembler syntax
for the ASP microinstruction is the following:
<ASP>:=<ACTIVATE> NODE (<P1>) WITH INPUT = <P2>,
RETURN=<P3>, EPSV=<P4>;

The <P1> parameter specifies the address of the MSV of the
microprocess to be communicated with, The <ACTIVATE> parameter
defines a new process-state component for the MSV defined by the <P1>
parameter. Specifically, the <ACTIVATE> parameter specifies the
activation-type, return-condition, type-of-transfer, and
internal-activation subcomponents of a process-state component. The
activation-type parameter is wused, as previously discussed, to
determine whether the communication can be consummated. If the
communication cannot be consummated, then the ASP microinstruction can
be repeatedly retried (e.g., busy wait) or the next microinstruction
will be skipped over; this option is specified by a mode-bit in the
ASP microinstruction word. In addition, if the communication is
consummated the other mode-bits of a microimstruction word specify
whether the initiating microprocess will continue to execute
microinstructions, or go into a waiting or suspended execution-state,
This latter option provides a mechznism for synchronization of the
activity of the initiating microprocess with that of the initiated
microprocess. The <P2> parameter specifies either an immediate data
item or a descriptor of a data item that will be transferred to the
port of the called microprocess. 1In the case that the <P2> parameter

is a descriptor, the type-of-transfer specified by the <ACTIVATE>
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parameter determines whether the descriptor or the data pointed to by
the descriptor will be transferred. The <P3> parameter specifies the
address of an MSV to be placed in the return pointer component of the
MSV of the called microprocess. The <P4> parameter specifies the
address of a state vector extension (EPSV) to be placed in the state
vector extension pointer component of the MSV of the called
microprocess, The <P3> or <P4> parameters may be null which implies
that, respectively, the return pointer or the state vector extension

pointer components of this called MSV are not modified.

Example 7: Consider the implementation of Dijkstra's P and
V semaphore operations in terms of ASP microinstructionms.
Let PV be a microprocess that dimplements the P and V
semaphore  operations, A microprocess M performs a P
operation by executing the following ASP microinstruction:

EXECUTE (BUSY WAIT, WAIT_ RESPONSE, VALUE,
ACT_CODE=9) NODE(L(1)) WITH INPUT=S,
RETURN ADDRESS=P(SELF);

where L(1) is a local data register of M that contains the
address of microprocess PV, and S is the top of the value
" stack that contains the descriptor of the semaphore
variable. This ASP  microinstruction initiates a
communication with the PV microprocess with an execute
activation-type, and iInternal-activation Code equal to 9.
The internal-activation code is used to distinguish between
a request for a P or V operation. 1In addition, it transmits
a descriptor of the semaphore variable to PV's port and
modifies the return pointer component of PV's MSV to point
to the microprocess M, After the communication has been
consummated, the execution-state of M is set to waiting. If
the  ASP microinstruction cannot consummate the
communication, then the ASP microinstruction will be retried
until consummation. However, the busy-wait is not on the
semaphore wvariable but only on the microprocess which
updates the semaphore. 1In addition, the hardware scheduling
algorithm in this busy-wait situation will, 1if there are
other uses for the microprocessor executing the microprocess
M, reschedule M to run at some later time. The PV process,
when activated for a P operation, checks whether the
semaphore variable can be decremented; if it can, then the
microprocess M is restarted by the following
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microinstruction:
WAKEUP (SUSPEND) NODE (P (RETURN)) ;

and then the PV microprocess 1s suspended until another
request 1is received. However, if the semaphore variable
cannot be decremented, then the PV microprocess places the
address of M in a queue associated with the semaphore
variable, and then suspends itself without restarting M. 1In
addition, if there is no more queue space in the data
environment of PV to hold addresses of blocked
microprocesses, then PV will put ditself in the
execution~state waiting rather than that of suspended. As
will be seen shortly, if PV is in execution-state waiting
then only V type operations can be consummated which do not
make any more demands for queue space (e.g., 2 nice use of
selective listening). A V semaphore operation is specified
by the following ASP microinstruction:

WAKEUP (BUSY_WAIT, CONTINUE, VALUE, ACT_CODE=10)
NODE (L(1)) WITH INPUT=S;

This ASP microinstruction initiates a communication with the
PV microprocess with a WAKEUP activation-type, and
internal-activation code  equal 10, In additiom, it
transmits a descriptor of the semaphore variable to PV's
port, After the communication has been ccnsummated, the M
microprocess continues to execute microinstructions. Thus,
the V operation goes on 1in parallel with execution of
microinstructions of M. The PV microprocess, when activated
for a V operation, increments the appropriate semaphore
variable, and checks whether there is a queued microprocess
waiting on that semaphore wvariable. If so, an  ASP
microinstruction detailed previously, is used to restart the
queued microprocess.

II.3.2 Multiple Microprocess Interaction Patternms

The SEL microinstruction is the basic building block of
multiple microprocess activation patterns. These patterns include
those generated by control structure concepts such as lock-step
execution as wused in the.ILLIAC—IV, fork~join type parallelism, etc.

The SEL microinstruction activates in a broadcast manner a selected
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subarray of microprocesses and then waits for an arbitrary number of
these microprocesses to signal completion. A microprocess generally
uses this microinstruction to control its son microprocesses. The
microassembler syntax for the SEL microinstruction is the following:
<SEL>:=<ACTIVATE> <P1> SONS STARTING AT SON (<P2>)
WITH INPUT=<P3> THEN WAIT
FOR <P4> SONS TO SIGNAL RETURN;
The <P1> parameter specifies the number of sons the activation is
broadcast to. The <P2> paraﬁeter specifies the number of the first
son in the broadcast array. In essence, the <P1> and <P2> parameters
select a subarray of son microprocesses to initiate a communication
with. The <ACTIVATE> parameter, which has an identical interpretation
to the <ACTIVATE> parameter of the ASP microimnstruction discussed
previously, specifies the type of communication to be broadcasted to
the subarray of microprocesses. The <P3> parameter specifies the data
that 1s to be broadcast toc the ports of these microprocesses. The
<P4> parameter specifies the number of return signals to wait for,
before executing the next microinstruction.
Example 8: Consider the CDS plctured 1in Figure 13. The
CONTROL~1 microprocess implements the FORK-JOIN operation on
microprocesses A and B through the execution of the
following SEL microinstruction:
EXECUTE 2 SONS STARTING AT SON({1)
THEN WAIT FOR 2 SONS TO SIGNAL RETURN;
The SEL microinstruction has been designed based on the view

that the control primitives of 1) broadcasting data .to n
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microprocesses, and 2) waiting for k return signals are fundamental to
the efficient implementation of highly structured parallel control
structures. By imbedding these control primitives in the semantics of
a microinstruction, it provides information to the hardware scheduler
and bus-controller which can be used to more efficiently map parallel

activity on the virtual PMS onto the physical PMS*,

11.3.3 Microprocess/Functional-Unit Interaction Patternms

The FCP microinstruction is used in the microprogramming of
the semantics of 1I/0 control structures; I/0 devices in future
discussions will be referred to as  functional umnits. The
microcomputer architecture can contain an arbitrary set of functional
units** Each of these units can be independently activated and can
have an arbitrary number of inputs and outputs, where that number need
not be fixed and may be data dependent. For example, a2 functional
unit could be a  floating-point multiplier, or more generally, an

arbitrary input/output device such as a disk controller. A functional

*The use of this information has been postulated and proposed
techniques developed, however, these proposed techniques are not
incorporated into the computer organization to be discussed in Chapter
IV. Especially interesting is how to design a bussing structure so
that broadcast operations on the virtual PMS can be directly mapped on
to the physical PMS when microprocessors are already connected to the
microprocesses that will receive the broadcast operatioms.

**The hardware scheduling mechanism wused to  schedule multiple
microprocessors is also used to schedule identical functional umits.
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unit can receive input data from three sources: the memory subsystem,
another  functional unit, or the microprocessor subsystem. A
functional unit obtains (and stores) data by requests to the
microprocessor  subsystem, which has complete responsibility for
determining the source (or sink) of the data that are requested and
for generating the appropriate control signals to accomplish the data
transfer. In this manner, the microprocessor subsystem acts as a
generalized I/0 controller and separates the process of data accessing
from that of computation. The idea of a generalized I/0 control
structure to control arithmetic units has been proposed in an earlier
paper by the author(LES68) and by Lass(LAS68), as a basis of the

design of a high-speed computer.

The FCP microinstruction performs the following functions:
1) creates a connection between a functional unit and the microprocess
executing the FCP microinstruction; 2) activates the connected
functional wunit with control information specifying the desired
operation; and 3) controls the generation of input and output data
sets for the connected functional unit. The connected functional unit
can be a physical functional umnit or a virtual function unit, i.e., a
microprocess programmed to behave like a functional unit. The input
and output data sets are generated by the son microprocesses of the
microprocess executing the FCP microinstruction. In essence, the FCP
microinstruction is a clocking process which controls the interaction
between the functional unit and the son microprocesses that fetch the

inputs for the functional unit, and stores its outputs. A functional
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~unit requests a particular service from its clocking process by
communicating with the clocking ©process through a  wakeup
activation-type. The particular service requested is specified by
appropriately setting the internal-activation code (see Table 2). The
FCP microinstruction has been parameterized so that both simple and
complex interaction (handshaking) patterns between a functional unit
and its input and output generating microprocesses can be specified in

a uniform framework.

The microassembler syntax for the FCP microinstruction is

the following:

<FCP>:= ACTIVATE FUNCTIONAL~UNIT (<P1>) WITH
CONTROL-INFORMATION = <P2> USING <F3>
INPUT-GENERATORS INITIATED BY <ACTIVATE>
COMMAND AND STORE STATUS IN <P5>.

The <P1> parameter specifies the number of a functional wunit oxr the
address of a microprocess. The <P2> parameter specifies control
information to be transferred to the functional wnit when initially
connected. The <P3> parameter specifies the number of son
microprocesses that will act as input generators, starting from the

first son; the remaining son microprocesses are used as output

generators.

Example 9a: Consider the ITYPE-j microprocess in Figure 10,
where the microprogram FUNCTIONAL-UNIT CONTROLLER is just a
single FCP microinstruction, The <P3> parameter, in this
case, would have the wvalue 2 to dindicate microprocesses
FETCH-OPERAND 1 and FETCH-OPERAND 2 would generate the input
data for the functional unit, and microprocess STORE~RESULT
would store its output data. In addition, suppose the
functional wunit that 1is being controlled can perform a
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floating-point add, a  floating-point  subtract or a

floating-point multiply operation, then the <P2> parameter

would specify which operation would be desired.
The son microprocesses that generate the input data set are
sequentially activated from the first input son to the last input son
to generate input data; an analogous activation pattern 1is wused for
activating the son microprocesses that store the output data. The
<ACTIVATE> parameter specifies the mode for activating the input and
output generator microprocesses, e.g., EXECUTE, EXECUTE-SINGLE-CYCLE,
RETRIEVE, and the mode of transferring (and fetching) data to (and
from) microprocess, e.g., VALUE or REFERENCE. The EXECUTE mode
indicates only one input or output value will be handled by each input
and output generator, while the EXECUTE-SINGLE-~CYCLE mode implies many
values can be handled; the RETRIEVE mode indicates the desired input
data has already been prefetched and resides in the microprocess's
port; the VALUE mode indicates the FCP microinmstruction will handle
the traﬁsfer of data between the functional wunit's port and son
microproéess‘s port; while the REFERENCE mode indicates that son
microprocess will directly handle the transfer of data between ports.
The interaction patterns defined by these different modes are detailed
in Tables 3 and 4, and Fiqures 14 and 15. The <P5> parameter
specifies a descriptor of a register (or the address of a microprogram
to be invoked) that status data is retrieved and stored from, This
ability to invoke a microprogram to store the status information
provides a convenient mechanism for the monitoring of special

conditions.
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1) Device requests clocking-process to generate an input;*

2) Clocking-process activates next available input-generator microprocess

to generate an input value;
a) Clocking-process transfers address of device to input -generator's
port;
'3) Input-generator signals clocking-process that input is in the input-

generator port;

a) and whether more data can be generated;

4) Clocking-process transfers data from input-generator port to device's

port.

5) Clocking-process updated address of next available input-generator.

*Device can request next input as soon as the previously requested data has

been stored in its port.

Input Modes Phases Required
EXECUTE (VALUE) Step 1, 2, 3,4, 5
EXECUTE (REFERENCE) Step 1, 2a, 5
RETRIEVE Stepl1,4,5
EXECUTE _SINGLE_CYCLE (VALUE) Step 1, 2, 3, 3a, 4, 5
EXECUTE SINGLE CYCLE (REFERENCE) Step 1, 2a, 3a, 5

2022434

Table 3: Input Request Protocol for Control
of Functional Unit
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1) Device requests clocking-process to store output;*

2) Clocking-process requests output-generator node to store output;

a) clocking-process transfers address of device to output
generator's port;

b) clocking-process initiates transfer to data in device's port to
output-generator's port;

¢) clocking-process initiates transfer of data to its own port;

3) Output-generator signals clocking-process that it has completed transfer,

and that it can or cannot accept more data;

4) Clocking-process updates address of next available output-generator.

*Device can request to store next output as soon as data is removed from its

port.

Possible Output Modes Phases Required
EXECUTE (VALUE)/RETRIEVE 1, 2, 2b, 4
EXECUTE_SINGLE_CYCLE (VALUE) 1, 2, 2b, 3, 4
EXECUTE (REFERENCE) 1, 2, 2a, 4
EXECUTE_SINGLE_CYCLE (REFERENCE) 1, 2, 2a, 3, 4
PIPELINE 1, 2¢ 2022A35

Table 4: Output Request Protocol for Control
of Functional Unit
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Example 9b: Consider again the microprocess ITYPE-]
discussed in the previous example, except this time with a
FUNCTIONAL-UNIT CONTROLLER microprogram which is more
complex. In this case, it 1is desired not to connect
(reserve) the floating-point functional unit until the input
operands have arrived from the Memory Subsystem; this type
of functional unit control scheme, commonly called
reservation station concept, is used in pipelined computers
such as the IBM 360/91 where there may be many
instructions competing for the same resource; this control
scheme can be implemented by two SBL microimstructions, the
first an SEL microinstruction activates simultaneously
microprocesses FETCH-OPERAND 1 and FETCH-OPERAND 2, and then
waits until both microprocess signal completion; the two
input microprocesses,when they are complete, leave their
fetched data in their ports, The second SBL
microinstruction would be an  FCP microinstruction
parameterized as in Example 3, except with its <ACTIVATE>
parameter specifying a RETRIEVE operation.

The FCP microinstruction semantics clearly separate the operation of
data accessing from the computational algorithm requesting the data.
This separation facilitates the definition of control structures that
1) directly emulate different types of IML instruction formats, e.g.,
one address, two address, etc.; 2) specify dynamic data
interconnection patterns among functional units*, e.g., a pipeline of
functional units, a tree of functional units, etc.; and 3) allow the
incorporation of functional units into the functional unit subsystem

that have complex input and output requirements, e.g., a matrix

multiply unit.

*The method generating a CDS for these alternative functiomal wunit
control structures is discussed more fully in an earlier paper by the
author (LES70).
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1I1.3.4 Microprocess/Memory Subsystem Interaction Patterns

The MEM microinstruction defines an access path between a
microprocess and the Memory Subsystem. This path is used to fetch
(store) data into (from) the microprocess's port from (into)} the
Memory Subsystem. The Memory Subsystem is bit addressable, and can be
activated to store or retrieve a bit string of up to 128 bits. The
memory subsystem is bit addressable so as to simplify the embedding of
the state image of an emulated machine S(e) into the virtual state
image of the microcomputer 8(vm), and to allow in a single memory
operation the fetching of the appropriate unit of data to be worked
on. Once the data has been fetched into the working registers of the
microprocessor, IFL masking operations can be used to perform bit
extraction on 32 bit length registers.

Example 10: Consider an emulated computer whose instruction

word is 48 bits long with an opcode field in the first six

bits. A single MEM operation is used to extract the desired
instruction from the Memory Subsystem intoc two consecutive,

32 bit working registers of the microprocess. The opcode of

the emulated instruction is then extracted, by a single IFL

SHIFT MASK operation (See Table 6), from the first working

register of the mieroprocess’s port.

This two level bit extraction scheme represents a compromise among the
high overhead cost of accessing a bit-addressable memory, the ease of

programming and the hardware efficiency of internal microprocessor

operations on fixed size data elements.

The MEM microinstruction is parameterized so as to allow for

the automatic hardware mapping of the address space of a wide variety
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of emulated machines directly into the physical address space in the
Memory Subsystem. This capability permits addresses in the address
space of the emulated machine to be directly manipulated without first
converting these addresses into addresses in the address space of the
microcomputer. This automatic hardware mapping capability of the MEM
microinstruction represents how the concept of virtual memory can be

used in the context of emulation.

The microassembler syntax for MEM microinstruction 1is the
following:
<MEM>:= "READ/STORE" ELEMENT (<P1>) WITH FORMAT
= <P2> AND LENGTH = <P3>) "FROM/INTO"
MEMORY ARRAY (DESCRIPTOR = <P4>,
OFFSET=<P5>) ;
The <P4> parameter specifies a descriptor of a memory array (i.e., (1)
base, (2) dimension, and (3) size of data element) in the Memory
Subsystem, and the <P5> parameter specifies an offset quantity with
respect to the base of this memory array. These two parameters define
the physical address space in the Memory Subsystem that the wvirtual
address will be mapped into. The <P1> parameter specifies an index of
a data element in the offset memory array, i.e., the address of the
data element in the emulated machine space; the <P3> parameter
specifies the length of the data element, e.g., for an IBM 360 whether
data is 1, 2, 4 or 8 bytes long; and the <P2> specifies the format of

the data element. These five parameters are used to map a data item
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in the virtual address space into a data item in the physical address
memory space. This mapping function defines a bit string of, P3 x
(P4:size of data element), bits starting at bit addruss, (P4:base) +

(P1+P5) x (P4:size of data element) in the Memory Subsystem. If this

. , .
bit string lies outside the bound of the memory

code is set in the processor status, and the memory operation is

bypassed.

The MEM microinstruction may also be used, depending upon
the process-state, to fetch or store the data for a functional unit.
In this mode of operation, the format and length parameter is
transmitted along with the data to the functional unit. The use of a
formal field in the specification of both the imput and output data
allows the functional unit to be very sophisticated in being able to
perform, if desired, arithmetic operations involving operands and

results of different types and lengths (HAUG8).

I1.3.5 Microprogram Invocation

The MSC microinstruction performs a microprogram subroutine
call. The MSC microinstruction is mainly used in conjunction with the
GEN_EPSV microinstruction to define what will be called a microprocess
prologue (discussed in the nekt section). The MSC microinstruction in
the prologue context 1s wused to initialize the data environment of

microprocess before the execution of the main microprogram body of the
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microprocess. The microassembler syntax for the MSC microinstruction
is the following:
<MSC>:= INVOKE MICROPROGRAM (<P1>) WITH

FROCESSOR STATUS=<P2>, INDEX=<P3>,

VALUE STACK=<P4>, INITIALIZE ROUTINE

=<P5>;
The <P1> parameter specifies the address of a microprogram subroutine.
The remaining parameters initialize the data environment before
invoking of the microprogram. The <P2> parameter specifies the
initial setting of the condition codes  specified in the
processor-status. The <P3> parameter specifies an initial wvalue for
the index register. The index register is not specified in terms of a
unique register location in the MSV, but rather is pushed and popped
on the program counter stack at the same time the program counter is
pushed or popped. The <P4> parameter sﬁecifies a value for the top of
the wvalue stack and the <P5> parameter specifies another microprogram
which is invoked to 1initialize the local data environment and

miscellaneous working registers.

IT.4 Generation of Data Structure for Control

The CDS is dynamically generated in the form of a tree of
microprocesses through the execution of syntactic SBL
microinstructions; however, this method of generating the CDS does not
necessarily reflect the dynamic activity patterns of microprocesses.
The separation between the generation and sequencing of microprocesses

is possible because the execution of a microprocess is factored into



PAGE 75

three discrete, separable phases: a binding phase, an expansion
phase, and an activation phase. The generation of a CDS caused by the
binding and expansion phases can thus be separated from the sequencing
of a CDS caused by the activation phase, detailed in the previous
section, This separation is extremely important because once the
overhead cost has been incurred for defining the CDS, there is little

overhead cost for each dynamic interaction pattern invcked.

The binding phase of a microprocess involves the generation
and storage in the Process Space Memory of the microprocess state
vector that defines the microprocess. At the completion of the
binding phase, the microprocess's execution-state is set to
unexpanded. For example, the binding phase analog for an ALGOL
procedure is the allocation of memory for the local variables of a
procedure, and the setting up of the static linkage pointers required

for uplevel addressing in the block structure.

The expansion phase of a microprocess involves the
generation of the microprocess' local process environment, e.g., its
son microprocesses, the initialization of its working registers, and
the specification of the microprocess entry point e.g., the initial
value of the microprogram counter. Thus, the expansion phase of a
microprocess results in the completion of the binding phase of its son
microprocesses whose expansion will, in turn, generate additional
microprocesses. This recursive sequence of microprocess binding and

expansion phases leads to a dynamic tree generation mechanism for
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constructing the CDS. This dynamic mechanism for generating the CDS
is somewhat similar to the concept of run time macro expansion or
dynamic compilation. For example, the expansion phase of an ALGOL
procedure would be the generation of procedure substructure and the

initialization of the local variables of the procedure.

The activation phase, which has been discussed in the last
section, involves the execution of microinstructions starting at the
specified entry point. For example, the activation phase analog in an
ALGOL procedure is the transferring of parameters to the procedure and
the execution of machine code for the procedure.

Example 11: Consider the CDS pictured in Figure 13; the

three phases of execution of microprocess FORKA,B are

pictured din Figure 16. The binding phase results in the
generation of microprocess state vector that defines the
microprocess FORKA,B. The expansion phase results in the
generation of the son microprocesses A and B. Finally, the
activation phase results in the execution of microprogram

CONTROL-1 which contains the SEL microinstruction that

performs the FORK-JOIN contrel operatiom.

The expansion phase of a microprocess, which is indicated ULy
execution-state 'expanding', occurs when a microprocess is in an
"unexpanded" or "terminated" execution-state and is initiated with an
activation-type of expand, execute or execute-single-cycle. The
expand activation-type explicitly separates the expansion phase from
the activation phase; this separation permits the expansion phase to
be initiated with different parameters than the activation phase. In

addition, based on the rebuild-condition subcomponent of a M5V, part

or all aspects of the expansion phase can be bypassed when a



PAGE 77

(a) BINDING-PHASE: FORK A B

(b) EXPANSION-PHASE: (FORK A B)

(c) ACTIVATION-PHASE : FORK A B
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Figure 16. Three Phases of Microprocess Execution
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microprocess is re-expanded when in the "terminated" execution-state.
This ability to control the activity of the expansion phase permits
the rebuilding of the CDS only when the microprocess's substructure
will vary on repeated executions of the microprocess, Thus, the

static aspects of the CDS once defined need not be regenerated.

The expansion phase is specified in terms of a set of
microinstructions that will be called the microprocess prologue. The
starting address of the microprogram that defines the prologue is
specified by the entry point component of a MSV. The microprocess
prologue consists of a two microinstruction sequence: a GEN_PMSV
microinstruction followed by a MSC microinstruction. The execution of
the GEN_PMSV microinstruction will generally, in turn, result in the
execution of the two other types of syntactic microinstructions:
GEN_EPSV and GEN REG. The GEN PMSV microinstruction, when executed as
part of the microprocess prologue, £ills in the local process
environment component of a MSV with a pointer to a descriptor of an
array of MSV's. This array of MSV's defines the son microprocesses.
In addition, one of the mode bits of the GEN_PMSV microinstruction
specifies the rebuild-condition of the microprocess: static or
dynamic, If the microprocess is re-expanded at some later time and
the rebuild-condition is set to static, then the GEN_PMSV
microinstruction of microprocess prologue will be bypassed. Thus, the

microprocess substructure will not be rebuilt in this case.
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The MSC microinstruction, when executed as part of the
prologue, is only partially executed during the expansion phase; only
the syllables of MSC microinstruction that do not have their defer bit
set will be evaluated. The syllables of the MSC microinstructions
that are deferred will be evaluated only when microprocess begins its
activation phase. This two step evaluation scheme provides a
mechanism for selective Initialization of the environment of the
microprocess each time it is executed. For example, the microprocess
entry point address could be recalculated for each execution of the
microprocess or calculated once for all executionms. In the same
manner, the local data enviromment could be re-initialized for each
execution or initialized only once when the MSC microinstruction is
executed for the first time. Thus, the concept of microprocess
prologue provides a simple mechanism for specification of  the

particular initialization sequence required by a microprocess.

There are three syntactic microinstructions; GEN_PMSV,
GEN _EPSV, and GEN REG. The GEN _PMSV microinstruction ailocates and
initialzes an array of primary microprocess state vectors in the
Process Space Memory. In addition, at the completion of the execution
of a GEM PMSV microinstruction, a descriptor (or pointer to the
register containing the descriptor) for this PMSV array, is placed on
the top of the wvalue stack of the microprocess that executed this
microinstruction. As mentioned previously, if GEN PMSV is executed as
part of the microprocess prologue, the 1local process environment
subcomponent 1is initialized with a pointer to the descriptor of the

array of MSV's. The GEN PMSV does not have to bc executed in the
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context of a microprocess prologue. Thus, alternative means of
generation of a CDS can be programmed instead of the tree generator
scheme previocusly described. However, when an altermative means of
generation is used, there are no automatic mechanisms for specifying
when structures will be rebuilt or reinitialized. The microassembler
syntax for the GEN PMSV microinstruction is the following:
<GEN_PMSV>:= S= SUBSTRUCTURE CONTAINS <P1> SONS

WITH PROGRAM = <P2>, PORT = <P3>,

LOCAL DATA = <P4>, EPSV=<P5>;
The <P1> parameter specifies the number of elements in the array of
primary microprocess state vectors. The other four parameters define
the value of, respectively, the entry point, the port, local data
environment, and extended process state vector pointer components of a
PMSV. These parameters are re—evaluated for each PMSV in the array if
the defer bit of the syllable associated with parameter is set to 1.
Otherwise, the ‘same parameter value 1s used to initialize all. PMSV's

of the array.

