
SLAC-127
UC-32
W=C)

DIRECT EMULATION OF CONTROL STRUCTURES

BY A PARALLEL MICRO-COMPUTER

VICTOR R. LESSER*

STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY

Stanford, California 94305

PREPARED FOR THE U. S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3)-515

October 1970

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.
Price: Full size copy $3.00; microfiche copy $.65.

*
The research was carried on while the author was a NSF graduate fellow and
partially supported under NSF2-FCZ-708-94140, AT(043)326, P.A.23.

ABSTRACT

This paper is a preliminary investigation of the organization of a parallel

micro-computer designed to emulate a wide variety of sequential and parallel

computers. This micro-computer allows tailoring of the control structure of

an emulator so that it directly emulates (mirrors) the control structure of the

computer to be emulated. An emulated control structure is implemented through

a tree type data structure which is dynamically generated and manipulated by

six primitive (built-in) operators D This data structure for control is used as a

syntactic framework within which particular implementations of control concepts,

such as iteration, recursion, co-routines, parallelism, interrupts, etc., can be

easily expressed. The major features of the control data structure and the

primitive operators are: 1) once the fixed control and data linkages among

processes have been defined, they need not be rebuilt on subsequent executions

of the control structure; 2) micro-programs may be written so that they execute

independently of the number of physical processors present and still take advan-

tage of available processors; 3) control structures for I/O processes, data-

accessing processes, and computational processes are expressed in a single
uniform framework. This method of emulating control structures is in sharp

contrast with the usual method of micro-programming control structures which

handles control instructions in the same manner as other types of instructions,

e.g., subroutines of micro-instructions, and provides a unifying method for the

efficient emulation of a wide variety of sequential and parallel computers.

. . .
- 111 -

ACKNOWLEDCEMENI’S

I wish to express my sincere thanks to Professor Wdliam Miller whose

constant support and encouragement of my research efforts have made possible

the successful completion of this paper. I would also like to thank Professor
Ed Davidson for his detailed reading.and criticisms of this paper, and Dr. Harry

Saal and Professor William McKeeman for their encouragement of my research

efforts and the many fruitful discussions I had with each. Thanks especially to

my friends and fellow graduate students Lee Erman and Bill Riddle who have had

to suffer through an uncountable number of rewrites and discussion of’this.paper.

- iv -

TABLE OF CONTENTS

Page

I. INTRODUCTION.

A. Traditional Micro-Computer Architecture

B. Variable Control Structure as the Basis of a

Micro-Computer Architecture

II. MICRO-COMPUTER ARCHITECTURE.

III. MICRO-PROCESSOR SUBSYSTEM.

IV. STRUCTURE BUILDING LANGUAGE (SBL).

A. Control Data Structure

B. Use of the Six SBL Macro Types

C. Format of SBL Macro Calling Sequence

D. Subsystem Command Macros

E. Structure Building Macros

1. Sequential Control Structures

2. Nonsequential Control Structures

3. Tree Structured Addressing.

4. Synchronization, and Control and Data Linkage
Among Processes

V. INTEGER FUNCTION LANGUAGE (IFL)

A. Format and Sequencing of IFL Instructions

B. Built-In Arithmetic Operations

C. Side Effects in IFL.

D. Pseudo-Functional Units

VI. FORMAT OF SBL MACROS

A. Data-Descriptor Macro

B. Selection Macro

C. Iteration Macro

D. Instruction and Hierarchical Macros.

E. Control Macro.

VH. SUMMARY COMMENT AND FUTURE RESEARCH.

REFERENCES.

1

2

4

6

8
13
14

16

17
20

25

25

30
34

35

42
43

48

50
51
53
54
55

56
57

59

61

63

-v-

LIST OF FIGURES

Page

1. Conceptual structure of an emulator. 2

2. Micro-Computer subsystems (modules) 5
3. Micro-Processor subsystem’s organization . . D m . 12
4. The control data structure for an emulator of a von Neumann

computer organization with interrupt 32
5. Fork-join instruction 0 33

- vi -

I. INTRODUCTION

In the past few years, both the size and diversity of the class of problems

being submitted to computers for solution has significantly increased. The

programming of many of these new problems on a computer with a von Neumann

organization can be very complex and, additionally, can result in programs which

execute inefficiently. A significant part of these difficulties can be attributed to

the “degree of complexity” of the transformation from the representational

framework within which the programmer develops an algorithm (e.g., ALGOL,

LISP, Graph Model, etc.) to the representational framework of a von Neumann

computer within which the algorithm is executed. The complexity of transfor-

mation between these two levels of representation thus makes it difficult to con-

struct an automatic mapping between levels which is both quick and efficient.

The perception of this problem has led to the development of computers whose

organizations are optimized for either a particular subset of or a higher level

language for the problem class 0 Examples of such machine languages should

include those of the B5500 ’ for ALGOL, ILLIAC IV 2 for processing of array

structured data, Abram’s APL machine, 3 Melbourne and Pugmire’s FORTRAN4

machine, etc D Since these represent a broader class of languages than what is

usually meant by machine language, we will refer to them as intermediate

machine languages (IML’s) s This tailoring of IML to a specific h)igher level language

is accomplished by incorporating primitive operators in the IML which directly mirror

operations in the higher level language (e. g D , recursion in ALGOL is directly mirrored

through stack operations in B5500) D Thus, bythetailoringof amachine’sorganization

more closely to a particular user representational framework, the mapping be-

tween levels is simpler and results in more efficient program execution.20

In parallel with the development of problem oriented computers, there has

been an effort toward providing a systematic and flexible approach to the hard-

ware design of a specific computer a This effort has led to the development of

micro-computers, e.g., 360/40, 5 . with read-only control memories programmed

to emulate a specific von Neumann type computer.

Recently, there has been an attempt to integrate both of these new directions

in computer architecture (machine organizations designed for specific applica-
tions and micro-computers) by attaching to the micro-computer writeable

control memories D Thus, it is intended that through the ability to modify

dynamically the control memory of a micro-computer, a wide range of machine

languages of different computer organizations (IML) can be efficiently emulated

on a single micro-computer. However, it is the author’s contention that this

goal cannot be realized by existing micro-computers.

-l-

A. Traditional Micro-Computer Architecture

Existing micro-computer architectures are still oriented toward the design

of von Neumann type computers rather than a systematic approach to the emu-

lation of a wide variety of different sequential and parallel intermediary machine

languages.

