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ABSTRACT 

This paper is a preliminary investigation of the organization of a parallel 

micro-computer designed to emulate a wide variety of sequential and parallel 

computers. This micro-computer allows tailoring of the control structure of 

an emulator so that it directly emulates (mirrors) the control structure of the 

computer to be emulated. An emulated control structure is implemented through 

a tree type data structure which is dynamically generated and manipulated by 

six primitive (built-in) operators D This data structure for control is used as a 

syntactic framework within which particular implementations of control concepts, 

such as iteration, recursion, co-routines, parallelism, interrupts, etc., can be 

easily expressed. The major features of the control data structure and the 

primitive operators are: 1) once the fixed control and data linkages among 

processes have been defined, they need not be rebuilt on subsequent executions 

of the control structure; 2) micro-programs may be written so that they execute 

independently of the number of physical processors present and still take advan- 

tage of available processors; 3) control structures for I/O processes, data- 

accessing processes, and computational processes are expressed in a single 
uniform framework. This method of emulating control structures is in sharp 

contrast with the usual method of micro-programming control structures which 

handles control instructions in the same manner as other types of instructions, 

e.g., subroutines of micro-instructions, and provides a unifying method for the 

efficient emulation of a wide variety of sequential and parallel computers. 
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I. INTRODUCTION 

In the past few years, both the size and diversity of the class of problems 

being submitted to computers for solution has significantly increased. The 

programming of many of these new problems on a computer with a von Neumann 

organization can be very complex and, additionally, can result in programs which 

execute inefficiently. A significant part of these difficulties can be attributed to 

the “degree of complexity” of the transformation from the representational 

framework within which the programmer develops an algorithm (e.g., ALGOL, 

LISP, Graph Model, etc.) to the representational framework of a von Neumann 

computer within which the algorithm is executed. The complexity of transfor- 

mation between these two levels of representation thus makes it difficult to con- 

struct an automatic mapping between levels which is both quick and efficient. 

The perception of this problem has led to the development of computers whose 

organizations are optimized for either a particular subset of or a higher level 

language for the problem class 0 Examples of such machine languages should 

include those of the B5500 ’ for ALGOL, ILLIAC IV 2 for processing of array 

structured data, Abram’s APL machine, 3 Melbourne and Pugmire’s FORTRAN4 

machine, etc D Since these represent a broader class of languages than what is 

usually meant by machine language, we will refer to them as intermediate 

machine languages (IML’s) s This tailoring of IML to a specific h)igher level language 

is accomplished by incorporating primitive operators in the IML which directly mirror 

operations in the higher level language (e. g D , recursion in ALGOL is directly mirrored 

through stack operations in B5500) D Thus, bythetailoringof amachine’sorganization 

more closely to a particular user representational framework, the mapping be- 

tween levels is simpler and results in more efficient program execution.20 

In parallel with the development of problem oriented computers, there has 

been an effort toward providing a systematic and flexible approach to the hard- 

ware design of a specific computer a This effort has led to the development of 

micro-computers, e.g., 360/40, 5 . with read-only control memories programmed 

to emulate a specific von Neumann type computer. 

Recently, there has been an attempt to integrate both of these new directions 

in computer architecture (machine organizations designed for specific applica- 
tions and micro-computers) by attaching to the micro-computer writeable 

control memories D Thus, it is intended that through the ability to modify 

dynamically the control memory of a micro-computer, a wide range of machine 

languages of different computer organizations (IML) can be efficiently emulated 

on a single micro-computer. However, it is the author’s contention that this 

goal cannot be realized by existing micro-computers. 
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A. Traditional Micro-Computer Architecture 

Existing micro-computer architectures are still oriented toward the design 

of von Neumann type computers rather than a systematic approach to the emu- 

lation of a wide variety of different sequential and parallel intermediary machine 

languages. 

The program structure of an IML emulator, in a conceptual sense, is seen 

in Fig. 1. 

FIG. l--Conceptual structure of an emulator. 

The “control process”, which represents the control structure* of the com- 

puter to be emulated, activates the “decoding process” with data that identifies 

the next instruction(s) of the emulated computer to be executed; the “decoding 

process ” analyzes the instruction(s) to be executed so as to determine the 

semantic routine(s), together with its (their) appropriate calling sequence(s), 

whose activation will perform the semantics of the emulated instruction(s). 

After the appropriate semantic routine(s) has (have) been executed, the flow of 

control returns to the control process which, based on the results of executing 

the decoding process and the semantic routine(s), selects the next instruction(s) 

to be emulated. 

* 
The control structure of a computer consists of the set of rules used to define 
the sequencing of the instructions of the computer. 
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The organizations of existing micro-computers when applied to the emulation 

of unanticipated IML’s do not reflect this conceptualization of the structure of 

an emulator, but rather provide a simple, uniform framework for the coding of 

an emulator. In these machines, the semantics of micro-instructions are gen- 

erally realized by a short parallel sequence of register transfers, and the control 

for sequencing among micro-instructions is sequential and based on simple con- 

ditional transfer commands. There are no features in the language that distin- 

guish the coding of the control process from that of the decoding process or the 

semantic routines, nor the relationship, for instance, between the control process 

and the decoding process. An emulator expressed in this type of micro-computer 

langusge ‘la a q implements machine instructions as a subroutine of micro- 

instructions”. 6 Thus, due to the simplicity of micro-computer languages and 

their paucity of control commands, the structure of the emulated computer is 

not directly observable in the structure of its emulator. The key to efficient 

emulation is just this missing ability to directly mirror the control structure, 

instruction formats, and primitive data-accessing operations of an IML in the 
corresponding control structure, instruction formats and primitive data-accessing 

operations of its emulator. In particular, a control action by an instruction in 

the IML program being emulated should be directly mirrored in a modification 

of the control structure of the emulator. 