The GEN EPSV microinstruction allocates and initializes an
extended state vector in the Process Space Memory. At the completion
of its execution, a pointer to the EPSV is placed on the top of the
value stack. The microassembler syntax of the GEN_EPSV
microinstruction is the following:

<GEN_EPSV>:= S= P(EPSV WITH GLOBAL DATA=<P1>,

GLOBAL PROCESS=<P2>
VSTACK=<P3>,

PSTACK=<P4>,
EXT_ENV=(<P5>)};
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The five parameters, respectively, define pointers to the global-data
environment descriptor, global-process environment descriptor, value
stack descriptor, program counter stack descriptor and a pointer to
PMSV that defines the first level of extended environment. If a
parameter is left out then value of the corresponding component of

EPSV of the microprocess executing this microinstruction is used.

The GEN_REG microinstruction can be used either to allocate
an array of registers in the Process Space Memory or to create a
descriptor for a subarray of registers which have already been
allocated. In addition, the GEN REG microinstruction can be used to
create a descriptor for an array of words in the Memory Subsystem. At
the completion of the execution of a GEN REG microinstruction, a
descriptor (or pointer to the register containing the descriptor) for
the array of registers is placed on the top of the value stack. There
are three types of register descriptors: a register-block descriptor,
a stack descriptor, and an I/O descriptor. Each of these descriptors
specify the base and dimension of a block of registers in the Process
Space and information which specifies how the block of registers can
be accessed. the access-control information specifies an access mode
attribute, e.g., read, read/write, or write, and a "sharability"
attribute, e.g., 1local, coroutine or global. The "local" attribute
indicates that only one microprocess will ever access this data, the

"coroutine" attribute indicates that only one microprocess at a time
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will access the data, and the "global" attribute indicates that
multiple microprocess may simultaneously access the data¥*. In
addition, the stack descriptor contains a component which indicates
the current top of stack, while the I/0 descriptor contains components
that specify the format and length of the data; In the latter case,
the value of the format and length components are specified through
the MEM microinstructions. The I/0 descriptor is generally used to
define the port of a microproceés that is used in the generation for

input or output data sets for a functional unit.

The microassembler syntax for the GEN _REG microinstruction

is the following:

<GEN _REG>:= S=DESCRIPTOR OF "MEMORY/REGISTER BLOCK/
STACK/I0 BLOCK" DEFINED FROM
(DESCRIPTOR=<P1>, OFFSET=<P2>) WITH
DIMENSION=<P3>, ACCESS CONTROL=<P4>,
"WORD_LENGTH/INITIAL POSITION"=<P5>;

The <P1> and <P2> parameters specify the beginning address of a
subarray of registers that were previously allocated in the Process
Space Memory. If these two parameters are null, then a new block of
registers will be allocated in the Process Space Memory rather than
using previously allocated registers. The <P3> parameter specifies

the number of registers in the block; the <P4> parameter specifies the

access control attributes; and the <P5> parameter specifies either the

—— v aan,

*The sharability attributes are used to specify the store through mode
of data when a cache per microprocessor organization scheme is

employed; this concept of cache per microprocessor will be discussed
more fully in Chapter IV,
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initial position of the top of the stack or the word length of a

memory array in the Memory Subsystem.
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ITI. A COMPREHENSIVE TEST CASE

This chapter reviews in a step by step manner the
design and the coding of an emulator for a complex IML. The choice of
an IML was not based on the practicality of the IML as a machine
language, but rather on its appropriateness as a vehicle to test:

1) The sufficiency of the SBL and the associated global

control structure to represent a wide variety of sequential

and parallel control structures.

2) The suitability of the SBL for the compact and simple

coding of IML emulators.

The IML chosen is based on an asynchronous parallel
programming schema (language) developed by D. Adams (ADA68) called
the Adams' Graph Machine Language (AGML). The use of the AGML as an
IMI. forms an appropriate test case because the emulator for the AGML
can be designed to employ the following control structure concepts:
distributed parallel control, pipelining, recursion, finite resource
scheduiing, message queuing, and the reservation station approach to
the scheduling of arithmetic wunits. Furthermore, the emulator for
this IML is interesting in its owm right because "no computing systems
have yet been designed or translators created according to the
principles of asynchronous programming"” (ERS72). 1In addition, the
AGMI, permits the direct expression of highly parallel algorithms whose
emulation provides an interesting set of simulation test cases for
evaluating certain aspects of the computer organizationl to be

discussed in the next chapter.
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II1.1 Discussion of Adams' Graph Machine Language

The AGML is based on a data flow model (KAR66,ROD67) for
representing the sequencing aspects of a computation. In a language
based on a simple data flow model for sequencing, the instructions of
the 1language can be thought of as nodes of a graph, where the nodes
are connected to each other through links. These  links are
uni-directional data paths where one terminal point of the link is
denoted as an output link of a node while the other terminal point 1is
denoted as an input link of a node. An instruction (node) is executed
when each of its input links contains a data item; a node executes by
removing the input data from its input links, performing a calculation
on this data, and storing the output of the calculation on zeroc or
more of the output links. After the node has stored the results of
the calculation on its output links, the node can be re-executed when
each of the input links again has data items. An example of a graph

program is shown in Figure 17.

The data flow model for sequencing allows the implicit
expression of parallel activity because 1if there exists no data
dependencies among a group of nodes, then these nodes may be executed
simultaneously. For example, the two multiplication nodes in Figure
17 can be executed simultaneously whereas the plus node must await the
completion of both multiplication nodes. A data flow model can also
be thought of as a distributed control system since each node can
independently decide, based on local information, whether it should

execute.
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Figure 17. A Simple Graph Program
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Adams' formulation of a graph machine language, AGML, is an
extension of the simple data flow model previously described. The
simple data flow model has been extended in the following ways by
Adams' so as to increase the expressible parallelism and to simplify

the coding of algorithms:.

1) links between nodes are fifo (first-in-first-out) queues;

2) there are three types of nodes: parallel, procedure, and
sequential nodes;

3) a data item can be an array of data items.

The parallel node allows for the expression of pipeline (vector)
parallelism. The parallel node 1is defined so that it may be
immediately re-executed rather than waiting for the compututation to
complete, This re-execution of the parallel node can occur once the
input data items have been removed from their links provided there is
another set of input data items on the input links. Thus, multiple
instances of a node may be concurrently executing giving the effect of
a pipeline. The procedure node allows for the expression of recursive
control  structures. The procedure node instead of invoking a
primitive arithmetic operation, causes the iInvocation of a graph
procedure. The Input parameters of the invoked graph procedure are
the input data items of procedure node. The invoked graph procedure
may, Iin turn, contain procedure nodes, thus leading to a recursive,
parallel control structure. Finally, the sequential node allows for

the expression of data-dependent sequencing of the graph, e.g.,
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loop-control, etc. The sequential node is defined so that its
semantics are affected by its previous execution history. In
particular, the execution history is used to select, for the next
execution of the sequential node, a subset of its input data links

from which input data will be accepted.

The version of the AGML that was emulated as an IML differs
in two ways from Adams' original formulation discussed above:

1) the data items are single units rather than arrays of

data items;

2) the conditions for termination of a graph procedure have

been changed.
The first difference does mnot 1mpact the basic organizational
structure of the emulator but does simplify the coding of the
priﬁitive node operations, and the dynamic space allocation algorithm.
However, the second difference does impact the basic organizational
structure of the emulator. In Adams' original formulation of the
AGML, a graph procedure is terminated when all the nodes of the graph
procedure are inactive., This termination condition has been changed
so that now a graph procedure is terminated when there is a data item
on each of the external output links. An external output link is a
link of the graph procedure that is not connected as an input link to
any node in the graph procedure. These external output links are used
to transmit the output of the graph procedure to the procedure node
that invoked the graph procedure. Thus, if there is an infinite loop

in a. graph procedure, which does not affect the generation of the



PAGE 89

outputs of the procedure, then this graph procedure would never be
terminated based on Adams' original termination condition, whereas
this graph procedure would eventually terminate based on this new
termination condition*. Otherwise, the termination conditions are

identical.

This new termination condition was introduced so that the
AGML. could be emulated in a highly parallel manner. Monitoring for
Adams’' original formulation of the termination conditién is very
difficult to do in a highly parallel manner. This is especially true
if no assumptions are made about the actual number of physical
microprocessors. In essence, the monitoring process overlays the
highly parallel distribu£ed contfol structure of the graph machiné
with a control structure which requires sequential accessing of a
shared, global data base. 1In contrast, the monitoring process for the
new termination condition does not affect the basic distributed
control nature of the AGML. 1In fact, the process of monitoring for
this new termination condition is precisely the same as the process of

monitoring for whether a node is ready to execute.

. . e e . e e e s

*The new termination condition makes the AGML only output determinate
rather than completely determinate.
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III.2 The Design of an Emulator for the Adams' Graph

Machine Language

A modular task oriented approach has been used in the design
of the AGML emulator. The main emphasis in the design of this
emulator has been the exploitation of the implicit parallelism of an
AGML program. This exploitation of parallelism has been accomplished
by:

1) making parallel, whenever ©possible, the overhead

functions required to sequence an AGML program;

2) dynamically tailoring of the CDS, not only to the

structure of AGML emulator, but also to the structure of the

specific AGML program to be emulated.
This tailoring of the CDS for a specific graph program is accomplished
by creating a separate, distinct control structure for sequencing each
node 6f the graph. This control structure for sequencing each node is
tailored to the particular type of node and the node's input and
output requirements. Thus, the CDS for the AGML emulator closely
mirrors the distributed control structure of the particular AGML
program, In addition, the CDS may be dynamically modified during the
execution of a graph program so as to take advantage of the potential
parallel activity that is generated when a graph procedure is

dynamically invoked.
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I1I.2.1 Machine Language Format and Memory Layout

The first step in the design of the emulator is choosing an
internal representation (machine language format) for specifying a
graph program to the emulator. A graph piogram consists of one or
more graph procedures, where the format of a graph procedure is
plctured In Figure 18a. The graph procedure description is broken
into three sections: a node definition section, a ligkninitialization

section, and an external-link definition section.

The node definition section begins with two bytes that
specify the number of links (nl) and the number of nodes (nn) in the
graph procedure. The remaining part of the first section specifies
the format of each of the nn nodes of the graph procedure (see Figure
18b). The first byte of each node description indicates the type of
node, e.g., parallel, procedure or sequential, the operation code, and
the type of arithmetic unit this operation code can be executed on.
The second byte specifies the number of iinput links (IM) and the
number of output links (OUT) of the node. The third byte in the case
of a procedure mnode is concatenated With operation code of the
procedure node to specify the beginning address of the graph procedure
to be invoked. In the case of a sequential node, the third and fourth
bytes define the initial input link status of the node. This link
status information determines from which dinput 1links data will be
accepted on the first execution of the node. The remaining bytes of

the node description specify the names of the input and output links.
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* N
Start:  jnl - number of links .
Start +1: nn - number of nodes node description
o { section
nn node descriptions
(see following figure)
J
k: link, name of link )
k+1: nip; number of initial data items
(k+2)-
, ta 1l TR
(k + (nip; X 2+1)) dota link-initialization
1 64 section
data 2
data nip, )
1+ {neil {neol Neil - number of external W
O 34 7 input links
Neol- number of external
output links external link
description
(+1)-(l+neis [Tq| ==+vev [Inei section
(14 neil+1) - 0 0
{1+ neil+neol): 1 Neol| |
*An unlabeled box represents an 8 bit byte 2022431

Figure 18a. Machine Language Format for a Graph Procedure
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The link initialization section specifies initial data for
the 1links of the graph procedure. The first byte specifies the name
of the links to be initialized. If the name is zero, then the Ilink
initialization section is terminated. Otherwise, the next byte
specifies the number of initial data items to be stored on the link.

The remaining bytes specify the initial data items as 64 bit values.

The external link definition section specifies the names of
the external input and output links, The external input links are
those links that will receive the initial input data items transmitted
by procedure node that invokes the graph procedure. The external
output links are those links that will hold the output of the graph
procedure. At the termination of the graph procedure, this output
data will be transmitted back to the invoking procedure node. The
first byte of this sectiqn specifies the number of external input and
output links. The remaining bytes specify the names of these links.
An example of a graph progran and its corresponding machine language

format is detailed in Appendix D.

The internal representation of the AGML program is stored in
the Memory Subsystem. The Memory Subsystem is also used to store the
data held on the links. All the other state information of the

emulator is held in the Process Space Memory.
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I11.2.2 The CDS for AGML Emulator

The second step in the design of the emulator is the
specification of the emulator's CDS. The CDS provides a syntactic
framework within which the emulator can be conveniently microcoded.
This syntactic framework has been constructed so as to strongly

reflect a task oriented approach to the design of the emulator.

The CDS of the AGML emulator can be thought of in terms of
two parts: 1) a CDS for resource management (e.g., the dynamic
allocation of memory in the Memory Subsystem for link queue space) and
2) a CDS for sequencing of a graph program. These two parts of the
emulator's CDS form a two level hierarchy where the CDS for resource
management is at the top level. The CDS for resource management 1is
implemented as a fixed structure which 1s independent of the
particular AGML program being emulated, whereas the CDS for sequencing
of the graph program has a dynamic structure which is dependent on the

particular graph procedures currently being executed.

I11.2.2.1 The CDS for Resource Management

The CDS for resource management is pictured in Figure 19a.
The  resource management functions are carried out by the
SPACE-MANAGER, and SCHEDULER(1-Ns) microprocesses, The SPACE-MANAGER
microprocess dynamically allocates blocks of storage in the Memory
Subsystem for link queue space. Each link is allocated a fixed length
block of 16 64-bit words iIin the Memory Subsystem, This storage

allocation cannot be done statically since graph procedures can be
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dynamically invoked during the execution of a graph program, In
addition, there can be many graph procedures which are simultaneously
requesting storage for their links. Thus, the storage allocation has
to be done dynamically in a central place. As discussed in Chapter
II, the SPACE-MANAGER microprocess, by appropriate manipulation of its
execution—-state, can sequentialize the acceptance and processing of
communications which either request the allocation of storage or

specify the release of previously allocated storage.

The scheduling function of the resource manager _is
implemented through a set of SCHEDULER microprocesses where each type
of primitive node operation could conceivably have its own SCHEDULER
microprocess. A SCHEDULER microprocess is used to assign, depending
upon the type of operation, either a functional unit or a microprocess
to carry out the primitive operation of a node. Each SCHEDULER
microprocess has a fixed length queue to hold requests for a device
(e.g., functional unit or microprocess) that cannot be currently
honored. If this queue becomes full, then the SCHEDULER microprocess
will employ the '"waiting" execution state that permits selective
listening rather than the suspended state. In this selective
listening state, a communication to the SCHEDULER that requests a
device will not be consummated, whereas a communication to the
SCHEDULER that specifies the termination of a device will be

consummated.



Juawabeuel 324N0S8Y 40} a4NONUIS eIR] [043U0) *eg1 @4nbi4

PAGE 97

1842013

sosseooud - 13npayds

10583004d

11| |0ju00

Lia)joquod
N - {DUCHIoUN

1342010
JUN~{DUGHIUNY oy

~J3|npayYods

niN

ANAFO0Hd
~HdVH9

TLINA - ONN
HIINAZHIS

H3NA3HIS

HOSS V0N
***{ yanoaHos ...A”HMMJ:omxum HUV A”H

1abouow
—gonds

0P
—ydoib

3NIHOVIN —HJVH9




PAGE 98

The AGML emulator could have been organized without this
centralized scheduling function. In essence, the centralized
scheduler is scheduling virtual microprocesses which are in turn being
scheduled on physical microprocessors by the built-in hardware
scheduler, Thus, the emulator could have been organized so as to use
the built-in scheduler alome. There are two main reasons for taking
the centralized scheduler approach. The first reason stems from the
simpliecity of the built-in hardware algorithm for  scheduling.
Specifically, the two level scheduling approach allows the design of a
sophisticated graph scheduler which takes into account the structure
of the graph procedure so as to wutilize available microprocessors*
more efficiently(NEL72). The second reason stems from the semantics
of the parallel node that permit the concurrent dinitiation of an
arbitrary number of primitive operations for each parallel node. In
order to take advantage of this potential parallelism of the parallel
node in a non-centralized scheduling approach either 1) each time a
primitive node operation was initiated, the sequencer of a parallel
node would have to dynamically generate the MSV of a microprocess to
carry out the operation; or 2) the fixed (DS structure of the
appropriate SCHEDULER microprocess would have to be duplicated for
each parallel node in the graph procedure. Thus, either the structure
building overhead involved in sequencing of the graph procedure would
greatly increése or the size of the CDS for the graph procedure would

greatly increase. On the other hand, a centralized scheduler has a

*The virtual scheduler could query the hardware system to find out the
number of physical processors, and uses this information as a

parameter in the scheduling function.
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fixed CDS structure which does not vary during the execution of the
graph, and there 1is only one MSV for each device that can be
scheduled. For these reasons, a centralized scheduling approach was

used.

I1II.2.2.2 The CBS for Sequencing of a Graph Procedure

The sequencing of a graph procedure is 1mplemented through
the microprocess GRAPH-PROCEDURE. This microprocess generates the (DS
for sequencing of a graph procedure, initializes and allocates storage
for the links‘of the graph procedure, and monitors for the termination
of the graph procedure. The CDS for sequencing of a graph procedure,
as previously discussed, is tailored to the particular graph procedure
being emulated. The template for a tailored CDS is pictured in Figure
19b. This tailored CDS contains nl LINK microprocesses and nn NODE
microprocesses, where there are three types of node microprocess:
PARALLEL, SEQUENTIAL and PROCEDURE. This CDS for sequencing of a
graph procedure has been designed so that once generated its structure
need not be modified. Thus, the structure building overhead is only
incurred once and consequently is not a function of the number of node
executions. In addition, the generation of the CDS for all NODE

microprocesses can be done in parallel.

The LINK microprocess 1is responsible for retrieving and
storing data from a link's queue space in the Memory Subsystem and

updating the queue pointers. The LINK microprocess acts as a
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semaphore process for controlling access to the link's queue space. A
semaphore process is required for controlling access tc a 1link queue
because, at the same time, one node may desire to place data on the
gqueue while another node may desire to remove data f£from the queue,
The LINK microprocess is also used to avoid "busy waiting" when a node
desires a data ditem and the 1link queue is empty. In this case,
instead of the node repeatedly querying the LINK microprocess whether
input 1link data is available, the LINK microprocess will accept s
request for data from the node and then when the data is available,
transfer the data to the node which is in a waiting execution-state.
Thus, as will be seen in more detail 1later, the LINK microprocess
allows the trigger function of a node (i.e., deciding when a node is'
ready to execute) to be monitored in a non-busy way. A sgimilar
handshaking mechanism is wused to avoid a node "busy waiting" until
there is room on the link to store output link data. In addition, the
LINK microprocess allows the updating of queue pointers to go on in

parallel with a node's further processing.

The NODE microprocess implements the following overhead
operations required to sequence a node: 1) fetching the input data
items from the appropriate input links, 2) deciding when the node
operation is ready to be executed, 3) transferring the input data
items to the appropriate microprocess that will perform the node
operation, and 4) transferring the output of the node operation to
appropriate output links. The (DS associated with each  NODE

microprocess is designed so that as many of these overhead operations



PAGE 102

can be either done in parallel or overlapped between consecutive

executions of a node.

The overall CDS for the AGML emulator is pictured in Figure
19¢. This section has presented the AGML emulator in terms of a set
of microprocesses that each performs a small independent task. The
next section will discuss how this set of microprocesses dynamically
interact to perform the emulation of a graph program. These
interaction patterns will be detailed through a discussion of the

PARALLEL-NODE microprocess,

I11.2.3 The Microcoding of the Parallel Node

The PARALLEL-NODE whose CDS is pilctured in Figure 20a, is
the most complex of the three types of NODE microprocesses because of
the control structures required to generate and keep track of the
multiple concurrent dinitiations of the primitive operations of. the
node. In order to generate multiple dinitiations, the fetching: of
input 1link data for an operation, which is done by the INPUT-PNODE
microprocess, is separated from the storing of output link data for an
operation which 3is done by the OUTPUT-PNODE microprocess. This
separation of the input and output phases of a PARALLEL-NODE permits
the fetching of input data for one operation to be performed
concurrently with the storing of output data for a previously
Initiated operation. In order to insure the output-determinancy of

the graph procedure, multiple initiations of an operation must
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terminate in the same order as they were initiated. The PARALLEL-NODE
maintains the correct ordering of multiple initiations through a
queuing mechanism which holds up the storing of the output of an
operation until the output of all previously initiated operations have

been stored.

The PARALLEL-NODE interacts directly with the following
microprocesses: GRAPH-PROCEDURE, SCHEDULER, INPUT-PNODE,
QUTPUT-PNODE, and PROCESSOR(1-n). The interaction patterns of the
PARALLEL-NODE with these microprocesses is indicated in Figure 21.
The control and data enviromment interrelationships among these
microprocesses are pictured, respectively, in Figure 20b and 20c.
Figure 20b indicates how the PARALLEL-NODE microprocess and its son
microprocesses locate the addresses of the microprocesses that they
will communicate with. The PARALLEL-NODE control environment is a two
level hierarchy of global process environments. The top level allows
for access to SCHEDULER microprocesses while the lower level allows
for access to the LINK microprocesses. For example, the FETCH-OPERAND
microprocesses pictured in Figure 20b locate the appropriate LINK
microprocesses by accessing their global  process environment
descriptor, while the PARALLEL-NODE locates the appropriate SCHEDULER
microprocess by indirectiy accessing through its external environment
pointer the global  process environment descriptor of the
GRAPH-PROCEDURE microprocess. Figure 20¢ indicates how the
PARALLEL-NODE microprocess and its son microprocesseses communicate

data with each other. Each of these microprocesses contains its own
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PORT which is located in its local data environment. In addition,
there is a global data enviromment which these microprocesses all
share., This global data environment contains the description of the
particular  PARALLEL~NODE in the graph procedure that is being

executed.

The GRAPH-PROCEDURE microprocess initiates the PARALLEL-NODE
microprocess, and then when the graph procedure termination condition
has been  met, signals the PARALLEL-NODE to terminate. The
PARALLEL-NODE after it has recelved the terminate signal, waits until
all outstanding node operations are completed, and then signals back

to the GRAPH-PROCEDURE its termination.

The PARALLEL-NODE, once initiated, activates the INPUT-PNODE
microprocess to fetch the input data from the appropriate input 1links
(see Figure 22). After receiving the prefetch complete signal from
the INPUT-PNODE, the PARALLEL-NODE then activates the appropriate
scheduler microprocess to assign a PROCESSOR to vperform the
operation*, In this way, a.PROCESSOR is not assigned to perform a
node operation until the data necessary for the operation has been
fetched. This technique for scheduling a processor 1is called the

"reservation station concept'.

e e e s e s ks i S A e et S —— e A ot ————— -

*The PROCEDURE-NODE is precisely the same as the PARELLEL-NODE except
that the  PROCEDURE-NODE, instead of calling the SCHEDULER
microprocess, generates an MSV of the GRAPH-PROCEDURE microprocess.
The address of this newly defined GRAPH-PROCEDURE microprocess is then

treated in the same way as the address of the assigned PROCESSOR
microprocess.
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The PARALLEL-NODE, after receiving the address of the
assigned PROCESSOR from the SCHEDULER microprocess, queues the address
and activates the INPUT~PNODE with this address. The INPUT-PNODE then
transfers the prefetched input data to the assigned PROCESSOR. After
the dinput data has been transferred, the INPUT-PNODE attempts to

" prefetch the input data for the next operation.

The PROCESSOR(i) microprocess, after completing the desired
- operation, signals back to PARALLEL-NODE that the output data is
ready. The PARALLEL-NODE then checks whether PROCESSOR(1i) is at the
top of the initiation queue, If PROCESSOR(i) is at the top of the
queue, then the address of PROCESSOR(i) 1s transferred to the
OUTPUT-PNCDE microprocess. Otherwise, an indicator is set 1n the
initiation queue that PROCESSOR(i) 1s ready to store its output data.
Thus, through the initiation queue mechanism, the outputs of the
PARALLEL-NODE are FIF0 ordered so as to make the PARALLEL-NODE

determinate.

The OUTPUT-PNODE microprocess, upon receiving the address of
PROCESSOR(1), transfers PROCESSOR(i)'s output data to the appropriate
output  links. After the completion of this transfer, the
PARALLEL-NODE 1is notified. The PARALLEL-NODE then examines the
initiation queue to determine whether the PROCESSOR(j) at the top of
the .queue has already signaled that its output is ready. If so, then

the QUTPUT-PNODE is reactivated with the address of PROCESSOR(J).
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These interaction patterns allow the fetching of input 1ink
data, storing of output 1link data, the execution of an arbitrary
number of primitive node operations, and the processing of requests to
store the output of an oferation to all proceed in parallel. In
addition, the INPUT-~PNODE fetches in parallel, through the use of a
broadcast operation, the dinput 1link data (see Figure 23). The
different types of communications that a PARALLEL-NODE microprocess
can receive are distinguished by the particular internal-activation
code used in the communication. The PARALLEL-NODE uses this code to
jump indirectly in a single microinstruction to the particular
microcode routine that handles the communicationm. The PNODE~-CLOCKER
- microprogram, which is the collection of these microcode routines for
handling communications to the PARALLEL-NODE, 1is less than 70

microinstructions long, and is detailed in Appendix C.

IIT1.3 An Evaluation of the Suitability of the SBL for

the Coding of the Graph Machine Emulator

This chapter has reviewed the design and coding of an
emulator for a complex IML, i.e., the Adams' Graph Machine Language.
The complete microprogram for the AGML emulator is presented in
Appendix C. This emulator has been tested, using a simulator of the
logical design, on a variety of graph programs under varying PMS
configurations in order to validate the emulator's correctness. These
test cases, which indicate the dynamic behavior of the AGML gmulation,

will be discussed in Chapter V,
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The AGML emulator has demonstrated the versatility and

of the SBL and the concept of a dynamically restructurable

CDS in the following ways:

1) It has shown how an S(vm) can be constructed so as to
make the embedding of the state image of a complex IML,
S(AGML), straightforward. In particular, it has indicated
how a CDS can be tailored so that it directly mirrors the
distributed control structure of the AGML.