The program structure of an IML emulator, in a conceptual sense, is seen

in Fig. 1.

FIG. l--Conceptual structure of an emulator.

The “control process”, which represents the control structure* of the com-

puter to be emulated, activates the “decoding process” with data that identifies

the next instruction(s) of the emulated computer to be executed; the “decoding

process ” analyzes the instruction(s) to be executed so as to determine the

semantic routine(s), together with its (their) appropriate calling sequence(s),

whose activation will perform the semantics of the emulated instruction(s).

After the appropriate semantic routine(s) has (have) been executed, the flow of

control returns to the control process which, based on the results of executing

the decoding process and the semantic routine(s), selects the next instruction(s)

to be emulated.

*
The control structure of a computer consists of the set of rules used to define
the sequencing of the instructions of the computer.

-2-

The organizations of existing micro-computers when applied to the emulation

of unanticipated IML’s do not reflect this conceptualization of the structure of

an emulator, but rather provide a simple, uniform framework for the coding of

an emulator. In these machines, the semantics of micro-instructions are gen-

erally realized by a short parallel sequence of register transfers, and the control

for sequencing among micro-instructions is sequential and based on simple con-

ditional transfer commands. There are no features in the language that distin-

guish the coding of the control process from that of the decoding process or the

semantic routines, nor the relationship, for instance, between the control process

and the decoding process. An emulator expressed in this type of micro-computer

langusge ‘la a q implements machine instructions as a subroutine of micro-

instructions”. 6 Thus, due to the simplicity of micro-computer languages and

their paucity of control commands, the structure of the emulated computer is

not directly observable in the structure of its emulator. The key to efficient

emulation is just this missing ability to directly mirror the control structure,

instruction formats, and primitive data-accessing operations of an IML in the
corresponding control structure, instruction formats and primitive data-accessing

operations of its emulator. In particular, a control action by an instruction in

the IML program being emulated should be directly mirrored in a modification

of the control structure of the emulator.

Thus, the current approach to the design of a micro-computer which stresses

simplicity is not unreasonable if the micro-computer is going to emulate computers

and IML’s that have a simple sequential control and simple instructions. But,

IML’s that are tailored for a particular subset of a higher level language for a

problem class are, in a sense by their very purpose, not simple since the com-

plexity of the higher level language is imbedded in the semantics of the IML’s

instructions and control structure. If the current trend in higher level languages

is maintained, these problem or procedure oriented IML’s will have increasingly
more sophisticated control structures employing such control concepts as

recursion, co-routines, parallelism, etc., and, likewise, their instructions

will directly operate on increasingly more complex data structures, e.g., lists,
trees, arrays, etc. Therefore, the current structure of existing micro-computers

is inadequate for the task of effectively emulating the wide range of such inter-

mediary languages, just as a von Neumann computer in comparison with the

B5500 does not efficiently execute ALGOL.

-3-

B. Variable Control Structure as the Basis of a Micro-Computer Architecture

The micro-computer architectural design to be presented in this paper is

based on the idea that the program structure of an emulator written in this

micro-computer should reflect the structure of an IML that is being emulated.

It is felt that the key to accomplishing this mirroring process between IML and

its emulator lies in the control structure of the micro-processor. Thus, the

main emphasis in the design to be presented here is to incorporate a very general

control structure in the micro-processor,

The approach conventionally used to design a micro-processor with a

powerful control structure is first to develop a basic machine language having

a well-defined set of instructions and a simple sequential control structure, and

then add instructions and facilities (such as subroutine call instruction, a stack

for parameter passage, a fork-join instruction, etc.) for structuring complex

sequential and parallel processes. This is not the approach taken here. Instead,

the approach is to develop a micro-language specifically designed for the task of

dynamically constructing control structures a This control structure definition

language, called the Structure Building Language (SBL) , is used to dynamically

define a wide range of particularized control structures through the generation

of a data structure for control. The control data structure acts as a syntactic

framework within which dynamic and static control and data environment inter-

relationships among processes can be expressed. The control structure of this

micro-computer can then be dynamically tailored (through the SBL) into a form

which is most suitable for the emulation of a particular LML. An emulator

programmed in this micro-computer, as will be seen later, works in a fashion

similar to the process of dynamic compilation or run-time macro expansion.

This method of emulation differs radically from the conventional form of emulation
consisting of a sequence of calls to sub-routines of micro-instructions.

The variable nature of the control structure of this micro-computer dis-

tinguishes its architecture (from the viewpoint of form and complexity) from

existing micro-computer architecture e It is felt that a variable control structure

micro-computer provides a unifying approach to the emulation of an extremely

wide variety of computer organizations and IML’s. The goals of this micro-

computer design are to be able to:

1. Emulate efficiently a wide class of both sequential and parallel

IML’s (e.g., array processors, pipeline, stack machines,

LISP machines, computational graph models, etc.) D

-4-

2. Program an emulation in a simple and uniform manner, such

that the dynamic program structure of an emulator reflects

the architecture of the computer it emulates.

3. Incorporate easily and efficiently a changing array of hardware

arithmetic units (e.g. , square root, inner product, etc.) I/O

devices and memory units (e.g., associative memory, bit

slice memory, etc .) o

Micro-Computer

Micro-Processor

I f n

I III II

FIG. 2--Micro-Computer subsystems (modules).

-5-

II. MICRO-COMPUTER ARCHITECTURE

The micro-computer architecture, as pictured in Fig. 2, can be character-

ized in terms of three basic hardware subsystems. The first subsystem is

composed of an arbitrary set of functional units. Each of these units can be

independently activated and can have an arbitrary number of inputs and outputs,

where that number need not be fixed but may be data dependent. A functional
unit could be a floating point multiplier or, more generally, an arbitrary input/

output device. This more general usage of a functional unit is a natural conse-

quence of imposing restrictions neither on the size (or form) of the input and

output data sets of a unit nor on the sequencing between units.

The second subsystem is a memory. This memory is bit-addressable and
can be activated either to store or retrieve an arbitrary length string of bits.

This memory holds the program that is going to be emulated, and additionally,

serves as a storage buffer for communication between the functional unit sub-

system and the micro-processor subsystem. Other types of memory organiza-
tions, such as word-oriented, bit-slice, associative, etc., can also be included

in the system’s architecture by making them function units.