Thus, the current approach to the design of a micro-computer which stresses 

simplicity is not unreasonable if the micro-computer is going to emulate computers 

and IML’s that have a simple sequential control and simple instructions. But, 

IML’s that are tailored for a particular subset of a higher level language for a 

problem class are, in a sense by their very purpose, not simple since the com- 

plexity of the higher level language is imbedded in the semantics of the IML’s 

instructions and control structure. If the current trend in higher level languages 

is maintained, these problem or procedure oriented IML’s will have increasingly 
more sophisticated control structures employing such control concepts as 

recursion, co-routines, parallelism, etc., and, likewise, their instructions 

will directly operate on increasingly more complex data structures, e.g., lists, 
trees, arrays, etc. Therefore, the current structure of existing micro-computers 

is inadequate for the task of effectively emulating the wide range of such inter- 

mediary languages, just as a von Neumann computer in comparison with the 

B5500 does not efficiently execute ALGOL. 
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B. Variable Control Structure as the Basis of a Micro-Computer Architecture 

The micro-computer architectural design to be presented in this paper is 

based on the idea that the program structure of an emulator written in this 

micro-computer should reflect the structure of an IML that is being emulated. 

It is felt that the key to accomplishing this mirroring process between IML and 

its emulator lies in the control structure of the micro-processor. Thus, the 

main emphasis in the design to be presented here is to incorporate a very general 

control structure in the micro-processor, 

The approach conventionally used to design a micro-processor with a 

powerful control structure is first to develop a basic machine language having 

a well-defined set of instructions and a simple sequential control structure, and 

then add instructions and facilities (such as subroutine call instruction, a stack 

for parameter passage, a fork-join instruction, etc.) for structuring complex 

sequential and parallel processes. This is not the approach taken here. Instead, 

the approach is to develop a micro-language specifically designed for the task of 

dynamically constructing control structures a This control structure definition 

language, called the Structure Building Language (SBL) , is used to dynamically 

define a wide range of particularized control structures through the generation 

of a data structure for control. The control data structure acts as a syntactic 

framework within which dynamic and static control and data environment inter- 

relationships among processes can be expressed. The control structure of this 

micro-computer can then be dynamically tailored (through the SBL) into a form 

which is most suitable for the emulation of a particular LML. An emulator 

programmed in this micro-computer, as will be seen later, works in a fashion 

similar to the process of dynamic compilation or run-time macro expansion. 

This method of emulation differs radically from the conventional form of emulation 
consisting of a sequence of calls to sub-routines of micro-instructions. 

The variable nature of the control structure of this micro-computer dis- 

tinguishes its architecture (from the viewpoint of form and complexity) from 

existing micro-computer architecture e It is felt that a variable control structure 

micro-computer provides a unifying approach to the emulation of an extremely 

wide variety of computer organizations and IML’s. The goals of this micro- 

computer design are to be able to: 

1. Emulate efficiently a wide class of both sequential and parallel 

IML’s (e.g., array processors, pipeline, stack machines, 

LISP machines, computational graph models, etc.) D 
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2. Program an emulation in a simple and uniform manner, such 

that the dynamic program structure of an emulator reflects 

the architecture of the computer it emulates. 

3. Incorporate easily and efficiently a changing array of hardware 

arithmetic units (e.g. , square root, inner product, etc.) I/O 

devices and memory units (e.g., associative memory, bit 

slice memory, etc .) o 

Micro-Computer 

Micro-Processor 

I f n 

I III II 

FIG. 2--Micro-Computer subsystems (modules). 
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II. MICRO-COMPUTER ARCHITECTURE 

The micro-computer architecture, as pictured in Fig. 2, can be character- 

ized in terms of three basic hardware subsystems. The first subsystem is 

composed of an arbitrary set of functional units. Each of these units can be 

independently activated and can have an arbitrary number of inputs and outputs, 

where that number need not be fixed but may be data dependent. A functional 
unit could be a floating point multiplier or, more generally, an arbitrary input/ 

output device. This more general usage of a functional unit is a natural conse- 

quence of imposing restrictions neither on the size (or form) of the input and 

output data sets of a unit nor on the sequencing between units. 

The second subsystem is a memory. This memory is bit-addressable and 
can be activated either to store or retrieve an arbitrary length string of bits. 

This memory holds the program that is going to be emulated, and additionally, 

serves as a storage buffer for communication between the functional unit sub- 

system and the micro-processor subsystem. Other types of memory organiza- 
tions, such as word-oriented, bit-slice, associative, etc., can also be included 

in the system’s architecture by making them function units. 

The third subsystem, which is the major innovation in this micro-computer 
architecture, is a micro-processor that controls the dynamic interactions 

between the other two subsystems and among functional units. The programmable 
nature of the control unit of the micro-processor subsystem allows the tailoring 

of both the hardware and software of this architecture to various problems. The 
hardware tailoring involves the addition of specialized functional units which 

carry out operations commonly used in the problem class (e.g., floating-point 

multiplier bit-slice memory, etc.) to the functional unit subsystem or addition 
of more parallelism in the micro-processor subsystem. The variable nature of 
the control unit of the micro-processor subsystem, as will be discussed later, 

allows these hardware modifications to be incorporated without modification to 

the language of the micro-processor. 
In order to emulate a computer using this system, the program which is 

to be run on the emulated computer is stored bit-wise in the memory subsystem 

in the same order as it would be stored in the emulated computer% memory. 

The micro-processor must then perform the following tasks: (1) fetch from the 

memory subsystem the instruction(s) of the emulated computer which is (are) to 
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be executed in the next step; (2) analyze this (these) instruction(s) in order to 

generate the appropriate sequence of functional unit activations which will perform 

the computations specified by the instruction(s). In addition, the sequence of 

functional unit activations must be coupled with accesses and stores to the 

memory subsystem so as to provide the input and output data set for each unit. 

This sequence of functional activations may result in concurrent operation of 

functional units or a pipelining of functional units. 

