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Abstract

The Integrated Processing and Understanding of Signals �IPUS� architecture is
presented as a framework that exploits formal signal processing models to struc
ture the bidirectional interaction between frontend signal processing and signal
understanding processes� This architecture is appropriate for complex environ
ments� which are characterized by variable signal to noise ratios� unpredictable
source behaviors� and the simultaneous occurrence of objects whose signal signa
tures can distort each other� A key aspect of this architecture is that frontend
signal processing is dynamically modi�able in response to scenario changes and to
the need to re�analyze ambiguous or distorted data� The architecture tightly inte
grates the search for the appropriate frontend signal processing con�guration with
the search for plausible interpretations� In our opinion� this dual search� informed
by formal signal processing theory� is a necessary component of perceptual systems
that must interact with complex environments� To explain this architecture in de
tail� we discuss examples of its use in an implemented system for acoustic signal
interpretation�



� Introduction

Since the middle �	���s� a major focus in perceptual architecture design has been
the identi�cation and organization of knowledge to permit recovery from uncer
tainty introduced by frontend numeric signal processing algorithms �SPAs�� One
can categorize research e�orts in this area along �ve dimensions according to where
they emphasize the placement of this knowledge�

�� within highlevel interpretation knowledge sources �HLKSs� �e�g�� as im
proved or approximate models of environmental phenomena ���� ��� ��� 

���

�� within numericlevel KSs �SPAs� �e�g�� as control parameter optimization
processes or feedback loops ��� ��� 
����

�� in the control of HLKSs� application �e�g�� in planning architectures for con
trolling KS activation and sophisticated evidential representations ��� ��� ���
��� �	���


� in the control of SPAs� application �e�g�� as di�erential diagnosis rules for
SPA application to disambiguate objects in the environment ��
� ��� �	� or
as compiled �SPA trees� learned for particular objects ��	��� and

�� in the control of the interaction between HLKSs and SPAs ��� �� �� �
� ���
�	� ����

Over the past two decades� research e�orts along each of the �rst four dimen
sions has been quite fruitful� yielding signi�cant architectural paradigms� However�
we believe that some of the assumptions made in these e�orts have resulted in a
paradigm not well suited to the perception of complex environments� Such envi
ronments are characterized by variable signaltonoise ratios� unpredictable source
behavior� and the simultaneous occurrence of objects whose signal signatures can
mask or otherwise distort each other�
Consider the architectural paradigm in Figure �� which has usually been as

sumed by research e�orts lying along the �rst four dimensions� It assumes that
�xed signal processing in the frontend can provide adequate �not necessarily op
timal� evidence for reliable interpretations regardless of the range of possible sce
narios in the environment� In our opinion� this assumption is plausible for archi
tectures that monitor stable environments� but not for those that monitor complex
environments� In these environments� the choice of frontend SPAs is crucial to
the generation of adequate evidence for interpretation processes� Parameter val
ues inappropriate to the current scenario can render a perceptual system unable
to interpret entire classes of environmental events correctly� Frontend SPA sets
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Figure �� Classic Knowledge�Based Signal Processing Architecture� This paradigm im�
poses a unidirectional control �ow that limits interpretation processes� analysis to only the
single set of observations a�orded by the �xed signal processing� Interpretation processes
do not usually provide structured feedback to the front�end about either the adequacy of
the signal processing outputs to be interpreted or any anticipated signal behavior�

for complex environments must be dynamically modi�able to respond to scenario
changes and to reprocess ambiguous or distorted data� �Dynamically modi�able�
refers both to the ability to change SPA control parameter values and to the ability
to select entirely new sets of frontend SPAs�
Figure � illustrates the utility of dynamically modi�able SPAs to interpret a

complex acoustic environment� Figure �a shows the frequency tracks of four sound
sources as they would appear if they were processed with ShortTime Fourier
Transform ���� �STFT� SPAs appropriate for each portion of the scenario� Fig
ure �b shows how the tracks appear when the entire scenario is processed by one
STFT SPA appropriate only for the steadystate portion of the last sound in the
scenario� Due to inappropriate processing� the �rst two seconds� analyses contain
several distortions that would lead to ambiguous interpretations and completely
undetected sources �see Figure ��s caption��
These observations have led us to focus our work along the �fth knowledge

placement dimension� controlling HLKS�SPA interaction� Since the late �	���s�
there have been several e�orts to design architectures allowing interpretation pro
cesses to recon�gure signal processing� However� these architectures� process
ing�interpretation interactions have tended to be informal or domainspeci�c �see
Section ���
In this paper we present the Integrated Processing and Understanding of Signals

�IPUS� architecture as a formal and domainindependent framework for structuring
HLKS�SPA interaction in complex environments ���� ��� ��� ��� �
� ���� It enforces
structured� bidirectional interaction between a perceputal system�s interpretational
components and signal processing components� This interaction combines the
search for frontend SPA con�gurations appropriate to the environment with the
search for plausible interpretations of frontend processing results� The architecture
is instantiated by a domain�s formal signal processing theory� It has four primary
components as conceptual �hooks� for organizing and applying signal processing
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Figure �� Figure �b shows distortions introduced by a STFT SPA and a peak�picker
SPA with inappropriate parameter settings applied to the acoustic scenario described in
Figure �a� Darker shading indicates higher energy� The STFT parameter settings used
throughout �b were FFT�SIZE	 
��� WINDOW�LENGTH	 
��� and DECIMATION	

��� while the peak�picker�s parameter setting was PEAK�THRESHOLD	 ��� The sig�
nal was sampled at �KHz� DECIMATION is the separation between consecutive analysis
window positions� the value was set to 
�� to permit the fastest possible processing of
the data� PEAK�THRESHOLD is the normalized energy required for a discrete Fourier
transform point to be considered as a peak� In �b�s �rst second� Phone�Ring�s tracks
are merged because the STFT�s frequency resolution is not adequate for such close fea�
tures� Glass�Clink�s frequency track is not even detected in �b�s next second because the
STFT�s analysis window doesn�t provide adequate time resolution to isolate the source�s
spectral features� The energy threshold causes the peak�picker to miss Buzzer�Alarm�s
low�energy track�

theory� discrepancy detection� discrepancy diagnosis� di�erential diagnosis� and
signal reprocessing� These components have the following functionality�

� detect discrepancies between data expectations and actual data observations�

� diagnose these discrepancies and ascribe reasons for observational uncer
tainty�

� determine reprocessing strategies for uncertain data and expected scenario
changes� and

� determine di�erential diagnosis strategies to disambiguate data with several
alternative interpretations�
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This paper discusses the generic IPUS architecture and its instantiation for
acoustic signal interpretation� Acoustic signal interpretation in itself is an inter
esting problem that arises in applications such as assistive devices for the hearing
impaired and robotic audition�� In the following sections we ��� discuss percep
tion in complex environments ��� present motivations for the IPUS framework�
��� describe the generic IPUS architecture� �
� discuss related work� ��� describe
an IPUSbased acoustic interpretation testbed� ��� illustrate the testbed�s behav
ior using Figure ��s scenario� ��� discuss the architecture�s implications for SPA
design� and ��� indicate directions for our future research�

� Perception in Complex Environments

In this section we discuss relationships between the nature of perception in complex
environments and the means by which systems actually perceive environments� In
particular� we establish terminology for describing environments and for discussing
contextdependent suitability of SPAs� We represent environments using the fol
lowing de�nitions�

De�nition � �Environment� An environment is a triple �O�F �R� where O is the
set of observable objects� F is the set of all features that can be used to describe objects�
and R is a set of context rules describing how features interact with each other when
more than one object is being perceived in the environment�

De�nition � �Objects� Each object belongs to a unique object class� Object classes
are de�ned by sets of feature descriptions� Each set speci�es a subset of features from F
and ranges of permissible values for these features� An object is an instance of an object
class if its feature values lie within a descriptor set of the class�

De�nition � �Contexts� A context is the set of all speci�c objects� with their orien�
tation� observed in an environment� A permissible context is de�ned as a set of objects
which are permitted to co�occur� Unless otherwise proscribed by the speci�c application
domain� a permissible context may contain several instances of the same object class�

In audition� the orientation of an object includes domaindependent character
izations such as distance� loudness� and velocity� In another domain such as vision�
orientation would include characterizations such as pose� distance� and velocity�

De�nition � �Context Rules� A context rule is a pair �C�F �� C is a permissible
context and F � fobj � fenv � Here fobj is the union of instantiated features from all the

�The problem of identifying and tracking sounds�






objects in C� and fenv is a powerset of F with instantiated values� The set F indicates the
observability of the objects� instantiated features when they are considered in the context
C� Elements in F of the form ff�� ff�gg indicate the instantiated feature f� is observable
in the context� elements of the form ff�� fg�� � � � � gngg indicate the instantiated feature is
masked or otherwise distorted to appear as di�erent instantiated feature�s� fg�� � � � � gng
from fenv � Note that fx indicates a feature and its particular value�

The rules indicate how the features of cooccurring objects interact with each
other without regard to how their signals are processed� For example� such rules
from vision would address the occlusion of objects by other objects� while such
rules from audition would address the summedenergy of overlapping frequency
components from multiple sounds� De�nition 
 describes only the kind �not the
form� of knowledge that perceptual systems should have about contexts� The
de�nition�s knowledge representation is combinatorially explosive and certainly
could not be used in any real system�
Having de�ned our concept of a perceptual system�s environment� let us now

consider SPAs� the means by which a system processes the signals from its environ
ment� There are two levels of abstraction for describing SPAs� generic SPAs and
SPA instances� SPA instances are speci�ed by speci�c values for a generic SPA�s
control parameters� Where there is no ambiguity in the discussion between generic
SPAs and SPA instances� we will use the term �SPA� to refer to an SPA instance�
When applied to signals� SPAs produce correlates� These are used as evidence to
support hypotheses that particular features �not necessarily associated with any
object� are present in the environment� We refer to the correlate set produced by
an SPA as that SPA�s computed correlate set�
An SPA�s parameter values induce capabilities or limitations with respect to

the scenario being monitored� Consider the generic ShortTime Fourier Transform
�STFT� algorithm ���� in the acoustic domain� An STFT instance has particu
lar values for its parameters� such as analysis window length� frequencysampling
rate� and decimation interval �separation between consecutive analysis window po
sitions�� Depending on assumptions about a scenario�s spectral features and their
timevariant nature� these parameter values increase or decrease the instance�s
usefulness in monitoring the scenario� An instance with a large window length
will provide �ne frequency resolution for scenarios containing sounds ��acoustic
objects�� with timeinvariant components� but at the cost of poor time resolution
for sounds with timevarying components��

In complex environments� there are often many SPAs which can potentially
compute a correlate�s value� The e�ectiveness of an SPA to produce correlates

�A variant analysis of the Heisenberg Uncertainty Principle implies that one cannot obtain a
STFT SPA instance �or� for that matter� design a new generic SPA� that simultaneously provides
in�nite frequency resolution and in�nite time resolution�
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that can support hypothesized object features is dependent in general upon the
context in which the correlates are to be computed� the speci�c values of the object
features� and the SPA�s parameter values� We will consider an SPA�s parameter
values appropriate to a context if the SPA�s correlates can provide not just support�
but unambiguous support for all the features of all the objects in the context�
Figure � uses sound disambiguation to show the relationship between context

dependent correlate computation and interpretation ambiguity more concretely�
When analyzed in isolation� the hairdryer�s two frequency tracks are unambigu
ously supported by the correlates from STFT�� However� when the hairdryer�s
tracks are analyzed in conjunction with the telephone in the second context� am
biguity arises� The new tracks in Figure �b indicate the potential presence of a
new sound that matches the telephone model except for its lowest frequency track�
The hairdryer�s lowerfrequency track cannot be unambiguously supported by the
same SPA�s correlates� since at least some of the track�s potential support could
alternatively support the phone�s lowfrequency components� Fourier theory can
attribute the ambiguity to the SPA�s poor frequency resolution capabilities and
indicate that the second context should be reanalyzed by a more appropriate SPA�
When the second context�s signal is analyzed by STFT�� the SPA�s �ner reso
lution con�rms this explanation for the ambiguity and provides correlates that
unambiguously support both the hairdryer�s and the telephone�s tracks�
At this point we see that to select SPA instances appropriate to a particular

scenario� a perceptual system must consider the features corresponding to the
input signal� This leads to the apparent circularity that choosing appropriate SPA
parameter values requires knowledge about the signal� but this knowledge can only
be obtained by �rst processing the signal with an SPA with appropriate parameter
settings� Thus� in complex environments the search for appropriate interpretations
must be intimately connected with the search for appropriate SPA instances�
The features that perceptual systems can monitor in complex environments fall

into two classes� The �rst class contains features which can be used to indicate
the existence of one or more objects� though not necessarily the objects� identities�
These features often have supporting correlates that can be computed independent
of the context being analyzed� In the auditory domain� for example� any collection
of one or more �sound objects� may be conceptualized as an acoustic intensity
distribution with minimum and maximum limits on gross features such as temporal
spread� frequency spread� duration of silence intervals� and degree of randomness
in intensity �uctuations� Such gross features� correlates can generally be computed
in a contextindependent manner� hence we call them context�independent features�
The second feature class contains those features which can be used to identify an

object or track the behavioral changes of an object� The computation of correlates
to support these features is often very sensitive to the context being analyzed� hence
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Figure �� Context�Dependent Correlate Computation� When STFT�� analyzes context
A�s signal� its frequency correlates in �a� are adequate for unambiguously identifying
the hairdryer�s two frequency tracks� When the same SPA analyzes context B�s signal�
however� its frequency correlates in �b� are not adequate for unambiguously supporting
the hairdryer�s two tracks AND the phone�s three tracks� Context B�s signal requires
processing by STFT�� with a �ner frequency resolution in order to produce correlates in
�c� that unambiguously support the two sources� tracks�

we call them context�dependent features� In the auditory domain� for example�
a frequency track would be a contextdependent feature of a sound ��acoustic
object��� If the current scenario has no sounds besides the sound containing a
particular track T�� then an STFT with parameters providing only very coarse
frequency resolution would still produce correlates that could support the track�s
existence� Now assume that the current scenario changes so that there are other
sounds in the environment with frequency tracks T�� � � � � Tn� In this new scenario
only STFTs providing frequency resolution of at least the minimum di�erence
between T��s frequency and the other tracks� frequencies would produce correlates
that could unambiguously support T��s existence�
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It is important to note that the distinction between contextindependent and
contextdependent features lies in the features� usage� If a feature is used only
to indicate the presence of some object�s�� the feature is considered context
independent� However� if the same feature were to be used as support for the
identity of some object�s�� it would in general require contextdependent correlate
computation� and would therefore be considered a contextdependent feature�
This section�s discussion about complex environments and the basic means for

analyzing their signals serves as background for Section �� The focus in that section
is on how a domain�s signal processing theory can be used to guide the design of
an architecture for controlling the process of SPA application�

� Architectural Motivation

Past research e�orts within the traditional paradigm for perceptual system design
�Figure �� have produced architectures that require the identi�cation of a set of
features and SPAs applicable to all scenarios the environment may produce� This
requirement is feasible only for signi�cantly constrained environments� Under the
traditional paradigm� complex environments can require combinatorially explosive
SPA sets with multiple parameter settings to capture the variety of signals ade
quately ���� and to handle the variety of processing goals the current scenario may
dictate� As an example of variable processing goals� consider a system with the
primary goal of responding to either the sounds of an infant or a ringing telephone
while ignoring other sounds� This may be done by monitoring a mediumfrequency
band� If an infant sound is detected� the system�s goal may then switch to deter
mining whether the infant is crying or choking while ignoring telephone rings� Such
a goal might then be accomplished by switching to lowerfrequency spectral regions
with specialized SPAs�
To circumvent the combinatorial explosion� one could reason that a small SPA

set might be su�cient if comparisons could be made between the SPAs� computed
correlates and dynamicallygenerated formal expectations� We use the term an�
ticipated correlate set to refer to the set of expectations about an SPA�s computed
correlate set� Any computed correlates whose coordinates and values do not match
those of any anticipated correlates are considered unanticipated� Unmet SPA out
put expectations can indicate that either the expectations are based on incorrect
interpretations or that the SPA�s computed correlates have been distorted because
the SPA�s parameter values are inappropriate to the current scenario� In the �rst
case a perceptual system could reinterpret the current scenario based on the SPA�s
correlates� while in the second case a perceptual system could recon�gure the SPA�s
parameters or replace it with a more appropriate SPA� The important assumption
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in this solution is that there is a basis for generating the expectations� detecting the
unmet expectations� and deciding between the two possible classes of explanations
for the unmet expectations� We argue that a domain�s formal signal processing
theory can play this role�
An SPA�s correlates can be compared with expectations based on object models

or on a priori environment constraints such as maximum bounds on sounds� rate of
temporal change in frequency� Referring back to our assumption about rules for the
interaction of cooccuring objects� features� these �context rules� could also provide
a basis for checking SPA appropriateness� Most importantly� a domain�s signal
processing theory can specify how one SPA�s correlates for a contextindependent
feature can serve as the basis of expectations for another SPA�s output correlates�
This speci�cation can serve to check an SPA�s appropriateness to the environment�
It can also serve to decide where to selectively apply another SPA in the signal
data stream to obtain correlates for contextdependent features�
Figure 
 illustrates these concepts with an example from the acoustic process

ing of footsteps in a noisy environment� The example uses two complementary
generic SPAs� a timedomain energy tracker and an STFT� The timedomain en
ergy tracker detects a short� uniform energy burst that should correspond to short
tracks in the frequency domain� according to acoustic signal processing theory�
When analyzed by STFT� with its wide analysis window� the footstep�s impul
sive energy is smoothed with surrounding noise and fails to appear as a short
frequency track in the STFT�s correlates� In other words� the STFT�s correlates
are subject to a smoothing distortion� The temporal locations and durations of
the energy tracker�s energy bursts serve two purposes� First� they indicate that
STFT� was potentially inappropriate to the current environment� Second� they
serve as the basis for generating STFT� with a narrower analysis window and
smaller time decimation interval to apply to the region in the signal where a new
source is suspected� This STFT�s correlates not only con�rm the belief that the
�rst STFT was inappropriate to the environment but also more strongly support
the existence of the impulsive footsteps than the energy tracker�s correlates did by
themselves�
The preceding example provides instances of three generic roles that a domain�s

formal signal processing theory can play in guiding interpretation and processing
in a complex environment�

� provide methods to determine discrepancies between an SPA�s expected cor
relate set and its computed correlate set�

� de�ne distortion processes that explain how discrepancies between expecta
tions and an SPA�s computed correlates result when the SPA has inappro
priate values for speci�c parameters�
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Figure 
� Context�Dependent Correlate Computation� The energy tracking SPA provides
correlates for context�independent energy burst features� These features which guide the
focused application of an STFT with parameters to �nd frequency�track correlates for the
footstep impulse in a noisy environment�

� specify new strategies to reprocess signals so that distortions are removed or
ambiguous data is disambiguated�

These observations about the power of formal signal processing theory in an
alyzing complex environments lead to our decision to incorporate a �discrepancy
detection� diagnosis� and reprocessing loop� as the backbone of the IPUS architec
ture� We believe that the explicit representation of the knowledge in signal process
ing theory is crucial to systems that monitor complex environments� Our design
of IPUS is motivated by the thesis that complex environments require dynamic�
contextdependent feature selection concurrent with dynamic� contextdependent
selection of appropriate SPAs for extracting correlates to support the features� The
goal of the framework is to use theoretical relationships between SPA parameters
and SPA outputs to structure the dual searches for SPAs appropriate to a scenario
and for interpretations appropriate to the SPAs� correlates�
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� Generic IPUS Architecture

This section has three parts� The �rst part presents a summary of the architec
ture� The second part discusses the generic speci�cations of each component of
the architecture�s reprocessing loop� discrepancy detection� discrepancy diagnosis�
reprocessing� and di�erential diagnosis� The third part describes the architecture�s
control framework� Section ��� provides summaries of the algorithms used to in
stantiate the IPUS components in the acoustic interpretation testbed �����

��� Architecture Summary

The generic IPUS architecture� with its primary data and control �ow� appears in
Figure �a� Figure �b shows its instantiation in the acoustic interpretation testbed
to be discussed in Section ���� Two types of signal interpretation hypotheses are
stored on the hierarchical blackboard� interpretations of correlates from current
and past signal analyses� and expectations about the interpretations of data cor
relates from future analyses�
Our design of the IPUS framework assumes that signal data is submitted for

analysis a block at a time� IPUS uses an iterative process for converging to the
appropriate SPAs and interpretations� For each block of data� the loop starts
by processing the signal with an initial con�guration of SPAs� These SPAs are
selected not only to identify and track the signals most likely to occur in the en
vironment� but also to provide indications of when less likely or unknown signals
have occurred� In the next part of the loop� a discrepancy detection process tests
for discrepancies between the correlates of each SPA in the current con�guration
and ��� the correlates of other SPAs in the con�guration� ��� applicationdomain
constraints� and ��� the correlates� anticipated form based on highlevel expecta
tions� Architectural control permits this process to execute both after SPA output
is generated and after interpretation problem solving hypotheses are generated� If
discrepancies are detected� a diagnosis process attempts to explain them by map
ping them to a sequence of qualitative distortion hypotheses� The loop ends with
a signal reprocessing stage that proposes and executes a search plan to �nd a new
frontend �i�e�� a set of instantiated SPAs� to eliminate or reduce the hypothesized
distortions� After the loop�s completion� if there are any similarlyrated compet
ing toplevel interpretations� a di�erential diagnosis process selects and executes a
reprocessing plan to �nd correlates for features that will discriminate among the
alternatives�
Although the architecture requires the initial processing of data one block at

a time� the loop�s diagnosis� reprocessing� and di�erential diagnosis components
are not restricted to examining only the current block�s processing results� If the
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Figure �� Figure 
a shows the generic IPUS architecture and Figure 
b shows the ar�
chitecture instantiated for the sound understanding testbed� Solid arrow lines indicate
data�ow relations� Dotted arrow lines indicate classes of plans that the planner can
pursue when trying to reduce or eliminate particular uncertainties �discrepancies� in the
problem solving model that were selected by the focusing heuristics� Parenthesized terms
indicate knowledge added to the planner or system knowledge sources to instantiate the
architecture for an application� Note that reprocessing plans can cause SPA execution at
any SPA output level� not just the lowest�

current block�s processing results imply the possibility that earlier blocks were mis
interpreted or inappropriately reprocessed� those components can be applied to the
earlier blocks as well as the current blocks� Additionally� reprocessing strategies
and discrepancy detection applicationconstraints tests can include the postpone
ment of reprocessing or discrepancy declarations until speci�ed conditions are met
in the next data block�s��

��� IPUS Reprocessing Loop Components

This section discusses the generic speci�cations of each component of the architec
ture�s reprocessing loop� as depicted in Figure �a�
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�	�	� Discrepancy Detection

The discrepancy detection process is crucial to the IPUS architecture�s iterative
approach� Our speci�cation of the process requires it to recognize three groups
of discrepancies� based on the source of the anticipated correlates used in the
comparisons�

fault A discrepancy between an SPA�s computed correlates and correlates from
other SPAs applied to the same signal data� This class is included based
on two propositions� The �rst is that correlates for contextdependent fea
tures� if computed by SPAs appropriate to the context� do not contradict the
correlates for contextindependent features� The second is that correlates
for contextdependent features� if computed by SPAs appropriate to the con
text� do not contradict other contextdependent correlates computed by other
SPAs from the same data� As an example� refer to Figure 
 where the energy
tracking SPA indicates a short burst of energy while the �rst STFT�s corre
lates do not support new frequency tracks during the burst�s time period� A
fault should be declared since Fourier theory requires the burst�s presence in
both analyses� given the assumption that the STFT analysis was appropriate
to the context�

violation A discrepancy detected between an SPA�s computed correlates and do
main constraints� This class is included based on the proposition that cor
relates� if computed by SPAs appropriate to the context� do not support
features that violate the environment�s physical constraints� As an example�
if the application domain is considered subject only to wideband gaussian
noise ����� Hz wide�� STFT output correlates showing only a narrowband
noise signal �say ��� Hz wide� would give rise to a violation� Note that viola
tions can indicate either that an SPA was inappropriately applied or that the
environment�s characteristics have changed from those in the original de�
nition� In the �rst case reprocessing based on the environment�s de�nition
should succeed in eliminating the discrepancy� In the second case reprocess
ing based on the environment�s �invalid� de�nition will fail� Failures of the
second type are recorded as distortions to be expected due to environmental
changes and prevent needless execution of the reprocessing loop when they
are detected again�

con
ict A discrepancy between an SPA�s computed correlates and modelbased
expectations� Modelbased expectations arise from two sources� The �rst
source is the set of models for objects already assumed to be present� The
second source is the set of models for objects under consideration for inter

��



preting newlydetected correlates in the current block of data� Con�ict dis
crepancies may involve either a total or a partial mismatch between correlates
and the hypotheses they were supposed to support� This class is included
based on the proposition that features supported by correlates computed
from appropriate SPAs ought to be completely consistent with the object
features speci�ed by the context expected to be observed� �Object features�
includes not only features that are not expected to be distorted but also
features that are expected to be distorted because of the existence of other
objects in the environment� Con�icts can indicate that an SPA is not appro
priate to the context or that the context actually contained objects di�erent
from those expected� As a simple example� a con�ict would occur when the
interpretations of past correlates predict a sound with two sinusoids at ���
Hz and at ��� Hz with no decline in their amplitudes and current STFT cor
relates support one or none of the sinusoids� It could indicate that possibly
the STFT�s energy threshold is inappropriate because the sound�s volume
decreased� or that a new sound is masking the expected sound� Because
we make expectations take on the maximum possible values for their object
features� this con�ict could also indicate that the expectation�s duration was
too long�

Examination of a wide range of domains reveals two generic classes of corre
lates� point correlates and region correlates� A point correlate is a value associated
with one point in the SPA output coordinate space� A region correlate is a value
associated with a subset of the SPA output space� Consider the following examples�
A spectral peak energy value in the �time� frequency� energy� space of acoustic
signal processing and an image pixel intensity value in the �x� y� intensity� space
of image processing are examples of point correlates� A noisedistribution tag for
a region in a radar sweep and a meanintensity value for a region in the output
of an image �ltering SPA are examples of region correlates� A track of spectral
peaks over time from a series of FFT analyses is an example of a region correlate
comprised of noncontiguous subsets of the SPAs� output space�
For both point and region correlates� we require that the IPUS discrepancy de

tection component be able to check for the following generic discrepancies between
an SPA�s anticipated correlate set and its computed correlate set�

�� missing� An anticipated correlate is not in the computed correlate set� An
example of this discrepancy in the acoustic domain occurs when a spectral
peak is expected in the output of an FFT SPA� but is not found�

�� unassociated� An unanticipated correlate occurs in the computed correlate
set� An example of this discrepancy in the radar domain occurs when an
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unanticipated clutter region is produced during a radar sweep�

�� value�shift� A correlate is found in the computed correlate set at its antic
ipated coordinates� but with an unanticipated value� In the visual domain
we encounter this discrepancy when an image region�s hue label produced by
an intensity analysis SPA is brighter than expected�


� coordinate�shift� A correlate with an anticipated value is found in the
computed correlate set but at unanticipated coordinates� This includes the
situation where a region�s boundaries shift from their expected locations� An
example of this discrepancy in the acoustic domain occurs when a track of
spectral peaks produced by a curve�tting algorithm has the correct energy
value but is �� Hz from its expected position�

�� merge� Two or more anticipated correlates are deemed to have appeared as
one unanticipated correlate in the computed correlate set� The criteria for
this merging are domainspeci�c and often depend on relationships between
the missing correlates� values or coordinates and the unanticipated corre
late�s value or coordinates� An example of this discrepancy in the visual
domain occurs when two adjacent regions with di�erent expected textures
are replaced by one region with an unanticipated texture�

�� fragmentation� An anticipated correlate is deemed to have been replaced
by several unanticipated correlates in the computed correlate set� The cri
teria for this splitting are domainspeci�c and often depend on relationships
between the missing correlate�s values or coordinates and the unanticipated
correlates� values or coordinates� An example of this discrepancy in the radar
domain occurs when a noiseanalysis SPA computes two or more small re
gions with a particular noisedistribution label instead of an expected single
region with that label�

�	�	� Discrepancy Diagnosis

A domain�s formal signal processing theory can predict the form computed corre
lates will take not only when an SPA is applied with parameter values appropriate
to the context� but also when an SPA is applied with inappropriate parameter val
ues� We relate a signal processing theory�s content to SPAs and their interaction
with the environment in terms of SPA processing models� An SPA processing model
describes how the output of the SPA changes when one of its control parameters
is varied while all the others are held �xed�
SPA processing models serve as the basis for de�ning how the parameter set

tings of an SPA can introduce distortions into the SPA�s computed correlates�
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These distortions cause correlate discrepancies� Consider an SPA processing model
corresponding to the STFT�s WINDOWLENGTH parameter and how this model
can be used to de�ne distortions� Refering to Figure �� as this parameter�s value
increases� merged and missing correlate discrepancies disappear� Conversely� as
the parameter�s value decreases� merged and missing correlate discrepancies occur
more frequently� Formally� assume that an STFT with an analysis window of W
sample points is applied to a signal sampled at R samples per second� If the signal
came from a scenario containing frequency tracks closer than R�W Hz� Fourier
theory predicts that the tracks will be merged in the STFT�s computed correlates�
When discrepancies are detected� diagnosis can be performed to obtain an �in

verse� mapping from the discrepancies and to qualitative hypotheses that explain
them in terms of distortions� This diagnosis process relies on an environment�s
context rules and the domain�s SPA processing models to de�ne distortion pro
cesses that take place when an SPA�s assumptions about its input signals are
violated ����� Note that there is a di�erence between discrepancies and signal dis
tortion processes� Distortion processes are used to explain discrepancies� It is also
possible for several distortion processes to explain the same kinds of discrepancies�
A �low frequency resolution� process explains the �missing� and �unassociated� dis
crepancies in Figure ��s example� and a �low time resolution� process explains the
�missing� discrepancy in Figure 
�s example�
As another simple diagnostic example� consider the con�ict discrepancy where

frequency components previously observed at ��� Hz and ��� Hz �disappear� from
the current STFT output but a �new� component is observed midway between the
original components� positions� The STFT processing models provide us with the
concept of a �low frequency resolution� distortion process which can account for
the missing and unanticipated correlates in the STFT output� In discrepancy
diagnosis� this speci�c distortion�s de�nition would serve as the basis for checking
if it is plausible that the two components may have drifted too close to each
other for the current STFT instance to be able to resolve them� If this is indeed
plausible� the distortion process explains the presence of just a single component
in the current STFT output�

�	�	� Reprocessing and Dierential Diagnosis

The signal reprocessing component uses explanations from the diagnosis compo
nent to propose and execute search plans for �nding new SPA control parameter
values that eliminate or reduce the hypothesized distortions� In the course of a
reprocessing plan�s execution� the signal data may be reprocessed several times
under di�erent SPAs with di�erent parameter values� The incremental search is
necessary because the diagnosis explanation is at least partially qualitative� and
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therefore it is generally impossible to predict a priori exact parameter values to
be used in the reprocessing� The reprocessing component relies on SPA processing
models to select new SPAs and�or parameter values when instantiating the pro
posed reprocessing plan� Continuing the frequency resolution example from the
previous subsection� the STFT processing model�s quantitative relationship be
tween parameter values and correlate output would indicate the need for a STFT
instance with a longer analysis window for obtaining better frequency resolution�
In the course of processing signal data� IPUSbased systems will encounter sig

nals that could support several alternative interpretations� In addition to natural
similarities among several objects� features� ambiguous sets of alternative inter
pretations can also arise from cooccuring objects� interactions and from applying
SPAs inappropriate to a context� The di�erential diagnosis component implements
what we have previously referred to in Section � as the dynamic� contextdependent
selection of features to disambiguate objects� It uses SPA processing models to
predict how the frontend SPAs� parameter values could have made correlates for
di�erent features of alternative objects appear similar� Based on these predictions�
the reprocessing component can then propose a reprocessing strategy to disam
biguate the features� correlates�
The dual search in IPUS becomes obvious with the following two observations�

Each time the data is reprocessed� whether for disambiguation or distortion elim
ination� a new state in the SPA instance search space is examined and tested for
how well it eliminates or reduces distortions� At the same time� the distortion
elimination or disambiguation measurement is predicated on the assumption that
the system�s current state in the interpretation space matches the actual context
being observed� We will see later in Section ��� that failure to remove a hypothe
sized distortion after a bounded search in the SPA instance space will often lead
to a new search in the interpretation space� This happens based on the following
reasoning� The diagnosis and reprocessing results represent an attempt to justify
the assumption that the current interpretation is correct� If either diagnosis or
reprocessing fails� there is a strong likelihood that the current interpretation is not
correct and a new search is required in the interpretation space� Furthermore� the
results of failed reprocessing can constrain the new interpretation search by elim
inating from consideration objects with features requiring correlates that should
have been found during the reprocessing�

��� Control in IPUS

Depending upon the class�es� of discrepancies detected and the context in which
interpretation is being carried out� an IPUSbased system can use di�erent strate
gies to resolve �i�e� explain and possibly eliminate� the discrepancies� For example�
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in a situation where realtime processing deadlines are tight� the system may not
even attempt to resolve con�ict discrepancies involving minor mismatches in order
to conserve time� In a situation where time is costly but not prohibitive� however�
the system may decide to engage the diagnostic process on the discrepancy� but
then to forego actual reprocessing of the signal because the pro�ered explanation
would require reprocessing a set of data too large to be accommodated by the
time constraints� That is� for this case the system may decide that the successful
generation of an explanation alone is su�cient to resolve the discrepancy� Finally�
in a nontimecritical situation or when analyzing data from an important source�
the system may decide to engage the diagnostic process and reprocess the data on
the basis of the explanation in order to verify the explanation�s plausibility as part
of resolving the discrepancy�
We designed IPUS to serve as the basis of systems for producing perceptual

interpretations with acceptable uncertainty levels� Therefore� we had to provide
the architecture�s control framework with a formalism for representing factors that
a�ect interpretations� con�dence levels� The control framework also had to support
contextsensitive focusing on particular uncertainties in order to control engage
ment and interruption of the architecture�s reprocessing loop�
For these reasons� IPUS uses the RESUN ���� ��� framework to control knowl

edge source �KS� execution� This framework supports the view of interpretation
as a process of gathering evidence to resolve hypotheses� sources of uncertainty
�SOUs�� It incorporates a language for representing SOUs as structures which
trigger the selection of appropriate interpretation strategies� Problemsolving is
driven by information in the problem solving model� which is a summary of the
current interpretations and the SOUs associated with each one�s supporting hy
potheses� An incremental� reactive planner maintains control using control plans
and focusing heuristics� Control plans are schemas that de�ne the strategies and
SPAs available to the system for processing and interpreting data� and for resolv
ing interpretation uncertainties� Focusing heuristics are contextsensitive tests to
select SOUs to resolve and processing strategies to pursue�
The RESUN framework endows IPUS with two basic problemsolving modes�

evidence aggregation and di�erential diagnosis� Evidence aggregation problem
solving seeks data for increasing or decreasing the certainty of one particular in
terpretation� whereas di�erential diagnosis problem solving seeks data for resolv
ing ambiguities that produced competing interpretations� Through these problem
solving approaches� IPUSbased systems can decide when to reprocess data previ
ously examined under one SPA with another SPA to obtain evidence for resolving
uncertainties�
The RESUN framework was developed to address current interpretation sys

tems� limited ability to express and react to the reasons for interpretation hypothe
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ses� uncertainty� It emphasizes the separation of hypothesis belief evaluation from
control decision evaluation by making control responsive not only to the levels
of numeric belief in hypotheses but also to the presence of speci�c SOUs in the
problemsolving model� The control plan formalism supports opportunistic control
through a refocusing mechanism that lets the planner switch among several plan
elaboration points �current leaf nodes in the plan tree� in a contextdependent
manner� It also permits reprocessing strategies to be expressed as alternative con
trol plans� which are selected on the basis of SOUs describing discrepancies and
their explanations�

� Related Work

The IPUS architecture explores how formal signal processing knowledge such as
Fourier theory can be organized and applied in the �fth of the knowledgeplacement
dimensions discussed in Section �� This research represents the formalization and
extension of concepts explored in earlier work on a diagnosis system that exploited
formal signal processing theory to debug signal processing systems ���� and in work
on metalevel control ��
� ��� that used a process of faultdetection� diagnosis� and
replanning to decide the most appropriate parameters for controlling a problem
solving system�
Although we oriented this research most strongly along the �fth knowledge

placement dimension� we feel it has implications for work along the other four
dimensions as well� The architecture supports the use of an application domain�s
formal signal processing theory in selecting approximate or specialized SPAs for
contextdependent application to speci�c portions of a signal ����� For this reason
the research also extends work that emphasizes the fourth dimension �control of
SPA application��
Several recent systems have been developed that provide for structured inter

action between interpretation activity and numericlevel signal processing� In this
section we discuss selected frameworks or systems as representatives of general
approaches to the problem of controlling the interaction of signal processing and
environmental interpretation in perceptual systems� The general approaches are
described in terms of the IPUS components they functionally include�
The perceptual framework of HayesRoth�s GUARDIAN system ���� is typical

of systems whose input data points already represent useful information and re
quire little formal frontend processing other than to control the rate of information
�ow� The system incorporates an inputdata management component that controls
the sampling rate of signals in response to workload constraints� Information �ow
is controlled through variable samplevalue thresholds and variable sampling rates�
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This control framework is somewhat limited since it is based only on the system�s
time requirements for reasoning about classes of signals� and provides good perfor
mance primarily because the signals monitored are relatively simple and noisefree
in nature� heartrate� temperature �uctuations� etc� The framework�s lack of cen
tralized components for any of the four IPUS tasks leads to inadequate generality
for the wide range of signalsenvironment interactions which can include signals
containing complex structures that must be modeled over time in the presence of
variable noise levels� Note that we are not implying that frameworks in this class
do not perform any diagnostic reasoning� We are only observing that this reason
ing capability is not applied to the identi�cation of potentially adverse interactions
between the environmental signal and the frontend processing�
Dawant�s framework ��
� is closer in spirit to IPUS� It is typical of systems

designed with the intent of providing alternative evidence sources as �backup�
evidence when moderate deviations are observed between signal behavior and
partiallymatched signal event models� The framework does not support the selec
tive reprocessing or selective application of specialized SPAs since data is always
gathered from every frontend SPA whether required for interpretation improve
ment or not� This reliance on a �xed set of SPAs �regardless of whether their control
parameters are variable� that are all always executed leads to systems where more
and more SPAs are added to frontends as the environmental complexity increases�
ending in a combinatorial explosion in the number of SPAs necessary to unambigu
ously identify all signals in an environment� Unlike IPUS� most architectures in this
category operate on the implicit assumption that the signalgenerating environ
ment will not interact adversely with the signal processing algorithms� limitations
to produce output distortions that might not have occurred if more appropriate
processing algorithms had been used� Any deviations between observed signal be
havior and available signal event models are attributed to chance variations in the
source being monitored� never to the signal�s interaction with inappropriate SPAs
or with other sources in the environment�
De Mori et al� ���� developed a formal interaction framework in a system to

recognize spoken letters of the English alphabet� This framework is representative
of architectures with strong reliance on di�erential diagnosis techniques� These
architectures are often employed in domains where there is little or no dependence
between consecutive signal events� Interpretations in the system were generated by
learned rules expressing letter identi�cations in terms of a signalevent grammar�
Often more than one letter could be indicated by a single rule �in their terminology
the rule has a confusion set�� When such rules are activated� the system pursues a
di�erential diagnosis strategy relying on rules describing SPAs that are suited to
disambiguating confusion sets with given members� Thus� the system makes use of
selective SPA application and di�erential diagnosis strategies� However� given the
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framework�s relatively restricted application domain� there is a serious question
of whether the approach can be scaled up without including the ability to model
the environment�s signal processing theory� Since the environment of the system
considers its objects �letters� as isolated� unrelated entities� the framework does
not incorporate any use of diagnosis in conjunction with environmental constraints
�e�g�� A �C� has been identi�ed at time t�� and a �B� is expected at time t� since
there is an environmental constraint that �B�s follow �C�s� No behavior supporting
the expectation is observed� so diagnostic reasoning should be attempted to explain
why��
GOLDIE ��	� is an image segmentation system that uses highlevel interpre

tation goals to guide the choice of numericlevel segmentation algorithms� their
sensitivity settings� and region of application within an image� The system�s archi
tecture represents the set of architectures that place strong emphasis on selective
SPA application without explicit guidance from formal signalprocessing theory�
The system uses a �hypothesizeandtest� strategy to search for algorithms that
will satisfy highlevel goals� given the current image data� While it incorporates
an explicit representation of algorithm capabilities to aid in this search� and an
explicit representation of reasons for why it assumes an algorithm is appropriate
or inappropriate to a particular region� the system notably does not incorporate
any diagnosis component for analyzing unexpected �low quality� segmentations�
If an algorithm were applied to a region and the resulting segmentation were of
unexpectedly low quality� the framework would not parallel IPUS and attempt to
diagnose the discrepancy and exploit this information to reformulate the algorithm
search but would select the next highest rated algorithm from the original search�
In the same category as GOLDIE is TraX ���� a system for interpreting im