2) It has shown that an emulator can be compactly and simply
coded when the microinstructions directly operate in the
context of the appropriate S{(vm). The microprogram memory
required for the AGML emulgtor microprogram, including the
storage for constants, i1s less than 600 microinstruction
words¥*.

3) It has shown how a CDS can be dynamically structured so
as to easily represent a wide variety of different types of
control structures, i1.e., distributed <control, semaphore
processes, message queuing, broadcast control, etc.
Further, it has dindicated how these different types of
control structures can be inregrated together in a single
CDS.

4) It has shown how a modular task approach to design of an
emulator can be implemented naturally within the framework
of a restructurable CDS.

*0f the 600 microwords, approximately 220 are used to hold the
microinstructions for building up the CDS, 300 to hold
microinstruction for dynamic control, and the remainder to hold data

constants.
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IV. A Hardware Implementation of the

Microcomputer Architecture

"Adequate performance of parallel processing
systems is......predicated on an appropriately
low level of overhead. Allocation, scheduling,
and supervisory strategies, in particular, must
be simplified and the related procedures
minimized to comprise a small proportion of the
total activity. in the system..........,.thus a
unified and integrated design approach is
required in  which software and hardware,
operating system and processing units, lose
their separate identities and merge into one
overall complex, for which allocatiomn and
scheduling procedures, for example, are as basic
and as critical as arithmetic  operations.”
(LEH66)

The main thrust of this chapter is to demonstrate that the
microcomputer architecture presented in this thesis can be implemented
in hardware in such a way that parallel activity expressed on the
virtual PMS level can be mapped, without significant overhead, onto
parallel activity on the physical PMS level. In addition, the
hardware organization ﬁust guarantee that the mapping (scheduling) of
virtual activity to physical activity neither introduces hardware
resource deadlocks nor changes a deterministic virtual activity into a
non-deterministic physical activity. In particular, the latter
requirement implies that SBL synchreonizing primitives must work
correctly, independent of the number of physical microprocessors and

the particular interconnection pattern of these microprocessors to

microprocesses.
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The hardware organizational problems of minimizing overhead,
guaranteeing no resource deadlocks, and correctly implementing
synchronization mechanisms are all faced in the design of a
conventional multiprocessor (LOR72). However, these design problems
are significantly magnified in the context of this new microcomputer
architecture since microprocessor interaction patterns can be very
highly structured and can oceur on very fine time grain, i.e., the
time between successive interactions can be of wvery short duration.
Thus, there is a greater likelihood for microprocessors to interfere
with each other when they 1) access the Microprogram Memory for
microinstructions, 2) access the Process Space Memory for shared data
items, and 3) communicate with one another. In addition, the time to
perform a context switch in a microprocessor from one microprocess to
another is especially critical because of the potential for a high
rate of context switches. A high rate of context switches may occur
because 1) the time between successive interactions of the
microprocess is generally of short duration, and 2) in order to avoid
a deadlock in mapping virtual activity to physical activity, the
microprocessor must be multiprogrammed when there are more active
microprocesses than microprocessors. Thus, when a microprocessor 1is
connected to a microprocess that dis waiting for a response to a
communication, the microprocessor is context switched if an active but

not connected microprocess exists.

These conventional problems in the design  of a

multiprocessor are overlayed with problem of efficiently implementing
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the concept of a wvirtual PMS. The efficient implementation of the

concept of virtual PMS implies that:

1) There is a built-in hardware scheduling algorithm.

2) The internal working registers of a microprocessor are

dynamically reconfigurable 50 as to conform to the

particular microprocess being executed.

3) Microprocess interaction patterns whenever possible,

dependent upon the particular connection between the virtual

PMS and physical PMS at the time of the dinteraction, are

directly implemented as microprocessor interaction patterns

rather than indirectly implemented as modifications to the

Process Space Memory. '

The remainder of this chapter will be a discussion of the
hardware  organization for the microcomputer architecture. This
organization demonstrates that there exists a plausible solution to
the design problems previously outlined and, further, that this design
is a coherent, integrated solution to these problems. However, this
chapter will not discuss the hardware technology required to implement
the bus structure and memories specified in the
design(BEL71,L0R70,MIL70), but rather, this chapter will focus on the
interconnection patterns and interaction protocols among the '"black
boxes" that define the PMS environment of the microcomputer
architecture, i.e., the logical hardware organization. The next
chapter will, however, investigate the dynamic aspects of the designed
system din order to justify the c¢laim that wvirtual microprocess
activity can be mapped without significant overhead dinto physical
microprocessor activity. In addition, this next chapter will examine

how varying the interleaving, access paths and access time

characteristics of the memories, and the bandwidth and access time
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characteristics of the bussing structures affect the performance of

the microcomputer architecture.

IV.1 A PMS Configuration for the Microcomputer Architecture

An overview of the PMS configuration for the microcomputer
computer architecture 1s pictured in Figure 23 (notation is that of
Bell and ﬁewell, BEL70). This configuration consists of NP
microprocéssors and ND devices (functional units) which can directly
communicate with each other over an Interprocessor Bus (IB). The
Interprocessor Bus is 128 bits wide so as to allow the transfer of an
MSV, an EPSV, or up to 4 data words in one cycle. Each microprocessor
and functional unit has separate control hardware, respectively K.IBP
and K.,IBD, for interacting with the IB. The overall control of IB
resides in the Virtual Interaction Controller, K.,VIC. K.VIC, together
with the K.IBP and X.IBD, represent the hardware for mapping
microprocess interaction patterns into microprocessor interaction

patterns.

There are three external memories contained in the PMS:
M.PSM, M.MPM, and M.MEM. M.PSM, which is the Process Space Memory,
holds the global CDS. A microprocessor directly accesses M.PSM in
order to retrieve and modify the working registers of the microprocess
it is executing. A microprocess indirectly accesses the M,PSM through
K.VIC in order to obtain an MSV. The M.MPM, which is the Microprogram

Memory, 1is accessed by microprocessors directly in order to fetch
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microinstructions. The M.MEM, which is the ﬁain Memory Subsystem, is
a bit addressable memory. The K.MEM is the control circuitry required
to perform the appropriate shifting to align the desired bit string.
The Memory Subsystem is accessible by all the microprocessors and some
of the functional units. The normal operation mode for a functional
unit assumes that a micropreocessor performs all the fetching and
storing of data required by the functional unit. This normal mode, as
discussed in Chapter II, permits a functional unit to be used in the
emulation of many computers since it does not have to be preprogrammed
to be aware of the location of its input and output data. Thus, a
functional unit in this mode of operation does not need a direct path
to the Memory Subsystem. However, there may be functional units which
require a very high data rate which cannot be sustained in this normal
mode of operation; therefore, some functional units may require a

direct path to the Memory Subsystem.

The PMS configuration presented in Figure 23 does not
indicate the number of independent communications‘ that a bus can
handle, nor the interleaving of a memory.. These PMS characteristics
have been purposely omitted because they can be wvaried in the
simulator. 1In addition, the simulator permits the reconfiguration of
the bussing structures so that the bussing structure for
interprocessor commﬁnication can have the additional function of being
an access path to any one of the three external memories. In this
mannet, the PMS c¢an be configured to have from 1 to 4 independent

bussing structures.
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A more detailed configuratién of the  PMS for the
microcomputer architecture 1is pictured in Figure 24, In this
configuration, there are no functional units and 16 microprocessors.
Each microprocessor 1is connected to the Interprocessor Bus which can
sustain up to 8 communications simultaneously. The Interprocessor Bus
also serves as the access path from the microprocessors to M.PSM and
M.MPM, The M.PSM is 16 way interleaved on lower order address bits,
and is connected to Interprocessor Bus through an 8 x 16 crosspoint
Switch, S.PSM. The M.MPM is 8 way interleaved and is connected to the
Interprocessor Bus through an 8 x 8 crosspoint switch, S.MPM. The
Memory Subsystem, M.MEM, has its own separate bussing structure which
can sustain up to 4 communications simultaneously. M.MEM is 4 way
interleaved and is connected to bussing structuure through a 4 x 4

crosspoint switch.

1V.2 The Interprocessor Communication Structure and the

Virtual Interaction Controller

This section will discuss the major 1logical design issues

involved in mapping virtual PMS activity to physical PMS activity:

1) The bussing structure for interprocessor communication.

2) The design requirements necessary to insure no hardware
deadlocks are introduced which are not already present as
software deadlocks.

3) The hardware algorithm for scheduling of microprocesses
on microprocessors.
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One of the major considerationé in this design 1is to
multiprocess rather than to multiprogram virtual microprocessor
activity whenever possible. The design of the Interprocessor Bus (IB)
strongly reflects this major design consideration. The IB is designed
so that, whenever possible, microprocess interaction patterns are
directly implemented as microprocessor interaction patterns. The IB
transforms a microprocess interaction pattern directly into a
microprocessor interaction pattern by acting in a manner similar to
the common data bus on 360/91 (AND67) or equivalently the UNIBUS on
PDP-11(DEC69); a similar technique for handling interprocessor

communications has also been suggested by Lehman(LEH66).

A microprocessor P1, when executing a microprocess V1 that
desires to 1initiate a communication with another microprocess V2,
sends out a request on IB for the MSV of microprocess V2. Each
request sent out on the IB is scanmed by the control circuitry K.IBP,
associated with each microprocessor, in order to determine whether
that microprocessor is currently connected to the microprocess V2. If
a microprocessor P2 1s connected to microprocess V2 and is not
currently involved in a dialogue with another microprocessor, then
microprocessor P2 will honor the request for the MSV of V2 and
transmit this MSV directly over IB to microprocessor P1. However, if
there exists no microprocessor to honor the request, then the Virtual
Interaction Controller will take over responsibility for fetching the
MSV  of V2 from the M.PSM and then transmitting this MSV to

microprocessor P1. Once a comnection has been established between
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micropfocessor P1 executing microprocess V1 and microprocessor P2
executing microprocess V2, the IB can be used to transmit a
communication between microprocesses V1 and V2 directly. In
particular, if a communication can be consummated between V1 and V2
then the IB can be used to transmit the new MSV of V2, and the data to
be stored in the port of V2, After the communication has been
consummated, a signal is sent by P1 to P2 on the IB to break off the
connection between the microprocessors so that microprocessor PZ can
again directly receive communications from other microprocessors.
This ability to implement microprocess communications directly
significantly decreases the time required to perform a communication
in comparison to the time required to implement the communication

indirectly through multiple fetches and stores to the M.PSM,

The Virtual Interaction Controller(K.VIC), when it receives
a request for a MSV, checks before fetching the MSV from the M.PSM
whether some other microprocessor is currently accessing the desired
MSV, or the desired MSV is currently connected to a microprocessor.
The latter case implies that another microprocessor 1is already
involved in a dialogue with the microprocessor connected to the
desired MSV. If either case 1s true, the Virtual Interactiomn
Controller will place on a FIFQ queue associated with the locked-out
MSV the address of the microprocessor requesting access. The request
to access the locked-cut MSV will then eventually get honored when
that request is at the head of the queue and the microprocessor

currently accessing the MSV aggain permits access to the MSV, Only one
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microprocessor can access an MSV at a time because of the semantics of
the SBL microprocess interaction patterns which specify that a
microprocess can only receive one communication at a time. Thus, a
microprocessor must wait until the microprocessor, which 1s currently
attempting to communicate with the desired microprocess, either
decides  that communication cannot be consummated or completely

consummates the communication.

The FIFO queues associated with the locked-out MSV's are
contained in a local storage area associated with K,VIC. In addition,
‘this local storage contains the current activity status of each
microprocessor and functional unit, and the M.PSM addresses of the
MSV's that are currently connected to microprocessors. The maximum
number of requests that can be queued 1s, NP+ND-1, since a
microprocessor or  functional wunit can only initiate a single
communication at a time. Thus, the size of the local storage area
required by K.VIC 1s only a small linear multiple of the number of

microprocessors and functional units.

A request for an MSV, if it cannot be immediately honored,
is queued rather than being reissued by the requesting microprocessor
at some later time for two reasons. The first and most dimportant
reason is that queuing eliminates the potential for a microprocessor
resource deadlocks. A simple example where microprocessor resource
deadlock can occur when there is no queuing of requests is the

following*,
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Example 12: Comnsider four microprocesses A,B,C, and D,
where microprocesses B,C, and D are all connected to
microprocessors and are all simultaneously attempting to
initiate a communication with A. Suppose that microprocess
A d1is not in the appropriate executiomn-state to recelve a
communication from B or C, but 1is 1in an appropriate
execution-state to recelve a communication from D, Given
this situation there then exists the possibility that every
time microprocess D attempts to fetch the MSV of A,
microprocess B or € has locked the MSV of A in an attempt to
determine whether A is in an appropriate executlon-state to
receive a communication. Thus, microprocess D never
consummates a communication with A and A never alters its
execution-state s0 that B or C can consummate a
communication. Therefore, without a queuing mechanism there
exists the potential for dintroducing in the mapping of
virtual PMS activity to physical PMS activity, a hardware
deadlock which is not present as a software deadlock.

The situation described in the example is not unrealistic where there
are highly structured interaction patterns among a large number of
microprocesses. In addition to the queuing mechanism contained as
part of the K.VIC, there is also a need for a bus control mechanism
e.g., a bus commutator, to guarantee that eventually a microprocessor

will be able to get a free bus cycle in order to send out a request

for an MSV.

The second reason for queuing requests for a locked-out MSV
rather than a microprocessor repeatedly reissuing the request relates

to interference on the Interprocessor Bus. The repeated reissuing of

e, e e — —_— —

*Knuth (KNU66) has discussed a similar result with respect to
Dijkstra's P and V semaphore operations. In particular, if the P and
V operations are Iimplemented without queuing, then there exists the
possibility that a process Q(i) which performs a P operation will
never consummate the operation. This case occurs when there are
multiple processes Q(1-n) that attempt to perform a P operation, and
there are unbounded number of P operations to be performed.




PAGE 126

the request until satisfied would greatly increase the traffic on the
Interprocessor Bus and activity of K.VIC. Such an increase in traffie
implies a higher probability of a request for an MSV being delayed

because either the bus is fully loaded or the K.VIC is busy.

1V.2.1 Microprocessor Scheduling Strategy

The Virtual Interaction Controller is also responsible for
dynamic hardware resource allocation in the microcomputer system.
There are three types of resources that can be dynamically allocated:
1) blocks of registers in the M.PSM, 2) microprocessors, and 3)
functional units. The allocation strategy used for the M.PSM will not
be discussed further, except to mention that there does exist hardware
implementable techniques for managing the storage of the M.PSM(RIC72,

KNU68) .

The Virtual Interaction Controller dynamically allocates
microprocessors and functional units in a manner analogous to how the
data elements of a cache are allocated (GIB67). In particular, the
Interprocessor Communication Structure is analogous to a cache in the
following ways:

1) The relationship between a data element in the cache and

its corresponding data element in the large primary memory

is analogous to the relationship between a microprocessor

contained in the physical PMS and its connected microprocess
defined by the virtual PMS.
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2} The association of a data word in the cache with a word
in the large primary memory is analogous to the connection
of a microprocessor to the a microprocess.

3) A direct hit to the cache is analogous to a microprocess
interaction pattern being directly implemented over the
Interprocessor Bus.

4} A miss in the cache which then requires access to the
large primary memory is analogous to a microprocess
interaction that cannot be implemented directly over the
Interprocessor Bus  but instead must be indirectly
implemented through modifications to the Process Space
Memory.
5) Associating a data word in the cache with a different
word in the 1large primary memory, is analogous to context
switching a microprocessor to another microprocess.
6) An empty data word in the cache 1is equivalent to a
microprocessor which is not connected to any microprocess ;
a read only data word in the cache 1s equivalent to a
microprocessor which has performed all the work necessary
for a context switch, but has not yet been switched to
another microprocess; and, a read-write data word in the
cache is equivalent to a microprocessor which is currently
executing a microprocess.
This analogy has been explored in depth because 1t provides a
convenient framework within which to think about how to schedule
microprocesses on microprocessors. In addition, this analogy leads to
some interesting ways of looking at the relationship between the
number and structure of microprocesses, and that of microprocessors.
In particular, the concept of "working set'(DEN68) which is normally
applied to data, seems applicable also to microprocesses, 1l.e.,
"control working set'; and, the concept of fetching multiple
consecutive data items for each line of a cache can also be applied to

context switching a group of microprocesses rather than a single

microprecess, Though these ideas have not been explored further in
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their dimplication on the hardware organization, simulation data will
be presented which explores the phenomenon of the 'control working

set".

The allocation (scheduling) mechanism of the Virtual
Interaction Controller is invoked when a request is received to write
into the Process Space Memory an MSV which is not currently connected
to a microprocessor. If there exists a mlcroprocessor which is not
currently connected, then this microprocessor is connected to the MSV.
Otherwise, the MSV is connected to the least recently used
microprocessor whose associated microprocess 1is in an expanded,
waiting, or suspended execution-state. If there exists no
microprocessor whose microprocess satisfies this  execution-state
condition, then the address of the MSV is placed on a FIFO queue

stored in M,PSM until a microprocessor is available.

A microprocessor that is executing a microprocess that
reaches the terminated execution-state first unloads into the M.PSM
all the context information (Iocal and global data environment
registers) associated with the connected microprocess and then signals
the Virtual Interaction Controller that it is disconnected from the
microprocess. A microprocessor that is executing a microprocess that
reaches the expanded, waiting, or suspended -execution-state, first
signals the Virtual Interaction Controller that it is in an inactive
state, and then begins to unload all the context information

associated with the microprocess. However, during this unloading
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period and wuntil the microprocessor is connected to  another
microprocess, K.IBP is still scanning requests on the Interprocessor
Bus which permits the microprocess to be restarted directly over the
Interprocessor Bus by another microprocessor. A microprocess also
becomes a candidate for being context switched whem it gets into a
busy~wait state, 1i.e., when it repeatedly attempts to initiate a
communication with a microprocess which is not 1in an appropriate
execution-state to receive the communication. If the queue of
microprocesses which desire scheduling dis not empty, then this
microprocess in a busy-wait state will be disconnected from its
microprocessor and put on the scheduler queue. Otherwise, after a
suitable number of bus cycles, so as mnot to saturate the
Interprocessor Bus, the busy-waiting microprocess will again attempt
to consummate the desired communication. However, a microprocess
which is attempting to communicate with a microprocess whose MSV 1is
currently  locked-out will not be considered a candidate for
disconnection from its microprocessor. This scheduling strategy
distinction between a microprocessor waiting to access a locked-out
MSV and a microprocessor busy-waiting on an execution-state of an MSV
is made because there is some short bound (in part, because of the
queuing of locked-out requests) on the maximum time required for an
MSV to become unlocked, whereas there is no bound on the time required

for an MSV to change to the desired execution-state.

In summary, this scheduling strategy, implemented in the

Virtual  Interaction Controller for microprocessors is simple,
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independent of the number of microprocessors, and also maps virtual
PMS activity into physical PMS activity without introducing deadlocks.
In addition, this scheduling strategy, in conjunction with the
Interprocessor Bus, attempts to maximize the number of microprocess
interaction  patterns that can be directly implemented as
microprocessor interaction patterns. As will be seen in the hardware
simulation results, this scheduling strategy will take advantage of
additional microprocessors added to the microcomputer system to 1)
increase the parallel activity of the microcomputer system, 2)
increase the number of microprocess interaction patterns that can be

directly implemented, and 3) decrease the number of context switches.

1IV.3 The Microprocessor Organization

The microprocessor organization has been designed based on
the following goals:
1)} to configure the internal registers of a microprocessor
so as to match the particular internal : register
configuration of the virtual microprocessor (microprocess)
being executed.
2) to reduce the interference among microprocessors caused
by accessing of the Microprogram Memory and the Process
Space Memory.
3) to make the overhead time required to context switch
small.
The first goal is necessitated by the ability to define an arbitrary

number of registers that will be contained in the local and global

data enviromment, port, value stack and program counter stack of a
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virtual microprocessor. Thus, the conventional solution of assigning
a fixed set of microprocessor ﬁardware registers for each of these
data structures cannot be used in this context. The second goal is
necessitated by the fact there may be 32 or more microprocessors all
attempting to access the Process Space Memory and Microprogram Memory,
possibly some of these microprocessors attempting to access the same
microinstruction. Conventional solutions of interleaving memory and
multiple access paths to memory are only partial solutions because of
the very high traffic to these memories, Thus, some technique is
required for cutting down ;he total traffic to these memories. The
third goal is mnecessitated by the requirement to multiprogram
microprocess activity in order to avoid deadlocks. This requirement
to multiprogram combined with the short length of the computational
activity of a microprocess Dbetween successive waits for a
communication from other microprocesses leads to a high number of
context switches. Thus, a short time for a context switch is quite
important. These three design goals can all be satisfied through the

concept of a cache per microprocessor.

The microprocessor organization contains an extremely small
number of dedicated (specific function) internal hardware registers.
The remainder of the internal storage of the migroprocessor is
structured as a memory cache. The memory cache is used to hold either
microinstructions or M.PSM registers which contain the local and
global data enviromment, port, value stack and program counter stack

of a wvirtual microprocessor, The cache per microprocessor concept
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satisfies the three design goals mentioned previously in the following

ways:

1} It permits the internal hardware registers to be
configured so as to match the register configuration of a
particular virtual microprocessor; the cache accomplishes
this configuring by attaching tag information to each
internal register of the cache; this tag information
dynamically associates the contents of a cache register with
the contents of a particular M.PSM register of the wvirtual
microprocessor; these internal registers are associatively
addressed, based on the tag information, in order to access
the contents of a particular M.PSM register.

2) It reduces the traffic to the Microprogram Memory and the
Process Space Memory by allowing a percentage of the
accesses and stores of M.PSM registers and the accesses of
microinstructions to be accomplished without interaction
with the Microprogram Memory and Process Space Memory. In
addition, it reduces the likelihood of two microprocessors
simultaneously attempting to access the same location in the
Microprogram Memory since a copy of the desired
microinstruction may already reside in one of the
microprocessors,

3) It reduces significantly the time to context switch
because only the M.PSM registers that have been changed need
be stored, and only the registers that are required to
execute the microprocess need be loaded into the
microprocessor. In addition, a microprocessor may
immediately begin executing a microprocess as soon as the

MSV has been read out of the M.PSM.

The implementation of the cache and its associated control
in each microprocessor differs in two ways from how caches are
conventionally implemented. The first difference stems from the fact
that this microcomputer system contains multiple microprocessors.
These multiple microprocessors can be simultaneously executing
microprocesses that are communicating through a shared data area in

the Process Space Memory. A copy of the contents of these WM.,PSM

registers contained in a shared data area cannot be held in the cache.
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If copies of these registers are held in the cache, then there exists
the possibility that contents of these cache copies are incorrect
because during the period a copy of the register resides in the cache
another microprocessor could have modified the original register in
the M.PSM. The problem of deciding whether a M.PSM register should be
stored in the cache is solved by requiring all accesses and stores of
M.PSM registers to be indirect through a descriptor, A M.PSM
descriptor specifies among other things the ''sharability attribute' of
the M.PSM register to be accessed or modified. There are three modes,
as previously described, of the sharability attribute: global,
coroutine, and local. A register of the virtual microprocessor which
has the global attribute will never be held in the cache; a register
which has the coroutine attribute may reside in the cache until the
virtual  wicroprocessor either 1is about to enter the waiting,
suspended, expanded, or terminated execution-state or is disconnected
from 1its microprocessor. The coroutine attribute indicates that only
one virtual microprocessor at a time will access the shared data.
Thus, while the virtual microprocessor is in an active
execution-state, the coroutine data may reside in the cache. The
local attribute indicates that the data may reside in the cache as
long as the wvirtual microprocessor is connected to a microprocessor

since no other virtual microprocessor can access the data.

The second difference from a conventional implementation of
the cache stems from efficiency considerations. The data environment

of a virtual microprocessor is specified by the components of an MSV
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which, in turn, point to M,PSM descriptors. The M.PSM registers that
holds these descriptors are stored in the cache like any other M.PSM
register. However, they are being accessed on each microinstruction
in order to generate a M.PSM address, for instance, of an element in
the local data environment or the top of the value stack, etc. A
cache access is normally broken wup into two steps: 1) determine
whether and where the desired element is in the cache, 2) if it is,
then fetch or modify this desired element. In order to make the
accessing of the M.PSM descriptors pointed to by the MSV more
efficient, the first step required in cache accessing 1s bypassed.
This step d4s bypassed by having a special set of registers that
indicate whether the M.PSM descriptor is in the cache and if it 1is,
then its address in the cache. Thus, the M,PSM descriptors which
define the data environment of the microprocess can be directly
accessed in the cache eliminating the time required for the
associative search step. Additionally, if a M.PSM descriptor 1is not

needed, then it is not brought into the cache.

In addition to these new issues discussed above that arise
in dimplementing a cache memory in the context of this microcomputer

system, there are also the following more conventional design issues:

1) The number of registers in each line of the cache.

2) The number of lines in the cache.

3) The technique for line replacement in the cache.

4) The store-through mode, i.e., when a register in the

cache 1is modified, the time at which its corresponding
register in the M,PSM is updated.
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The technique used for line replacement in the cache is a modified
least-recently-used algorithm, where a read-only line will always be
replaced before a line which has been modified. The store-~through
mode, the dimension of the cache, and the size of each line has not
been fixed, but rather are parameters that can be set in the simulator
of the microprocessor organization. There are three possible
store—-through modes: never store through until context switch, store
through only when bus and memory are free, and always store through.
The next chapter will examine the effect of varying these cache

parameters on the performance of the microcomputer system.

In summary, this chapter has indicated a coherent and simple
design for the microcomputer system which allows parallel activity on
the virtual PMS level to be mapped correctly and without significant
overhead onto parallel activity in the physical PMS level. The main

design techniques applied were:

1) An Interprocessor Bus and its associated control which
works 1like a common data bus so as to map whenever possible
microprocess interaction  patterns inte microprocessor
interaction patterns.

2) A built-in FIFO0 queue mechanism in the Virtual
Interaction Controller for ordering access to a locked-out
MSV so as to guarantee that no resource deadlock will be
introduced in the mapping of virtual activity to physical
activity.