The major focus of the rest of the paper will be on the organization of the 

control unit of micro-processor subsystem, especially the syntax and semantics 

of the SBL. 
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III. MICRO-PROCESSOR SUBSYSTEM 

The main orientation in the design of this micro-computer, as stated in the 

introduction, is to incorporate a variable control structure definitional facility 

into the hardware of its processor. This design emphasis has led to a micro- 

processor that contains two basic classes of instructions. One class of micro- 

instructions, called the Structure Building Language (SBL), is used to construct 

dynamically the control structure of an emulator while the other class, called 
the Imerger Function Language (IFL), is used to compute address arithmetic 

functions e 

The SBL dynamically defines an emulator’s control structure through the 

generation of a data structure for control. The basis of the syntax and semantics 

of the SBL is a fixed set of definitional templates that define particular types 

(forms) of control structures. An SBL statement (macro) specifies one of the 

fixed set of templates together with a set of IFL address arithmetic functions. 
Each definitional template represents a parameterized model of a basic control 

concept, e-g,, iteration, selection, hierarchy, synchronization, etc. The 

specification of particular values for the parameters of the template defines a 

particular instance of a basic control concept. These values are computed by 

the IFL address arithmetic functions specified in the SBL macro. A call to an 

IFL program results in the generation of either an integer value or a sequence of 

interger values that are then used in the expansion or execution of a macro. The 

expansion of a definitional template results in the generation of a structure which 

contains all the state information necessary to model the execution of this par- 

ticular instance of the control concept. More complex control structures are 

constructed through the expansion of a sequence of these definition templates. 

The binding of parameters to the SBL macro is under the explicit control of other 

SBL statements D Similarly, the expansion of SBL macros and later execution is 

explicitly programmable in the SBL. This ability of the SBL to define dynamically 

the sequencing of other SBL statements is the key to the control structure defi- 
nitional facility of the micro-processor. 

The SBL consists of six types of macro bodies (definitional templates): data- 

descriptor (D), instruction (I), selection (S), iteration (IT), hierarchical (H), and 

control (C) D The first two types of macro bodies are called subsystem command 

macros while the remaining four are called structure building macros. The 

subsystem command macros specify the interaction between the functional unit 
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subsystem and the memory subsystem. Only these two macros actually produce 

computational results through the action of functional units. More complex 

computational processes are constructed through the execution of a sequence of 

structure building macros that use as their basic building block calling sequences 

to subsystem command macros. When the basic building blocks are just data- 

descriptor macro calling sequences, then the structure building macros defines 

a data-accessing procedure. 

The programming of an emulation on this micro-computer is done by creating 

a dynamic mapping between the control structure and instructions of the emulated 
computer and a set of structure building macros and subsystem command macros. 

This dynamic mapping is represented in the address arithmetic algorithms that 

are used to expand the definitional templates. Thus, an emulator programmed 

in this micro-computer works as an iterative two-step process (iQ e., it generates 
an instance and then executes the instance) similar to the process of dynamic 

compilation or run-time macro expansion. This two-step approach to emulation 

differs from the conventional one-step approach to emulation (i.e., calling sub- 

routines of micro-instructions) done on existing micro-processors, and directly 

reflects the conceptualization of an emulator pictured in Fig. 1. The binding of 

a parameter list to a SBL macro is the analog of the control process of the 

emulator; the expansion of a SBL macro is the analog of the decoding process of 
the emulator, and the execution of SBL macros is the analog of the semantic 
routines of the emulator. 

Example 1 
Consider the emulation of an instruction, FAD I 20, stored at location 10 

in the emulated computer where FAD specifies a floating add operation, 

I specifies indirect addressing, and the accumulator is the second and 

result operand. The sequence of steps involved in emulation of this in- 
struction on this micro-processor is the following: (1) An SBL instruction 

generates and then stores as a node in the control data structure a binding 

between a pointer to the current value of the program counter of the 

emulated computer: 10, and a subsystem command macro A.. (2) The 

ma&o A with a parameter whose value is 10 is then expanded. This 

expansion results in the generation of a subsystem command in the control 

data structure 0 The expansion of a subsystem command macro is based on 
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a template having the following format: “functional unit”, “address of 

input l”, “*address of input 2”, “address of output I”. Macro A fills in 

the slots of the template by calling with parameter 10 two IFL programs 

B and C whose integer value outputs respectively, fill in the Yunctional 

unit”, and “address of input operand 1” fields. The other two fields are 

always constants specifying the address of the accumulator of the 

emulated computer. The IFL program B extracts the op-code field of 

the instruction at location 10, and then based on this value, determines 

the functional unit in the functional unit subsystem that carries out the 

operation specified by the op-code. The IFL program C does the address 

arithmetic, in this case indirect addressing, required to locate the 
address of the operand specified by the instruction at location 10. 

(3) The instance of a subsystem command generated by step 2 is then 

executed. The execution of this command results in the activation of the 

floating point add functional unit with two operands and then the storage 

of the result of the floating point operation in the accumulator of emulated 

computer. Thus, the subsystem command carries out the semantics of 

the emulated instruction FAD I 20. This example indicates the three 

phases involved in emulating IML instructions. However, it should be 
pointed out that for the emulation of additional IML instructions with the 

same basic format (e.g., op-code, indirect bit, address) the binding and 

expansion phases can be eliminated. Thus the overhead involved in the 

binding and expansion phases need be incurred only once for each different 

instruction format of the emulated computer 0 The control data structure 

for an idealized von Neumann computer is pictured in Fig. 4 on page 32, 

and will be used in the next section as a basis for discussing the six SBL 

macro types. 

The basic hardware organization of this micro-processor subsystem at the 

functional level is pictured in Fig. 3. The micro-processor subsystem contains 
an arbitrary number of identical micro-processors. The execution of the micro- 

processors are controlled through data stored in the program and process-space 

memories I These two memories differentiate the static and active parts of the 

control structure of the micro-processor subsystem. The “program memory” 

holds SBL and IFL statements and is not normally modified during an emulation; 
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the program memory is similar to the control memory of a conventional micro- 

processor. The “process space” memory holds the control data structure con- 

structed by the SBL and is constantly being modified during an emulation. The 

contents of the process space memory is in essence the state of the emulator 

which is currently being executed by the micro-processor subsystem. 

The micro-processor subsystem can carry on parallel activity since the 

number of micro-processors contained in the micro-processor subsystem is 

arbitrary and these processors can be executed concurrently. The process space 

memory holds the definition of the control structure which coordinates, in a 

virtual sense, the activity among micro-processors. In the case that there are 

not enough micro-processors to carry out the parallel activity specified by the 

control structure in the process space memory, then the available micro-processors 

are scheduled on a first come-first serve basis. This transformation from virtual 

processor activity to actual processor activity may lead to indeterminate results 

depending upon the number of micro-processors available. However, as will be 

described in Section IV.E.4 the SBL contains control primitives that allow the 

programmer to construct the appropriate synchronization rules (Dykstra’s sema- 

phore, Saltzer’s wakeup-waiting switch, lock-step execution, etc.) which preserve 

the inherent parallelisms among processes, while at the same time guarantee the 

scheduling of virtual parallel activity will always result in determinate computation 

independent of the number of actual mirco-processors. 
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Micro-Computer Hardware Organization 

FUNCTIONAL UIWI 
SUBSYSTEM 

Micro-Processor 
Subsystem 

. . . . 