The third subsystem, which is the major innovation in this micro-computer
architecture, is a micro-processor that controls the dynamic interactions

between the other two subsystems and among functional units. The programmable
nature of the control unit of the micro-processor subsystem allows the tailoring

of both the hardware and software of this architecture to various problems. The
hardware tailoring involves the addition of specialized functional units which

carry out operations commonly used in the problem class (e.g., floating-point

multiplier bit-slice memory, etc.) to the functional unit subsystem or addition
of more parallelism in the micro-processor subsystem. The variable nature of
the control unit of the micro-processor subsystem, as will be discussed later,

allows these hardware modifications to be incorporated without modification to

the language of the micro-processor.
In order to emulate a computer using this system, the program which is

to be run on the emulated computer is stored bit-wise in the memory subsystem

in the same order as it would be stored in the emulated computer% memory.

The micro-processor must then perform the following tasks: (1) fetch from the

memory subsystem the instruction(s) of the emulated computer which is (are) to

-6-

be executed in the next step; (2) analyze this (these) instruction(s) in order to

generate the appropriate sequence of functional unit activations which will perform

the computations specified by the instruction(s). In addition, the sequence of

functional unit activations must be coupled with accesses and stores to the

memory subsystem so as to provide the input and output data set for each unit.

This sequence of functional activations may result in concurrent operation of

functional units or a pipelining of functional units.

The major focus of the rest of the paper will be on the organization of the

control unit of micro-processor subsystem, especially the syntax and semantics

of the SBL.

-7-

III. MICRO-PROCESSOR SUBSYSTEM

The main orientation in the design of this micro-computer, as stated in the

introduction, is to incorporate a variable control structure definitional facility

into the hardware of its processor. This design emphasis has led to a micro-

processor that contains two basic classes of instructions. One class of micro-

instructions, called the Structure Building Language (SBL), is used to construct

dynamically the control structure of an emulator while the other class, called
the Imerger Function Language (IFL), is used to compute address arithmetic

functions e

The SBL dynamically defines an emulator’s control structure through the

generation of a data structure for control. The basis of the syntax and semantics

of the SBL is a fixed set of definitional templates that define particular types

(forms) of control structures. An SBL statement (macro) specifies one of the

fixed set of templates together with a set of IFL address arithmetic functions.
Each definitional template represents a parameterized model of a basic control

concept, e-g,, iteration, selection, hierarchy, synchronization, etc. The

specification of particular values for the parameters of the template defines a

particular instance of a basic control concept. These values are computed by

the IFL address arithmetic functions specified in the SBL macro. A call to an

IFL program results in the generation of either an integer value or a sequence of

interger values that are then used in the expansion or execution of a macro. The

expansion of a definitional template results in the generation of a structure which

contains all the state information necessary to model the execution of this par-

ticular instance of the control concept. More complex control structures are

constructed through the expansion of a sequence of these definition templates.

The binding of parameters to the SBL macro is under the explicit control of other

SBL statements D Similarly, the expansion of SBL macros and later execution is

explicitly programmable in the SBL. This ability of the SBL to define dynamically

the sequencing of other SBL statements is the key to the control structure defi-
nitional facility of the micro-processor.

The SBL consists of six types of macro bodies (definitional templates): data-

descriptor (D), instruction (I), selection (S), iteration (IT), hierarchical (H), and

control (C) D The first two types of macro bodies are called subsystem command

macros while the remaining four are called structure building macros. The

subsystem command macros specify the interaction between the functional unit

-8-

subsystem and the memory subsystem. Only these two macros actually produce

computational results through the action of functional units. More complex

computational processes are constructed through the execution of a sequence of

structure building macros that use as their basic building block calling sequences

to subsystem command macros. When the basic building blocks are just data-

descriptor macro calling sequences, then the structure building macros defines

a data-accessing procedure.

The programming of an emulation on this micro-computer is done by creating

a dynamic mapping between the control structure and instructions of the emulated
computer and a set of structure building macros and subsystem command macros.

This dynamic mapping is represented in the address arithmetic algorithms that

are used to expand the definitional templates. Thus, an emulator programmed

in this micro-computer works as an iterative two-step process (iQ e., it generates
an instance and then executes the instance) similar to the process of dynamic

compilation or run-time macro expansion. This two-step approach to emulation

differs from the conventional one-step approach to emulation (i.e., calling sub-

routines of micro-instructions) done on existing micro-processors, and directly

reflects the conceptualization of an emulator pictured in Fig. 1. The binding of

a parameter list to a SBL macro is the analog of the control process of the

emulator; the expansion of a SBL macro is the analog of the decoding process of
the emulator, and the execution of SBL macros is the analog of the semantic
routines of the emulator.

Example 1
Consider the emulation of an instruction, FAD I 20, stored at location 10

in the emulated computer where FAD specifies a floating add operation,

I specifies indirect addressing, and the accumulator is the second and

result operand. The sequence of steps involved in emulation of this in-
struction on this micro-processor is the following: (1) An SBL instruction

generates and then stores as a node in the control data structure a binding

between a pointer to the current value of the program counter of the

emulated computer: 10, and a subsystem command macro A.. (2) The

ma&o A with a parameter whose value is 10 is then expanded. This

expansion results in the generation of a subsystem command in the control

data structure 0 The expansion of a subsystem command macro is based on

-9-

a template having the following format: “functional unit”, “address of

input l”, “*address of input 2”, “address of output I”. Macro A fills in

the slots of the template by calling with parameter 10 two IFL programs

B and C whose integer value outputs respectively, fill in the Yunctional

unit”, and “address of input operand 1” fields. The other two fields are

always constants specifying the address of the accumulator of the

emulated computer. The IFL program B extracts the op-code field of

the instruction at location 10, and then based on this value, determines

the functional unit in the functional unit subsystem that carries out the

operation specified by the op-code. The IFL program C does the address

arithmetic, in this case indirect addressing, required to locate the
address of the operand specified by the instruction at location 10.