3) A memory cache per microprocessor which allows the
internal registers to be configured so as to match the
particular microprocess being executed and to reduce the
memory interference among microprocessors and the time to
context switch.
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The next chapter will demonstrate these conclusions by examining the
results of simulating this microcomputer organization while running

the microprogram emulator of Adams' Graph Machine Language described

in Chapter III.
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V. Simulation Results

This chapter justifies in a quantitative way, through data
gathered from a simulator of the hardware organization* discussed in
the previcus chapter, the following conclusions:

1) The emulator for Adams' Graph Machine language is

correct, takes advantage of implicit parallelism of a graph

procedure, and performs 1In a parallel manner the overhead
operation required to sequence a graph procedure,

2) The logical hardware design maps virtual PMS parallel

activity correctly and without significant overhead into

equivalent parallel activity on the physical PMS,
This chapter also examines the effect of varying such paramaters as
the number of microprocessors, the number of busses, the interleaving
of memory, the size of the cache, and the cycle time of the Process
Space Memory on the performance of the microcomputer system. In

addition, experimental data that indicates the phenomenon of the

"econtrol working set' is presented and discussed.

*The simulator does not simulate exactly the hardware organization
described in the previous chapter. In particular, all microprocess
interactions are implemented indirectly through the Virtual
Interaction Controller rather than some directly over the Interprocess
Bus., However, a count is made of the number of interaction patterns
that could be directly consummated over the Interprocessor Bus. In
addition, the overhead required for allocation of storage in the M.PSM
is not counted; this wvariation does not affect the experimental
results to be reported since storage allocation in AGML emulation 1is
only done at the beginning of the run, rather than distributed
throughout.
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V.1?! The Simulator

The simulator is written in PL/I and is structured as a set
of coroutine procedures. Each component of the PMS of the
microcomputer system that operates asynchronously is simulated by a
distinct coroutine procedure. A simulation is performed by executing
in a round robin fashion each of these coroutine procedures, Each
coroutine procedure is executed until communication to or from anocther
coroutine 1s desired. Each coroutine keeps track of its internal
simulated time, and will not be allowed to consummate the desired
communication until its simulated time is equal to the simulated time

of the coroutine to which it communicates.

V.1.1 Configuring the Simulator

The input data required by the simulator are (1) a
' microprogram to be executed, which 1s stored in the Microprogram
- Memory, (2) a program and its data to be emulated, which is stored in
the Memory Subsystem, (3) a detailed specification of the PMS
configuration to be used as an environment within which to execute the
micropregram, and (4) trace level specification. The microprogram
inputs to the simulator are created by a microassembler. The
microassembler program, which is also coded in PL/I, takes as input a
symbolic microprogram whose syntax is described in Appendix B. The

trace level specification allows the level of summarization = of the
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output data to wvary from tracing each bus request to summary
statistics for each independent component of the PMS. This trace
information has been extremely helpful in debugging the simulator, the

hardware design, and the Adams' Graph Machine emulator.

The parameters used to construct a particular  PMS
configuration for the simulator are shown in Figure 25. These
parameters define the number of microprocessors, the c¢ycle time of
each microprocessor, the number of functional units and their type,
the number of busses to be used for interprocessor communication, the
characteristics of the Process Space Memory (M.PSM), Microprogram
Memory (M.MPM), and Memory Subsystem (M.MEM), (i.e., their cycle
times, dinterleaving, and the number of requests that each can handle
simultaneously), and the characteristics of the cache associated with
each microprocessor. If the '"NUMBER OF THE INDEPENDENT ACCESS PATHS"
parameter is set to -1, then the Interprocessor Bussing Structure is
also wused to access the desired memory instead of a separate bussing
structure dedicated only to that memory. The 'CACHE STORE THROUGH
MODE" parameter can specify one of four ways of maintaining the cache:
(1) always store through, (2) only store through non-descriptor
registers, (3) never store through and (4) only store through when bus
and memory module are free. The PMS configuration, pictured in Figure

24, is specified by Figure 25.
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V.1.2 Summary Statistics of the Simulator

The statistics produced from the execution of the simulator
display (1) the resource utilization of all components of the PMS
configuration, (2) the effect of interference among microprocessors,
and (3) the dynamic activity of the computation. An example of the
statistics prodﬁced from simulating the PMS configuration defined in

Figure 25 are displayed in Figures 26a, b, ¢, and d.

The primary measurements of systems performance are shown in
Figure 26a. The "TOTAL TIME TO EXECUTE" indicates the number of bus
cycles required to execute the microprogram. The
"MICROPROCESSOR ACTIVITY/TIME'" indicates the average number of
microprocessors executing during each cycle. This measure of
microprocessor activity is referred to as the '"allocated parallel
activity" of the system. The "INSTRUCTION RETRIES" indicates how many
times an ASP or SEL microinstruction was reexecuted, without an
intervening context switch, because the communication could not be
immediately consummated, The "NUMBER OF MICROPROCESSES GENERATED"
indicates the number of MSV's that were created during the simulation,
and the "NUMBER OF M.PSM REGISTERS ALLOCATED" indicates the register
storage required to define the data environment of these
microprocesses. The "QUEUE HISTOGRAM" data indicates the fraction of
the "TOTAL TIME TO EXECUTE" during which exactly i microprocesses were
queued waiting for an available microprocessor. The "USAGE OVER TIME"

indicates the fraction of the "TOTAL TIME TO EXECUTE" during which
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exactly i microprocessors were executing. The " (MICROPROCESS) QUEUE
HISTOGRAM" and " (MICROPROCESSOR) USAGE OVER TIME" statistics combined
together provide a good measure of the distribution of parallel

activity on the virtual PMS level.

The performance measurements of the memories and bussing
structures are pictured in Figures 26b and 26c. The "ACCESS/TIME"
indicates the average number of requests per bus .cycle that each
memory received. The "ACCESS/ACTIVE-PROCESSOR-TIME" is a
normalization of the "ACCESS/TIME" statistics based on the average
allocated parallel activity. The "AVERAGE STORAGE DELAY PER ACCESS"
indicates the average time requests to memory were delayed in
servicing because of hardware interference. There are two points at
which interference 1s measured: (1) access to the bussing structure
which connects to the memory and {2) access to a particular module of
the memory. The "AVERAGE ACCESS PATH INTERFERENCE PER ACCESS"
separately specifies the interference caused by overloading the
bussing structure to memory. The "NUMBER OF RETRIES DUE TO STORAGE
LOCK" indicates how many requests for MSV's, from the M,PSM, were
gqueued by the Virtual Interaction Controller. The '"MAXIMUM SIZE OF
STORAGE LOCK ARRAY'" indicates the maximum number of microprocessors
that were simultaneously waiting for access to locked-out MSV's. The
"WAIT PER LOCKED OPERATION" indicates the average time a request for
an MBSV spent on the queue before it was serviced. 1In addition, there

is data available on the distribution of these queued requests based

on MSV's.
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The dynamic activity of the computation is characterized by
Figure 26d. The dynamic activity is plotted by displaying the minimum
(>), maximum (<), and average (*) number of microprocessors that were
utilized during the lifetime of the computation. This microprocessor
utilization curve 1s based on a time period of 500 bus cycles. In
addition, statistics are available for comstructing the activity curve
for each microprocess that was created during the computation. In
particular, these statistics specify the total time spent in executing
a microprocess, and the time periods in which a microprocessor was

executing this microprocess.

V.2 The Dynamic Performance Characteristics of the

AGML Emulator and the Hardware Organization

The first step in evaluating the performance of the AGML
emulator and the  hardware organization for the microcomputer
architecture, is to verify their correctmess. Their correctness was
experimentally verified by simulating, on a wide range of PMS
configurations, the AGML emulator emulating a wvariety of graph
programs. The perform;nce statistics to be presented in the remainder
of the chapter are based on two of these graph programs, Figures 27

and 28.

The first graph program, Sum-Squared in  Figure 27,
calculates the sum of the squares of the elements of a vector of

numbers; the vector is placed on the external input link with its last
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_EXTERNAL
INPUT LINK

EXTERNAL
OUTP UT L.i N K 2022A47

Figure 27. Sum-Squared Graph Program
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Figure 28. Sum-Eighth-Power Graph Program
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element being zero. The node "2 copies" copies the data on its input
data link to its two output links. The node "Branch and Route' routes
the data on its first input link (connected to the "+'" node) to the
external output link if its second input link (connected to the '=0"
node) contains a true value; otherwise, the output data from the "+"
node is routed back to the "+" node for continued summing. The
computational structure of this graph program can be thought of as a

three level pipeline that flows into an iterative summation network.

The second graph program, Sum-Eighth-Power in Figure 28,
calculates the sum of the eighth power of the elements of a vector of
numbers., The computational structure of this second graph program is
similar to that of the first graph program except that the pipeline
part of the computation has seven levels. This extension of the
pipeline, as will be verified by performance statistics, increases the
inherent parallelism of the Sum-Eighth-Power graph program in

comparison to that of the Sum-Squared program.

V.2,1 Measuring Parallel Activity

The parallel activity of an AGML graph program can be
measured on three ""levels of abstraction"(RID71,HOR70), as pilctured in
Figure 29, The comparison of parallel activity among these three
levels is used to justify the conclusion stated at the beginning of

the chapter.
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The first measure of parallel activity, "algorithmic
parallelism", is based soley upon the sequencing rules of the AGML,
i.e., the rules which define when a node may execute. The algorithmic
parallelism does not take into consideration any of the bookkeeping
operations, both software and hardware, required to implement the
parallel activity of the graph program, e.g., the fetching and storing
of data on links, the monitoring for when a node can fire. The
algorithmic parallelism of the AGML. program, as a function of the
number of processors, can be measured through the use of a simulation

technique developed by Nelson{NEL70)*.

The second measure of parallel activity, "program
implementation parallelism" is based on the parallel activity on the
virtual PMS level of the AGML emulator when emulating the graph
program. The  program  implementation parallelism takes into
consideration the bookkeeping operations at the programming Ilevel
required to dmplement a pgraph program but does not take into
consideration (1) the bookkeeping operations at the hardware level
required to map virtual PMS activity into physical PMS activity, (2)
the hardware interference among micreprocessors caused by simultaneous
access to a memory module or the bussing structure, and (3) the
program interference among microprocesses caused by a microprocess

repeatedly attempting to communicate with another micorprocess which

L W e e —— —— — ——— — . T i . B e, o i L e s B

*In using Nelson's simulator to compute the algorithmic parallelism,
it has been assumed that all node operations require the same amount
of time.
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is not in the appropriate execution-state to receive a communication,

i.e., the number of instruction retries.

The program implementation parallelism of the AGML program
cannot be precisely measured through statistics produced by the
simulator. Thus, Instead of a precise measurement, an approximation
of the program implementation parallelism has been obtained by
altering a graph program to reflect the major bookkeeping operations
at the programming level. A graph program has been altered by adding
dummy nodes along the links of the graph program so as to reflect the
overhead operation of fetching and storing of link data (see Figure
30). The algorithmic parallelism of this altered graph program is then

used as an approximation to the program implementation parallelism*.

The third measure of parallel activity, '"hardware
parallelism", is based on statistics produced by the simulator
interpreting the AGML emulator when emulating the graph program.
There are three related measures of hardware parallelism that are
important to the evaluation of the performance of logical hardware
design: 1) the "throughput parallel activity" which is calculaﬁéd by
dividing the "TOTAL TIME TO EXECUTE" for n microprocessors by that for

a single microprocessor; 2) the "effective parallel activity" which is

*#In computing the program implementation parallelisms, it has been
assumed that the overhead operation represented by dummy nodes
requires twice as much time as a regular node operation. This
relationship of overhead to computation was determined experimentally
through statistics produced by the simulator on how much real-time
each microprocess took to compute.
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2022448

Figure 30. Modification to Sum-Squared Graph Program to Measure
Program Implementation Parallelism
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calculated by normalizing the "allocated parallel activity" by the
results of dividing the "AVERAGE INSTRUCTION EXECUTION TIME" for a
single microprocessor by that for n microprocessors; 3) the "allocated
parallel activity" which, as previously described, is a measure of the
actual parallel activity exhibited by the microprocessors. The effect
of program interference as a function of the number of microprocessors
can then be observed by comparing the throughput hardware parallelism
to the effective hardware parallelism. In the same way, the effect of
hardware interference and hardware bookeeping operations as a function
of the number of microprocessors can be observed by comparing the

effective hardware parallelism to the allocated hardware parallelism.

V.2.2 The Performance Characteristics of the AGML Emulator

The performance characteristics of the AGML emulator have
been evaluated by comparing the algorithmic parallelism, the program
implementation parallelism, and the hardware throughput parallelism of
the Sum-Squared graph with a 5 element vector. The graphical display
of each of these parallelism measures as a function of the number of
available (micro)processors is pictured in Figure 31. A comparison of
these parallelism curves indicates the following conclusions
concerning the performance of the AGML emulator:

1) The emulator takes advantage of the implicit parallelism

of a graph program (compare algorithmic to throughput

curve);

2) The emulator performs in a parallel manner the overhead

operations required to sequence a graph program (compare
algorithmic to virtual and throughput curves).
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In addition, the comparison between the wvirtual and throughput
parallelism curves indicates that the logical hardware organization
configured appropriately can map virtual PMS activity to physical PMS

activity without significant overhead.

These conclusions can be  substantiated on a more
quantitative basis by examining the fit(DER69) of the throughput

parallelism curve to the following hyperbola:
T(n)= a+b/(n-c),

where n is the number of microprocessors and T{n) is the run time in

terms of units of a 1000 bus cycles. The result of the fitting is:
T(n)= 30 + 120/ (n~-0.19).

A similar curved fitting to the  throughput <curve of the
Sum-Eighth-Power graph with a 10 element vector, pictured in Figure

32, is:
T(n)= 40 + 270/ (n~-0.1).

Both curve fittings, which at maximum varied less than 3 percent from
the experimental data, indicate that a major part of the computational
activity of the AGML emulator can be performed in a parallel way as a

function of 1/N.
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The dynamic performance characteristics of the AGML emulator
can also be observed by examining the Microprocessor Utilization
Curves of the Sum-Eighth-Power graph program in Figures 33a-e. The
dynamic activity of the AGML emulator can be partitioned in terms of
six sections, as labeled in Figure 33a. .The activity of the first
section, which is mostly sequential, repfesents the dynamic
construction of the (DS for the particular graph program being
emulated. The activity of the second section represents the
initiation of all nodes in the graph, and their subsequent activity
involved with determining whether they can execute. The activity of
the third section mirrors the gradual initiation of the pipeline part
of the graph computation. The activity of the fourth section mirrors
the execution of a fully loaded pipeline. The activity of the fifth
section mirrors the unloading of the pipeline part of the computation
followed by the iterative summation part of the computation. Finally,
the activity of the sixth section represents the termination of all
the nodes of the graph after the final output appears on the external
output link. This sequence of microprocessor utilization curves
indicates that an AGML emulator can use available microprocessors,
where sufficient parallelism exists, to reduce in a linear way the
time it takes to complete each of the =sections of the curve. In
addition, Figure 33d indicates that the logical hardware design can
efficiently handle sustained parallel activity, involving highly
structured interaction patterns, of greater than sixteen

microprocessors.
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V.2.3 The Performance Characteristics of the

Hardware Organization

The previous section showed that the virtual PMS activity
can be mapped without significant overhead into equivalent parallel
activity on the physical PMS. This section will discuss, in detail,
how this overhead wvaries as a function of the amount of parallel

activity and the number of microprocessors.

The two components of overhead, hardware interference and
program interference, are analyzed by comparing the three measures of
hardware parallelism: throughput, effective and allocated hardware
parallelism. These three measures are plotted as a function of the
number of microprocessors for the Sum-Eighth-Power graph program in

Figure 32.

The first observation which can be made from Figure 32 is
that the hardware interference and program interference increase as a
function of the number of microprocessors. This observation on
hardware interference can be explained in the following way: the more
microprocessors, the more virtual PMS parallel activity that can be
exploited as physical PMS parallel activity; diIn turn, the more
physical PMS activity increases the likelihood of overloading the

bussing and memory structures; this overloading leads to a longer time
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to execute microimstructions in the more highly parallel sections of
the emulator activity; therefore, the allocated parallelism which
measures the amount of parallel microprocessor activity increases in
relation to the effective parallelism which measures the amount of
parallel microprocessor activity normalized to the the average

execution time of a microinstruction.

The increase in program interference can be explained in a
similar way, except in this case, the resdurce causing interference is
a microprocess: in a computation involving highly structured
interaction patterns, the more parallel activity leads to the greater
likelihood that a microprocess will attempt to communicate with
another microprocess which is busy; thus, there will be an increase in
busy-waiting time caused by repeatedly attempting to consummate a
communication,. This busy-waiting time is reflected as an increase in
the number of microinstructions executed, which causes the increasing

difference between the throughput and effective parallelism curves.

The second observation which can be made from Figure 32 1is
that the difference between the allocated and effective parallelism
above sixteen microprocessors decreases rather than increases or
remains constant, as would be expected. This anomaly occurs because
the difference between the allocated and effective parallelism,
pilctured as curve 1 in Figure 34, not only is a measure of hardware
interference - but also measures the hardware overhead functions

involved in mapping virtual PMS activity onto physical PMS activity.
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The major components of this hardware overhead are the time to context
switch and the time to fetch data for a miss in the cache. As seen
from Figure 34, these two components of hardware overhead (see Curves
2 and 4) decrease above sixteen microprocessors counter-balancing the
effect of increasing hardware interference (see Curves 3 and 5). The
proportional decrease in time spent doing hardware overhead functions
can be explained in terms of the 'control working set'" phenomenon

previously discussed in Chapter 1IV.

The phenomenon of the control working set is graphically
displayed in Figure 35: above 16 microprocessors there is a sharp
drop off in the number of context switches, the number of
microprocesses queued, and a correspondingly sharp increase in the
number of direct activations over the  interprocessor  bussing
structure. The decrease in the time spent on hardware overhead
function is thus easily explained:

1) The decrease in the time spent on context switching
occurs because there are significantly fewer context
switches. .
2) The decrease in time spent on fetching data for a
microprocessor's cache occurs because there is a much higher
probability that a microprocess can remain connected to a
microprocessor while waiting for a communication. The data
working set of microprocesses will thus have to be
reassembled much fewer times. This phenomenon is
substantiated on another level through looking at the cache
miss ratio which significantly decreases with more than
sixteen microprocessors, i.e., 13 percent to 10 percent.

This control working set phenomenon of a sharp decrease in hardware

overhead above a certain number of microprocessors 1is directly
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1  (Average instruction execution time for single microprocessor)/
(Average instruction execution time for n microprocessors)

2  (Time required to fetch data on cache miss for n
microprocessors)/TA(n)

3 (Time caused by PSM interference for n microprocessors)/TA(n)

4  (Time caused by delay in accessing locked MSV for n
microprocessors)/TA(n)

<

(Time required to context switch for n microprocessors)/TA(n)

2022B42

34. Distribution of Hardware Interference for Sum-Eighth-Power

Graph Program(10)
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analogous to the data working set phenomenon of thrashing which occurs
when there are too few physical data pages to hold the data working

set of the program.

V.2.4 Future Research -- Choosing a PMS Configuration

A major research area that needs further exploration is the
development of techniques for phoosing an optimal PMS configuration.
The choice of an optimal PMS configuration is very difficult
considering the large number of parameters that must be set in order
to specify a configuration. The configuration that was used for the
simulation results presented in the previous section is pictured in
Table 5. This configuration was chosen through a trial and error
approach, together with some systematic varying of parameters, shown

in Figures 36a, b, and c.

Some tentative conclusions from this trial and error search

are the following:

1) The interprocessor bussing structure configured to handle
8 bus requests simultaneously with at least up to 16
microprocessors connected, can be used as the access path to
the M.PSM and M.MPM without major interference problems.

2) The cache store through mode of never storing through
unless necessary seems to be optimal., The mode of only
storing through when there are available bus and memory
cycles 1is surprisingly not the best. The explanation seems
to be that though the memory is available, the storing into
memory will tie up the memory for cycles in the future, thus
causing interference for future accesses. However, if the
storing through is allowed in some fraction of the available
bus cycles, rather than on every available cycle, then this
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mode approaches (or could be possibly better than) the never
store through mode.

3) The interleaving of the Process Space Memory should be at

least as much as the average allocated parallelism expected
in the system.

4) A cache of 128 32 bit words configure as 32x4 seems
appropriate for handling microprograms of short duration
with small data working sets. A cache configuration of 64x2
has significantly lower cache hit ratio.
5) The proportional effect of varying M.PSM cycle time on
throughput seems to be independent of the number of
microprocessors.
These conclusions are extremely tentative because of the small sample
space of microprograms that were emulated. There should be future

research directed toward a more careful examination of these

conclusions.
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CYCLE TIME CF MICROPRGCESSCR= 1
NUMBER CF FUNCTICNAL UNITS= C
NUMBER CF BUSES= B

FSM REAC/WRITE CYCLE TIME= 2
NUMBEK CF PSM MCDULES_INTERLFAVE=1E
NUMBER OF INDEPENDENT PS# ACCESS PATHS=-1

MEM REAC/WRITE CYCLE TIME= 2
NUMBER CF MPM MCDULES_INTERLEAVE= 8
NUMBER CF INDEPENDENT MPM ACCESS PATHS=-1

MEM REAC/WRITE CYCLE TIME= 2
NUMBER CF MEM MODULES_INTERLEAVE= 4
NUMBER CF INDEPENDENT MEM ACCESS PATHS= 1

CACHE READ/WRITE CYCLE TiMmE= 1
CACHE SIZE=32 ‘
LINE SIZE Cf CACHE= 4

CACHE STGRE THRGUGH MOLE=3

Table 5: PMS Configuration Used for Simulation
Results
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VI. Summary Comment and Conclusions

This thesis has described an architecture for a parallel
microcomputer system that permits a systematic and flexible approach
to the emulation of a wide variety of complex sequential and parallel
intermediate machine languages in a dynamically ~varying
Processor-Memory-Switch(PMS) environment. This architecture has been
based on the view that complex emulators can be best structured in
terms of a set of microprocessors that interact in a highly structured
manner. Further, these highly structured interaction patterns are
different for different types of emulators but for a particular
emulator generally remain static, This view represents a modular,

task oriented approach to managing the complexity of emulation.

These highly structured interaction patterns are dynamically
defined through the concept of a virtual PMS environment. This
concept embodies thé capability for reconfiguring both the internal
and the external environment of a microcomputer system: the varying
of the number of internal working registers of each microprocessor;
the varying of the structure of memory, e.g., its size and word
length; and the varying of the number of microprocessers and
functional units, and their interconnections and interaction patterns.
This extra dimension of representational freedom provided by the
concept of a virtual PMS environment allows:

1) The virtual state dimage of the microcomputer system,
S(vm), to be structured so as to make the imbedding of the
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state image of complex IML's, S(e), straightforward;
2) The microinstructions to operate directly in the context
of an appropriate S(vm) so as to make the coding of an
emulator compact and simple;
3) The emulator to be coded so as to be independent of the
physical PMS environment but, at the same time, exploit
physical resources when available,
In this way, the microcomputer architecture can be dynamically
reconfigured so that it directly mirrors the structure of the IML to
be emulated, A close mirroring between the structure of the

microcomputer and that of the emulated machine is the key to efficient

emulation.

A wvirtual PMS 1is  implemented in the microcomputer
architecture by adding a new global level of hardware controcl, By
making the wvirtual PMS an integral part of the microcomputer
architecture, the overhead in implementing highly structured parallel
interaction patterns, where the parallel activity is of  short
duration, does not overwheim the inherent parallelism of the
iﬁteraction patterns. This new level of hardware control can be
thought of as a simple, hardware operating system which controls the
scheduling and interactions among microprocessors and functional
units. A particular wvirtual PMS is  dynamically defined by
constructing an  appropriate global control structure for the
microcomputer system. An appropriate global control structure is
constructed by dynamically modifying the syntax, i.e., the number of
data elements and their relationships, of the control data structure

(CDS) for this new global 1level of control. In a conventional
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computer or microcomputer system, the data structure for control
contains a fixed set of data elements whose relationships are
predefined. Thus, in a conventional system, control can be modified
only by changing the value of data elements in the CDS, e.g., changing
the program counter. The ability added here to modify the syntax of
the data structure for control is the key to tailoring a virtual PMS

environment for a particular emulated machine.

The CDS has been defined so as to allow the flexible
structuring of a virtual PMS environment, while at the same time
permitting the hardware algorithm for the mapping of virtual
microprocessor activity to actual microprocessor activity to be
straightforward. The CDS consists of an arbitrary number of
microprocess state vectors (MSV); each MSV has a structure which has
13 components; different microprocess interaction patterns are defined
by varying the number of state vectors and the values of their
components which change the relationships among microprocesses. The
components of the microprocess state vector can be broken into two
overlapping clasées: external-environment components and
internal-environment components. Each of these classes can be further
subdivided into control-environment components and data-environment
components. The external control-environment components define the
set of microprocesses that a microprocess can directly communicate
with. The external data-environment components define how other
microprocesses can transfer data to a microprocess. The internal

control-environment components define the local CDS for the sequencing



PAGE 179

of microinstructions of a microprocess. The internal data environment
components define the internal working registers of the microprocess.
Thus, by dynamically altering the number of MSV's and their

components, a virtual PMS can be tailored to a particular emulated

machine.

There are two major tasks in emulation: performing address
arithmetic computations (e.g., computing the address of an operand,
decoding of an instruction format) and sequencing among the different
tasks (e.g., control, decoding, semantic routine) required in
performing an emulation. Corresponding to these two tasks areas,
there are respectively two general classes of microilnstructions in the
microcomputer. One class, called the Integer Function Language (IFL),
deals with internal registers of the microprocessor, and are like
conventional vertical microinstructions. The other class, called the
Structure Building Language (SBL), deals with the external environment
of the microprocessor by modifying the CDS . The major emphasis in
this thesis has been on the SBL because the flexibility of the conﬁrol
structure of the microcomputer is crucial to the effective emulation
of sophisticated IML's. This flexibility of control structure is the

major feature lacking in existing microcomputer architectures.