(+ data bus) 
(-- + control bus) 

FIG. 3--Micro-Processor subsystem’s organization. 
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IV. STRUCTURE BUILDING LANGUAGE (SBL) 

The SBL is used to define control structures for I/O processes, data- 

accessing processes, and computational processes. The SBL defines each of 

these types of control structures in a single uniform framework. This use of a 

single framework for data-accessing and computational processes came from 

the following observation: if a set of instructions are considered to form a data 

structure, then the control structure associated with the sequencing of these 

instructions can be considered as a data-accessing procedure where the data 

being retrieved are instructions. For example, consider the following repre- 

sentation of a typical list structure: 

al a2 

p1 p2 

. . . . ..+Jyq 
pn 

where pi is the address of the ith word in the list, ai is the data-item stored at 

the ith word, and linki is data stored at the ith word used in computing pi+I. A 

data-accessing procedure to extract al, 0 0 0 an from this typical list structure 

would generate the sequence PI, D 0 *, p, from the link information linkI, m 0 .ltin-I. 

After the generation of each pi (i=l,n) the corresponding ai can then be extracted. 

Similarily, consider al0 0 D an as machine instructions. They can be sequenced 

by a program counter p which takes on a succession of values PI, #. “pnO After 

the generation of each pi, the instruction ai located at pi is executed, and then 

based on pi and ai, pi+I is calculated, The only difference between instruction 
sequencing and data-accessing of a list’structure is that in instruction sequencing 

the link information, linki, is always encoded in the instruction, ai (an instruction 

includes an implicit or explicit link) D Thus, the general paradigms developed to 

sequence through arbitrary list structure can also be used to define conventional 

sequential control structures 0 

The IFL is specifically designed to efficiently sequence through an arbitrary 

formatted list structure, and generate either the address of the final list element 

p, or the addresses of the intermediate list elements PI, ., D .p,-I. In the latter 

case, the SBL uses the addresses of these intermediate list elements to generate 
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a series of macro calling sequences (the binding of a parameter pi to a macro 

body) 0 The execution of the macro with parameter pi then results in the carrying 

out of the semantics associated with ai, where ai can be a data-item, an emulated 

instruction, or the name of a process. These semantics involve, respectively, 

the retrieval of the data-element from the memory subsystem, the execution of 

a functional unit with appropriate input and output sets, or the generation and 

execution of further macro calling sequences Q The first two cases are handled 

by subsystem command macros while the latter case by structure building 

macros D Thus, depending on the types of the macros bound to the sequence of 

parameter pl” s Opn,l, a data-accessing process, an I/O process, or a compu- 

tational process can be defined. 

A. Control Data Structure 
The SBL defines a control structure through the dynamic generation of a 

tree type data structure in the process space memory whose nonterminal nodes 

contain calling sequences to either a subsystem command macro or a structure 

building macro. The process space memory also holds all temporary information 

structures, which will be considered as terminal nodes of control data structure, 

needed in the expansion and the execution of a macro. The data structure for 

control is in the form of a tree due to the ease of specifying such control concepts 

as hierarchical structure (functional decomposition), parallelism, co-routines, 
and recursion. The representation of hierarchical structure and recursion is 

possible because additional levels (sibling groups) may be dynamically built in 

the tree through the expansion of nonterminal nodes (macro calling sequences). 

The representation of parallel and co-routine control structures is possible 

because brother nodes in the tree may be treated as distinct independent processes 

each with its own state information. A tree data structure is also a convenient 

syntax framework (father, brother, etc. , relationship between nodes) for defining 

distributed control systems 0 Namely, the control structure of a complex system 

can sometimes be conveniently represented through hierarchical structure where 

in each sibling set (structural level) of the tree there is embedded a simple 

control process (clocking process)’ that initially sequences its brother nodes. 
If additional clocking processes are contained in the sibling set, control may pass 

to these processes after initialization. Thus, instead of one complex control 

process for the entire system, the control can be distributed throughout the 

- 14 - 



system. In addition, if these simple control processes can be coded so their 

addressing structure is not based on their absolute locations in the tree, but 

only on their relative position in terms of father and brother addressing in the 

tree, then relative addressing allows copies of a single process to be used at 

different levels in the tree. The simultaneous execution of many calling sequences 

to the same macro body is permitted because information local to each macro 

expansion and its subsequent execution is stored with the activating calling 

sequence, 
Another important feature of the SBL is the separation that ,is made between 

the generation of a macro calling sequence (e.g., the binding of parameters to 

the macro body) from the expansion and execution of that calling sequence. The 

rules for the dynamic sequencing of the nodes of the control data structure can, 

therefore, be different from the rules for building of the control data structure. 
The only built-in sequencing associated with the tree is that a father node must 

be expanded before any of its son’s. The form of control data structure is thus 

just a convenient syntax framework within which sequencing rules can be 

expressed. This allows control structures which cannot be conveniently repre- 

sented in a tree structure (e.g., fork-join control as will be seen in example 9, 

computational graphs, etc.) to still be programmed in the SBL since the tree is 

the form for generation of the control data structure but not necessarily the form 

for the passage of control during execution. The SBL also separates the expan- 

sion of a macro calling sequence (which results in the generation of a control 

structure that defines a process) from the subsequent execution of the expanded 
macro (which results in the execution of the process). Through this separation, 

the SBL can control the relative rate of execution of the control structure defined 

by the expanded macro, e.g., executing a macro that defines an iteration control 

structure for only one cycle (loop) and then suspending the execution of the macro. 
A tree node (macro calling sequence) has seven states of activity: (1) it is 

unexpanded; (2) it is being expanded; (3) it is expanded; (4) it is being executed; 