age frame sequences� Although its design was driven by the goal of supporting
multiple� concurrent object descriptions� the system incorporates some concepts
similar to those in our formulation of the IPUS architecture� The system sup
ports detection of deviations from expected measurements and determination of
the possibility that these deviations might have resulted from processing techniques
inappropriate to the current context� In a manner similar to con�ict discrepancy
detection in IPUS� TraX compares higherlevel expectations from previous frames
against its segmentation SPAs� outputs for the current frame� In contrast to the
IPUS architecture speci�cation� however� TraX does not use models derived from
an underlying theory for its SPAs to inform the discrepancy detection and diag
nosis processes� It relies instead on empirically derived statistical performance
models for the segmentation algorithms� While TraX allows for the use of di�erent
SPAs for di�erent contexts� it does not support the adaptation of SPAs� control
parameters for di�erent contexts�
Bell and Pau ��� �� formalize the search for processing parameter values in
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numericlevel image understanding algorithms in terms of the Prolog language�s
uni�cation and backtracking mechanisms� They express SPAs as predicates de�ned
on tuples of the form �M�p�� � � � � pn�� where M represents an image pattern and
the p�s represent SPA control parameters� These predicates are true for all tuples
where M can be found in the SPA output when its control values are set to the
tuple�s p values� Prolog�s uni�cation mechanism enables these predicates to be used
in both goaldirected and datadriven modes� In a goaldriven mode�M is speci�ed
and some of the parameters are left unbound� The uni�cation mechanism veri�es
the predicate by iteratively binding the unspeci�ed parameters to values from a
permissible value set� applying the SPA� then checking if the pattern is found� In
a datadriven mode� M is not bound and the parameter values are set to those
of the frontend processing� M is then bound to the SPA results� The method
relies on Prolog�s backtracking cuts ���� to limit parametervalue search� A cut
is a point in the veri�cation search space beyond which Prolog cannot backtrack�
This reliance on a language primitive makes it di�cult to explicitly represent �and
therefore to reason about� heuristic expert knowledge for constraining parameter
value search as can be done in IPUS�s reprocessing component� The cut mechanism
also does not permit the use of formal diagnostic reasoning to further constrain
parametervalue search based on the cause of an SPA predicate failure�
Research in active vision and robotics has recognized the importance of tracking

oriented frontend SPA recon�guration �
��� and tends to use a controltheoretic
approach for making recon�guration decisions� It is indeed sometimes possible to
reduce the recon�guration of small sets of frontend SPAs to problems in linear
control theory� In general� however� the problem of deciding when an SPA �e�g�� a
specialized shapefromX algorithm or an acoustic �lter� with particular parameter
settings is appropriate to a given environment may involve nonlinear control or be
unsolvable with current control theory techniques�
It is important to clarify the relationship between the IPUS approach and

the classic control theoretic approach �
��� Control theory uses stochasticprocess
concepts to characterize signals� and these characterizations are limited to prob
abilistic moments� usually no higher than secondorder� Discrepancies between
these stochastic characterizations and an SPA�s output data are used to adapt fu
ture signal processing� In contrast� the IPUS architecture uses highlevel symbolic
descriptions �i�e�� interpretation models of individual sources� as well as numeric
relationships between the outputs of several di�erent SPAs to characterize signal
data� Discrepancies between these characterizations and SPAs� output data are
used to adjust future signal processing� Classic adaptive control should therefore
be viewed as a special case of an IPUS architecture� where the interpretation mod
els are described solely in terms of probabilistic measures and lowlevel descriptions
of signal parameters�
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� The IPUS Acoustic Interpretation Testbed

This section presents an acoustic interpretation testbed that we designed to exper
imentally examine the behavior of an IPUSbased system� The testbed runs on a
TI Explorer II� and is implemented in approximately �
��Kb of source code� All
SPAs are implemented in software� Figure �b shows the IPUS architecture�s real
ization in this testbed� The testbed description is divided into two parts� In the
�rst part we describe how each of the generic IPUS components was instantiated
in the testbed� The second part describes the testbed�s acoustic domain knowledge
as background for understanding the trace in Section ����

��� Instantiated IPUS Components

As we describe the testbed KSs� note that our KS algorithm descriptions are only
intended as instances of algorithms that can implement the components� For
example� the testbed�s actual discrepancy diagnosis algorithm will be seen to be
meansends analysis using di�erence operators to encode the distortions implied by
Fourier theory SPA processing models� Other algorithms using rules or casebased
reasoning or qualitative models to apply the SPA processing models could have
been used� as long as they provided the same diagnostic functionality�

�	�	� Discrepancy Detection

The task of detecting discrepancies is distributed among all the knowledge sources
responsible for interpreting correlates or lowerlevel interpretations as higherlevel
concepts� When executed� each such KS checks to see if any support is available
for a higherlevel concept� If none can be found� or if only partially supportive
data is available� the KS will record this as a SOU �see Section 
��� in the problem
solving model� to be resolved at the discretion of the focusing heuristics� At the
end of each data block�s numeric signal processing� a fault discrepancy detection
KS is executed to check if SPA outputs are consistent with each other� Again�
when discrepancies are found� SOUs are posted in the problem solving model� The
basic SOU types de�ned in the RESUN framework are�

� partial evidence � Denotes the fact that there is incomplete evidence for
the hypothesis�

� possible alternative support � Denotes the possibility that there may
be alternative evidence that could play the same role as a current piece of
support evidence�
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� possible alternative explanation � Denotes the possibility that there may
be alternative explanations for the hypothesis�

� alternative extension � Denotes the existence of competing� alternative
versions of the same hypothesis�

� negative evidence � Denotes the failure to be able to produce some par
ticular support evidence or to �nd any valid explanations�

In the integration of the IPUS and RESUN frameworks� an important issue
is the relationship between the SOUs associated with various hypotheses and the
discrepancy descriptions generated by the discrepancy detection process� Our ar
chitecture uses the following relationships�

�� Con
ict�type Discrepancies and SOU�s� Con�icttype discrepancies oc
cur when signal processing output data does not match expectations� When
an expectation is �rst posted� it has no supporting evidence because none has
been searched for yet� To re�ect this fact� the expectation is annotated with
a PARTIAL SUPPORT SOU� which is a partial evidence type of SOU� To re
solve this uncertainty� IPUS searches for evidence matching the expectations�
If any portion of the expectation is unmatched after supporting evidence has
been sought� a con�ict discrepancy is raised for that expectation� When a
con�ict discrepancy is detected� a SUPPORT EXCLUSION SOU� a negative
evidence type of SOU� is attached to the expectation�

�� Fault�type Discrepancies and SOU�s� Faulttype discrepancies arise
when two di�erent signal processing algorithms produce con�icting hypothe
ses about the same underlying signal data� In such cases� a composite hypoth
esis is created that is a copy of the more reliable of the two data hypotheses
and is considered to be an extension of that hypothesis� A link labeled with
a negative evidence SOU �in particular� a SUPPORT LIMITATION SOU�
which indicates that support for a hypothesis is limited until results of fur
ther processing are obtained� connects the less reliable hypothesis to the
composite hypothesis�

�� Violation�type Discrepancies and SOU�s� A violationtype discrepancy
occurs when signal processing output data violates the a�priori known charac
teristics of the entire class of possible input signals in the application domain�
When such an output data hypothesis is posted on the interpretation black
board� a CONSTRAINT SOU� a negative evidence type of SOU� is attached
to it� This SOU contains a description of the violated condition�
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In addition to the discrepancy detection components of the interpretation KSs
�that perform con�ict discrepancy detection�� the testbed contains KSs for fault
discrepancy detection and violation discrepancy detection�
The actual comparisons implemented in the testbed discrepancy detection com

ponents were derived from an inspection of the SPAs available to the testbed de
signers and the contextdependent and contextindependent features these SPAs�
correlates could support�

�	�	� Discrepancy Diagnosis

The discrepancy diagnosis KS is designed to take advantage of the fact that the
SPA processing models from an environment�s signal processing theory can predict
how SPA output will be distorted if the SPA is misapplied� Refering back to a
previous example� assume that an STFT with an analysis window of W sample
points is applied to a signal sampled at R samples per second� If the signal came
from a scenario containing frequency tracks closer than R�W Hz� Fourier theory
predicts that the tracks will be merged in the STFT�s computed correlates�
Our testbed instantiation of the diagnosis component models this knowledge

in a database of formal distortion operators� When applied to an abstract descrip
tion of anticipated or computed correlates� an operator returns the description
modi�ed to contain the operator�s distortion� The KS uses these operators in
a meansends analysis framework incorporating multiple abstraction levels and a
veri�cation phase ���� to �explain� fault� violation� and con�ict discrepancies� The
KS takes two inputs� an initial state representing anticipated correlates and a
goal state representing the computed correlates� The formal task of the KS is to
generate a distortion operator sequence mapping the initial state description onto
the goal state description� Figure � illustrates the formal operator de�nition of
the previously described frequency resolution distortion that the STFT SPA data
correlates can be subject to� as well as its use in a short explanation�
The KS�s search for an explanatory distortion operator sequence is iteratively

carried out using progressively more complex abstractions of the initial and goal
states� until a level is reached where a sequence can be generated using no more
signal information than is available at that level� Thus� the KS mimics expert di
agnostic reasoning in that it o�ers simplest �shortest� explanations �rst �
��� Once
a sequence is found� the KS enters its verify phase� �drops� to the lowest abstrac
tion level� and checks that each operator�s pre and postconditions are met when
all available state information is considered� If veri�cation succeeds� the operator
sequence and a diagnosis region indicating the signal hypotheses involved in the
discrepancy are returned� If it fails� the KS attempts to �patch� the sequence by
�nding operator subsequences that eliminate the unmet conditions and inserting
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Distortion Operator Definition
Microstream Frequency Resolution
Preconditions: 
  1) N expected microstreams within a frequency region
       SAMPLE-RATE/WINDOW-LENGTH Hz wide.
  2) At most one microstream is detected in that region.

Result:
  1) Remove N microstreams, replace with one having
      energy = sum of N expected microstreams, and
       frequency-range = region in precondition 1.