The SBL microinstructions are not oriented toward specifying
any particular method of microprocess(or) interaction patterns, but
rather are building blocks by which different interaction patterns can

be defined. The key to the design of the SBL is to imbed, in a
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parameterized way, in a small number of microinstruction types the
essential aspects of a wide varlety of interaction patterns. 1In
addition, SBL microinstructions are designed so as to provide
information to the hardware mapping algorithm which allows the mapping
algorithm to take advantage of similarities between the structure of

the virtual PMS environment and that of the actual PMS environment.

The SBL, which consists of eight microinstruction types
listed in Table 1, has two functions: a syntactic function and a
é;mantic function. The syntactic function involves the dynamic
construction of the CDS while the semantic function involves the
dynamic invocation of microprocess interaction patterns defined in the
CDs. In essence, the syntactic microinstructions dynamically define
statie, time-independent interrelationships among microprocesses. The
semantic microinstructions use these syntactic interrelationships
among microprocesses as a convenient representational framework within
which to define dynamic, time-dependent interrelationships among
microprocesses, The separation between the definition of interaction
patterns and their invocation is possible because the execution of a
microprocess is factored into three discrete, separable phases: a
binding phase, an expansion phase, and an activation phase. The
generation of a CDS caused by the binding and expansion phases can
thus be separated from the sequencing of a CDS caused by the
activation phase. This separation is extremely important because once
the overhead cost has been incurred for defining the (DS whose

structure generally remains static during an emulation, there is
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little overhead cost for each dynamic interaction pattern invoked.

A key aspect of microprocess interaction patterns is
specifying at what time points in the activity life of a microprocess
certain types of communications can be received. This aspect of
microprocess interaction 1s accomplished through the concept of
agreeable communication states: the semantics of SBL
micreinstructions are defined so that communication between two
microprocesses is only consummated when the execution-state and type
of communication(activation-type) are agreeable for communication.
The set of agreeable states 1is designed so that a microprocess can
1) sequentially accept and process multiple communications,
2) selectively accept only certain types of comﬁunications, and

3) asynchronously accept requests for communication.

The feasibility of this microcomputer architecture has been
demonstrated by examining its representational capabilities, its

hardware organization, and its dynamic execution characteristics.

The representational capabilities of this architecture have
been examined through the microprogramming of an emulator for a
sophisticated parallel machine language, Adams' Graph  Machine
Language (AGML) . The emulator of this machine language has
demonstrated the versatility and usefulness of the SBL and the concept
of a dynamically restructurable CDS in the following ways:

1) It has shown how an S(vm) can be constructed so as to
make the embedding of the state image of a complex IMIL,
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S(AGML), straightforward. Imn particular, it has indicated
how ‘a CDS can be tailored so that it directly mirrors the
distributed control structure of AGML.

2) It has shown that an emulator can be compactly and simply
coded when the microinstruction directly operates in the
context of the appropriate S{vm). The microprogram memory
required for the AGML emulator microprogram, including the
storage for constants, is less than 600 microinstruction
words.

3) It has shown how a CDS can be dynamically structured so
as to easily represent a wide variety of different types of
control structures, i.e., distributed control, semaphore
processes, message  queuing, broadcast  control, etc.
Further, it has indicated how these different types of
control structures can be integrated together in a single
CDS.

4) It has shown how a modular task approach to design of an
emulator can be implemented naturally within the framework
of a restructurable CDS.

The examination of a harware organization  for this
architecture has indicated that a coherent and simple logical design
can be constructed which allows parallel activity on the <virtual PMS
level to be mapped correctly and without significant overhead onto
parallel activity in the wmicrocomputer system, The main design

techniques used were

1) An Interprocessor Bus and its associated control which
works like a common data bus so as to map directly, whenever
possible, microprocess interaction patterns into
microprocessor interaction patterns.

2) A built-in FIF0 queue mechanism din the Virtual
Interaction Controller for ordering access to a locked-out
MSV so as to guarantee that no resource deadlock will be
introduced in the mapping of virtual activity to physical
activity.

3) A memory cache per microprocessor which allows the
internal registers to be configured so as to match the
particular microprocess being executed and to reduce the
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memory interference among microprocessors and the time to

context switch.

The dynamic execution characteristic of this architecture
have been studied through the use of a detailed simulator of the
logical hardware organization. This simulator has been wused to
quantitatively verify that the graph machine emulator is correct, and
that parallel activity on the wvirtual PMS can be mapped without
significant overhead onto the physical FMS. In particular, a major
part of the computational activity of the AGML emulator can be
performed in a parallel way as a function of 1/n: where sufficient
parallel activity exists, the addition of microprocessors to the PMS
configuration will reduce in a linear way the time it takes to execute
the computation. The simulation results have also indicated that the
logical hardware design, with the appropriate PMS configuration, can
efficiently handle sustained ﬁarallel activity, 1involving highly
structured interaction patterns, of greater than  sixteen
microprocessors. In addition, the phenomenon of the 'control working
set' has been experimentally verified: the hardware overhead required
to map virtual PMS actiﬁity onto. physical PMS activity significantly
decreases when the PMS configuration contains more than a certain

number of microprocessors.

In summary, this thesis has demonstrated that a new type of
microcomputer architecture, employing the concept of dynamic control
structures, permits the effective (ease of representation, code

density, and low hardware overhead) emulation of complex problem
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oriented computers whose architecture departs from a classical von
Neumann architecture. This thesis has also verified that a modular
task oriented approach to managing the complexity of emulation is

feasible at both the hardware and software level.
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APPENDIX A

The Integer Function Language (IFL)

Class of Microinstructions

The microcomputer contains, as previously discussed, two
general classes of microinstruction: SBL and IFL microinstructionms.
A microprogram consists of an arbitrary inter-mixture of these two
classes .of microinstructions. In fact, the SBL and IFL
microinstructions have the same format (see Figure 11 and Figure 37).
The distinction between these two classes of microinstructions stems
from a desire to clearly distinguish microperations which directly
manipulate the external environment of the microprocess from those
that manipulate the internal enviromnment of the microprocess. This
distinction leads to more efficient utilization of a microinstruction
word and to microprograms which are more compact, more modular, and
mﬁre easily understood and debugged. Thus, the SBL miecroinstructions,
which deal with external environment, have a minimal set of intermal
sequencing rules (i.e., either execute the next microinstruction or
terminate sequencing), and can only modify the internal environment of
microprocessors by leaving a descriptor on the top of the value stack.
On the other hand, the IFL microinstructions, which deal with ;nternal
environment, can modify the external environment of the microprocess
only indirectly by storing data in the global data environment of the

microprocess,
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IFL microinstructions are specifically designed for the
address arithmetic computations required in emulation: computing the
effective address of an operand, decoding an instruction format, and
emulating the action of an arithmetic unit, i.e., a floating-point
adder. 1In order to accomplish these functions, the TIFL has been

designed to:

1) extract or store an arbitrary field of a 32 bit register
in a single microinstruction.

2) directly perform arithmetic operations on aligned or
unaligned fields of from 1 to 32 bits in length (same
technique as used in MLP-900 (LAW71)).

3) test for an arbitrary condition and then  jump
appropriately in a single microinstruction.

4) evaluate indirectly fields of a microinstruction: an.

inline function call mechanism in which a microinstruction

may invoke a microprogram in order to generate the value of

a field.

The format of an IFL microinstruction (see TFigure 37)
resembles a vertical microinstruction format except that each field,
instead of directly specifying a register or arithmetic operation,
contains a syllable (See Figure 11 and B6700 (HAU68)). These five
syllables fields, when evaluated, define five values which are used to
specify an operation code, two operands, an index register modifier,
and a program counter modifier*. This syllable approach introduces a
level of indirection in the execution of a microimstruction which

allows for very compact and modular code. In addition to the five

syllables, there are five mode bits contained in the microinstruction
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word. These mode bits specify whether the arithmetic operation will
result in a modification to the "processor-status", whether execution
will be suspended after the completion of this microinstruction if the
process-state is execute-single-cycle, whether the value of the
jump-modifier syllable .will be added to the program counter (i.e., a
relative jump) or used to replace its contents (i.e., an absolute
jump), whether the value of index-modifier will be added to the index
register or replace its contents, and whether the value stack will be

popped at the completion of the microinstruction.

The execution of an IFL microinstruction is broken up into

three steps:!

1) evaluate all non-deferred syllables, and place their
values on the program counter stack. If the index modifier
syllable is not deferred, then the dindex register is
immediately modified. The defer bit of index modifier
syllable allows for either post— or pre~indexing operatioms.
In addition, the defer bit of the jump modifier permits the
new program counter address to be computed before or after
the execution of an arithmetic operationm.

2) evaluate all deferred syllables which involve a function
call. The result of each function call is placed on the
program counter stack.

3) perform the arithmetic operation specified by the
operation-code syllable, and modify the index register and
the program counter.

*The current program counter and index register are conceptually the
top two registers of program counter stack; however, for
implementation efficiency these two registers are held directly in
internal registers in the microcomputer sc as to avoid any cache
accesses. The index register is used as a scratch pad register and is
pushed down, together with the program counter, on the program counter
stack when a function call is invoked. The index register 1is used
alse to hold a mask operand for masking operations.
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The first two steps of execution are skipped if all syllables are
deferred and there are no function calls. The results of an
arithmetic operation is placed on the top of the value stack. If the
program~counter modifier specifies a null value, then current program
counter and index register are replaced by the top fwo elements of the
program counter stack, and top of the value stack is transferred to
the top of the program counter stack. Through this mechanism, the
results of an inline function call is returned to the invoking

microinstruction so that it may complete its execution.

The format of a syllable and its evaluation procedure are
specified in Figure 11. A syllable is eleven bits long and contains
three subfields: DEFER, DESCRIPTOR and ICONSTANT. The DEFER subfield
is used to specify when a syllable will be evaluated, e.g., pre- or
post-indexing. The DESCRIPTOR subfield indicates which one of the
four possible evaluation modes is to be used to compute the value of
the syllable. The TICONSTANT subfield specifies anm 8 bit 2's
. complement integer which 1s wused as an operand to the syllable
evaluation procedure, These are four possible modes of evaluating a
syllable:

1) Immediate operand -- return ICONSTANT subfield as value

of syllable

2) Inline functional call -- use ICONSTANT plus the current

program counter address to specify the starting address of a

microprogram function. This microprogram function is

invoked and the last result produced by this microprogram
becomes the value of the syllable.
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3) Register operand —- return the value of operand located
in the local or global data environment of the microprocess.
The index into the data array is specified by ICONSTANT and
its sign indicate whether the local or global array will be
used.
4) Long Constant or Internal State Register —— based on the
sign of ICONSTANT return either a 32 bit constant stored in
the Microprogram Memory or an internal state register (i.e.,
the program counter, the index register, the top two
elements of the wvalue stack, or any field or the
Microprocess State Vector).

This four mode evaluation procedure provides a flexible but, at the

same time, concise way of computing a syllable value.

The operation-codes fall dinto two classes: integer
arithmetic operations and descriptor based operations. The integer
arithmetic class of operations contains the conventional arithmetic,
logical and shifting operations, whereas the descriptor based class of
operations are wused to access and store information from an array of
data registers which are specified through a deseriptor. The power of
this set of operation codes for address arithmetic and bit extraction
and manipulation, comes from the ability to augment these basic
operations with a mask operand which is implicitly specified to reside
in the index register. Table 6 contains a list of  these

operation-codes and their semantics.

The microassembler syntax for the IFL microinstructions 1is
contained in appendix B. Appendix C contains numerous examples of how
the IFL is used for address arithmetic computations, and how the IFL

leads to compact microprograms.
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TABIE 6. IFL Operstion-Codes

QOperation Code Semantics Commentsa

Integer Arlthmetic Opersations

- These two opcodes are represented by values
4 MRESULT*= 1

SFO (Select First Opersnd} SULT*=OPR({ 1) 14 2. They are used in conjunction with sn
S5C (Select Second Opersnd} MRESULT=OPR( 2) opcode syllable which evalustes to & condi-

tlon code which is either 1 or 2. This per-
mits the loading of cperand based on the
value of the condition code.

ADD MRESULT=( OPR{ 1 )&MASK)+( OPR{2)& — MASK) These three Opcodes permit arithmetic

SUBTRACT MRESULT={ OPR{ 1 )& MASK}+(-OPR(2})& — MASK) operations to be performed, in plsce, on
uneligned register fields.

MULTIPLY MRESULT=(OPR{ 1)& MASK)x{OFR{2)& MASK)

SHIFT RESULT=1if OPR{2}> O then Permits extrsction end eligning of a field

0f1:0PR(2)][ | (OPR(1)& MASK)[1:32-0PR{2)] in & single mieroinstruction.

els
{OPR{1)& MASK)[I—O!’;(E):BE]I |o{1:-0PR(2)]

SHIFT_MASK MRESULT= if OPR{2}P> O then Permits extracticn and eligning of a field
ol 1:0PR(2) 1} |0PR(1)P=3E-0PR(2)] else using an immediste constant mask field since
OPR{1)[1-0PR(2}:32]) f of1:-0FR(2)) masking done after sligning.

LOGICAL_AND MRESULT=0FR(1)& OPR(2)

COMPARE Conditicn Code produced by SUBTRACT
operstion

LCOMFARE Condition code produced by LOGIC/I-AND
operation.

Descriptor Operations

TNDEX RESULT=Pointer tc ELEMENT{OFR(1),0FR(2})**

ACCESS MRESULT=ELEMENT{ OPR(1),OPR(2) )

STORE ELEMENT( OFR(1),0PR(2))= Permits in piace modificaticn of a reglster
(ELEMENT(OPR(1),0PR(2) )& — MASK) V field - ususlly combined with sn srithmetic
({TOP OF VALUE STACK)& MASK) operation to create two microinstruction se-

quence for updsting e register field.

STORE_INDEX ELEMENT( CFR{ 1) ,0PR(2))=INDEX REGISTER Permite storing of sylleble value into

register in single microinstrucetion. This is
sccomplished by performing index modificstion
operation before store operation.

LOAD CONSTANT MRESULI=first or second constent st . Permits storing of constants in M.MPM rsther
locatlon, OPR{1)+(OPR{2)-1}/2, in then just M.PSM. This saves apace by svold-
the Microprogram Memory dependent ing duplication of storesge for constents.
upon whether OPR(2) is odd or even. This is particularly importent in multi-

processor configuration since there masy bte
meny wleroprocesses using the seme micro-
program.

* MRESULT indicates thst if result is not s descripter, then result will be mesked. If mask option is not
invoked, then mask is all one bits.

**ELEMENT{OPR{1), OFR(2)) specifies OFR{Z) element of data srray specified by descriptor OPR(1).



<MICRO_PROGRAM>

<STMTS>

<LSTMT>

<STMT>

<SBI,_STMT>

<MEM_STMT>

<ACCESS>

<DIRECTION>

<FCP_STMT>
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APPENDIX B

SYNTAX OF MICROASSEMBLER

= BEGIN <STMTS> END

1= <LSTMT> ;
H

= <LSTMT> ; <STMIS>

s= <LABEL> <STMT>

=  <IFL,_STMT>
=  <SBL STMT>
=  <CONS_STMT> ;

e s

i=  <MEM _STMT>
<FCP_STMT>
<8EL_STMI>
<ASP STMT>
t=  <MSC_STMT>
<GEN_PMSV>
<GEN_EPSV>
<GEN_REG>

[}

:=  <ACCESS> ELEMENT ( <SYL> ) WITH FORMAT =
<SYL> AND LENGTH = <SYL> <DIRECTION>
MEMORY ARRAY ( DESCRIPTOR = <SYL> ,
OFFSET = <SYL> )

READ
STORE
READ/STORE

TR
o

= FROM
INTO
=  FROM/INTO

e e
]

:= ACTIVATE FUNCTIONAL UNIT ( <SYL> ) WITH
CONTROL INFORMATION = <SYL> USING <SYL>
INPUT GENERATORS <ACTIVATE> AND STORE STATUS
IN <SYL>

:=  ACTIVATE FUNCTIONAL UNIT ( <SYL> ) WITH
CONTROL INFORMATION = <SYL> USING <SYL>
INPUTL_GENERATORS <ACTIVATE>



<SEL_STMT>

<SONS>

<ASP_STMT>

<ASP_PARAMS>

<ASP_PARAM>

<MSC_STMT>

<MSC_PARAMS>

<MSC_PARAM>

<GEN_PMSV>

<REBUILD>

<GEN_PMSV1>

<STATE PARAMETERS>

<STATE PARAM>

<CLOCK_PROCESS>

<GEN_EPSV>

nnn nn [

I

o oo R

i

[}
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<ACTIVATE> <SONS> WITH INPUT = <SYL>
<ACTIVATE> <SONS> WITH INPUT = <SYL>
THEN WAIT FOR <SYL> TO SIGNAL RETURN

SON ( <SYL> )
SONS ( <SYL> TO <SYL> )

<ACTIVATE> NODE ( <SYL> ) WITH <ASP_PARAMS>

<ASP_PARAM>
<ASP_PARAM> , <ASP_PARAMS>

INPUT = <SYL>
RETURN_ADDRESS = <SYL>
EPSV = <SYL>

INVOKE PROGRAM ( <SYL> ) WITH <MSC_PARMS>

<MSC_PARAM>
<MSC_PARAM> , <MSC_PARAMS>

STACK TOP = <SYL>

INDEX = <SYL>

PROGRAM STATUS = <SYL>
INITALIZE ROUTINE = <ADDRESS>

S = P ( DESCRIPTOR OF <GEN PMSV1> )
S = P ( <GEN PMSV1> ) -
<REBUILD> PROCESS WHOSE <GEN PMSV1>
AND <CLOCK PROCESS>

STATIC
DYNAMIC

SUBSTRUCTURE CONTAINS <SYL> SONS
WITH <STATE PARAMETERS>

<STATE_PARAM>
<STATE PARAM> , <STATE PARAMETERS>

PROGRAM = <SYL>

PORT = <SYL>
LOCAL DATA = <SYL>
EPSV = <SYL>

CLOCKING PROCESS = <SBL_STMT>

S =P ( EPSV WITH <EPSV_LIST> )
RETURN ( P ( EPSV WITH‘<EPSV_LIST> Y )



<EPSV_LIST>

<EPSV_PAR>

<GEN_REG>

<GEN_REG1>

<GEN_REG2>

<DESC_TYPE>

<DESC_LIST>

<DESC>

<AC_MODE>

<ACTIVATE>

<TYPE_OF_ACTIVATION>

" se

e

. se o . aa

Ii i

e ar

[

/]

o ]

<SYL>
<SYL> , <EPSV_LIST>

<EPSV_PAR>
<EPSV_PAR>

[

GLOBAL_DATA
VSTACK

PSTACK
GLOBAL_PROCESS
EXTERNAL ENV

S = <GEN_REG1>
RETURN ( <GEN REG1> )

P ( DESCRIPTOR OF <GEN REG2> )
P ( <GEN_REG2> )

<DESC_TYPE> DEFINED FROM (
DESCRIPTOR = <SYL> , OFFSET =
<SYL> ) WITH <DESC_LIST>
<DESC_TYPE> WITH <DESC_LIST>

REGISTER BLOCK
STACK

10 _BLOCK
MEMORY ARRAY

<DESC> = <S8YL>
<DESC> = <SYL> , <DESC_LIST>
ACCESS_CONTROL <AC MODE>

ACCESS_CONTROL

DIMENSION
WORD_LENGTH
INITIAL POSTTION

LOCAL
GLOBAL
COROUTINE

<TYPE OF ACTIVATION>

<TYPE_OF ACTIVATION> ( <ACT MOD> )

EXPAND

EXECUTE

EXECUTE SINGLE_CYCLE
SUSPEND

TERMINATE

RETRIEVE

WAKEUP

NULL ACTIVATE

PAGE 199

<AC MODE> , <DESC LIST>



<ACT_MOD>

<MODA>

<TFL_STMT>

<LABEL>

<RET_STMT>
<SEQ_STMT>

<FUNC_TNDEX>

<FUNC_STMT>

<OPERATION>

<MOD_LIST>
<MODIFIER>

<INDEX_STMT>

e

ew 48 wv 4

.o

LY S

B

il

[/

onon

nonon

[ 3

Wi

<MODA>
<MODA> , <ACT MOD>

REFERENCE
VALUE

RETURN

NO RETURN
CONTINUE

WAIT RESPONSE
TRANSFER DATA
STORE_DATA
TRANSFER STATUS
STORE_STATUS

NO TRANSFER
BUSY WAIT

NO BUSY WAIT
PARALLEL

ACT CODE = <INTEGER>

<SEQ_STMI>
<RET_STMI>

<SYMBQL> :
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<INDEX_ STMT> , RETURN ( <OPERATION> )
RETURN ( <OPERATION> )

<FUNC_INDEX> , <JUMP_ STMT>
<JUMP_STMT>

<FUNC_STMI> , <INDEX STMT>
<FUNC_STMT>
<INDEX_STMT>

5
S

<OPERATION>
( <OPERATION> , <MOD_LIST> )

<OPERATION>
( <OPERATION> , <MOD LIST> )

<OP_CODES> ( <SYL> , <SYL> )

<MODIFIER>

<MODIFIER> , <MOD_LIST>

POP_STACK
MODIFY_STATUS

I
I

I=

T -+ <SYL>
<8YL>
I - <INTEGER>
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GO TO <ADDRESS>

<JUMP_STMT>
<ADDRESS> * 4 <SYL>
<SYL>

* — <INTEGER>
<SYMBOL>

<SYL> <SX>

<8%>

]

<8X> 1= <INTEGER>
-~ <INTEGER>
<BIT STRING>
( <INTEGER> )
( <INTEGER> )
(I)
(1)
( * + <SYL> )
( <SYMBOL> )
ONS( <SYMBOL> )
ONS({ * 4+ <INTEGER> )

n

( POP )

(-1)

( <POINTERS> )

{ <CONDITIONS> )

HIHOTHONLmoOEHEQE @

AR R R RN

noh
g
5

nn
g
9]
—

ACT_CODE

]

<POTNTERS> NULL

LOCAL DATA
LOCAL_PROCESS
GLOBAL DATA
= GLOBAL PROCESS
= RETURN

:=  EPSV

SELF

VSTACK
PSTACK
EXTERNAL_ENV
PORT

/|

Honwn



<CONDITIONS>

<OPCODES>

<OPC>

<BIT_STRING>

<BITS>

<BIT>

<CONS_STMT>

<CONSTANTS>

.r

° se

s %% we ea aa

hnn

e

[

It

f

nn

it n

I H

LI

it [

v 1

<
<
I=0
"=0
<INTEGER>

<QPC>
MASK_ <OPC>

S0

S0

INDEX
ACCESS
STORE
STORE_INDEX
SHIFT
SHIFT_MASK
LOAD_CONSTANT
SET_STATE
ADD
SUBTRACT
MULTIPLY
SHIFT
LOGICAL_AND
COMPARE
LCOMPARE

' <BITS> '

<BIT>
<BIT> , <RITS>

0
1
0 ( <INTEGER> )
1 ( <INTEGER> )

CONSTANTS ( <CONSTANTS> )

<LABEL> <CONSTANT>

<LABEL> <CONSTANT> , <CONSTANTS>
<CONSTANT>

<CONSTANT> , <CONSTANTS>
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<CONSTANT>

o e

<INTEGER>
<SYMBCL>
<BIT_STRING>
* + <INTEGER>
* — <INTEGER>
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APPENDIX C

ADAM®*S GRAPH MACHINE ENMULATCR

/ BEGIN/
/* GRAPH MACHINE({VERSION MAY 25,1972) #/

GRAPH_MACHINE:
DEFINE STATIC PROCESS WHOSE SUBSTRUCTLRE CCNTAINS
F(S3) SONS WITH
PROGRAM=F( SONSGM ),
LOCAL _DATA=F(LOCAL _SONSGM) ,
PORT=F(PORT_SONSGM],
EPSV=F{EPSV_SONSGM)
AND
CLOCK ING PROCESS=INVOKE PROGRAM{GRAPH_CLOCKER) ;

GRAPH_CLOCKER:
S= INDEX(P{LOCAL _PROCESS),3);
EXECUTE(WATIT_RESPONSE yNUO_RE TURN) NODE (S) 3
/% SIGNAL GRAPH PROCEDURE TGO —EGIN,EQUIVALEAT TC FCP TRANSFER
OF CONTROL INFORMATION */
EXECUTE{WAIT_RESPONSEF,NO_RETURN) NODEL(S) 3
/¥ GRAPH PROCEDURE RESPONDS AND THEN SUSPENDS ITSELF WHEN
ALL INPUTS HAVE BEEN FETCHED ,MUST REAWAKED AT THIS PCINT
TO SIMULATE CONNECT TO FCP TO GENERATE CUPUT #%/
NULL _ACTIVATE(WAIT_RESPONSE) NODE{P{SELF));
/% THIS NULL ACTIVATE SIMULATES WAIT AFTER STATUS RECIEVED %/
WAKFUP (WA IT _RESPONSE,NO_RETURN,POP) NCDE(S} AND THEN RETURN;
/* RESULTS OF COMPUTATION 1S HELD IN FCRT 2/

/% LOCAL ENVIRONMENT OF GRAPH MACHENE

1 DESCRIPTOR OF MAIN MEMORY
2 WORKING REGISTER
PORT -4 REGISTERS */

S3: ‘
S=P{DESCRIPTOR 0OF REGISTER _BLOCK wITH DIMEANSICA=2,
ACCESS_CONTROL=GLOBAL) ;

/* DEFINE GLOBAL DATA ENVIRONMENT =2/

S=DESCR IPTOR OF MEMORY_ARRAY DEFINED FROM(
DESCRIPTOR=L{ 1} 0FFSET=0) WITH OIMENSIOAN=CCAS{PROGRAM_AREA]),
WORD_L ENGTH=83 ’

(STORE{S(11y1)sPOPSTACK);
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S=DESCR IPTOR OF MEMORY_ARRAY DEFINED FR(OM
(DESCRIPTOR=L{1),0FFSET=LONS{PROGRAM_AREA)} WITH
DIMENS ION=CONS{DATA _AREA} yWORD _LENGTH=8 3
(STORE{S{1142),POPSTACK]};
/% INITIALIZED GLCBAL DATA ENVIRONMENT CF GRAPH_PROCEDURE */
(STORE(P (LOCAL_DATA), 21 ,POPSTACK} 3
/¥ SAVE POINTER OF ENVIRONMENT IN L(2) =2/
RETURN(SFOU3,NULL));
CONSTANTS(PROGRAM_AREA:2048,DATA_AREA :3072C} 3
/* DATA AREA SHOULD BE 960%*NUMBER_CF_LINKS #/