(3) The instance of a subsystem command generated by step 2 is then

executed. The execution of this command results in the activation of the

floating point add functional unit with two operands and then the storage

of the result of the floating point operation in the accumulator of emulated

computer. Thus, the subsystem command carries out the semantics of

the emulated instruction FAD I 20. This example indicates the three

phases involved in emulating IML instructions. However, it should be
pointed out that for the emulation of additional IML instructions with the

same basic format (e.g., op-code, indirect bit, address) the binding and

expansion phases can be eliminated. Thus the overhead involved in the

binding and expansion phases need be incurred only once for each different

instruction format of the emulated computer 0 The control data structure

for an idealized von Neumann computer is pictured in Fig. 4 on page 32,

and will be used in the next section as a basis for discussing the six SBL

macro types.

The basic hardware organization of this micro-processor subsystem at the

functional level is pictured in Fig. 3. The micro-processor subsystem contains
an arbitrary number of identical micro-processors. The execution of the micro-

processors are controlled through data stored in the program and process-space

memories I These two memories differentiate the static and active parts of the

control structure of the micro-processor subsystem. The “program memory”

holds SBL and IFL statements and is not normally modified during an emulation;

- lo-

the program memory is similar to the control memory of a conventional micro-

processor. The “process space” memory holds the control data structure con-

structed by the SBL and is constantly being modified during an emulation. The

contents of the process space memory is in essence the state of the emulator

which is currently being executed by the micro-processor subsystem.

The micro-processor subsystem can carry on parallel activity since the

number of micro-processors contained in the micro-processor subsystem is

arbitrary and these processors can be executed concurrently. The process space

memory holds the definition of the control structure which coordinates, in a

virtual sense, the activity among micro-processors. In the case that there are

not enough micro-processors to carry out the parallel activity specified by the

control structure in the process space memory, then the available micro-processors

are scheduled on a first come-first serve basis. This transformation from virtual

processor activity to actual processor activity may lead to indeterminate results

depending upon the number of micro-processors available. However, as will be

described in Section IV.E.4 the SBL contains control primitives that allow the

programmer to construct the appropriate synchronization rules (Dykstra’s sema-

phore, Saltzer’s wakeup-waiting switch, lock-step execution, etc.) which preserve

the inherent parallelisms among processes, while at the same time guarantee the

scheduling of virtual parallel activity will always result in determinate computation

independent of the number of actual mirco-processors.

- 11 -

Micro-Computer Hardware Organization

FUNCTIONAL UIWI
SUBSYSTEM

Micro-Processor
Subsystem

. . . .

(+ data bus)
(-- + control bus)

FIG. 3--Micro-Processor subsystem’s organization.

- 12 -

IV. STRUCTURE BUILDING LANGUAGE (SBL)

The SBL is used to define control structures for I/O processes, data-

accessing processes, and computational processes. The SBL defines each of

these types of control structures in a single uniform framework. This use of a

single framework for data-accessing and computational processes came from

the following observation: if a set of instructions are considered to form a data

structure, then the control structure associated with the sequencing of these

instructions can be considered as a data-accessing procedure where the data

being retrieved are instructions. For example, consider the following repre-

sentation of a typical list structure:

al a2

p1 p2

.+Jyq
pn

where pi is the address of the ith word in the list, ai is the data-item stored at

the ith word, and linki is data stored at the ith word used in computing pi+I. A

data-accessing procedure to extract al, 0 0 0 an from this typical list structure

would generate the sequence PI, D 0 *, p, from the link information linkI, m 0 .ltin-I.

After the generation of each pi (i=l,n) the corresponding ai can then be extracted.

Similarily, consider al0 0 D an as machine instructions. They can be sequenced

by a program counter p which takes on a succession of values PI, #. “pnO After

the generation of each pi, the instruction ai located at pi is executed, and then

based on pi and ai, pi+I is calculated, The only difference between instruction
sequencing and data-accessing of a list’structure is that in instruction sequencing

the link information, linki, is always encoded in the instruction, ai (an instruction

includes an implicit or explicit link) D Thus, the general paradigms developed to

sequence through arbitrary list structure can also be used to define conventional

sequential control structures 0

The IFL is specifically designed to efficiently sequence through an arbitrary

formatted list structure, and generate either the address of the final list element

p, or the addresses of the intermediate list elements PI, ., D .p,-I. In the latter

case, the SBL uses the addresses of these intermediate list elements to generate

- 13 -

a series of macro calling sequences (the binding of a parameter pi to a macro

body) 0 The execution of the macro with parameter pi then results in the carrying

out of the semantics associated with ai, where ai can be a data-item, an emulated

instruction, or the name of a process. These semantics involve, respectively,

the retrieval of the data-element from the memory subsystem, the execution of

a functional unit with appropriate input and output sets, or the generation and

execution of further macro calling sequences Q The first two cases are handled

by subsystem command macros while the latter case by structure building

macros D Thus, depending on the types of the macros bound to the sequence of

parameter pl” s Opn,l, a data-accessing process, an I/O process, or a compu-

tational process can be defined.

A. Control Data Structure
The SBL defines a control structure through the dynamic generation of a

tree type data structure in the process space memory whose nonterminal nodes

contain calling sequences to either a subsystem command macro or a structure

building macro. The process space memory also holds all temporary information

structures, which will be considered as terminal nodes of control data structure,

needed in the expansion and the execution of a macro. The data structure for

control is in the form of a tree due to the ease of specifying such control concepts

as hierarchical structure (functional decomposition), parallelism, co-routines,
and recursion. The representation of hierarchical structure and recursion is

possible because additional levels (sibling groups) may be dynamically built in

the tree through the expansion of nonterminal nodes (macro calling sequences).