(5) it is being suspended*; (6) it is suspended; and (7) it is terminated. By con- 

trolling the activity rate of a node, namely the rules (conditions) for transition 

between the seven node states, the SBL can produce an arbitrary “time grain”. 
The time grain of a process refers to the smallest unit of a process activity that 

can be controlled. Time grain, as will be seen later, can be employed to repre- 

sent concisely such control concepts as co-routines, interrupts, monitoring, 

lock-step execution, etc O 

* 
The fifth state indicates the node is currently executing but will be suspended 
at the end of its current time gram. 
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The ability to separate the expansion of a macro calling sequence from its 

execution also avoids the unnecessary rebuilding of the control data structure 

when the form of the control data structure (e.g., the number of son nodes at a 

particular level in the tree) does not vary from execution to execution, The 

SBL is defined so that only the dynamic parts of the control structure are rebuilt; 

the static parts of the control structures once defined are not regenerated. 
Additionally, the parameters used to execute and to rebuild parts of the control 

structure can be different from those used to initially generate the control 

structure. 

B. Use of the Six SBL Macro Types 

In a recent report by D, Fisher, 10 the contro1 concepts underlying all con- 

trol structures were specified as the following: “(1) there must be means to 

specify a necessary chronological ordering among processes and (2) a means to 

specify that processes can be processed ConcurrentIy. There must be (3) a 
conditional for selecting alternatives, (4) a means to monitor (ia e., nonbusy 

waiting) for given conditions, (5) a means for making a process indivisible 

relative to other processes, and (6) a means for making the execution of a process 

continuous relative to other process -. O A process A will be called continuous 

relative to another process B if and only if communication is established between 

A and B in such a way that state changes in B are temporarily delayed while the 

entire action of A is carried to completion. ” 

These underlying control concepts are implemented in terms of the structure 

building macros in the following ways, respectively: (1) Sequential control is 

implemented through the iteration macro D The iteration macro generates a list 

of macro calling sequences where each calling sequence is executed to completion 

before the next calling sequence in the list is generated. (2) Parallel control is 

implemented by the hierarchical macro. The’hierarchical macro generates a 

list of macro calling sequences as its son nodes in the control data structure plus 
specifying a clocking process that controls the initial sequencing of the son nodes. 

The clocking process, in turn, executes control macros that control the execution 

of son nodes. These control macros can activate a node without the control 

macro’s completion being delayed until the completion of the activated node, and 

therefore, the clocking process does not have to wait for the completion of a node 

before it activates other nodes. Thus, a clocking process can activate two or 
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more son nodes so that they are concurrently executing. (3) Conditional 

sequencing is implemented by either a selection macro or a hierarchical macro 

in which case the son nodes are possible alternatives and the clocking process 

selects the alternative. (4) Monitoring and continuous sequencing is implemented 

through the idea of time grain. The control structure of a process that is being 

monitored for a specified condition can be constructed so that the process is 

activated so as to suspend itself after it has performed the smallest unit of work 

which can effect the condition being monitored. Thus, before reactivating the 

suspended process the condition being monitored can be checked, and if necessary, 

an appropriate interrupt process activated. The concept of time grain is realized 

through the use of a clocking process for a group of son nodes together with the 

ability to execute via a control macro an iteration macro for only one cycle 

(calling sequence) per execution. (5) Indivisibility of processes is realized by not 

allowing a control macro to execute a node which is currently executing or being 

expanded 0 
The subsystem commands macros in conjunction with structure building 

macro are used to define an I/O control structure which, for example, can 

duplicate the effect of an I/O channel on a conventional computer. An I/O control 

structure defined by a subsystem command macro can be considered a macro- 
instruction when the functional unit being controlled in an arithmetic device. 

This use of a subsystem command was exemplified by example 1. The idea of 

a generalized I/O control structure to control arithmetic units has been proposed 

in a previous paper by the author, 7 and also has been proposed by Lass* as basis 
of the design of a high speed computer. 

c, Format of SBL Macro Calling Sequence 

An SBL macro calling sequence has a fixed format, and consists of an address, 

q, and two integer parameters, p and kb The address, q, specifies the location 

of a macro body in the program memory. The integer values defined by p and k 

are the external parameters used in the expansion of the macro body, These 

external parameters are stored in the control data structure as integer values, 
pointers to p or k parameters in other macro calling sequences stored in the 

control data structure, or pointers to fields in the memory subsystem. In the 

latter case, the pointer has two components, the first component is the beginning 

bit address of the field while the second component is the length of the field. 
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This field in the memory subsystem is interpreted as an integer value where 

the length of the field is smaller than the length of fixed size integer data that 

the IFL operates on. 

This option of storing pointers instead of values for the external parameters 

p and k greatly increases the ability to program emulators that directly mirror 

the control actions of the emulated computer. The first type of pointer allows the 

representation of the static data relationships between p and k parameters 

in the control data structure. in particular, the first type of pointer 

facilitates the representation of broadcast type control structures, and allows 

modifications at one level in the control data structure to be reflected in changes 

at other levels in the tree which are not normally accessible from the first level, 

The second type of pointer aIlows the state of emulator to be directly mapped on 

to the state of the emulated computer. This mapping is accomplished by storing 

part of the state of emulator in the memory subsystem instead of entirely in the 

process space memory. Thus, SBL operations on p and k parameters can be 

directly reflected back into changes in the contents of the memory subsystem. 

In particular, this second type of pointer capability is very valuable in the pro- 

gramming of an emulator for a computer whose state vector is not separated 

from its memory (e.g., the PDP-11 (16) computer whose program counter is 

stored as register 7 in its memory) since the state of emulator (e.g., the address 

of current instruction being processed, etc.) and the state of the emulated com- 

puter (e.g., its program counter, etc *) can be made equivalent. Thus, the 
emulator does not have to process in a special way instructions of the emulated 

computer that modify memory registers which contain parts of the state vector 

of the emulated computer O Further, the second type of pointer capability allows 

the state vector of an emulated computer to be stored in a single field in the 

memory subsystem and references to it to be distributed throughout the control 
data structure. Thus, by modifying a single field in the memory subsystem, 

the control data structure can be modified to reflect a new state vector for the 

emulated computer. 