SONSGM:
RETURNILOAD_CONSTYANT(PCL,I.BEG)) S
CONSTANTS(SPACE_MANAGER ,PROGLESSOR_SCHEDULER,
GRAPH_PROCEDURE) ;

LOCAL _SONSGM:

GO TD *+I[.BEG;

LOCAL_SM:

RETURN (P (DESCR IPTOR OF REGISTER_BLCCK WITH DIMENSION=6));
LOCAL_PS: ‘

RETURN {P (DESCRIPTOR OF REGISTER_BLCCK WITH CIMENSION=11));
LOCAL _GP:

S=P(DESCRIPTOR OF RFGISTER_BLOCK WITH DIMENSICN=101};

STORE_ INDEX( S, 3}, I=_0;

7% INIT PROGRAM ADDRESS=0 */

RETURN { { SFO{ SyNULL ) ,POPSTACK) ) ;

PORT_SONSGM:
S=ACCESS{PIPSTACK)s=2)y G TO *+1.BEG;
PORT _SM:
RETURN {P {DESCRIPTOR OF REGISTER_BLOCK DEFINED FRCM
{DESCRIPTOR=S({POP) ,OFFSET=C) WITH DIMENSION=2)};
PORT_PS:?
RETURN(( INDEX{S,11),POPSTALKI) 3
PORT_GP:
RETURN (P {DESCRIPTOR OF REGISTER_BLCCK DEFINED FRCM
{DESCRIPTOR=S{POP) sOFFSET=C) WITH DINENSION=2));

EPSV_SONSGM:
GO TO *+1.BEG:
EPSV_SM:
RETURN (P (EPSY WITH PSTACK=F{ STACK4)} s VSTACK=F(STACK2]),
GLOBAL _DATA=L ({2} ,GLOBAL_PRCCESS=S}};
EPSV_PS:
RETURN(P(EPSY WIEITH PSTACK=F{STACKS} + VSTACK=F (STACK4) »
GLOBAL _DATA=L(2),GLOBAL_PRCCESS=S})) 3
EPSV_GP:
RETURN{P{EPSY WITH PSTACK=F{ STACK1C) s VSTACK=F(STACKb},
GLOBAL _DATA=L (2 GLOBAL_PRCCESS=S));
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SPACE_MANAGER:

/% LOCAL _ENVIRONMENT
1-2 PORT
3 CURRENT SPACE ALLOCATION INIT(C)
4—-6 WORK ING REGISTERS

ACT IVAT ION_CODE=
3 REQUEST STORAGE-PORT(1)=NUMBER CF 64 BIT WCRDS
9 RELEASE STORAGE-PORT(1l)=NUMBER CF 64 BIT WORDS
PORT{2)=BASE CF SPACE ALLCCATED %/

STORE_INDEX{P (LOCAL_DATA) ,3},1=_0;
REQUEST_LDOP : |

{COMPARE(ACT_CODE, 8)4MODIFY_STATUS) ,6C TQ #C{=};
GO T REL EASE_STORAGE ;

REQUEST_STORAGE:

S=SHIFT(L(1)y—&)3

WAKEUP{ CONT INUE ) NODE(P(RETURN}) WITH INPUT=L(3}3;
S=(ADD{S,+L(3)),POPSTACK) 3

(TIME_GRAIN):

[STORE(P{LOCAL_DATA),3),POPSTACK) .60 10 REQUEST_LOOP:

RELEASE_STORAGE:
[TIME_GRAIN): GO TO REQUEST_LOGOP;
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PROCESSOR_SCHEDULER ¢

/% LDCAL DATA ENVIPONMENT OF SCHEDULER_PROCESSCR
1 A) HEAD (1l:4) INIT(2),
B) TAIL {5:8) INIT(1),
C) CURRENT_SIZE (9:12) INIT(O},
D} FREE_LIST {17:32)
INIT{*1(NUMBER OF PROCESSORS) '8)

2=-9 QUEUE DF PENDING REQUESTS
10 QUEUE OF CORRESPONDING INITIATICN AUNBERS(8) BIT(4)
11 PORT */

DEFINE STATIC PROCESS WHOSE SUBSTRUCTLRE CCNTAINS
COMS{NUMBER_PRNCESSORS) SONS WITH

PROGRAM=CONS{ SONSPS),

LOCAL _DATA=F(LOCAL_SONSPS),

PORT=F(PORT_SONSP S},

EPSV=F{EPSV_SONSP S}

AND
CLOCK ING PROCESS=INVOKE
PROGRAM { SCHEDULER _CLOCKER) WITH INITIALIZE_ROUTINE=F{INIT_PS};

INIT_PS:
{=_CONS{INIT_QUEUESPS]),
RETURNISTORE_ INDEX{P(LOCAL_DATA),1)1)3

LOCAL _SONSPS:
S=P{DESCR IPYTOR OF REGISTER_BLOCK WITYH DIMENSICN=10)3
S=SHIFT{I.BEGy-4), [=*1{4)0(4)'B;
(MASK_STORE(S{1}45)y POPSTACK);
RETURN( ( SFO(SyNULL 1,POPSTACK) )
/¥ INITIAL [ZE PROCESSOR NUMBER*/

PORT_SONSP S:

S=ACCESS{P{PSTACK),~2);

RETURN(P [DESCRIPTOR OF IO_BLOCK DEFINED FRCH(DESCRIPTOR-S{POPi’
QOFFSET=0) WITH DIMENSION=2));

EPSV_SONSP St

RETURN(P(EP SV WITH
VSTACK=F{ VS_PROCE SSOR} 4 PSTACK=
F{PS_PROCESSOR ) +& XTERNAL_ENV= P{SELF))};
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{(TIME_GRAIN):
GO TO SCHEDULER_CLOCKER;
/% SUSPEND UNTIL NEXT REQUEST =/

NULL _ACTIVATE(WAIT_RESPONSE) NODE(P(SELF});
/% WAIT NEXT REQUEST SO WILL NOT GET ANCTHER PRECESSOR REQUEST =/
GO TO PROCESSOR _COMPLETE

PROCESSOR_COMPLETE:
{(MASK_COMPARE(L{11,0)y MODEFY_STATLSY, I=_CCNSI{MASK_C},
B TOo *+L{=]}3
GO TO ASSIGN_PROCESSOR;

S=SUBTRACTI L,L{11)); |
S={SHIFT(*1'B,S),POPSTACK) y I=RESULT;

(TIME_GRAIN):

(MASK_STORE(P (LOCAL _DATA),1},POPSTACK)y GC TC SCHEDULER_CLOCKER;

ASS IGN_PROCESSOR s
S=SUBTRACT( Gy F(HEAD})
S={SHIFT(Ss—2),POPSTACK) ,I=*1(4) *'B 3
S=(SHIFT_MASK{L(10),S)+POPSTACK) 3
/* COMPUTER ADDRESS OF PROCESSCR TC BE ALLCCATED »/
S=INDEX(P(LOCAL _PROCESS),L{11})},1=F(HEAD) ;
/* INITIALIZE PROCESSOR WITH ADDRESS CF NGDE AND INIT NUMBER */
EXPAND{ CONT INUE,NO _RETURN) NODE(S) WITH INPUT=S(1),
RETURN_ADDRESS=L{I1);
/* SIGNAL NODE WITH PRUCESSOR */
WAKEUP{ACT_CODE=9,REFERENCE ;CONTINUE ,FCP) MCDE(L(I)) WITH INPUT=S5;
/* UPDATE FEAD %/
{MASK_COMPARE(L {1),CONS({H9) } ,MODIFY_STATLS ,PCPSTACK) ,
[=_CONSIMASK_H), G0 TO *+({{-=);
S=SHIFT(2,—28), GO TO *+2;
S=MASK_ADD(L( 1), CONS{HLY)
(MASK_STORE(P (LOCAL_DATA)y 1)y POPSTACK) 3
S=MASK_SUBTRACT(L({ 1)}, CONSIC1)), I=_CONS{FMASK_C);

(TIME_GRAIN}:
{MASK_STORE(P{LOCAL_DATA),1),POPSTACK), GC TC SCHEDULER_CLOCKER;

CONSTANTS(SONSPS:
PROCESSOR INIT_QUEUESPS: *00100001C{8)0(10)1(6) *B,
NUMBER_PROCESSORS:6) 3
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SCHEDULER_CLOCKER:
(COMPARE{ACT_CODE;9), MODIFY_STATUS),
G0 TO ®*+C(=1);

GO TO PROCESSOR_COMPLETE;

REQUEST_PROCESSOR:
S={LOGICAL_AND(L(1),CONS{L16)), MODIFY_STATUS), I=1,G0 TC *fClﬁ‘)n
{COMP AR E{NULL ¢4NULL } yPOPSTACK} 4GO TO NC_FREE_ FRCCESSOR,
(L COMPARE(S,*1'8),MOD IF Y_STATUS) »GO TC #4C (~=) 3
S=(SHIFT{Sy 1),POPSTACK},I={+1,G60 TQ *-1;
FREE_PRDCESSOR :
S={INDEX(PILOCAL _PROCESS) 1) ,POPSTACK) +I=1~13
EXPAND{CONT INUE,NO _RE TURN)
NODE(S) WITH INPUT=L{11l},
RETURN_ADDRESS=P{RETURN) ;
WAKEUP({ACT_CODE=9,REFERENCE 4CONTINLE)
NODE(P (RETURNI} WITH INPUT=S3
S={SHIFT(*1'8+—1},POPSTACK)y I=RESLLTY;
S={SFO{ O, NULL },POPSTACK) ;
(TIME_GRAIN):
{MASK_SYORE{P{LOCAL_DATA),1)y POPSTACK), GC TC SCHEDULER_CLCCKER;

NO_FREE_PROCESSDR:
S=MASK_ADD(L(1),CONSIC1)), I=_CCNE(MASK_C);
/EC=C+ix/
(MASK_STORE(P (LOCAL_DATA) 11, PCPSTACK) 3
{MASK_COMPARE{L (L) 4CONS{T9)), MODIFY_STATLS), I=_CONS{MASK_T),
GO TO *+C(~=);
/*T=END OF LIST#*/
S=SHIFT{ 2,-24), GO TO *+2;
S=MASK_ADD{L(1},CONS(T1)});
/*STORE T*/
MASK _STORE(P(LOCAL _DATA),1);
S=(MASK_SHIFT{S,24),POPSTACK), 1=P{RETLRN};
STORE_INDEX{P (LOCAL_DATA)»5);

/% NEED TO QUEUE UP REQUEST */

S=(SUBTRACT(S,9),POPSTACK) ;
S=(SHIFT{Sy—2}4POPSTACK}, I=RESULT;
S=(SHIFT{'1(4)'8,1),POPSTACK) ;
S=SHIFT({L(LY}y1}y I=SI{POP);
(MASK_STORE{P {LOCAL _DATA),10),POPSTACK) 3

/¥ STORE AWAY INITIATION NUMBER */

{MASK_COMPARE{L(1)4CONS{C 8} ) MODIFY_STATUS), I=_CONS{MASK_C],
GO TO *=+Cl=);
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PROCESSOR:
/% LOCAL DATA ENVIRONMENT OF PROCESSCR
1-2 PORTY
3 ADDRESS OF CONNEC TED NODE
4 INPUT_L INK_STATUS{1:16),
ODUTPUT_LINK_STATUS(17:32)
5 CONTROL _INFORMATION{1:16)

PROCESSOR_NUMBER{ 25:28)
INITIATION_NUMBER{29:32)
6—10 WORKING REGISTERS
*x/
DEFINE DYNAMIC PROCESS WHOSE SUBSTRULCTURE CONTAINS O SONS
AND
CLOCK ING PROCESS=
INVOKE PROGRAM(PSEUDO_FUNCTION) WITH INITIALYZE_ROUTINE
=_F{INIT_PROCESSOR} S

INIT_PROCESSOR:
STORE_INDEX{P(LOCAL _DATYA),3)}, [=_P(RETURN)
S=SFO(L{L)}yNULL}s I="1{4)}'B;
RETURN{{MASK_STORE(P(LOCAL_DPATA),S5),PCPSTACK)) ;

/%STORE AWAY CONNEC TED_NODE ADDRESS AND INITIATICN NUMBER */

PS EUDO_FUNCT ION:

S=SHIFT{L{1},—-16}, I=CONS{U16};

{(MASK _STORE{P (LOCAL _DATA),5),POPSTACK} ;
S=LOAD_CONSTANT(PCL,L (1)), I=RESULT, GC TIC FTJUNP;
/% STORE CONTROL _INFORMATION */

FUNCT ION_TABLE

CONSTANTS
FADD,
FSUBTRACT,
FTWD_COPIES,
FBRANCH_RDUTE,
FNEGATION,
FMINUS_1,
FCOND_ROUTE,
FMULT IPLY,
FZERD_TEST,
FLOOP _CONTROL

|

FTJuUMP:
(COMPAREINULL 4NULL },POPSTACK) 4 GO TC I3
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FSUBTRACLT:

FADD:

FBRANCH_ROUTE:

FMULT IPL Y=

FCOND_RDUTE:

FETCH_TWO_OPERANDS?

WAKEUP( FETCH_INPUT,WAIT_RESPONSE} NCDE{P{RETURN)};
STORE_INDEX{P (LOCAL_DATA},6), I=_L(2)});

/¥ STORE AWAY OPERAND (L) */

FTWO_COP IES:
FZEROD_TEST:
FM INUS_1:
FNEGAT ION:
FETCH_ONE_OPERAND:
WAKEUP{FETCH_INPUT WAIT_RESPONSE) NCOE(P{RETURN});
/¥SIGNAL INPUT PHASE COMPLETE */
WAK EUP{RET_TERM,CONTINUE) NODE[P(RETLRN)}) ;
S=SHIFT_MASKI{L(5)e16)y I=_"115)"'B;
S=(LOAD_CONSTANT{PC1,S) sPOPSTACK) , GC TO RESULT;
CONSTANTS(ADD,
SUBTRACT,
TWO_COPIES,
BRANCH_ROUTE,
NEGATION,
MINUS_1,
COND_ROUTE »
MULTIPLY,
LERO_TEST
)3

ADD:
S=(ADDIL (6),L(2)),POPSTACK),y, GO TC STCRE_CFERL;

SUBTRACT:
S= {SUBTRACT{L(6),0L1{2)),POPSTACK), GC TC STCRE_CPERL;

THO_COPIES:
S= (SFOUL{2)4NULL },POPSTACK},GO TO STCRE_CPER2;

BRANCH_ROUTE:

S=(SFO{L{2)4NULL )4POPSTACK) 3

(COMPARE{L{ 6),0)sMODIFY_STATUS) GO TG 2*+C(=);

GO TO STORE_OPER 13

S=SHIFT('01'Bs—14),I=CONS(L16),60 TC STCRE_OLTPUT_STAT;

ZERD_TEST:

NEGAT ION 2
(COMPARE(L{2)50)+sPOPSTACK,MODIFY_STATLSY ,GC TC *+C({=);
S=SFO(QsNULLY,GO TO STORE _OPERLS
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S=SFO(L,NULL}yGD YO STORE_OPERL;

MINUS_1:
S={SUBTRACTI{L {2),1),POPSTACK} GO TO STCRE_CPERL

COND_RDUTE:

{COMPARE{(LIG6)40),POPSTACK,MODIFY_STATLS) oGC TC *+¢C{=)3;
S=SFO{L (2}, NULL },GO TO STORE_OPERL S
S=SFD{OsNULL Yy I=CONS{L16) 60 TO STCRE _CLTPLT_STAT;

MULTIPLY:
S={MULT IPLY(L{6),L(2)),POPSTACK),GO TC STCRE_CPERLS

FLOOP_CONTROL:
WAK EUP{ FETCH_INPUT,WAIT_RE SPONSE) NCDE{P{RETURN));
WAKEUP (STORE_STATUS,CONTINUE) NODE(P{RETURNM})
WITH INPUT=CONS{LUX);
STORE_INDEX{P (LOCAL _DATA) 44)41=_CONS{LUX) +GO TC TRANSFER_RESULT;
CONSTANTS{LUX: *C10{14}10{15)'8);

STORE_DP ER O3 w
$=SFO(0,NULL }, 1=CUNS(L16),60 TO STCRE _CUTPLT_STAT;
STORE_OP ER 21

S=SHIFT (% 11'B,-14),[=CONS(L16),60 TC STCRE_CLTPUT_STAT;
STORE_DP ER 12

S=SHIFT (' 1'B,-15), I=CONS(L16);
STORF_OUTPUT_STAT:

(MASK_STORE(P (LDCAL _DATA) ,4),POPSTACK]) ;

/% SET OUTPUT LINK STATUS %/

/% FETCH INITIATION NUMBER */

S= LOGICAL_ANDIL(5),"1{4)'B);

/% SIGNAL NODE OUTPUT READY */ ,

WAKEUP{ ACT_CODE= 10, SUSPEND,POP) NODE{L{3)) WITH INPUT=S;
/% STORE QUTPUT LINK STATUS */

WAKEUP (STORE_STATUS,CONTINUE) NODE(P{RETURMN ) WITH INPUT=L(4);
/% NUT SURE WHETHER LEAVE DATA [N PCRT CR TRANSFER %/

{STORE{P {LOCAL _DATA), 2) POPSTACK) 3
/% STORE OUTPUT IN PORT %/
TRANS FER _RESUL T2

S= (SHIFT_MASKA{L{4) 514}y MODIFY_STATUS) 41=_'11"'8,6C TQ *+C{~=);
GO TO SEND_COMPLETE_SIGNAL

WAKEUP( STORE_QUTPUT,WAT T_RE SPONSE) NCCE[P(RETURN) ) ;
(COMPARE{Sy 3} ,MODIFY_STATUS) ,GO TQ #+C(-=);

WAK EUP{ STORE_OUTPUT,WAI T_RE SPONSE) NCOE(P(RETURN)) ;
S END_COMPL ETE_SIGNAL :

WAKEUP{RET_TERM,CONTINUE 4POP) NCDE(P{RETURN) ) ;
/%S {GNAL PROCESSOR SCHEDULER COMPLETE #/

S=SHIFT_MASK{L(S5),4)y I=_"1(4)"'R;

WAKEUP { ACT_CODE=8, CONTINUE ,POP) NODE(F{EXTERAAL_ENV)) WITH INPUT=S

AND THEN RETURN:
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GRAPH_PROCEDURE:

/% LOCAL DATA ENVIRONMENT OF GRAPH PRCCEDURE

1-2 PORT
3 ADDRESS OF PROLOG(16) ¢NUM_LINKS(8) ,ALM_NCDES(8)
4 BASE OF LINK AREA IN MAIN MEMCRY
5 DUTPUT_LINK_STATUS{ 16} yPROCE SS_ALMI(B8) 4yNEIL(4) o NEOL(4)
6 ADDRESS OF PROCEDURE NODE CLCCKER
7-10 INSTRUCTION BUFFER AREA T{l)...1(NEIL)
Of{l)... C{NECYL)
*/

/% GLOBAL DATA ENVIRONMENT

1 DESCRIPTOR OF PROGRAM AREA IN MEMCRY SUBSYSTEM
2 DESCRIPTOR OF DATA AREA IN MEMORY SUBSYSTENM

x/

DEFINE DYNAMIC PROCESS WHOSE SUBSTRLC TURE COAMTAINS F{LINK_NCDES)
SONS WITH PROGRAM=F( SONS_GPI}, :
LOCAL _DATA=F{LOCAL _SONS_GP) PORT=F{PCRT_SCNS_GF),
EPSY=F( EPSV_SONS_GP ),
AND
CLOCK ING PROCESS=INVOKE PROGRAMIPROCEDURE_CLCCKER) WITH
INITIAL IZE_ROUTINE=_F( INITIALI ZE _LINKS) §
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LINK_NODES:
READ ELEMENT(F{PADDRESS)} WiTH LENGTYH=16 FRCM MEMORY ARRAY
{DESCRIPTOR=G( 1) ,0FFSET=C} ;
/*STORE AWAY NUMBER OF L INKS AND READ IN L{3)/(16:0)%/
S=SHIFT(L{Ll)y 1€),I=CONS{L16);
(MASK_STORE{P {LOCAL_DATA),3),POPSTACK), I=CCANS(UL6);
/*ADD 2 TO PADDRESS*/
S=MASK_ADDIL( 3),CONS(C2U) )3
{MASK_STORE (P (LOCAL_DATA) 43),POPSTACK)} 3
/*CALL SPACE_MANAGER=*/
S=SHIFT{F(NUMBER _L INKS)y-4);
S= INDEX{(P (GLDBAL _PROCESS) 1}
EXECUTE_SINGLE_CYCLE({ WAIT_RE SPONSE 4NC_RETURN,ACT_CODE=8 ,P0P)
NODE{_S(PCP }) WITH INPUT=S,RE TURN_ADDRESS=FI{SELF)};
/*CALL SPACE MANAGER, AND THEN STORE AWAY BASE CF LINK_AREA IN
MEMORY_SUBSYSTEM*%/
STORE_INDEX{P (LOCAL _DATA),4)y I1=_LI{1)3
/%S ET PORY TOO*/
STORE_INDEX(P {LOCAL_DATA),1),y I=_03;
/*COMPUTE NUMBER OF LINKS AND NODES ANC THENMN RETURN®/
RETURN(ADD{ FINUMBER _L INKS), F{NUMBER_MNCDESY));

PADDRESS:
RETURN{SHIFTI{LI 3),1€));

NUMBER_L INK S:
I=_" 1{8)'By RETURN{SHIFT_MASK{L{3),8));

NUMBER _NODES:
RETURN{LOGICAL_AND(L(3}),'1(8)'B)) s

NODE_TYPE:
RETURNISHIFTIL(1),30));
NODE_TYPE1L:
S=SHIFT{L({11}:30)3
RETURNU(ADD(S,y 1)4POPSTACK) ) 5.
/*CREATE PROGRAM ADDRESS OF LINK OR PNCDE, FRCC_NODEs SNCCE)*/

SONS_GP:
(COMPARE{ [.BEG, F{NUMBER _LINKS)) ,MODIFY_STATUS), GC TO *+C{>);
RETURN(SFO{CONS(LINK_PROGRAM) s NULL)) ;5
/*1F NODE THEN READ FIRST TWO BYTES CF ANCDE DEFINITION*®/
READ ELEMENT(F{PADDRESS})) WITH LENGTH=16 FROM MEMORY ARRAY
(DESCRIPTOR=G{1}, OFFSEY=0);
/*LOAD APPROPR IATE PPOGRAM ADDRESS*/
RETURNILOAD_CONSTANTIPC 1,F(NODE_TYPEL)})) 3
CONSTANTS{L INK_PROGRAM:LINK_PROCESS,PARALLEL_NCDE,
PROCEDURE_NODE y SEQUENTIAL_NCDE) 3
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LOCAL_SONS_GP:
GO TO * +F(NCODE_TYPEL);

LOCAL _L INK:
S=SUBTRACT{1.BEG,y1)y GO TO LOCAL_LINK_CCNT;

LOCAL _PNODE:
RETURN{P {DESCRIPTOR OF REGISTER_BLCCK WITH DIMENSION=11));

LOCAL _PROC_NCDE:
RETURN (P {DESCRIPTOR OFf REGISTER_BLCCK WITH DIMENSION=11))3

/*CREATE LDCAL_DATA_ENVIRONMENT FOR LIAK AND INITIALIZE REGISTER
TO DESCRIPTOR OF LINK AREA*/
LOCAL _SNODE:
RETURN{P (DESCRIPTOR OF REGISTER_BLCCK WITH DIMENSION=2)13

LOCAL _L INK_CONT:
S=P{DESCRIPTOR OF REGISTER BLOCK wWITH DIMENSICN=5);
{STORE(P{LOCAL_DATA)},2),POPSTACK) 3
S={MULTIPL Y{SyCONS{LENGTH_QUEUE}) »FCPSTALK) 3
S=(ADD{S,L(4))sPDPSTACK) ;
S=DESCRIPTOR OF MEMORY_APRAY DEFINED FRCMIDESCRIPTOR=G(2),
OFFSET=S{POP )) WITH DIMENSION=CCNS{LENGTH_CUEUE) ,WORD_LENGTH=64;
{STORE(L (2),2),POPSTACKI} 3
RETURN{SFO{L( 2)}sNULL));

PORT_SONS_GP:
S=ACCESS(P{PSTACK)s~2}, GO TO *+F(NCDE_TYPEl);
/*GEYT DESCRIPTOR OF LOCAL ENV¥*/

PORT_L INK:
RETURN (P (DESCRIPTOR OF [0_BLOCK DEFINED FRCM{DESCRIPTOR=S (POP},
OFFSET=3) WITH DIMENSION=2, wCRD_ LENGTH=64));

PORT_PNODE:
RETURN ( INDEX{ SIPOP ), 11) )3

PORT _PROC_NDDE:
RETURN { INDEXI S(POP ), 11)) 3

PORT_SNODE:
RFTURN(INDEX(S(PDPI'I)J,

EPSV_SONS_GP:
GO TC * +F(NODE_TYPEL]};

EPSV_L INK: '
RETURN (P (EPSV WETH PSTACK=F{PS_LINK] y VSTACK=F{VS_ULINK},
GLOBAL_PROCE S5=5)) 3
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EPSV_PNDDE:
RETURN(P{EPSV WITH PSTACK=F{STACK1C), VSTACK=F(VS_PNCDE),
GLOBAL _DATA=F(GLOUBAL_PNODE),» GLOBAL_FRCCESS=S,
EXTERNAL_ENV=P{SELF) ) );

EPSV_PRDC_NDDE:
RETURNI{P(EPSV WITH PSTACK=F({STACK1C), VSTACK=F(VS_PNCDE),
GLOBAL _DATA=F(GLOBAL_PNODE) , GLOBAL_FRCCESS=S,
EXTERNAL ENV=P{SELF) ) )}