The representation of parallel and co-routine control structures is possible

because brother nodes in the tree may be treated as distinct independent processes

each with its own state information. A tree data structure is also a convenient

syntax framework (father, brother, etc. , relationship between nodes) for defining

distributed control systems 0 Namely, the control structure of a complex system

can sometimes be conveniently represented through hierarchical structure where

in each sibling set (structural level) of the tree there is embedded a simple

control process (clocking process)’ that initially sequences its brother nodes.
If additional clocking processes are contained in the sibling set, control may pass

to these processes after initialization. Thus, instead of one complex control

process for the entire system, the control can be distributed throughout the

- 14 -

system. In addition, if these simple control processes can be coded so their

addressing structure is not based on their absolute locations in the tree, but

only on their relative position in terms of father and brother addressing in the

tree, then relative addressing allows copies of a single process to be used at

different levels in the tree. The simultaneous execution of many calling sequences

to the same macro body is permitted because information local to each macro

expansion and its subsequent execution is stored with the activating calling

sequence,
Another important feature of the SBL is the separation that ,is made between

the generation of a macro calling sequence (e.g., the binding of parameters to

the macro body) from the expansion and execution of that calling sequence. The

rules for the dynamic sequencing of the nodes of the control data structure can,

therefore, be different from the rules for building of the control data structure.
The only built-in sequencing associated with the tree is that a father node must

be expanded before any of its son’s. The form of control data structure is thus

just a convenient syntax framework within which sequencing rules can be

expressed. This allows control structures which cannot be conveniently repre-

sented in a tree structure (e.g., fork-join control as will be seen in example 9,

computational graphs, etc.) to still be programmed in the SBL since the tree is

the form for generation of the control data structure but not necessarily the form

for the passage of control during execution. The SBL also separates the expan-

sion of a macro calling sequence (which results in the generation of a control

structure that defines a process) from the subsequent execution of the expanded
macro (which results in the execution of the process). Through this separation,

the SBL can control the relative rate of execution of the control structure defined

by the expanded macro, e.g., executing a macro that defines an iteration control

structure for only one cycle (loop) and then suspending the execution of the macro.
A tree node (macro calling sequence) has seven states of activity: (1) it is

unexpanded; (2) it is being expanded; (3) it is expanded; (4) it is being executed;

(5) it is being suspended*; (6) it is suspended; and (7) it is terminated. By con-

trolling the activity rate of a node, namely the rules (conditions) for transition

between the seven node states, the SBL can produce an arbitrary “time grain”.
The time grain of a process refers to the smallest unit of a process activity that

can be controlled. Time grain, as will be seen later, can be employed to repre-

sent concisely such control concepts as co-routines, interrupts, monitoring,

lock-step execution, etc O

*
The fifth state indicates the node is currently executing but will be suspended
at the end of its current time gram.

- 15 -

The ability to separate the expansion of a macro calling sequence from its

execution also avoids the unnecessary rebuilding of the control data structure

when the form of the control data structure (e.g., the number of son nodes at a

particular level in the tree) does not vary from execution to execution, The

SBL is defined so that only the dynamic parts of the control structure are rebuilt;

the static parts of the control structures once defined are not regenerated.
Additionally, the parameters used to execute and to rebuild parts of the control

structure can be different from those used to initially generate the control

structure.

B. Use of the Six SBL Macro Types

In a recent report by D, Fisher, 10 the contro1 concepts underlying all con-

trol structures were specified as the following: “(1) there must be means to

specify a necessary chronological ordering among processes and (2) a means to

specify that processes can be processed ConcurrentIy. There must be (3) a
conditional for selecting alternatives, (4) a means to monitor (ia e., nonbusy

waiting) for given conditions, (5) a means for making a process indivisible

relative to other processes, and (6) a means for making the execution of a process

continuous relative to other process -. O A process A will be called continuous

relative to another process B if and only if communication is established between

A and B in such a way that state changes in B are temporarily delayed while the

entire action of A is carried to completion. ”

These underlying control concepts are implemented in terms of the structure

building macros in the following ways, respectively: (1) Sequential control is

implemented through the iteration macro D The iteration macro generates a list

of macro calling sequences where each calling sequence is executed to completion

before the next calling sequence in the list is generated. (2) Parallel control is

implemented by the hierarchical macro. The’hierarchical macro generates a

list of macro calling sequences as its son nodes in the control data structure plus
specifying a clocking process that controls the initial sequencing of the son nodes.

The clocking process, in turn, executes control macros that control the execution

of son nodes. These control macros can activate a node without the control

macro’s completion being delayed until the completion of the activated node, and

therefore, the clocking process does not have to wait for the completion of a node

before it activates other nodes. Thus, a clocking process can activate two or

- 16 -

more son nodes so that they are concurrently executing. (3) Conditional

sequencing is implemented by either a selection macro or a hierarchical macro

in which case the son nodes are possible alternatives and the clocking process

selects the alternative. (4) Monitoring and continuous sequencing is implemented

through the idea of time grain. The control structure of a process that is being

monitored for a specified condition can be constructed so that the process is

activated so as to suspend itself after it has performed the smallest unit of work

which can effect the condition being monitored. Thus, before reactivating the

suspended process the condition being monitored can be checked, and if necessary,

an appropriate interrupt process activated. The concept of time grain is realized

through the use of a clocking process for a group of son nodes together with the

ability to execute via a control macro an iteration macro for only one cycle

(calling sequence) per execution. (5) Indivisibility of processes is realized by not

allowing a control macro to execute a node which is currently executing or being

expanded 0
The subsystem commands macros in conjunction with structure building

macro are used to define an I/O control structure which, for example, can

duplicate the effect of an I/O channel on a conventional computer. An I/O control

structure defined by a subsystem command macro can be considered a macro-
instruction when the functional unit being controlled in an arithmetic device.

This use of a subsystem command was exemplified by example 1. The idea of

a generalized I/O control structure to control arithmetic units has been proposed

in a previous paper by the author, 7 and also has been proposed by Lass* as basis
of the design of a high speed computer.

c, Format of SBL Macro Calling Sequence

An SBL macro calling sequence has a fixed format, and consists of an address,

q, and two integer parameters, p and kb The address, q, specifies the location

of a macro body in the program memory. The integer values defined by p and k

are the external parameters used in the expansion of the macro body, These

external parameters are stored in the control data structure as integer values,
pointers to p or k parameters in other macro calling sequences stored in the

control data structure, or pointers to fields in the memory subsystem. In the

latter case, the pointer has two components, the first component is the beginning

bit address of the field while the second component is the length of the field.

- 17 -

This field in the memory subsystem is interpreted as an integer value where

the length of the field is smaller than the length of fixed size integer data that

the IFL operates on.

This option of storing pointers instead of values for the external parameters

p and k greatly increases the ability to program emulators that directly mirror

the control actions of the emulated computer. The first type of pointer allows the

representation of the static data relationships between p and k parameters

in the control data structure. in particular, the first type of pointer

facilitates the representation of broadcast type control structures, and allows

modifications at one level in the control data structure to be reflected in changes

at other levels in the tree which are not normally accessible from the first level,

The second type of pointer aIlows the state of emulator to be directly mapped on

to the state of the emulated computer. This mapping is accomplished by storing

part of the state of emulator in the memory subsystem instead of entirely in the

process space memory. Thus, SBL operations on p and k parameters can be

directly reflected back into changes in the contents of the memory subsystem.