Operator Application

INITIAL STATE
(expected)

FINAL STATE
(observed)

(MICROSTREAM-FREQUENCY-RESOLUTION)

DISTORTION OPERATOR LIST
(explanation)

Hz

Time

Hz

Time

Figure �� Microstream Frequency Resolution Operator from the Acoustic Interpretation

Testbed� When applied to a state� the operator replaces each set of expected micro�

streams whose members are closer than SAMPLE�RATE�WINDOW�LENGTH with a

single microstream� re�ecting the resolving limits associated with the current value of

WINDOW�LENGTH� In the short example illustrated� this operator e�ectively reduces

the di�erences between the expected state and the observed state�

them in the original sequence� If no patch is possible� and no alternative explana
tions can be generated� the involved signal hypotheses are annotated with an SOU
with a very negative rating� Figure � outlines the planandverify strategy of the
diagnostic process�
An issue not addressed in earlier work ���� that arose in the development of

IPUS is the problem of inapplicable explanations� Sometimes the �rst explana
tion o�ered by the KS will not enable the reprocessing mechanism to eliminate
a discrepancy� In these cases� the architecture�s control framework �expressed as
control plans� permits reactivation of the diagnostic KS with the previous expla
nation supplied as one that must not be returned again� To avoid repetition of the
search performed for the previous explanation� the KS stores with its explanations
the searchtree context it was in when the explanation was produced� The KS�s
search for a new explanation begins from that point�
The discrepancy diagnosis KS�s output is also used to modify expectations for

how future support evidence should appear under the current parameter settings�
Each distortion operator contains a logical �support speci�cation� of how data that
is expected can appear distorted when processing parameters take on the current
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Figure �� The plan�and�verify strategy of the IPUS discrepancy diagnosis knowledge

source�

parameter values� When a complete distortionoperator sequence is generated�
all operators� supportspeci�cations are conjunctively combined to form a single
expectation speci�cation� This speci�cation is then attached to the expectation
units of the hypotheses involved in the original discrepancy� For those feature
hypotheses� this annotation reduces the qualitylevel required for future evidence�
The speci�cation indicates to the system that when it is seeking data correlates
from an SPA X for object features which were previously distorted by X� it can
use data correlates which match the speci�cation�s distortions without raising a
discrepancy�

�	�	� Signal Reprocessing

Once the distortions have been hypothesized by the discrepancy diagnostic rea
soning process� the next task is to search for the appropriate SPAs and control
parameter settings under which signal reprocessing may remove those distortions�
Figure � illustrates the organization of the reprocessing knowledge source used
in the testbed� This reprocessing portion of the architecture consists of the fol
lowing major components� situation assessment� reprocessing�plan selection� and
reprocessing�plan execution� The input to the reprocessing knowledge source in
cludes a description of the input and output signal states �see diagnostic reasoning
section above�� the distortion operator sequence hypothesized by the diagnosis
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stage� and a description of the discrepancies present between the input and output
signal states� The situation assessment phase uses casebased reasoning to gen
erate multiple reprocessing plans� each of which has the potential of eliminating
the hypothesized distortions present in the current situation� Plans for eliminating
various categories of distortions are stored in a knowledge base� Figure 	 shows
the de�nition for one reprocessing plan schema from our acoustic interpretation
testbed� This reprocessing plan�s role is to extract a short highenergy contour
which was missed by the frontend STFT instance but whose presence was indi
cated by the frontend�s timedomain energy tracker�

START END

RETURN INFERENCES 
[IF ANY]

NO PLANS SELECTED

PARAMETER 
VALUES OK!

VALUE OUT OF 
BOUNDS

DESIRED 
EVIDENCE NOT 

FOUND!

LIMIT REACHED

NO

EVIDENCE 
FOUND!

INPUT: 
DISCREPANCY 

AND DIAGNOSIS 
EXPLANATION

RETRIEVE PROCESSING
PLANS INDEXED BY

DIAGNOSIS EXPLANATION

SELECT PLAN

LOCALLY 
ADJUST 

PARAMETERS

ITERATION 
LIMIT 

REACHED?

PARAMETER 
BOUNDS 

REACHED?
EXECUTE 

PLAN

GOAL 
EVIDENCE

OBSERVED?

Figure �� The IPUS reprocessing knowledge source�s framework

From the retrieved set of applicable plans� one is selected during the plan
selection stage� Selections are governed by �cost� criteria such as plan execution
time� The execution of a reprocessing plan consists of incrementally adjusting the
SPA control parameters� applying the SPA to the portion of the signal data that
is hypothesized to contain distortions� and testing for discrepancy removal� The
incremental process is necessary because the situation description is often at least
partially qualitative� and therefore it is generally impossible to predict exact values
for the control parameters to be used in the reprocessing�
Reprocessing continues until the goal of distortion removal is achieved or it

is concluded that the reprocessing plan has failed� Currently there are two inde
pendent criteria for determining plan failure in IPUS� The �rst criterion simply
considers the number of plan iterations� If the number surpasses a �xed threshold�
failure is indicated automatically� The second criterion relies on �xed lower and
upper bounds for signal processing parameters� If a plan reiteration requires a
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�CONTOUR��

�state �name faulty

�hyp�type contour

�hyp �x�

�state �name faultless

�hyp�type contour

�hyp �y�

�operator�sequence �STFT�TIME�RESOLUTION��

�discrepancy

�type fault

�name MISSING�STFT�CONTOUR�PRESENT�TD�CONTOUR

�level contour

�duration �x�

�energy �x�

�frequency �x	

�expected�region �z�

��
 �reprocessing�plans

��reprocessing�plan

�input�variables ��faulty�hyp �x

�faultless�hyp �y

�expected�region �z�

�parameters ��STFT�OVERLAP�

�WINDOW�LENGTH�

�STFT�PEAK�ENERGY�THRESHOLD��

�parameter�changes

��lambda �p� �� p ��

�lambda �p� �� p ���

�lambda �p� �����

�primitive�plans �delete�all�reprocessing�units

reprocess�spectra�for�contours

reprocess�contours�

�goal�condition �contours�present������

Figure 	� The de�nition for a reprocessing plan from the acoustic interpretation testbed
to handle the distortion�operator sequence �CONTOUR�TIME�RESOLUTION�� The
plan speci�es that on each iteration of the primitive plan list� the STFT�OVERLAP and
WINDOW�LENGTH parameter values are divided by � and �� respectively� while the
STFT�PEAK�ENERGY�THRESHOLD parameter value is maintained at ��� At the
end of each iteration� the goal�condition CONTOURS�PRESENT� is tested for� This
goal requires that the sought high�energy contour appear�
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parameter value outside of its prespeci�ed range� the plan is considered to have
failed�
When failure is indicated� the discrepancy diagnosis process can be reinvoked

to produce an alternative explanation for the distortions present in the original sig
nal data� If no alternative explanation is available �i�e�� the diagnostic knowledge
source fails to �nd another distortion operator sequence�� an IPUSbased system
annotates the hypothesized features involved in the discrepancy with SOUs indi
cating low con�dence due to unresolvable discrepancies� These SOUs� e�ects on
the features� con�dence levels are then propagated to object interpretations based
on those features� causing their existence to be disbelieved more strongly�

�	�	� Dierential Diagnosis

In the course of processing signal data� IPUSbased systems will encounter signals
that could support several alternative interpretations� We include the di�erential
diagnosis KS to produce reprocessing plans that will enable the system to prune
the interpretation search space when ambiguous data correlates are encountered�
Its input is the ambiguous data�s set of alternative interpretations� and its output
is a triple containing�

�� the time region in the signal data to be reprocessed

�� the support evidence �veri�cation goals� that must be found for each inter
pretation

�� the set of reprocessing plans and parameter values proposed for revealing the
desired support evidence�

Our implementation of this KS uses the following strategy� The KS �rst com
pares the interpretation hypotheses to determine their overlapping regions� Any
observed evidence in these regions is labeled �ambiguous�� The KS then deter
mines the hypotheses� discriminating regions �e�g�� Hyp�� and no other hypothesis�
has a microstream at ���� Hz�� For each discriminating region where no evidence
was observed� the KS posits an explanation for how the evidence could have gone
undetected� assuming the hypothesized source was actually present� Using these
explanations as indices into a plan database� the KS retrieves reprocessing plans
and parameter values that should cause the missing evidence to appear� At this
point the ambiguous evidence is considered� The KS seeks for multiple signal
structures within each overlapping region �e�g�� a region that contains data that
could support one microstream of a hypothesis or two microstreams of another
hypothesis�� and selects processing plans to produce data with better structural
resolution in the regions of overlap�
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If the missingevidence processing plan set and the ambiguousevidence plan
set intersect� the intersection forms the third element of the output triple� If the
intersection is empty� the missingevidence plan set forms the third element of the
output triple� Finally� if the missingevidence plan set is empty� the ambiguous
evidence plan set is returned� The rationale behind this hierarchy of plan set
preference is that this ordering will return the most likely plans for producing evi
dence that could eliminate interpretations from further consideration� The region
of mutual temporal overlap for the alternative hypotheses de�nes the reprocessing
time region in the output triple� and the ambiguous and missing data that is han
dled by the reprocessing plan set de�nes the support evidence in the output triple�
The output triple�s reprocessing plan is then executed as in the reprocessing KS
until either the parametervalue limits are exceeded or at least one of the pieces in
the support evidence set is found after a reprocessing� Figure �� depicts a typical
execution for the testbed di�erential diagnosis KS�
We should note that the explanatory reasoning performed in the di�erential

diagnosis KS for missing evidence is primitive compared to that available in the
discrepancy diagnosis KS� there is not a rich set of explanations available� Only
simple singleoperator distortions like loss of lowenergy components due to en
ergy thresholding are considered� This design is justi�ed because the di�erential
diagnosis KS�s role is to trigger reprocessing that quickly prunes large areas of
underconstrained interpretation spaces� without preference for any particular inter
pretation� On the basis of this speci�cation� it is not appropriate to devote time
consuming� sophisticated reasoning to the generation of missingevidence explana
tions� For related reasons� the di�erential diagnosis KS does not return support
speci�cations that reduce the qualitylevel required for future evidence� The KS�s
shallow explanations generated for �nding contrasts within a set of several sources
might not justify the acceptance of lower quality evidence for a single source from
that set�
In cases where an IPUS system prefers a particular interpretation over alter

natives� and needs an explanation for why the interpretation is missing certain
support� it will make use of the discrepancy diagnosis KS� with the initial state
re�ecting the preferred interpretation�
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Figure ��� A �owchart for the IPUS di�erential diagnosis KS and its execution in

a typical acoustic scenario� In this example a database query returns more than one

sound model whose frequency components overlap the observed data in the ������ �����Hz

region� For each model� the IPUS system posts an interpretation hypothesis supported by

the observed data� In the problem�solving model� an ALTERNATIVE�EXPLANATION

SOU is recorded for each hypothesis� These SOUs are left unresolved until selected by

the system�s focusing heuristics�
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��� Testbed Domain Knowledge