EPSV_SNDDE:
RETURNIP(EPSY WITH PSTACK=F(STACK1C), VSTACK=F{STACK4),
GLOBAL _DATA=F(GLOBAL_PNODE) s, GLOBAL_FRCCESS=S,
EXTERMAL_ENV=P(SELF) ) 1}

PS_LINK:
PS_PNODE:
PS_FETCHOP :
PS_PROCESSODR:
PS_STOREQP:
STACK 6:
RETURN [P (DESCRIPTOR OF STACK WITH CIMENSICA=6));
STACK 82
RETURN (P {DESCRIPTOR 0F STACK WITH DIMENSICAN=8});
STACK 10:
RETURNI{P {DESCRIPYOR GF STACK WITH CIMENSICA=10});
VS_LINK:
VS_PNODE:
VS_FETCHOP :
VS_ IPNODE:
VS_PROCESSOR :
STACK 4¢
RETURN{(P (DESCRIPTOR OF SYACK WITH DIMENSICN=4));
STACK 2:
RETURN (P [DESCRIPTYOR OF STACK WITH CDIMENSICN=2));

GLOBAL _PNODE:
S=P{DESCRIPTOR OF REGISTER_BLOCK wITH DIMENSICA=6,
ACCESS_CONTROL=GLOBAL) ;

F*INITIAL1ZE REGISTER 2 YO PROLOG ADDRESS/FIRSY 16 BIT OF [NS*/
{STORE{P (LOCAL_DATA), 2} ,POPSTACK) ;
S=SHIFTI{L(1l), 16}y I=CONS{LL16)};

(MASK_STORE{L (2)42),POPSTACK]) ;
S=SFO{L {3}y NULL ), I=CONS{ULlS6);
(MASK_STORE{L (2)4+42),POPSTACK) 3

/*UPDATE PADDRESS, : PADDRESS +IN+QUTH+HNCDE_TYPE®/

S=SHIFT _MASK({L(1),1€6),]1=_"'1(4)"'B;
S=SHIFT _MASK{L(1)s20);
S=ADD(S{POP )y, S(POP})y I=F(PADDRESS) 3

S=ADD(F{NODE_TYPEL),S{POP}}, I=I4+RESLLY;
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S={SHIFT( [+-16),POPSTACK] ;
(MASK_STORE(P (LOCAL _DATA),3),POPSTACK) oI=_CCAS{ULS);
RETURNISFGIL(2),NULL});

INIT IAL IZE_L INK Sz
STORE_INDEX{P {LOCAL_DATA),6),I=_P{RETLRN) ;
INTERN AL _INITIAL IZE:®
READ ELEMENT{F(PADDRESS)) WITH LENGTH=16 FRON; FMEMORY
ARRAY(DESCRIPTOR=G{ 1) +CFFSET=0C) 3
/% INCREMENT PADDRESS BY 2%/
S=ADDIL (3), CONS(C2U) )35
(MASK_STORE(P (LOCAL_DATA)},3), POPSTACK), I=_CCNS(Ul6);
/*CHECK TO SEE WHETHER ANY MORE LINKS 1O INITVIALEZE®/
S={SHIFT{L(1),24),MODIFY_STATUSY, GC TC *+C{-=)3
(COMPAREINULL yNULL },POPSTACK) ,GO TG NLLL3 /# FINISH EXPANSION */
/%GET NUM OF DATA ITEMS TO BE PLACED TP LINK=*/
S=SHIFT_MASK(L( L), &b,y I=_"1(8)"'83

DATA_TRANSFER_LDOP :

READ ELEMENT(F(PADDRESS)) WITH LENGTH=64 FRCM MEMORY
ARRAY{DESCR IPTOR=G( 1) ,0FFSET=0) 3

/*¥CALL L INK*/
EXECUTE_SINGLE_CYCLE{ VALUE ;NO_RETURN, STCRE_OUTPUT) SON(S{1))
WITH INPUT=P{PORT) THEN WAIT FOR 1 SCMS TC SIGMAL RETURN;

/*UPDATE PADDRESS BY 8%/
S=ADD(L (3}, CONS{CBU} ), I=CONS({ULS) ;
{(MASK_STORE{P (LOCAL _DATA),3),POPSTACK) ;
S={SUBTRACT{S,1),POPSTACKs MODIFY_STATLS)y GC TC *+C(=);
GO TO DATA_TRANSFER_LOOP;
COMPARE(S{POP ), S{POP)),GO TO INTERNAL_INITIALIZE;

/* THIS SECTION OF CODE EXECUTED AFTER EXPANSICN PHASE */
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PROCEDURE_CLNCKER:
S=SHIFT_MASK{L{1l),1€),0=_*1(8}"'8;
/* EXTRACY NEIL-NEQL */
MASK _STORE(P{LOCAL _DATA),5);
S=(SHIFT(S, 4),POPSTACK,MODIFY_STATLS) ,CO0 TC #+C(~=);
- (COMPARE{NULL 4NULL }4POPSTACK) ,GO YO BEGIN_GRAPH; /% NG INPUTS
/% READ IN I{l)esol{NEIL)} */
S=SFO(P{PORT),NULL );
S=P(DESCRIPTOR OF REGISTER_BLOCK DEFINED FRCM{CESCRIPTQOR=
P(LOCAL _DATA),OFFSET=6) WITH DINMENSICN=4);
SET_STATE(1,S(POP));
/% MULT NEIL BY 8 TO GET BIT LENGTH »/
S={SHIFT{Sy~3),POPSTACK) ;
READ ELEMENT(F{PADDRESS)} WITH LENGTH=S FRCM MEMORY ARRAY(
DESCRIPTOR=G{1)+0FFSET=0} 3
/% RESET PORT TO LOCAL_DATA{1-2) =/
SET_STATE(1,S{POP) )
/% UPDATE PADDRESS */
S=[SHIFT(S,-13),POPSTACK) ;
S={MASK_ADDI{S,L{2)),POPSTACK) ,I=CONS(LL6) 3
MASC_STORE{P{LOCAL DATA),3);

FETCH_ INPUT_DATA:
WAKEUP(FETCH_INPUT,CONTINUE) NODE(P(RETURN)) ;

/% OVERLAP FETCH OF DATA WITH COMPLTATICN CF LINK ADDRESS */

/* COMPUTE ADDRESS DF INPUT LINK TO BE INITIALIZED */
S=SHIFT _MASK{L(5)s6),1=_*1(2)"'8;

S={ADD(S, 1),POPSTACK) ;
/% S=NEIL/2+7 %/

S={ACCESSIP{LOCAL_DATA},5),POPSTACK]) ;

S=SHIFT _MASK{L(5)y4)sI=RESULT;
S=(LOAD_CONSTANT{CONS{SHIFT_BYTE) 1) ,PCPSTACK) s1=I+_1;

{TIME_GRAIN):

S={SHIFT_MASK{S, _S(POP)),POPSTACK) (I=_"1{8)"'8;

/% S=NUMBER OF L INK{ItJ)) =/
EXECUTE_SINGLE_CYCLE{ VALUE ,NO_RETLRN, STCRE_CUTPUT ,POP) SON(S)
WITH INPUT=P{PORT) THEN WAIT FOR 1 SCAS TC SIGNAL RETURN;

/% UPDATE NEIL %/

S= (MASK_SUBTRACT(L{5),*10{4) "B} ,MODIFY_STATUS) »I=_"11(4)01{4)"'B,
GO TO *+C{=);
(MASK_STORE(P{LOCAL _DATA)},5)+sPOPSTACK) »GC TC FETCH_INPUT_DATA;

/% SEND INPUT TERMINATE SIGNAL */
WAKEUF{RET_TERM) NODE(P{RETURN})}

*/
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BEGIN_GRAPH:

S={OGICAL _AND(L(3),"1{8)*B),]1='1(8) 'B;
S=SHIFT_MASK{L(2}),8);
S=[ADD(Sy 1)+,POPSTACK]);
7% S{-1}=NUM_L INS+1,S=NUM_NODE S */
/¥ ACTIVATE ALL NODES */
EXECUTE(NO_RETURN,POPY S SONS STARTING AT SOM_SUPGP))
THEN WAIT FOR O SONS TGO SIGNAL RETLRA;
/% DETERMINE WHEN TO TERMINATE GRAPH */
RETURN_NODES:
S=SFO(P(PORT},NULL};
S=P{DESCRIPTOR OF REGISTER_BLOCK DEFIMOD FROFM(DESCRIPTQOR=
P{LOCAL_DATA)sOFFSET=6) WITH DIMEANSION=4) 3
SET_STATE(1,S{POP)},I='1(4)0{3) *8;
S=SHIFT_MASK(L{5},-3);
READ B EMENT{ F(PADDRE SS}) WITH LENGTH=S{PCP} FRCM
MEMORY ARRAY(DESCRIPTOR=G(1) ,0FFSET=()};
/% RESET PORT ¥/
SET_STATE(1.,S{POP)};
/% GET EXTERNAL DUPUT LINK STATUS */
/% INITIAL IZE CUTPUT LINK STATUS=C */
S=SFO(0sNULL )y I=CONS(U16};
{MASK_STORE(P (LOCAL_DATA),5),POPSTACK) 3
/% COMPUTE ADDRESS OF OUTPUT LINK TQ FIND STATUS */
FETCH_DUTPUT_STATUS:
S=SHIFT_MASKIL(5),2),1=_'1(2)'8;
S=(ADD( Sy 7)+POPSTACK) ;
S=(ACCESS{P(LOCAL_DATA) S} ,POPSTACK) 3
S=LOGICAL _AND(L(S5),"1{2)'B) o I=RESULT;
S={LOAD_CONSTANT{CONS{SHIFT_BYTE) ,1),FCPSTACK} ,I=1+_13
S={SHIFT_MASK(S,_S{PCP) ) POPSTACK) 1=_"'1(8)"'E;
/% S=NUMBER OF L INK(O(K)) =*/
EXECUTE_SINGL E_CYCLE(FETCH_INPUT,NO_RETURN,PCP) SCN(S)
THEN WAIT FOR 1 SONS TO SIGNAL RETLRN;
(COMPARE(L{2),0}yMODIFY_STATUS) y GO TC %*+C(=~=);
GO TO UPDATE_NEOLS
/¥ MODIFY QUTPUT STATUS LINK %/
S=LOGICAL _ANDC(L(S),'1{4)'8)I=RESLLT;
S={SHIFT{"'1'B, 1) POPSTACK]},I=1-_32;
(MASK_STORE(P {LOCAL_DATA) 5} »POPSTACK) ,1=_S3
UPDATE_NEOL :
S= (MASK_SUBTRACTIL{S5)41)sMODIFY_STATLS) o1 =
GG TD *+Cl=);
(MASK_STORE{P {LDCAL _DATA),5),POPSTACK),
GO TO FETCH_OUTPUT_STATUS;
SIGNAL _OUTPUT_READY:
{MASK_STORE(P {LOCAL_DATA)+5),POPSTACK]) ,1="1(8) '8}
S=SHIFT_MASK(LE{D),8);
/% S=PROCESSOR NUMBER IN PARALLEL NCDE INITVIATICN QUEUE #*/

'1(4) '8,
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WAKEUP{ ACT_CODE= 10,y SUSPEND ,POP) NODE{L(6}) WITH INPUT=5;
/* SEND QUTPUT LINK STATUS TO QUTPUT_PACDE #/
S=SHIFT{L {5}, 16);
WAKEUP{STORE_STATUS,CONTINUE ,POP) NCDE{P(RETURN])} WITH INPUT=S;
FETCH_OUTPUT_DATA:
S= (LOGICAL_ANDI(L (5),CONS{ UL16)) 4MODIFY_STATLS) yI=0,60 TO *+C(~=)3
(COMP AR E{NULL yNULL },POPSTACK) oGO TGO TERMINATE_CUTPUT;
S={SHIFT{Sy—1)POPSTACKyMODIFY_STATLS) ;I =1+1,GC TC *+_C(<)}
GO TO *-1;
S=SFO{I,NULL),I="1{4]}"'8;
S=(MASK_ACDIL (514S),POPSTACK]) 3
{MASK_STORE{P (LOCAL _DATA),;5),POPSTACK) 4I=CCINS(ULS};
(MASK_STORE(P (LOCAL_DATA)Y 45} ,POPSTACK]) 3
/* COMPUTE ADDRESS OF QUTPUT LINK %/
S=SHIFT_MASK(L(S5},2),1=_'1(2)"'B;
S=(ADDIS; TV4POPSTACK) ;
S= (ACCESS(P (LOCAL_DATA),S),POPSTACK) ;
S=LOGICAL_AND(L{ S}y "2{2)*B) +I=RESULTS
S={LOAD_CONSTANT(CONS{SHIFT_BYTYE) +I) FCPSTACK) o1 =1+_1;
S=(SHIFT_MASK{S, _S(POP)),POPSTACK) oI=_'1(8})"E;
EXECUTE_SINGLE_CYCLE(FETCH_INPUT,NO_RETURN,PCP) SCN(S)
THEN WAIT FOR 1 SONS TO SIGNAL RETLRAM;
/% STORE IN QUTPUT_PNUODE DATA FETCHED FRCM LINK =/
WAKEUP{ STORE_OUTPUTY,WAIT_RE SPONSE) NCCE(PU{RETURMY) 3
GO TO FETCH_OUTPUT_DATA;

/% HAVE COMPLETED TRANSGFERING DATA, NCk MUST TERMINATE */
TERMINATE_OQUTPUT:
S=SHIFT{F(NUMBER _L INKS),~4)
{STORE{P ({LOCAL_DATA},+1) ,POPSTACK) ;
STORE_ INDEX(P (LOCAL _DATA}2) +1=_L{4)
S= INDEX{P{GLOBAL PROCESS)s1);
WAKEUP{CONT [NUE,NO_RETURN ACT_CCDE =9, VALUE ,PCP} NCODE(S)
WITH INPUT=P (PORT),RETURN_ADDRE SS=PI{ SELF} ;
/% NEED TO CALL SPACE MANAGFR AT THIS TO DEALLCCATE SPACE */
S=ADDIF{NUMBER _L INKS)F{NUMBER_NODES) ) 3
/% SIGNAL ALL LINKS AND NODES TO TERNIAATE #/
EXECUTE_SINGLE_CYCLE(ACT_CODE=12,NO_RETURN) S SCNS STARTING AT
SON(1§ THEN WAIT FOR F{NUMBER_NODES) SONS TC SIGNAL RETURN;
TERM INATE{POP ) _S SONS STARTING AT SCMLD)
THEN WAIT FOR S SONS TO SIGNAL RETLRAS
WAKEUP(RET_TERM,CONTINUE) NUBE(P{RETLRN)) AND THEN RETURN;

CONSTANTS(C2U:*0({14310(17)'B, Ul6:'1116)0C(16) "B,
tiezrClle)1ile)B,CBUTC(12)10L19) 'R,
LENGTH_QUEUE 11024 Vs

/* LENGTH_QUEUE SHOULD BE 960 #/



L INK_PROCESS:

/% LDCAL DATA ENVIRONMENT OF LINK_PROCESS

1 QUEUE_STATUS
A} HEAD_QUEUEL1:4) INITIL),
B) TAIL _QUEUE(S5:8) INIT(O),
C) CURRENT_QUEUE_SIZE(9:12) INITIO),
DY INPUT_REQUEST_READY(13:13) INIT(O),
E) OUTPUT_REQUEST_PENDING(14:14) INIT(O),
F) YERMINATE_CONDITION{22:22) INIT(O),

2) DESCRIPTOR FOR QUEUE AREA

3} PENDING REQUEST ADDRESS,

4-5) PORT;

ACT IV AT TION_CODE= 3, FETCH_OPERAND,
= 4, STORE_QUTPUT,
= TERMINATE */

STORE_INDEX{P{LOCAL _DATA},1}sI=_CONS{LINK_QUEUE);

L INK_WAK EUP:
(COMPAR E( 3, ACT_CODE ) ;MODIFY_STATUS) y6C TG #+C(~=};
GO TO L INK_FETCH;
{COMPARE{ 4y ACT_CODE ),MODIFY_STATUS) ,6C TC ##C{~==);
GO TO L INK_STORE;

/% SET UP TERMINATE_CONDITION #*/

L INK_TERMINATE:
S=SFO{CONS(TERMINATE _COND ) yNULL) »1=RESULT;
(MASK_STORE(P {LOCAL_DATA)},1) ,POPSTACK) 3
(MASK_COMPARE({L{1)},0)MODIFY_STATUS),

I=_CONS{MASK_IRP)}, GO TO #*+C(=);
GO TO IRP_DSET:
(TIME_GRAIN)?
GO TO L INK_WAKEUP;S

L INK_FETCH:
{MASK _COMPARE(L{1),0),MODIFY_STATUS),
=_CONS{TERM INATE_COND), GO TO *+C(=}3
DUMMY _TRANSFER =
GO TO TRANSFER_LINK_DATAS
/% CHECK WHETHER QUEUE [S EMPTY */
{MASK_COMPARE(L(1),0),MODIFY_STATUS) ,
I=_CONS({MASK _QUEUE_SIZE), GO TCQ #*+C(~-=}3
L INK_QUEUE_EMPTY:
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STORE_INDEX(P (LOCAL _DATAY 3} ,I=_P(RETLREN) , GC TC LQE_CONT;

/% SAVE ADDRESS OF PERSON REQUESTING */
FETCH_QUEUE:
S=SHIFT_MASKIL{1),28},1I=_"1(4)"8;

READ ELEMENTISIPOP)) WITH LENGTH=64 FRCM NEMCRY ARRAY({
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DESCRIPTOR=L {2} ,0FFSET=—64) 3
/% UPDATE QUEUE PDINTERS */
S=MASK_SUBTRACT{L(L),CONS{C1)),I=_CCNE{MASK_C)};
(MASK_STORF{P (LOCAL_DATA) +1),PCPSTACK) ; '
(MASK_COMPARE(L{ 1),1)}4MODIFY_STATLS),
I=_CONS{MASK_HI}3;
S=SHIFT{1,-28),G0 YO *+{{(=);
S=(MASK_ADDIL(1)+S),POPSTACK] 3
{MASK_STORE(P (LOCAL _DATA),1),POPSTACK) ;
TRANS FER_L INK_DATA:
WAKEUP{ STORE_OUTPUT, VALUE ;CONTINUE) NCDE(P{RETURN)]}
WITH INPUT=P (PORT};
f*® CHECK FOP. DRP SET *x/
(MASK_COMPARE(L{ 1), Q)},MODIFY_STATUS) »
I=_CONS(MASK_ORP), GO YO *+C{-~=}3;
(T IME_GRAIN):
GO TO L INK_WAKEUP;

WAKEUP [ CONT INUE) NODE{L(3));
S=SFO{0yNULL )

(TIME_GRAIN):
(MASK_STORE(P (LOCAL DATA),1),POPSTACK]) 4GC TC LINK_WAKEUP;

LQE_CONT:
S=SFO{CONS{MASK_IRP},NULL)+I=RESULT;

{TIME_GRAIN):
{MASK_STORE(P{LDCAL_DATA),1),POPSTACK) oGC TC LINK_WAKEUP;

L INK_STDRE:
{MASK_COMPAREI(L(1),0),MODIFY_STATLS) ,

I=_CONS{TERM INATE_COND),GO TO #+C{=);

DUMMY _STDORE:
GO TO STORE_COMPLETES

{MASK_COMPARE(L{1),0),MODIFY_STATUS),
I=_CONS{MASK_IRP)y, GO TO #*+C(=};
GO TO IRP_SETS

STORE_QUEUE:
(MASK_COMPARE(L( 1), T),MODIFY_STATUS),
=_CONS(MASK_T13
S=SFO(CONS{TL),NULL) GO TO %+C(=);
S=(MASK_ADD(L(1}+S),POPSTALK) 5 .
(MASK_STORF {P (LOCAL_DATA),1),POPSTACK) ;
/* TAIL OF LINK_QUEUE IS UPDATED */

S=SHIFT _MASK(L(11,24),I=_'1{4}'8B; .
STORE ELEMENT{S{POP)) WITH LENGTH=64 INTC NENCRY ARRAY{

DESCRIPTOR=L {2)40FFSET=-64) 3



/* UPDATE QUEUE SIZE */

S=MASK_ADD(LL1Y,CONSIC1) ) I=_CONS{MASK_C);

MASK _STORE{P(LOCAL _DATA),11}3;

/% CHECK WHETHER QUEUE IS FULL */
(MASK_COMPARE{S, I),POPSTACK,MODIFY_STATUS) ,
GO TO *+C{~= )3

GO TO SET_ORP;

STORE_COMPLETE: _
WAKEUP(CONT INUE) NODE(P{RETURN)) ;
(TIME_GRAIN}:

GO TO L INK_WAKEUP;

SET_DRP:
(MASK_STORE(P(LOCAL_DATA},1),POPSTACK) ;

(TIME_GRAIN):

STORE_INDEXI{P (LOCAL_DATA),3)+1=_P(RETLRN) ,
GO TGO L INK_WAKEUP;

IRP_S ET:

WAKEUP{CONT INUE ) NODE(P(RETURN}) 3

/% TURN OFF IRP =/

IRP_DSET:

S=SFO{0sNULL ) [=CONSIMASK_IRP) 5

{MASK_STORE(P (LOCAL_DATA} 1) ,POPSTACK) ;

WAKEUP{ STORE_OUTPUT,VALUE (,CONTINUE) NCDE{L(3})

WITH INPUT=P(PORT);

{(TIME_GRAIN):

GO TOD L INK_WAKEUP;

CONSTANTSt LINK_QUEUE:'0(3)10(28) '8,
MASK_IRP:*'0Q112)10(19) B,
MASK_QUEUE _STIZE:'0{8)1{4)C(20) '8,
MASK_ORP:'0{13)10(18})"'B )3
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PARALL EL_NODE:
/* GLOBAL DATA ENVIRONMENT

1 NULLC 16, OUPUT_LINK_STATUS{16)

2 INSTRUC TION_ADGRE SS{ 16) ,OPCGDE(B) 4IN(4) ,CUT {4)

3-6 INSTRUCTION BUFFER AREA [(ll..-I{IN),
0{1)...C(OUT) S

LOCAL DATA ENVIRONMENT
! QUEUE STATUS

AY HEAD( 1:4) INIT{2)
BY TAIL(S:8) INIT{1)
C) CURRENT_SIZE{9:12) INIT(C)
DY OUTPUT_READY_LIST(13:20) IAMT('0(8)'8)
E) SCHFEDULER_CALL_POSTPONED(21:21) IMNT{'0'8)
F) TERMINATE _CONDITION(22:22) INIT('0'B)
G) PREFETCH_COMPLETE(23:23) INIT('0'8);

2-9 INITIATION QUEUE
10 SCHEDULER ADDRESS
11 PORTY

ACT IVATION_CODES FOR CALL PARALLEL NCDE
8 PREFETCH COMPLETE
9 PROCESSOR ASSIGNED
13 QUTPUT READY
11 DuUTPUY COMPLETE
12 TERMINATE

»/

DEFINE STATIC PROCESS WHDSE SUBSTRUCTULRE CCNTAINS 2 SONS WITH
PROGRAM=F{SONSP ),
LOCAL_ DAT A= F{LDCAL_SONSP), PORT=F(PORT_SONSP) s EPSV=F(EPSV_SCNSP)
AND
CLDCKING PROCESS=
[NVCKE PROGRAM(PNODE_CLOCKER) WITH
INIT IAL1ZE_ROUTINE=_F{ INIT_PNODE) 3
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SONSP:
RETURNILOAD_CONSTANT(PC1,1.BEG) ) ;
CONSTANTS{INPUY_PNODE, QUTPUT_PNODE) ;

LOCAL_SONSP:
RETURNI{P{DESCRIPTOR OF REGISTER_BLCCK WITH DIMENSION=1)};
J*ALLOCATE SINGLE REGISTER*/

PORT_SONSP:
S=ACCESS(P(PSTACK)y-2)3;
RETURN{ INDEX{ S{POP ), 1)}

/*SAME AS LOCAL ENVIRONMENT, ACCESS CFF PSTACK#/

EPSV_SONSP:
GO TO *+1.BEG;
RETURNIP(EPSY WITH VSTACK=F{VS_IPNCDE), PSTACK=F(STACKB}));
RETURN(P(EPSV WITH VSTACK=F(STACK6) s FSTACK=F{STACKB)));
/#EXPAND SON NODES,y INIT LOCAL ENV, EXECUTE INPUT_PNODE#*/

INIT_PNODE:
EXPAND{RETURN } SON{1} THEN WAIT FCOR 1 SCNS
TO SIGNAL RETURN;
EXPAND{RETURN 1 SON{2) THEN WAIT FCR 1 SCAS
TO SIGNAL RETURN;S

/% INIT QUE_STATUS*/
STORE_INDEX(P{LOCAL_DATA)41)y [=_CCNSI{CUE_STAT);

/% GET ADORESS OF SCHEDULER=*/
S=MASK_SHIFT({G{2},48)y I=_CONS{MASK_CP);
S={SUBTRACT(S,32)},POPSTACKMODIFY_STATLS}) ,GC TC *+C(>=)3;
S=(SFO(1,NULL }y POPSTACK);
S=(INDEX{PUEPSV])+—2)+POPSTACKI] oI=§3
S={INDEX(S, I}),POPSTACK) ,[=1+_13
{(STORE(P (LODCAL_DAYTA),10), POPSTACK) ;
EXECUTE_SINGLE_CYCLE[CONTINUE 4NO_RETLRA} SCN(Ll) AND THEN RETURN;
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PNODE_CLOCKER:
WA LT _WAKEUP
NULL _ACTIVATE{SUSPEND) NCDE(P{SELF)) 3
S=LUAD_CONSTANT(CONS(TABLE) yACT_CCDE) 4 GC TG RESULT;

CONSTANTS{TABRLE: *-3,

PREFETCH_COMPLETE, DEVICE_ASSIGNED, CLYPUT_READY, OQUTPUT_COMPLETE,
TERM INATE_NODE };

PREFET CH_COMPLETE:
S= (SFO{ CONS{MASK_PREFETCH) ¢4 NULL) yPCPSTACK) oI =RESULT;
(MASK_STORE(P {LOCAL _DATA),1),POPSTACK) ;
f* SET PREFETCH_COMPLETE =/
{MASK _COMPARE(L( 1}, CONS(C 8))4 MODIFY_STATLS),
[=_CONS(MASK_C)y GO TO *+C(-=)};