In particular, this second type of pointer capability is very valuable in the pro-

gramming of an emulator for a computer whose state vector is not separated

from its memory (e.g., the PDP-11 (16) computer whose program counter is

stored as register 7 in its memory) since the state of emulator (e.g., the address

of current instruction being processed, etc.) and the state of the emulated com-

puter (e.g., its program counter, etc *) can be made equivalent. Thus, the
emulator does not have to process in a special way instructions of the emulated

computer that modify memory registers which contain parts of the state vector

of the emulated computer O Further, the second type of pointer capability allows

the state vector of an emulated computer to be stored in a single field in the

memory subsystem and references to it to be distributed throughout the control
data structure. Thus, by modifying a single field in the memory subsystem,

the control data structure can be modified to reflect a new state vector for the

emulated computer.

The expansion of a SBL macro q, based on p and k, generates the form of

a control structure and the internal parameters of the control structure definition

that are not modified (constant) from one execution to another. After the expan-

sion of the macro q, the value of the expansion parameters p and k can be changed

by a control macro to i and i;, and used as execution parameters of the process

- 18 -

defined by the expanded macro. The internal parameters, which vary from
execution to execution, are not calculated at macro expansion time, but instead,

are recalculated based on the execution parameters 5 and E, upon each new

execution* of the process defined by the control structure. The programmer
can define which of internal parameters vary by setting appropriate fields in the

macro body. Varying internal parameters are distinguished from constant in-

ternal parameters in the control data structure by storing, respectively, the

name of an IFL program in the parameter field instead of an integer value. Thus,

only dynamic parts of a control structure need be rebuilt on each execution, and

only parameters with varying values need be recalculated.

A macro caI1 contains only two parameters, p and k, because most sequential

control rules can be expressed in terms of the modification of, at most, two

variables at each step of the sequencing, Thus, the two parameters p and k

represent the variables or pointer to the variables which are modified at each

step of the sequence. The semantics usually associated with these two parameters

will be the following: the first parameter, p, represents the address of the data

(e.g., instruction, parameter list, etc.) to be processed at the current step of

the sequence, and the second parameter; k, represents the value of a counter

that determines the termination of the sequencing.

Example 2

Consider the ALGOL statement: “FOR I- 1 step 1 until N DO A(I) .- B(I)

*c(I), ‘IO The sequencing for this statement can be defined in terms of the

following list of pairs: (1, N) (2, N-l) D 0 D (i, N-i+l), D a a (N, 1) a The first

element of the pair defines the value of I. The value of I is then used as a

parameter to a macro that constructs the subsystem commands to carry

out A(I) - B(I) *C(I). The second element of the pair, whose value is the

number of iterations that remain before the current iteration is initiated,

is used to define the termination condition of the FOR loop. The IFL

program that generates this list of pairs, as will be seen later, in example

17, can be stated in just one IFL instruction.

*
It may be advantageous to also have the option of recomputing internal param-
eters when the process goes from the suspended state tc the execute state.

- 19 -

The “address” of a data item is used in this discussion in a very general sense

to mean information sufficient to determine, possibly by a calculation, either

the location of the data-item in the memory subsystem or its explicit value.

The following notation will be employed in the paper for specifying a macro

name, a macro type, and a macro calling sequence. A macro name is specified

in one of three following ways: (1) as a symbolic name which is optionally sub-

scripted, e.g., M, ai, alO etc. ; (2) as an absolute address in the program

memory enclosed in parentheses, e.g., (0), (lo), etc. ; (3) as an addressarith-

metic expression involving symbolic names enclosed in parenthesis, e.g. , (a+lO),

(Mi+i), (MO+Ai -Bi). The type of macro is specified by appending D, I, S, IT, H,

or C, as a superscript to the macro name, e.g., MI, (O)‘, etc. The macro type
is optional and is only added for reading clarification. A macro calling sequence

is defined by a macro name and optionally its type followed by two parameters

which are either symbolic names or integer values enclosed in parentheses, e. g.,

Mi(0,5), (10)D(0,5), (M+51D@,k), etc.

D. Subsystem Command Macros

The data-descriptor macro, when expanded, generates a memory subsystem

command 0 The memory subsystem command, when executed, activates the

memory subsystem to retrieve (or store) a single data-item. This command is

defined in terms of three fields: the first field, f, specifies the format of the

data-item (l’s complement, floating point, etc.), the second field, a, specifies

the address in the memory subsystem of the beginning bit position of the string

of bits which denote the data-item, and the third field, &, specifies the length in

terms of the number of bits of the data-item. The execution of the memory sub-

system command results in the bit string bounded by addresses a and (a+Fl)

being retrieved from the memory subsystem and then sent together with format

field, f, to a functional unit. If f=O, then address a is used as an immediate

operand. The data-descriptor macro neither specifies the particular functional

unit that receives or generates the data-item, nor whether the operation is a

store or fetch. These specifications of functional unit and operation are defined
by the instruction macro that directly or indirectly activates the data-descriptor

macro calling sequence. Thus, the same data-descriptor macro can be used with

many functional units and may be used either for a store or fetch operation. The

use of a format field, f, in the specification of both input and output allows the
functional unit to be very sophisticated in being able to perform, if desired,

arithmetic operations involving operands and results of different types and lengths.
This type of functional unit was proposed for B8502(11) computer.

- 20 -

The data-descriptor macro generates a memory subsystem command by cal-

culating values for the f, a, and I! fields (internal parameters). It determines
the values for each of these fields by specifying in its body either a constant for

the value of the field or the name of an IFL program. In the latter case, the

named IFL program is called with the two parameters in the macro calling

sequence, and the value returned by the IFL program becomes the value of the

field. The IFL program will be executed at the time of either macro expansion

or macro execution depending upon whether the value of the internal parameter

calculated by the IFL program is a constant for all executions of the generated

memory subsystem command.

The IFL program can involve an arbitrarily complex computation and,

additionally, as seen in Fig, 2, can access the memory subsystem for data.