The expansion of a SBL macro q, based on p and k, generates the form of 

a control structure and the internal parameters of the control structure definition 

that are not modified (constant) from one execution to another. After the expan- 

sion of the macro q, the value of the expansion parameters p and k can be changed 

by a control macro to i and i;, and used as execution parameters of the process 
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defined by the expanded macro. The internal parameters, which vary from 
execution to execution, are not calculated at macro expansion time, but instead, 

are recalculated based on the execution parameters 5 and E, upon each new 

execution* of the process defined by the control structure. The programmer 
can define which of internal parameters vary by setting appropriate fields in the 

macro body. Varying internal parameters are distinguished from constant in- 

ternal parameters in the control data structure by storing, respectively, the 

name of an IFL program in the parameter field instead of an integer value. Thus, 

only dynamic parts of a control structure need be rebuilt on each execution, and 

only parameters with varying values need be recalculated. 

A macro caI1 contains only two parameters, p and k, because most sequential 

control rules can be expressed in terms of the modification of, at most, two 

variables at each step of the sequencing, Thus, the two parameters p and k 

represent the variables or pointer to the variables which are modified at each 

step of the sequence. The semantics usually associated with these two parameters 

will be the following: the first parameter, p, represents the address of the data 

(e.g., instruction, parameter list, etc.) to be processed at the current step of 

the sequence, and the second parameter; k, represents the value of a counter 

that determines the termination of the sequencing. 

Example 2 

Consider the ALGOL statement: “FOR I- 1 step 1 until N DO A(I) .- B(I) 

*c(I), ‘IO The sequencing for this statement can be defined in terms of the 

following list of pairs: (1, N) (2, N-l) D 0 D (i, N-i+l), D a a (N, 1) a The first 

element of the pair defines the value of I. The value of I is then used as a 

parameter to a macro that constructs the subsystem commands to carry 

out A(I) - B(I) *C(I). The second element of the pair, whose value is the 

number of iterations that remain before the current iteration is initiated, 

is used to define the termination condition of the FOR loop. The IFL 

program that generates this list of pairs, as will be seen later, in example 

17, can be stated in just one IFL instruction. 

* 
It may be advantageous to also have the option of recomputing internal param- 
eters when the process goes from the suspended state tc the execute state. 

- 19 - 



The “address” of a data item is used in this discussion in a very general sense 

to mean information sufficient to determine, possibly by a calculation, either 

the location of the data-item in the memory subsystem or its explicit value. 

The following notation will be employed in the paper for specifying a macro 

name, a macro type, and a macro calling sequence. A macro name is specified 

in one of three following ways: (1) as a symbolic name which is optionally sub- 

scripted, e.g., M, ai, alO etc. ; (2) as an absolute address in the program 

memory enclosed in parentheses, e.g., (0), (lo), etc. ; (3) as an addressarith- 

metic expression involving symbolic names enclosed in parenthesis, e.g. , (a+lO), 

( Mi+i), ( MO+Ai -Bi). The type of macro is specified by appending D, I, S, IT, H, 

or C, as a superscript to the macro name, e.g., MI, (O)‘, etc. The macro type 
is optional and is only added for reading clarification. A macro calling sequence 

is defined by a macro name and optionally its type followed by two parameters 

which are either symbolic names or integer values enclosed in parentheses, e. g., 

Mi(0,5), (10)D(0,5), (M+51D@,k), etc. 

D. Subsystem Command Macros 

The data-descriptor macro, when expanded, generates a memory subsystem 

command 0 The memory subsystem command, when executed, activates the 

memory subsystem to retrieve (or store) a single data-item. This command is 

defined in terms of three fields: the first field, f, specifies the format of the 

data-item (l’s complement, floating point, etc.), the second field, a, specifies 

the address in the memory subsystem of the beginning bit position of the string 

of bits which denote the data-item, and the third field, &, specifies the length in 

terms of the number of bits of the data-item. The execution of the memory sub- 

system command results in the bit string bounded by addresses a and (a+Fl) 

being retrieved from the memory subsystem and then sent together with format 

field, f, to a functional unit. If f=O, then address a is used as an immediate 

operand. The data-descriptor macro neither specifies the particular functional 

unit that receives or generates the data-item, nor whether the operation is a 

store or fetch. These specifications of functional unit and operation are defined 
by the instruction macro that directly or indirectly activates the data-descriptor 

macro calling sequence. Thus, the same data-descriptor macro can be used with 

many functional units and may be used either for a store or fetch operation. The 

use of a format field, f, in the specification of both input and output allows the 
functional unit to be very sophisticated in being able to perform, if desired, 

arithmetic operations involving operands and results of different types and lengths. 
This type of functional unit was proposed for B8502(11) computer. 
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The data-descriptor macro generates a memory subsystem command by cal- 

culating values for the f, a, and I! fields (internal parameters). It determines 
the values for each of these fields by specifying in its body either a constant for 

the value of the field or the name of an IFL program. In the latter case, the 

named IFL program is called with the two parameters in the macro calling 

sequence, and the value returned by the IFL program becomes the value of the 

field. The IFL program will be executed at the time of either macro expansion 

or macro execution depending upon whether the value of the internal parameter 

calculated by the IFL program is a constant for all executions of the generated 

memory subsystem command. 

The IFL program can involve an arbitrarily complex computation and, 

additionally, as seen in Fig, 2, can access the memory subsystem for data. 

Thus, the generation of a memory subsystem command, especially the calcu- 

lation of the address field, a, can be either a simple or complex calculation, 

depending upon the nature of the IFL program invoked. The data descriptor 

macro calling sequence, when expanded, is represented by the following figure: 

*a box will represent a terminal node 

Example 3* 

Consider a computer with a 24 bit word in floating point format, and with 

an instruction format in which bits O-6 are the op code, bit 7 is an indirect 

bit, and 8-23 are the address of the next word of the indirect chain. A 

data-descriptor macro, OPFT, which generates a memory subsystem 

command that retrieves the desired data-item can be specified in the fol- 
lowing manner: Let the p parameter of the macro be the virtual address 

of an instruction of the emulated computer; the body of OPFT is defined 
such that the f field is a constant that specifies the floating point data- 

format, the P field is the constant 24, and the address field, a, is 

* 
Examples 3, 4, 5, 7 and 8 form an integrated sequence that defines the 
control data structure of an idealized von Neumann computer pictured in 
Fig. 4 on page 32. 
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calculated by an IFL program, (INDIRECT) which, using the parameter 

p, generates the bit address of the last element of the indirect chain. 