SCHEDUL ER_POSTPONED:
S=SFO{CONS{MASK_SCP}yNULL),I=RESULT,GC TC SP_CCNT;

UPDATE_QUEUE:
(MASK _COMPAREI(L{1)40),MODIFY_STATUS),
I=_CONS{TERMINATE_COND) GO TO *+{(=);
GO TO CHECK_TERMINATE ;
S=MASK_ADD{L{ 1),CONS{CLY)y I=_CONS{NMASK_CI] 3
/2C=C+1%/
[MASK _STORE(P (LOCAL_DATA),1), POPSTACK);
{MASK_COMPARELL{ 1) +CONSITO9) )y MODIFY_STATLS) s [=_CONS{MASK_T),
GO TO *#+C{-~=);
/¥T=END QOF L IST%/
S=SHIFT (24— 241, GO TO *+2;
S=MASK_ADC(L( L}, CONS{TL)};
/ESTORE Tx/
MASK _STORE{P{LOCAL _DATA},1);

CALL _SCHEDULER:
S=(MASK_SHIFT(S,24)4P0P STACK) ;
EXECUTE_SINGLE_CYCLE({VALUE ,CONTINUE ,NC_RETURN,ACT_CODE=9,PCP)
NODE(L (1C)Y} WITH INPUT=S, RETURN_ADDRESS=F(SELF)};
GO TO WAIT_WAKEUP;

SP_CONT:
(MASK_STORE(P (LOCAL _DATA) ,1)4POPSTACK) »6C TC WAIT_WAKEUP;

OEV ICE_ASSICNED:
S=(MASK_SHIFTIL{ 1)424)4POPSTACK) y1=_CCNS{NMASK_T);
{STORE_INDEX{P(LOCAL_DATA) +5) ,POPSTACK) , [=_4L(11}3
/% SET PREFETCH NOT COM-LETE =%/
S=SFO{O,NULL }, I=CONS(MASK_PREFETCH) ;
(MASK_STORE(P (LOCAL_DATA) 1) ,POPSTACK) 3
EXFCUTE_SINGLE_CYCLE(CONTINUE JREFERENCE,NC_RETURN)} SON{1)
WITH INPUT=L{11)}s
GOTO WALT_WAKEUPS
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NUTPUT_READY:
S={SUBTRACT(L({1L1),21),POPSTACK]} 3
S={(SHIFT(1,S),POPSTACK) y I=RESULT;

{MASK_STORE(P (LOCAL_DATA) 1) ,PDOPSTACK) ,GC TC AB;

OUTPUT_COMPLETE:
{MASK_COMPARE(L{1)+0),POPSTACK,MODIFY_STATUS) oI =_CONS({MASK_SCP),
GO TO *+C{=);
GO TO CALL_SCH_POST;
[%C=C-1%/
S=MASK_SUBTRACT(L{ 1), CONS(CL1)), I=_CCNS(MASK_C);
{MASK_STORF{P {LOCAL _DATA),1),POPSTACK) s GC TC UPDATE_HEAD;

/% 1F TERMINATESGPREFE TCH_COMPLETE AND QUEUE=0
THEN TERMINATE SON NODES %/
CHECK _TERM INATE:
{MASK_COMPARE{L({ 1Yo 1) yMODIFY_STATUS) »I=_CCAS(NMASK_TCPF),
GO TO *+C{-~=);
{MASK_COMPARE(L(1),0) ,MODIFY_STATUS) oI =_CCAS{MASK_C),
GO TO #*+C(=);
GO TO WAIT_WAKEUP;
TERM_NODE:
TERM INATE{RETURN)} 2 SONS STARTING AT SON{1)} THEN
WATT FOR 2 SONS TO SIGNAL RETURN;
WAKEUP{RET_TERM) NODE(P(EXTERNAL_ENV)) AND THEN RETURN;

CALL _SCH_POST: .
S=SFO(OsNULL);
(MASK_STORE{P {(LOCAL_DATA),1),POPSTACK) ;
S=MASK_SHIFT{L{ L)y 4);
MASK _STOREIPILOCAL DATA), 1)y I=_CONSLMASK_T};
S= (MASK_SHEIFT{S, 24),POPSTACK];
EXECUTE_SINGLE_CYCLE{ VALUE ,CONTINUE ,NC_RETLRA,ACT_CODE=G,PQCP)
NODE(L (LC)) WITH INPUT=S, RETURN_ADDRESS=F(SELF};

{JP DATE_HEAD:

{MASK_COMPARE{L( 1)y CONS(HS)}, MODIFY_STATLS}, I=_ CONS{MASK_H),
GO TD *+C(-=);

S=SHIFT(2,-28), GO TQ *+2;
S=MASK_ADDIL{ 1), CONS{HL) )3

{MASK_STORE([P {LOCAL_DATA}, 1}, POPSTACK) ;

AB:

S=SUBTRACT{ F{HEAD )}, 21}
S=(SHIFT{ 14 S)},POPSTACK) s I=RESLLT;
{MASK_COMPARE(L{1),0)4POPSTACK,MODIFY_STATLS),
GO TO #=+Cl{-~=});

GO TO CHECK_TERMINATE ;
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/¥ RESET DRL =/
S=SFO{O,NWL);
(MASK_STORE(P (LOCAL_DATA) 1) ,POPSTACK) ;
S=ACCESS{P{LOCAL DATAY, F{HEAD});
EXFCUTE_SINGLE_CYCLE{REFERENCE ,NO_RETLRN,PCP) SON{2) WITH INPUT=S;
GO TO WAIT_WAKEUP;
HEAD: [I=_CONS(MASK_H)}y RETURN(MASK_SHIFY(L(1), 28));

TERMINAT E_NODE:
S=(SFO(CONS(TERMINATE _COND) 4 NULL) 4PCPSTACK) o I=RESULT S
{MASK_STORE{P {LOCAL _DATA),1}4POPSTACK] ,GC TC CHECK_TERMINATE:
/% SET TERMINATE CONDITION */

CONSTANTS{MASK_Hz'1(4)0{28) 'B,H1:40CC1C(28) '8,
HS: ' 10010(28) 'B¢MASK_T:'C{4)1(4)0(24%) *B,
TI2'0{4)00010(24)'B+79:%C{4)10010(24) *B,
MASK_C:'0{(8)1(4)0(20) 'B,C1:'C(8)00010{20)°*'B,
C8:*0(8)10000{20) '8 ,MASK_SCF:'0{20)10{11)*B,
TERMINATE_COND: '0{21)1C(1C)'B,
MASK_TCPF:'C(21)142)0{9) *B ,FMASK_FPREFETCH:'0(22)110(S)*B);
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INPUT_PNDDE:

/* LOCAL DATA ENVIRONMENT
1 PORT

GLOBAL OATA ENVIRONMENTY SAME AS PARALLEL NCDE =%/

DEFINE STATIC PROCESS WHOSE SUBSTRUCTLRE CCNTAINS F(IN) SONS WITH
PROGRAM=CONS{ SONSIP )},
LOCAL_DATA=F{LOCAL _SONSIP),
PORT=F(PORT_SONSIP ),
EP SV=F{EPSV_SONSIP ),

AND
CLOCKING PROCESS=INVOKE PROGRAM{PINPLI_CLCCKER) WITH
INITIAL IZE_ROUTINE=_F({INIT_IPNODE) ;

IN:  I=_CONS(MASK_IN), RETURN(MASK_SHIFT(G(2)s 4));

INXB8: I=_CONS(MASK_IN), RETURNIMASK_SHIFT(G{2), 1))};
CONSTANTS(SONSIP: FETCH_OPERAND, MASK_IN: '0{24)11110(4)"B);

LOCAL_SONSIP: :
S=P{DESCRIPTOR OF REGISTER_BLOCK WITH DIMEASICA=3);
S=SFO{T1.BEGy NULL);

(STORE{S(1)s1), POPSTACK]};
RETURN{{(SFO (S, NULL) POPSTACK)}} ;
/*ALLOCATE 3 REGISTER SET FIRST REGISTER TC LINK NUMBERX/

PORT_SONS IP:
S=ACCESS{P(PSTACK}y~-2);
RETURN(P{DESCRIPTOR OF I0_BLOCK DEFINED FRCM
{DESCR IPTOR=S{POP) ,OFFSET=1) WITH DINMENSICN=2})3

EPSV_SONSIP:
RETURN(P{EPSV WITH VSTACK =F{VS_FETCHCF), PSTACK =F(PS_FETCHOP)});
/®FETCH 1y 40 <IN AND E XPAND SONS*/ :

INIT_IPNODE:
S=P{DESCRIPTOR OF IO_RLOCK DEFINED FRCNIDESCRIFTCOR=P{GLOBAL_DATA),
OFFSET=2) WITH DIMENSION=4) 3 :
SET_STATE(1l, S(POP}]);

/*CHANGE PORT TO GLOBAL ENV. 3-6%/
READ B EMENT(2) WITH FORMAT=NULL AND LENGTH=F(INX8) FRON MEMORY

ARR AY{DESCRIPTOR=F(MEM_DESC), OFF SET=F{INS_ADD)}) ;

EXPAND{RETURN } F{IN) SONS STARTING AT SCN(1)
THEN WAIT FOR F{IN)} SONS TO SIGNAL RE TLRA;
RETURN(SEY_STATE(1l, P(LOCAL_DATA))}) ;

/*ACCESS EXT ENV TO GET ELEMENT OF GLCBAL DATA ENVH/



PAGE 230

MEM_DESC: ‘
S=INDEX{P(EPSV}s 2); RETURNIACCE SSUS{PCP) 1)1} 3

INS_ADD:
[=_CONSIMASK_INS_ADD}, RETURN{MASK_SHIFTIG{2), 13)}:

DP_CODE:
[=_CONS (MASK_OPCODE), RETURN(MASK_SHIFT(G(2) 481)3
CONSTANTS(MASK_INS_ADD: '1{16)C(16) '8,
MASK_OPCODE: *0(1911{5)0( E)*'B);

P INPUT _CL OCKER:

EXECUTE(WAIT_RESPONSE } F{IN) SONS STARTING AT SCN({l)

THEN WAIT FOR FUIN) SONS TO SIGNAL RETLRN;

WAK EUP(ACT_CODE=8, SUSPEND) NODE{P(RETLRN))} 3

ACTIVATEINO_CONNECT) FUNCTIONAL _UNTT(L(1)) wWITH CONTROL_INFCRMAT IGN=
F{OP_CODE} USING F{IN) INPUT_GENERATCRS IN TIATED BY
RETRIEVE(ND _RETURN) CUMMAND ;

GO TO P INPUT_CLOCKER;

PROCEDURE_NODE:

/* EXACTLY SAME CODE AS PARALLE_NODE, EXCEPY

THAT INSTEAD OF CALLING SCHEDULER TC ASSIGA

A PROCESSDR,; AN MSV FOCR A CRAPH_PROCECURE

IS GENERATED., THE ADDRESS OF THIS GRAFPH_PRCCEDURE
IS THEN TREATED IN THE SAME WAY AS THE ADDRESS CF
THE PROCESSOR RETURMED BY THE SCHEDULER.

THIS MODIFICATION TO THE CODE OF THE FARALLEL_NCDE
WNOULD BE AT LOCATION CALL_SCHEDULER., THE CCDE FCR
GENERAT ING THE MSV OF THE GRAPH PRCCECURE IS VERY
SIMILAR TD THE CODE USED BY THE GRAPH_MACHINE TC
GENERATE THE MSV OF THE MAIN GRAPH PRCCEDURE. #/
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SEQUENT IAL _NODE ¢
/% GLOBAL DATA ENVIRONMENT

1 INPUT_L INK_STATUS{16},0UPUT_LINK_STATUS(16)

2 INSTRUCTION_ADDRE SS(16) ,OPCODE(8) ,IN(4),CUT (4)

3-6 INSTRUCTION BUFFER AREA I(ll}essIlIN),
0(1)e e CLOUTY

LOCAL DATA ENVIRONMENT

1 PORT |
2 SCHEDW ER ADDRESS 2/

DEFINE STATIC PROCESS WHOSE SUB STRUCTULRE CCNTAINS 2 SONS WITH
PROGRAM=F (SONSS)oLOCAL_DATA=F{LOCAL_SCNSS),
PORT=_F(PORT_SONSIP),EP SV=F{EPSV_SCNS?P)

AND

CLOCKING PROCESS=

INVOKE PROGRAM(SNODE_CLOCKER) WITH
INITIAL 1ZE_RGUTINE=_F({ INT T_SNODE) 3

SONSS:
RETURNU LCAD_CONSTANT(PC1lsI.BEG));
CONSTANTS({ INPUT_SNODE s STORE_OPERAND) ;

LOCAL __SONSS:
GO TO #+1.8EG;
RETURNI{P (DESCRIPTOR OF REGISTER_BLCCK WITH DIMENSICON=1));
RETURN(P (DESCRIPTOR OF REGISTER_BLCCK wWETH DIMENSION=31});

INIT_SNODE: |
EXPAND{RETURN ) SON(L1) THEN WAIT FCR I SONS
TO SIGNAL RETURNS
/%GET ADDRESS OF SCHEDULER®/
S=MASK_SHIFT(G(2},8), I=_CONS{MASK_CP);
S= (SUBTRACT(S,32},POPSTACK,MODIFY_STATLS) ,GC TC #*+C(>=);
S= (SFO{ L,NULL )y POPSTACK);
S=LINDEX{PIEPSV),~2),POPSTACK) 41=5;
S= {INDEX{ Sy 1),POPSTACK) ,I=0+_13
RETURN( (STORE (P {LOCAL _DATA) ;2) ,POPSTACK) ) ;
CONSTANTS (
QUE_STAT: *0010CC010( 24) 'B,
MASK_OP: '0{18)L{6)CI8)'8);
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SNODE_CLOCKER

EXECUTE{NO_RETURN) SUN(1);NULL _AC TIVATE(SUSPEND) NODE(P{SELF} )3

[COMPARE(ACT_CODE,8)Y,MODIFY_STATUS) y GC TC *+C{~=}3

GN TO *+3;

NULL _ACTIVATE{SUSPEND) NODE{P{SELF)) 3

G YO TERM_NODE;

/% CALL SCHEDULER =2/

EXFCUTE_SINCLF_CYCLEIVALUE s WAIT_RE SFCUNSE 4 NC_ RETURN ACT_CODE=9)

NODE{L {231} WITH INPUT=1,RETURN_ADDRE SS=P{SELF};

ACTIVATEU(NG_CONNECT) FUNCTIONAL_UNITIL(L1)) wWITH

CONTROL _ INFORMATION=F(OP_CODE) LUSING 1 INPLT_GENERATQORS INITIATED BY
EXECUTE_SINGLE_CYCLE{RE TURN,VALLE) CCMMAND THEN STORE STATUS

IN F{STATUS_ADDRESS);
GO TO SNODE_CLOCKER;
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INPUT_SNODE:
/¥ LOCAL DATA ENVIRONMENT
1 WORK ING REGISTERS

GLOBAL DATA ENVIRONMENT
SAME AS SEQUENTIAL NODE *f

DEFINE STATIC PROCESS WHOSE SUBSTRLCTLRE CCATAIANS F(IN) SONS WITH
PROGRAM=CONS{ SONSSP )},
LOCAL _DATA=F(LOCAL _SONSIP},
PORT=F(PORT_SONSIP ),
EP SV=F{EPSV_SONSIP),
AND
CLOCK ING PROCESS=
INVOKE PROGRAM{SINPUT_CLOCKER) WwITH
INITIALTZE_ROUTINE=_F{ INIT_I1SNCDE} ;
/REFILL/

INIT_ISNODE:
S=P{DESCRIPTOR OF REGISTER_BLOCK DEFINED FRCVW
{DESCRIPTOR=P ({GLOBAL DATA) yOFFSET1=0) wWITH DIMENSICN=1);
SET_STATE[1,S{POP)}};
READ ELEMENT(2) WITH FORMAT=NULL AND LENGTH=16 FRCM MEMQORY
ARRAY {DESCR IPTOR=F{ MEM_DESC) sOFF SET=F [INS_ADD)} 3
/% SET INITIAL STATE OF LOCKS */
S=P{DESCRIPTOR OF I10_BLOCK DEFINED FRCM{DESCRIPTOR=P(GLCBAL_DATA),
ODFFSET=2) WITH DIMENSION=4);
SET_STATE(Ly SI(POP}};
/*CHANGE PORT TO GLOBAL ENV. 3—-6%/
READ ELEMENT( 4) WITH FORMAT=NULL AND LENGTH=F(INXB) FROM MEMORY
ARR AY{DESCRIPTOR=F(MEM_DESC), OFF SET=F{INS_ADD});
EXPAND{RETURN )} F{IN) SONS STARTING AT SCAh(1)
THEN WAIT FOR F{IN) SONS TO SIGNAL RETLRA;
S=ADD(F( IN),4};
READ B EMENT(SIPOP)} WITH FORMAT=NULL AND LENGTH=F{0OUTXB)
FROM MEMORY ARRAY
(DESCRIPTOR=F{MEM_DESC) ,OFF SE T=F (ENS_ACD)) ;5
RETURN(SET_STATE{1l, P(LOCAL_DATA)) }3
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SINPUT _CL OCKER:
STORE_INDEX{ P{LOCAL_DATA),1).,1=_03
S=(LOGICAL _ANDIG{1),CONSIUXL6)) MODIFY_STATUS) +GO TO *+C{-~=);
{COMP AR E(NULL ,NULL }4POPSTACK) oGO0 TC NLLLS

FIND_UNLOCK ED_IEDGE:
S={SHIFT(S,-1),POPSTACK,MODIFY_STATLS},
I=1+1y GO TO %=+_C({<):
GO 7O *-13
S=ADD{1,L (1)};
{STORE{P (LOCAL_DATA}, 1} ,FPOPSTACK) 3
EXECUTE(CONTINUE ) SON{I) THEN WAIT FCR O SCNS TC SIGNAL RETURN;
GO TO *+C(=1);
GO TO FIND_UNLOCKED_I1EDGE;

NULL _ACTIVATE{WAIT_RFESPONSE) SON(1l) THEN WAIT FCR
L{1) SONS TO SIGNAL RETURN;S
/% THEN SIGNAL PREFETCH COMPLETE =%/
WAKEUP (ACT_CODE= 8, SUSPEND} NODE(P{RETLRN))
S= INDEX(P {LOCAL_DATA), 11}
SET_STATE(2,S(POP) )3
S={LOGICAL_AND(G{1},CONS{UX16)) +MODIFY_STATUS,PCPSTACK) +1=0;
FIND_ U IE:
S={SHIFT(S,—1),POPSTACK,MODIFY_STATLS) I =I+1,GC TO *+_C (K};
GO TD *-13
S= INDEX(P(LOCAL _PROCESS) 113
{STORE(P{LOCAL_DATA)}, 1) ,POPSTACK) ;
GO YO ¥ +Cl=);
{TIME_GRAIN):
60 70 FINC_UIES
[TIME_GRAIN}:
(COMPARE(NULL (NULL },POPSTALK) GO TO SINPLT_CLCCKER;
CONSTANTS{UXL6: " 1( 1€} 00 16) 'By SONSSP sFETCH_CPERAND) ;
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FETCH_OPERAND:
DEFINE STATIC PROCESS WHOSE SUBSTRLCTLRE CCATAINS O SONS
AND
CLOCK ING PROCESS=EXECUTE_SINGLE _CYCLE(NC_RETURN,FETCH_INPUT)
NODE(_F(LINK_ADD)) WITH RETURN_ADDRESS=P({SELF);

/% LOCAL DAYTA ENVIRONMENT
1 L INK ADDRESS I(J)
2-3 PORT

GLOBAL DATA ENVIRONMENT SAME AS PARALLEL NCDE %/

L INK_ADD:
S=SHIFT{L(1l)y 2}y, I=RESULT;
S=(ACCESS(P{GLOBAL_DATA), 1), POPSTACK}, I=I +_3;
JREXTRACT G(3)+1 MODL4)) FIELD*/
S=LOGICAL _ANDIL( 1}, *1{2)'B)Y,I=RESLLT;
S={LOAD_CONSTANT(CONSI{SHIFT_BYTE) oI) 4FCPSTACK) 4i=[+_1;
S=ASHIFT_MASK{S,_S(POP)),POPSTACK) oI=_"11{8)*B3
RETURNIC{ INDEX{P(GLOBAL_PROCESS),y S} s PCPSTACK)):
CONSTANTS(MASK_BYTE:MASK_8BITS,SHIFT_BYTE:SHIFT_8BITS);
MASK_BBITS:
CONSTANTS({*Q( 24)1(8)*'B,*1(8)0(24) '8, 'C{8)1{8}0(16)*'B,
'Ol 16)1L 810(8B)*B);
SHIFT_8BITS: .
CONSTANTS{ Oy 24+ 16,83
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OQUTPUT_PNODE:

/% LOCAL DATA ENVIRONMENT
1 PORT

GLOBAL DATA ENVIRONMENT SAME AS PARALLEL NCDE #/

DEFINE STATIC PROCESS WHOSE SUBSTRUCTLRE CCNTAINS 1 SONS WITH
PROGRAM= CON S{ SONOP } 4
LOCAL_DATA=F{LOCAL_SONSIP),
PORT=F(PORT_SONSIP ),
EP SV=F(EP SV_SONOP)
AND
CLOCK ING PROCESS
= INVOKE PROGRAM{PQUTPUT_CLOCKER) ¥ITH INITIALIZE_ROUTINE=_F
{ INIY_OPNODE }3 '

EPSV_SONOP:
RETURNI{PUEP SV WITH VvSTACK=F{STACKSE) »F STACK=F {STACK8)));

INIT_OPNDCCE: :
S=P(DESCRIPTOR OF ID_BLOCK DEFINED FRCM{DESCRIPYOR=P(GLCBAL_DATA},
QFFSET=2) WITH DIMENSION=4);
SET_STATE(1l, S{POP));
/*CHANGE PORT TO GLOBAL ENV. 3-6%/
S=ADDIF{INY, 21);
READ EL EMENT{S{POP)) WITH FURMAT=NULL AND LENGTH=F{QUTXB8)
FROM MEMORY ARRAY
{DESCRIPTOR=F{MEM_DESC) ,OFF SET=F{INS_ACD)};
RETURN(SET_STATE{l, P{LOCAL_DATA})});

NDUT: I=_CONS{MASK_OUTY, RETUIRRN{MASK_SHIFT({G(2) ,0));
QUTXB: I=_CONS(MASK_OUT}, RETURNI(MASK_SHIFT(G(2),-3)};

CONSTANTS{ SONOP:STORE_OPERAND, MASK_CLT: '0(28)1(4)*'B);

POUTPUT_CLOCKER:

ACTIVATE(NO_CONNECT) FUNCTIONAL _UNIT{L(1)) WITH CCNTROL_INFCRMATION=

NULL USING 0 INPUT_GENFRATORS INITIATED BY
EXECUTE_SINGLE_CYCLE({ VALUE sNO_RETLRN) CCMMAND THEN STCRE ST ATUS
IN F{STATUS_ADDRESS);
WAKEUP{ ACT_CODE=11,CONTINUE )} NODE(P{RETURN)]) 3
(YIME_GRAIN):
G0 TO POUTPUT_CLOCKER;

STATUS_ADDRESS:
RETURN ( INDEX{P (GLOBAL_DATA),1}1}3
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STORE_OPERAND:

/¥ LOCAL DATA ENVIRONMENT
1 L INK ADDRESS I(J)
2-3 PORT

GLOBAL DATA ENVIRONMENT SAME AS PARALLEL NCDE #/

INIT_SOPER:

/%5=G(1)y I=0 */
S={SHIFTIC{ 1)y~ 1€)MODIFY_STATUS),y I=C 4GC TC *+C(~=);
RETURN{ {SFO{OyNULL )y POPSTACK)) ;

FINC_DEDGE:
S={SHIFT{S,-1)yPOPSTACK MODIF Y_STATLS) I =141,GC TC *+_C(<};
GO YO *-1;
STORE_INDEX{(P (LOCAL_DATA},1):

STORE_QUTPUT:
EXECUTE_SINGLE_CYCLE{NO_RETURN, VALLE,STCRE_CUTPUT)
NODE(F(L INK_ADD)) WITH INPUT=P{PORT) ,RETURN_ADDRESS=P(SELF);

GO 70 *+C(=);

{TIME_GRAIN):

GO TO FIND_DEDGE;
RETURN({SFO(0,NULL )y POPSTACK]) ;

/END/



APPENDIX D

The Internal Format of Sum-Squared Graph Program(5)

(Figure 27)

Memory Subsystem Comments
(Start, End, Value)
Node Description Section

1 8 10 nl

9 16 6 nn
17 18 1 Node 1 2 coples
19 24 3

25 28 1 IN
29 32 2 ouT
33 40 1 11
41 48 2 01
49 56 9 02
57 58 1 Node 2 2 copiles
59 64 3

65 68 1 IN
69 72 2 ouT
73 80 2 I1
81 88 3 01
89 96 4 02
97 98 1 Node 3 *
99 104 8
105 108 2 IN
109 112 1 ouT
113 120 3 It
121 128 4 12
129 136 5 01
137 138 1 Node 4 +
139 144 1
145 148 2 IN
149 152 1 ouT
153 160 5 I1
161 168 6 I2
169 176 7 01
177 178 1 Node 5 BR
179 184 4



PAGE 239

185 188 2 IN
189 192 2 ouT
193 200 0 I1
201 208 7 I2
209 216 8 01
217 224 6 02
225 226 1 Node 6 =0
227 232 9
233 236 1 N
237 240 1 ouT
241 248 9 11
249 256 ] 01
Link Initialization
257 264 8 Link 8
265 272 1 1 Data Item
273 304 0
305 336 1
337 344 6 Link 6
345 352 1 1 Data Item
353 384 0
385 416 0
417 424 1 Link 1
425 432 6 6 Data Items
433 464 0
465 496 1
497 528 0
529 560 2
561 592 0
593 624 3
625 656 0
657 688 4
689 720 0
721 752 5
753 784 0
785 816 0
External Link Specification
817 824 0
825 828 0
829 832 1
833 840 8