Thus, the generation of a memory subsystem command, especially the calcu-

lation of the address field, a, can be either a simple or complex calculation,

depending upon the nature of the IFL program invoked. The data descriptor

macro calling sequence, when expanded, is represented by the following figure:

*a box will represent a terminal node

Example 3*

Consider a computer with a 24 bit word in floating point format, and with

an instruction format in which bits O-6 are the op code, bit 7 is an indirect

bit, and 8-23 are the address of the next word of the indirect chain. A

data-descriptor macro, OPFT, which generates a memory subsystem

command that retrieves the desired data-item can be specified in the fol-
lowing manner: Let the p parameter of the macro be the virtual address

of an instruction of the emulated computer; the body of OPFT is defined
such that the f field is a constant that specifies the floating point data-

format, the P field is the constant 24, and the address field, a, is

*
Examples 3, 4, 5, 7 and 8 form an integrated sequence that defines the
control data structure of an idealized von Neumann computer pictured in
Fig. 4 on page 32.

- 21 -

calculated by an IFL program, (INDIRECT) which, using the parameter

p, generates the bit address of the last element of the indirect chain.

The expansion of the macro calling sequence OPFT (p, k) is then repre-

sented by the following figure:

L
MEM (floating point, INDIRECT (p,k), 24)

The IFL program INDIRECT is not invoked at macro expansion time but

rather at macro execution time since the address field, a, of the memory

subsystem command will be recalculated for each execution of the macro

OPFT.

The instruction macro, when expanded, generates an I/O control structure

that defines the interaction between a functional unit and the memory subsystem.

The basic form of the I/O control structure generated by the instruction macro

is very similar to the basic form of the control structure generated by the

hierarchical macro; that is, a group of son nodes together with a clocking process.

The basic difference between these two types of control structures is the format

of the clocking process that is used to sequence the son nodes. The hierarchical

macro clocking process is an arbitrary process while the instruction macro

clocking process has a fixed format. The son nodes of an instruction macro

specify the data-accessing procedures which fetch (store) the input (output) data
sets of the functional unit. The built-in clocking process of the instruction macro,

ICP, is activated with four internal parameters: fu, the name of a functional

unit*; &, the number of input set generator nodes (the number of output set
generators are the remaining son nodes); cf, control information sent to the func-

tional unit; s, an address in the memory subsystem where the status of the
functional unit at the termination of its operation is stored. The internal param-

eters fu, cf, and s can, if desired, be recalculated for each execution of the

*
fu can also refer to an IFL program which simulates the action of a functional
St. ‘The use of apseudo-functional unit will be discussed in V. D.

- 22 -

instruction macro 0 However, the parameter, @, can be only calculated at

macro expansion time since it relates to the form of the I/O control structure.

The instruction macro calling sequence, when expanded, is represented by the

following figure:

The clocking process ICP when executed, activates the functional unit fu with

control information,cf, and then waits for a request by the functional unit for input

or output data. When input data is requested, the calling sequence qI(pI, kl) is

activated to generate a single input value. Upon further requests for input

qI(pl, kI) is executed again until it produces no more data (e.g., it is terminated)

and then q2(p2, k2) is activated. The same process is then repeated with q2(p2, k2).

If an output is requested, qin+i(pin+i, kin+I) is activated to store a value. Upon

further requests for output, an analogous process to the input case just described

is carried out. A functional unit can also operate in the mode where it requests

all its input data simultaneously, in which case all the input generators 11’ D *Iii,

are simultaneously activated to generate inputs. At the termination of operation

of the functional unit, the status of the unit is stored starting at address s in the

memory subsystem.

Example 4

Consider the computer detailed in the previous example. An instruction

macro INSTFORMAT’(p, k) which generates a functional unit subsystem

command that emulates instructions of this computer can be defined in the

following manner. Let the p parameter of the instruction macro be the

virtual address of the instruction to be emulated, and assume that the

implicit second operand and result operand of the instruction is the accu-

mulator 0 The body of INSTFORMAT is defined such that the following

- 23 -

control structure is generated.

INSTFORMATI(p, k)

where fu is calculated by an IFL program, defined in the macro body

INSTFORMAT’, that extracts bits PO-P6 from the memory subsystem,

and ACCD(p, k) generates a fixed data-descriptor which represents the

area in the memory subsystem set aside as the accumulator.

The instruction macro can also be used to construct I/O control structures

that represent a pipeline of functional units. The pipelining of functional units

makes unnecessary the use of the memory subsystem as a temporary storage

buffer for data that passes directly from one functional unit to another. An

example of a control structure for a two level pipeline (inp- JfU11-lfuZI- out)

is the following:

2%L 0,
1 ICWu,,L,) 1 (INPU(p,,k,)) (q:(p,&))

The semantics associated with execution of this control structure is the following.

The execution of q1 activates functional unit, fuI, with input generated by INP
D

*

The output of fuI is then stored by qi* But, qi is an instruction macro. In that

case, the output directed to q: is sent as an input value to fu2 after all the input

data generators of qi are exhausted. In this particular example, there are no

input generators so that output of fuI is immediately gated into fu2* Thus,

- 24 -

creating a two-level pipeline. Trees of functional units can also be created by

this same mechanism; except in this case of a tree of functional units, the control

structure is set up so that the instruction macro is requested to produce an input

instead of storing an output. The output generated by the instruction macro is

then outputted when all the output set generators of the functional unit are

exhausted.
The semantics of the data-descriptor macro and the instruction macro have

been chosen so as to clearly divorce the function of data-accessing from the

computational algorithm (functional unit) D This separation then facilitates 1) the
definition of I/O control structures which directly emulate different types of IML

instruction formats and 2) the incorporation of functional units into the functional

unit subsystem that have complex input and output requirements (e.g., a matrix

multiply unit, etc O).

E. Structure Building Macros

1. Sequential Control Structures

The selection macro serves the same purpose in the SBL as does the Case

statement in ALGOL, the Computed Go To statement in FORTRAN, or the data-

dependent jump instruction in machine language. The selection macro provides

a mechanism which allows the conditiona expansion of a node in the control data

structure. In essence, the selection macro defines a one-level decoding tree

which results in the generation of an arbitrary macro calling sequence. The
expansion of a selection macro, q’(p, k), results in the generation of another

macro <(p,k) where the values of q,p, and k are either constants specified in the

macro body or are computed by an IFL program using p and k as parameters.
The selection macro, when expanded, produces the following structure in the

process space memory:

where SEL is a built-in control process with five internal parameters that gener-

ates and then executes the macro calling sequence q&k) as its brother node. The

- 25 -

internal parameter q. is an address in the program memory, and is added to the

integer value, INC, so as to generate the address of macro i. The parameter

q. can be thought of as the base address of a vector of alternative processes

while INC is an index into the vector that determines the desired alternative.