The expansion of the macro calling sequence OPFT (p, k) is then repre- 

sented by the following figure: 

L 
MEM (floating point, INDIRECT (p,k), 24) 

The IFL program INDIRECT is not invoked at macro expansion time but 

rather at macro execution time since the address field, a, of the memory 

subsystem command will be recalculated for each execution of the macro 

OPFT. 

The instruction macro, when expanded, generates an I/O control structure 

that defines the interaction between a functional unit and the memory subsystem. 

The basic form of the I/O control structure generated by the instruction macro 

is very similar to the basic form of the control structure generated by the 

hierarchical macro; that is, a group of son nodes together with a clocking process. 

The basic difference between these two types of control structures is the format 

of the clocking process that is used to sequence the son nodes. The hierarchical 

macro clocking process is an arbitrary process while the instruction macro 

clocking process has a fixed format. The son nodes of an instruction macro 

specify the data-accessing procedures which fetch (store) the input (output) data 
sets of the functional unit. The built-in clocking process of the instruction macro, 

ICP, is activated with four internal parameters: fu, the name of a functional 

unit*; &, the number of input set generator nodes (the number of output set 
generators are the remaining son nodes); cf, control information sent to the func- 

tional unit; s, an address in the memory subsystem where the status of the 
functional unit at the termination of its operation is stored. The internal param- 

eters fu, cf, and s can, if desired, be recalculated for each execution of the 

* 
fu can also refer to an IFL program which simulates the action of a functional 
St. ‘The use of apseudo-functional unit will be discussed in V. D. 
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instruction macro 0 However, the parameter, @, can be only calculated at 

macro expansion time since it relates to the form of the I/O control structure. 

The instruction macro calling sequence, when expanded, is represented by the 

following figure: 

The clocking process ICP when executed, activates the functional unit fu with 

control information,cf, and then waits for a request by the functional unit for input 

or output data. When input data is requested, the calling sequence qI(pI, kl) is 

activated to generate a single input value. Upon further requests for input 

qI(pl, kI) is executed again until it produces no more data (e.g., it is terminated) 

and then q2(p2, k2) is activated. The same process is then repeated with q2(p2, k2). 

If an output is requested, qin+i(pin+i, kin+I) is activated to store a value. Upon 

further requests for output, an analogous process to the input case just described 

is carried out. A functional unit can also operate in the mode where it requests 

all its input data simultaneously, in which case all the input generators 11’ D *Iii, 

are simultaneously activated to generate inputs. At the termination of operation 

of the functional unit, the status of the unit is stored starting at address s in the 

memory subsystem. 

Example 4 

Consider the computer detailed in the previous example. An instruction 

macro INSTFORMAT’(p, k) which generates a functional unit subsystem 

command that emulates instructions of this computer can be defined in the 

following manner. Let the p parameter of the instruction macro be the 

virtual address of the instruction to be emulated, and assume that the 

implicit second operand and result operand of the instruction is the accu- 

mulator 0 The body of INSTFORMAT is defined such that the following 
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control structure is generated. 

INSTFORMATI(p, k) 

where fu is calculated by an IFL program, defined in the macro body 

INSTFORMAT’, that extracts bits PO-P6 from the memory subsystem, 

and ACCD(p, k) generates a fixed data-descriptor which represents the 

area in the memory subsystem set aside as the accumulator. 

The instruction macro can also be used to construct I/O control structures 

that represent a pipeline of functional units. The pipelining of functional units 

makes unnecessary the use of the memory subsystem as a temporary storage 

buffer for data that passes directly from one functional unit to another. An 

example of a control structure for a two level pipeline (inp- JfU11-lfuZI- out) 

is the following: 

2%L 0, 
1 ICWu,,L,) 1 (INPU(p,,k,)) (q:(p,&)) 

The semantics associated with execution of this control structure is the following. 

The execution of q1 activates functional unit, fuI, with input generated by INP 
D 

* 

The output of fuI is then stored by qi* But, qi is an instruction macro. In that 

case, the output directed to q: is sent as an input value to fu2 after all the input 

data generators of qi are exhausted. In this particular example, there are no 

input generators so that output of fuI is immediately gated into fu2* Thus, 
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creating a two-level pipeline. Trees of functional units can also be created by 

this same mechanism; except in this case of a tree of functional units, the control 

structure is set up so that the instruction macro is requested to produce an input 

instead of storing an output. The output generated by the instruction macro is 

then outputted when all the output set generators of the functional unit are 

exhausted. 
The semantics of the data-descriptor macro and the instruction macro have 

been chosen so as to clearly divorce the function of data-accessing from the 

computational algorithm (functional unit) D This separation then facilitates 1) the 
definition of I/O control structures which directly emulate different types of IML 

instruction formats and 2) the incorporation of functional units into the functional 

unit subsystem that have complex input and output requirements (e.g., a matrix 

multiply unit, etc O). 

E. Structure Building Macros 

1. Sequential Control Structures 

The selection macro serves the same purpose in the SBL as does the Case 

statement in ALGOL, the Computed Go To statement in FORTRAN, or the data- 

dependent jump instruction in machine language. The selection macro provides 

a mechanism which allows the conditiona expansion of a node in the control data 

structure. In essence, the selection macro defines a one-level decoding tree 

which results in the generation of an arbitrary macro calling sequence. The 
expansion of a selection macro, q’(p, k), results in the generation of another 

macro <(p,k) where the values of q,p, and k are either constants specified in the 

macro body or are computed by an IFL program using p and k as parameters. 
The selection macro, when expanded, produces the following structure in the 

process space memory: 

where SEL is a built-in control process with five internal parameters that gener- 

ates and then executes the macro calling sequence q&k) as its brother node. The 
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internal parameter q. is an address in the program memory, and is added to the 

integer value, INC, so as to generate the address of macro i. The parameter 

q. can be thought of as the base address of a vector of alternative processes 

while INC is an index into the vector that determines the desired alternative. 

The internal parameter q. relates to the form of the selection control structure, 

and thus cannot be computed after each new execution. The internal parameter 

c is control information that defines how the macro calling sequence i&E) will 

be activated when qs is executed. 

Example 5 

Consider a computer with several different instruction formats a The 

emulation of instructions of this computer could be programmed by 

having a separate instruction macro INSTFORMAT;, for each instruc- 

tion format J. A selection macro INSTDECODES could then be used to 

select the correct instruction macro for each emulated instruction. 

The iteration macro serves the same purpose in the SBL as does the 

FOR-LOOP in ALGOL, the DO-LOOP in FORTRAN, or the MAPCAR function 

in LISP. The iteration macro provides a mechanism for building sequential 

processes. An iteration macro, qIT(p, k), defines a sequential process by 

generating and executing a list of macro calling sequences: 

The iteration macro defines only a sequential process because each macro calling 

sequence qi(pi,ki) is completely executed before the generation of the next calling 

sequence qi+I(pi+l, ki+I)’ The iteration macro, qIT, when expanded produces 

the following structure in the process space memory; 
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where SCP (Sequential Clocking Process) is a built-in clocking process that 

generates and then executes successive elements of the list of macro calling 

sequences. The SCP, after the generation of each calling sequence qi(pi, kg, 

then executes this calling sequence as its brother node. The iteration macro 

may be activated by a control macro so that only a single macro calling 

sequence qi(pi,k.J is executed, and then after the termination or suspension of 

this calling sequence the iteration macro is suspended. Upon reactivation of the 

suspended iteration macro, depending upon whether qi(pi,ki) is terminated or 

suspended, respectively, either the next calling sequence qi+I(pi+I,ki+I) will be 

generated and then executed or else qi(pi,k.J will be reactivated. 

The clocking process SCP is activated with five internal parameters: the 

first two parameters, M and V, are the addresses of IFL programs; the third 

parameter, c, specifies control information; the remaining parameters po, k. 

are used to construct the initial calling sequence in the list. The M program 

called with parameters (pi, ki) computes qi+I, the location of a macro. The V 

program, also called with parameters (pi, ki), computes (P~+~, ki+I), which are 

the corresponding parameters for qi+iO The M and V internal parameters relate 

to the form of the iteration control structure and thus cannot be varied from 

execution to execution. The clocking process SCP terminates the generation of 

calling sequences when kn+I = 0. 

Example 6 
Consider‘the Algol Procedure: 

PROCEDURE FORLOOP (A, B,C,N); 

ARRAY A [l:N], B [l:N], C [l:N]; 

INTEGER I; 
FOR I - 1 step 1 until N 

DO A [I]- B [I] * C [I]; 

END 
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This procedure can be represented in terms of the following control data 

structure: 

SCP(STAT, INDEX, l,O,n+l) 

MEM(l, C+I, 24) MEM( 1, B-tI, 24) MEM( 1, A+I, 24) 

where parlist is a pointer to the parameter list (A, B,C,N); INDEX is an 

IFL program that generates the sequence of pairs (1, N) (2, N-l) . a D (N, 1); 

and ARRAY is a data-descriptor macro that retrieves (stores) the ith word 

of an array. It is assumed the data elements of the array are 24 bits in 
width. This control structure, once expanded, need not be reconstructed 

for further procedure calls, only the value of parameters A, B, C, and N 

need be recomputed on each execution. 

The control information c is used to define how the macro calling sequence will 

be activated; namely, if qi is itself an iteration macro, whether it will be activated 

either for a single cycle and then suspended, or whether it will be activated for 

the entire list of macro caIling sequences and then terminated. Thus, the time 
grain (smallest unit of work which can be controlled) of a control structure that 

is constructed out of a series of successive functional decomposition of a sequen- 

tial process can be set at any desired level in the decomposition. 

Example 6A 

Consider the iteration macro, AIT(p,k) , which when executed generates 

and executes the following list of macro calling sequences BIT(p,, “I), , a ., 

BIT(pn, kn) e Likewise, consider BrT(pi, ki) which when executed generates 

- 28 - 



and executes the following list of macro calling sequences CD(&,l$), 0 0 D, 

CD(im, Em). If the iteration macro A IT is executed for a single cycle, 

and the c parameter associated with SCP node of A is set for a single 

cycle execute, then A IT will be suspended after the completion of each 

data-descriptor macro CD(pi, l$ . Thus, in this above case, the time 

grain of A IT . is the complete execution of macro C D 0 While if the c 

parameter is set for execution until termination, then A IT when executed 

for a single cycle will be suspended after the termination of iteration 

macro BIT(pi, k$ ., Thus, in this latter case, the time grain of A IT is 

the complete execution of B IT . 

Another important property of the iterated macro is that generation of the 

macro calling sequence qi+I(pi+I, i+l k ) may be affected by the results of executing 

the macro calling sequences qI(pI, kI) . . D qi(pi, kg. The execution of a macro 

may produce side effects by modifying the contents of the memory subsystem or 

the control data structure which in turn may effect the execution of the M and V 

programs Q This ability to alter the generation pattern of iteration macro via 

side effects is crucial to defining the sequencing of machine language instructions. 

Example 7 

Consider an iteration macro INSTEXEC?(p, k) which generates the follow- 

ing sequence: INSTDECODEs(p,, kI) , 0 o m INSTDECODEs(pi, k$, a e 0 where 

pi is interpreted as the address of an instruction of an emulated computer, 

and ki is the state vector of the emulated computer. The selection macro 

INSTDECODES in turn generates an instructor macro INSTFORMAT:(pi, ki) , 

where J refers to the format of the instruction stored at pi0 INSTFORMAT: 

when executed carries out the semantics of the instruction at location pi. 

Therefore, the iterated macro can be thought of as the sequencing unit of 

a computer, the selection macro as the decode unit, and the instruction 

macro as the arithmetic and logic unit. This control structure in this ex- 

ample can be very easily extended to include an interrupt structure. Al1 

that is required is to set up a clocking process that activates INSTEXEC 
IT 

for one cycle at a time, and then checks whether an interrupt requires 

processing. In this case, the time grain is set as the execution of a single 

emulated instruction. 
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