The internal parameter q. relates to the form of the selection control structure,

and thus cannot be computed after each new execution. The internal parameter

c is control information that defines how the macro calling sequence i&E) will

be activated when qs is executed.

Example 5

Consider a computer with several different instruction formats a The

emulation of instructions of this computer could be programmed by

having a separate instruction macro INSTFORMAT;, for each instruc-

tion format J. A selection macro INSTDECODES could then be used to

select the correct instruction macro for each emulated instruction.

The iteration macro serves the same purpose in the SBL as does the

FOR-LOOP in ALGOL, the DO-LOOP in FORTRAN, or the MAPCAR function

in LISP. The iteration macro provides a mechanism for building sequential

processes. An iteration macro, qIT(p, k), defines a sequential process by

generating and executing a list of macro calling sequences:

The iteration macro defines only a sequential process because each macro calling

sequence qi(pi,ki) is completely executed before the generation of the next calling

sequence qi+I(pi+l, ki+I)’ The iteration macro, qIT, when expanded produces

the following structure in the process space memory;

- 26 -

where SCP (Sequential Clocking Process) is a built-in clocking process that

generates and then executes successive elements of the list of macro calling

sequences. The SCP, after the generation of each calling sequence qi(pi, kg,

then executes this calling sequence as its brother node. The iteration macro

may be activated by a control macro so that only a single macro calling

sequence qi(pi,k.J is executed, and then after the termination or suspension of

this calling sequence the iteration macro is suspended. Upon reactivation of the

suspended iteration macro, depending upon whether qi(pi,ki) is terminated or

suspended, respectively, either the next calling sequence qi+I(pi+I,ki+I) will be

generated and then executed or else qi(pi,k.J will be reactivated.

The clocking process SCP is activated with five internal parameters: the

first two parameters, M and V, are the addresses of IFL programs; the third

parameter, c, specifies control information; the remaining parameters po, k.

are used to construct the initial calling sequence in the list. The M program

called with parameters (pi, ki) computes qi+I, the location of a macro. The V

program, also called with parameters (pi, ki), computes (P~+~, ki+I), which are

the corresponding parameters for qi+iO The M and V internal parameters relate

to the form of the iteration control structure and thus cannot be varied from

execution to execution. The clocking process SCP terminates the generation of

calling sequences when kn+I = 0.

Example 6
Consider‘the Algol Procedure:

PROCEDURE FORLOOP (A, B,C,N);

ARRAY A [l:N], B [l:N], C [l:N];

INTEGER I;
FOR I - 1 step 1 until N

DO A [I]- B [I] * C [I];

END

- 27 -

This procedure can be represented in terms of the following control data

structure:

SCP(STAT, INDEX, l,O,n+l)

MEM(l, C+I, 24) MEM(1, B-tI, 24) MEM(1, A+I, 24)

where parlist is a pointer to the parameter list (A, B,C,N); INDEX is an

IFL program that generates the sequence of pairs (1, N) (2, N-l) . a D (N, 1);

and ARRAY is a data-descriptor macro that retrieves (stores) the ith word

of an array. It is assumed the data elements of the array are 24 bits in
width. This control structure, once expanded, need not be reconstructed

for further procedure calls, only the value of parameters A, B, C, and N

need be recomputed on each execution.

The control information c is used to define how the macro calling sequence will

be activated; namely, if qi is itself an iteration macro, whether it will be activated

either for a single cycle and then suspended, or whether it will be activated for

the entire list of macro caIling sequences and then terminated. Thus, the time
grain (smallest unit of work which can be controlled) of a control structure that

is constructed out of a series of successive functional decomposition of a sequen-

tial process can be set at any desired level in the decomposition.

Example 6A

Consider the iteration macro, AIT(p,k) , which when executed generates

and executes the following list of macro calling sequences BIT(p,, “I), , a .,

BIT(pn, kn) e Likewise, consider BrT(pi, ki) which when executed generates

- 28 -

and executes the following list of macro calling sequences CD(&,l$), 0 0 D,

CD(im, Em). If the iteration macro A IT is executed for a single cycle,

and the c parameter associated with SCP node of A is set for a single

cycle execute, then A IT will be suspended after the completion of each

data-descriptor macro CD(pi, l$. Thus, in this above case, the time

grain of A IT . is the complete execution of macro C D 0 While if the c

parameter is set for execution until termination, then A IT when executed

for a single cycle will be suspended after the termination of iteration

macro BIT(pi, k$., Thus, in this latter case, the time grain of A IT is

the complete execution of B IT .

Another important property of the iterated macro is that generation of the

macro calling sequence qi+I(pi+I, i+l k) may be affected by the results of executing

the macro calling sequences qI(pI, kI) . . D qi(pi, kg. The execution of a macro

may produce side effects by modifying the contents of the memory subsystem or

the control data structure which in turn may effect the execution of the M and V

programs Q This ability to alter the generation pattern of iteration macro via

side effects is crucial to defining the sequencing of machine language instructions.

Example 7

Consider an iteration macro INSTEXEC?(p, k) which generates the follow-

ing sequence: INSTDECODEs(p,, kI) , 0 o m INSTDECODEs(pi, k$, a e 0 where

pi is interpreted as the address of an instruction of an emulated computer,

and ki is the state vector of the emulated computer. The selection macro

INSTDECODES in turn generates an instructor macro INSTFORMAT:(pi, ki) ,

where J refers to the format of the instruction stored at pi0 INSTFORMAT:

when executed carries out the semantics of the instruction at location pi.

Therefore, the iterated macro can be thought of as the sequencing unit of

a computer, the selection macro as the decode unit, and the instruction

macro as the arithmetic and logic unit. This control structure in this ex-

ample can be very easily extended to include an interrupt structure. Al1

that is required is to set up a clocking process that activates INSTEXEC
IT

for one cycle at a time, and then checks whether an interrupt requires

processing. In this case, the time grain is set as the execution of a single

emulated instruction.

- 29 -