The testbed consists of a blackboard with eight evidence abstraction levels� KSs for
the primary IPUS components and for inferring hypotheses between di�erent ab
straction levels� an acoustic source library� and control plans� The testbed version
described in this paper is called con�guration C����

Figure �� describe the information represented in the evidence abstractions�
At the lowest level are waveform segments derived from the input waveform� Each
segment is a collection of points to which some SPA will be applied� Timedomain
statistics such as zerocrossing density� average energy� etc� are also maintained for
segments� The second level consists of spectral hypotheses derived for each wave
form segment through FourierTransformbased algorithms such as the STFT and
WignerDistribution ���� algorithms� The third level consists of peak hypotheses
derived for each spectrum and is used to support narrowband features of sounds�
The fourth level consists of contour hypotheses� each of which corresponds to a
group of peaks whose time indices� frequencies� and amplitudes represent a contour
in the timefrequencyenergy space with uniform frequency and energy behavior�
The �fth level contains microstream hypotheses supported by one contour or a
sequence of contours� Each microstream has an energy pattern consisting of an at
tack region �signal onset�� a steady region� and a decay �signal fadeout� region� In
the sixth level we represent noisebeds as wideband frequency regions supported by
regions within spectra� Noisebeds represent the wideband component of a sound
source�s acoustic signature� Usually microstreams form �ridges� on top of noisebed
�plateaux�� but not every noisebed has an associated microstream� Groups of mi
crostreams and noisebeds synchronized according to time and�or other psychoa
coustic criteria such as harmonic frequency sets support stream hypotheses in the
seventh level� Bregman ��� provides a highly detailed account of various psychoa
coustic streaming processes� At the eighth level� sequences of stream hypotheses
are interpreted as soundsource hypotheses�
Sources are represented in the source database by an acoustic grammar speci

fying microstream and noisebed frequency ranges and permissible ranges of energy
relationships among microstreams and noisebeds within source streams� The gram
mar also speci�es the permissible range of durations for each source�s microstreams
and streams� and the stream sequences and periodic patterns that characterize the
source�

�Con�guration C�� is currently under development as a platform for exploring approximate
processing and scaling issues�
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Figure ��� Testbed Evidence Abstractions�
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	 Acoustic Interpretation Testbed Operation

In this section we provide a detailed analysis of the acoustic interpretation testbed�s
behavior as it interprets the waveform data from an acoustic scenario constructed
from realworld� narrowband signals� By showing the IPUS components� func
tionality and their use of formal relationships between signal characteristics and
SPA parameters� the example illustrates the important role that a formal theory
of signal processing can play in signal interpretation�

��� Scenario Overview

Figure ��a shows the timedomain waveform �sampled at �KHz� provided to the
testbed� while Figure ��b shows how the sources in the scenario would appear
using contextappropriate processing� Phone�Ring and Siren�Chirp are ��� times
as energetic as Buzzer�Alarm� and Glass�Clink is an impulsive source ��� times
as energetic as Buzzer�Alarm� Figure ��c shows how the events are distorted when
the testbed�s initial frontend con�guration is applied throughout the scenario�
The testbed was initially con�gured to interpret waveform data in ���second

blocks� and to identify quickly any occurrences of Siren�Chirp� In particular� the
system�s SPA parameters were set to detect Siren�Chirp�s steadyenergy behavior�

FFT�SIZE� ���
The number of uniformly�spaced frequency samples computed for each Short�
Time Fourier Transform �STFT� analysis window position�

WINDOW�LENGTH� ���
The number of data points to which each FFT in the STFT algorithm is
applied �� FFT�SIZE��

DECIMATION� ���
The number of points between consecutive STFT analysis window positions�
The value was set to 	�
 to permit the fastest possible processing of the data�

PEAK�THRESHOLD� ���	
Spectrum points with energy below this value are rejected by the peak�picking
algorithm�

For processing this example� the testbed�s source database was loaded with
models for the �ve narrowband sources shown in Figure ��� In the �gure the
sources� frequency components are labelled by singlefrequency values only for
clarity� the formal source de�nitions have frequency ranges speci�ed for each com
ponent�
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Figure ��� Acoustic Scenario Events� Figure ��a shows the scenario�s time�domain

waveform� Figures ��b and ��c show the scenario�s frequency�domain events� Darker

shading indicates higher frequency�domain energy�

There are several critical actions that the IPUS acoustic testbed must perform
if it is to reasonably analyze Figure ��a�s signal� In block �� the testbed encounters
two alternative interpretations of the data in the �
��� ���� frequency region� That
is� there is the possibility that it could be caused by Phone�Ring or Car�Horn� or
even both occurring simultaneously� One reason for this confusion stems from the
fact that the energy threshold setting for the peakpicking algorithm is high and
would prevent Car�Horn�s lowenergy microstream from being detected if in fact
it were present� The second reason is that the frequencysampling provided by the
STFT algorithm�s FFTSIZE parameter does not provide enough frequency sample
points to resolve the �
��� ���� region into Phone�Ring�s three microstreams� The
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Figure ��� IPUS Source Database� The vertical axis represents frequency and the hor�

izontal axis represents time in seconds� The energy changes for each microstream are

represented qualitatively by the shading gradations� Note that Phone�Ring is a ring from

a phone di�erent from the one in Figure ��

uncertainty in this situation is resolved through reprocessing under the direction
of di�erential diagnostic reasoning� which increases resolution and decreases the
energy threshold�
During block ��s analysis� the testbed also determines that Buzzer�Alarm�s

track at ���� Hz is missing� One reason for this is that the track�s energy might
be too low for the peakpicker�s PEAKTHRESHOLD parameter setting� The
discrepancy is resolved through reprocessing the previouslyproduced spectra with
a lower PEAKTHRESHOLD value�
In block �� the testbed detects a discrepancy between the outputs of its time

domain energy estimator SPA and its STFT SPA� The energy estimator SPA
detects a substantial energy increase followed about ��� seconds later by a pre
cipitous decrease� The STFT SPA� however� produces no signi�cant set of peaks
to account for the signal energy �ux� This is because the algorithm�s decimation
parameter is too high� The testbed also detects a discrepancy between expecta
tions established from block � for the �
��� ���� frequency region and the STFT
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SPA�s output� The STFT SPA produces short contours that cannot support the
expected microstreams for Phone�Ring because of inadequate frequency sampling
in the region� Both discrepancies are resolved by reprocessing� The �rst discrep
ancy is resolved through reprocessing with a smaller DECIMATION value and
smaller STFT intervals� while the second is resolved through reprocessing with the
�ner frequency sampling provided by a ���
 FFTSIZE�
In block �� Siren�Chirp�s attack interacts with the poor timeresolution of the

STFT SPA to produce a set of widelyseparated short contours that the testbed
cannot immediately interpret as the attack portion of microstreams� In block 
�
however� the testbed uses the discovery of Siren�Chirp�s steady region as the
basis for reinterpreting block ��s short contours as evidence for the sound�s attack
region�

��� Testbed Trace

The following is a highlevel trace of the signi�cant events that occurred as the
system processed the signal in Figure ��a�

�	�	� BLOCK �

� Bottom�Up Processing� The testbed focusing heuristics specify that spec
tral information be gathered for the input waveform sampled during block ��
It is processed by a KS representing the STFT signal processing algorithm
and a KS that uses a timedomain algorithm for estimating waveform energy
as a function of time� Continuing in a datadriven manner� the spectra peaks
produced are grouped by similar frequency and energy into contours�

� Seek Evidence for Current Expectations� The focusing heuristics next
direct the testbed to act upon current highlevel expectations and search for
support evidence� In deciding what evidence to examine �rst� the heuristics
choose to look for any evidence in the steadyphase frequency regions of high
priority sources �Siren�Chirp in this case�� No contours are found in these
regions� At this point in the experiment� there are no other explicit source
expectations�

� Drive Unexplained Data to Higher Levels� Contours in the ��
��� �
���
and ������ ����� Hz regions are used to support microstream hypotheses�
These in turn are used to support a Buzzer�Alarm source hypothesis� How
ever� support for Buzzer�Alarm�s third microstream is not found in the peak
picker�s correlates� causing a con�ict discrepancy SOU to be posted with the
source�
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� Discrepancy�Detection� The testbed uses the heuristic that short contours�

should not be used as microstream evidence� Because the block has a large
number of short contours relative to the total number of contours detected�
the testbed performs discrepancy detection to determine if there are tight
shortcontour clusters that could indicate distorted sources� The system
�nds such a cluster in the �
��� ���� Hz range� and then queries the source
database to �nd a source hypothesis to explain the cluster� Phone�Ring and
Car�Horn are retrieved because at least one of each source�s frequency com
ponents overlaps the cluster� Therefore the testbed posts both sources as
alternative explanations for the contour cluster� This use of short contours
in place of long contours to support interpretations raises a violation discrep
ancy� since the a priori expectation that sources are indicated only by long
contours is violated�

� Handle Selected Uncertainties� At this point four SOUs have been
posted� one each for the violation discrepancies associated with Phone�Ring

and Car�Horn being supported by a cluster� one for the uncertainty associ
ated with the existence of competing interpretations for the same cluster� and
one for Buzzer�Alarm�s missing microstream� The focusing heuristics elect
to resolve the uncertainty associated with the alternative explanations� For
doing this� the control plans specify a strategy of �rst performing di�erential
diagnosis and using its results to guide data reprocessing�

�� Dierential Diagnosis� The di�erential diagnosis KS determines fea
tures of the two sources that should be searched for in the signal data
because their presence or absence will permit di�erentiation between
the alternatives� In this case the KS selects the lowenergy� 	�� Hz mi
crostream of Car�Horn and the number of microstreams in the �
��� ����
Hz region for each source �Phone�Ring has �� Car�Horn has �� as dis
criminating features� It speci�es that a lower energythreshold be used
to attempt to �bring out� Car�Horn�s lowenergy microstream at ���
Hz� To attempt to �nd Phone�Ring�s three microstreams� it speci�es
an FFTSIZE value of ���
 to increase the frequency sampling in the
�
��� ���� Hz region� Note that the testbed at this time is not commit
ted to either interpretation� nor to the possibility that both sources are
present� Any decisions will wait for the results of reprocessing�

�� Dierential Reprocessing� The reprocessing KS is executed and the
soughtafter Car�Hornmicrostreams are not found� However� three well

�Contours having between � and � peaks� Short contours could be the result of random noise�
and the system should apply as little computing time as necessary to the processing of noise�
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de�ned contours are found in the �
��� ���� Hz range that can support
Phone�Ring�s microstreams� Therefore Phone�Ring�s belief is increased�
while Car�Horn�s belief is decreased� Car�Horn�s belief level is very low
at this point and is no longer considered as a signi�cant alternative ex
planation for the original stream hypothesis� Note that this reprocessing
opportunistically resolves not only the competinginterpretation uncer
tainty� but also Phone�Ring�s violationdiscrepancy uncertainty�

� Handle Selected Uncertainties� �continued� Focusing heuristics now
select the con�ict discrepancy SOU of Buzzer�Alarm�s missing microstream
for resolution� This is handled through calling the discrepancy diagnosis KS
and executing a reprocessing plan based on its explanation�

�� Discrepancy Diagnosis� The diagnosis KS produces the explanation
�MSENERGYTHRESHOLDING� for the discrepancy� That is� peak
picker SPA�s PEAKTHRESHOLD parameter has a value too high to
detect enough peaks to generate long contours for the microstream�

�� Discrepancy Reprocessing� The reprocessing KS uses the explana
tion to decide to reprocess spectra from the entire block with a peak
picker SPA having a reduced PEAKTHRESHOLD value of ���
� This
produces seven peaks in the ������ ����� Hz region� which create a
signi�cantlength contour� This contour�s existence resolves the con
�ict discrepancy� Buzzer�Alarm�s ���� Hz microstream is annotated
with a support speci�cation that indicates that very short �one peak�
contours or none at all are acceptable evidence as long as the PEAK
THRESHOLD value is higher than ���
�

� De�ne Expectations� Because Phone�Ring�s description indicates that its
steady region is approximately ��� seconds long� and at most ��� second
has been found� an explicit expectation for Phone�Ring�s microstreams is
posted for block ��s time period� Explicit expectations for the continuation
of Buzzer�Alarm�s microstreams are also posted for block ��

�	�	� BLOCK �

� Bottom�Up Processing� Bottomup processing creates spectra and con
tours for block �� Glass�Clink emits a highenergy� shortduration �����
sec� signal burst� The timedomain algorithm detects a sharp increase fol
lowed by a sharp decrease in signal energy� whereas the STFT produced
no peaks to generate a signi�cantlength contour that started and stopped
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around the times indicated by the signalenergy shifts� The testbed control
plans were designed to perform fault discrepancy detection immediately after
bottomup signal processing is completed� This causes a fault discrepancy to
be detected between the timedomain energy monitoring algorithm and the
STFT algorithm�

� Seek Evidence for Current Expectations� Since the duration of the fault
discrepancy indicates that it is not related to Siren�Chirp�� the focusing
heuristics act on Siren�Chirp�s priority and decide to examine data found
in the source�s expected frequency regions� No contours are found in these
regions�

� Handling Selected Uncertainties� The testbed�s focusing heuristics se
lect faulttype SOUs for resolution before the control plans apply any inter
pretation KSs that might handle frequency regions a�ected by fault discrep
ancies� Thus� before the components of any nonpriority expected sources
are searched for� the fault discrepancy is selected for handling by the focusing
heuristics� For this SOU� the control plans specify a strategy that executes
discrepancy diagnosis followed by reprocessing�

�� Discrepancy Diagnosis� The diagnosis KS explanation for the fault
discrepancy is �CONTOURTIMERESOLUTION�� That is� the STFT
decimation is too high to detect enough peaks to generate contours of
signi�cant length to account for the signal energy increase�

�� Discrepancy Reprocessing� The reprocessing KS uses the explana
tion to decide to reprocess data from the ���	second time region �not
the entire block� with an STFT SPA having a ���point WINDOW
LENGTH� a ���point FFTSIZE� and a �	�point DECIMATION�
This produces four peaks in the ������ ��
�� Hz region� which create
a signi�cantlength contour� This contour�s existence resolves the fault
discrepancy�

� Seek Evidence for Current Expectations� At this point� the focusing
heuristics decide to gather evidence for explicit source expectations� Con
tours found in the expected regions of Buzzer�Alarm support that source�s
persistence into block �� Note that when support for a source�s microstreams
is found� it is immediately propagated through the higher evidence levels
�microstream and stream� to the source level� As happened in block �� the
frontend processing parameters produce a cluster of short contours in the

�Siren�Chirp	s duration is much longer than the fault	s�
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�
��� ���� Hz range� The testbed�s shortcontour heuristic leads to a lack of
support for the persistence of Phone�Ring�s microstreams into block ��

� Discrepancy Detection� The testbed checks for con�ict and violation dis
crepancies� The lack of support for Phone�Ring�s microstreams raises a con
�ict discrepancy�� No violation discrepancies are found�

� Handle Selected Uncertainties� �continued� The focusing heuristics
select the con�ict SOU in Phone�Ring�s three microstreams for resolution�
Control plans specify a strategy of discrepancy diagnosis followed by repro
cessing�

�� Discrepancy Diagnosis� The discrepancy detection KS returns the
explanation �COARSEFREQUENCYSAMPLING�� the STFT anal
ysis was done with inadequate frequency sampling� causing the three
microstreams to appear as the contour cluster actually observed� The
KS also returns a support speci�cation that in the next block under the
same initial parameter settings� Phone�Ring�s microstreams will appear
like the contour cluster again� In this scenario the support speci�cation
will not be useful� however� since based on Phone�Ring�s maximum
possible duration the microstreams should not extend into block ���

�� Discrepancy Reprocessing� The reprocessing KS acts upon the di
agnosis explanation and retrieves a processing plan directing that the
data be reprocessed up to the microstream level of abstraction with
an FFTSIZE value of twice the original �� � ���  ���
 in this case��
The doubling of FFTSIZE provides �ner frequency sampling in the
spectra produced by the STFT algorithm� After one iteration of this
plan� the desired microstreams are found� and their expectations in the
next block are annotated with the discrepancy diagnosis KS�s scenario
speci�cation�

� Drive Unexplained Data to Higher Levels� The ����second contour is
found to match Glass�Clink�s characteristics� A hypothesis for the source
is therefore posted�

�Remember that di
erential diagnosis does not annotate hypotheses with support speci�ca�
tions �see section ������ Thus� Phone�Ring	s microstreams do not have speci�cations to prevent
the testbed from registering the contour cluster as a distortion�

�A shortcoming of con�guration C�� is that support speci�cations are not propagated across
periodic streams� Thus� the support speci�cation will not even be useful for any future rings�
We are correcting this problem in con�guration C���
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� De�ne Expectations� Because Buzzer�Alarm�s model indicates that its
steady behavior could continue for � to �� more seconds� an explicit expecta
tion for its continuation is posted for Block ��s time period� No expectation
for Phone�Ring is posted because its model speci�es a maximum duration of
��� seconds�

�	�	� BLOCK �

� Bottom�Up Processing� Block ��s signal data is now processed� Bottom
up processing culminates in the creation of contours�

� Seek Evidence for Current Expectations� Siren�Chirp�s frequency
regions are examined for contours� Some short contours are present in this
block from the source�s attack phase� but because the testbed �rst recognizes
sources by steady characteristics �due to their more predictable behavior��
their presence does not cause the creation of a Siren�Chirp source hypothe
sis� Contours extending source Buzzer�Alarm�s microstreams are sought for
and found�

� Drive Unexplained Data to Higher Levels� Because of their short
lengths� the contours caused by Siren�Chirp�s attack phase are not selected
to hypothesize the existence of any microstreams� They are simply labeled
as possiblenoise data� These contours are spread across a wide frequency
region� Therefore� the violationdetection clustering algorithm does not �nd
any highdensity cluster to justify raising a discrepancy�

� De�ne Expectations� An expectation for Buzzer�Alarm�s microstreams
to continue into block 
 is posted�

�	�	� BLOCK �

� Bottom�Up Processing� Block 
�s signal data is now processed� Bottom
up processing culminates in the creation of contours�

� Seek Evidence for Current Expectations� The testbed �rst searches
Siren�Chirp�s frequency regions for contours� Contours supporting the
source�s steady region are detected� and a source hypothesis is posted� The
testbed also �nds contours to support Buzzer�Alarm�s microstreams�

� Handle Selected Uncertainties� Because its attack region is unsupported�
Siren�Chirp�s con�dence level is low� Due to Siren�Chirp�s priority� the
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focusing heuristics decide to resolve this missingsupport SOU� The con
trol plans specify a strategy of accepting sets of short contours that re�ect
the slope of the chirp when grouping peaks into contours� No diagnosis
is performed� the reprocessing is simply a contextdependent interpretation
strategy for detecting chirps when their presence is suspected�

�� Reprocessing� To �nd �enough� ���! in this case� of Siren�Chirp�s
attack region� the testbed must search back into block � and reinter
pret the previouslydetected but unrecognized short contours as valid
attackregion contours� Siren�Chirp�s attack region and its chirp char
acteristics are identi�ed in the previous block�s signal data	� At this
point Siren�Chirp is determined to be present with high con�dence�

At the end of the scenario the testbed had recognized all the sounds and had
tracked at least ��! of each sound�s duration� There were no falsealarm sound
hypotheses� However� there was one falsealarm discrepancy� which� for purposes
of clarity� was omitted from the trace� In block � the testbed�s faultdetection
claimed that another discrepancy between the STFT and energyestimator outputs
had occurred� The focusing heuristics did select the associated SOU for handling�
but in the course of reprocessing in the same manner as in block �� no new peaks
were found� Thus� the discrepancy was disproven�
This detailed trace shows how the architecture components can implement a

dual search to �nd ��� SPAs appropriate to a scenario with realworld sounds and
��� interpretations appropriate to the SPAs� correlates� The components� activa
tion rates in the trace should not� however� be taken as a measure of their individual
utilities in the problem of complex signal interpretation� To determine these utili
ties� our current work is focused on developing two statistical models� One relates
acoustic scenario complexity to distortion rates� and the other relates distortion
rates to architecture component activation rates� It is our hope that these models
not only will determine each IPUS component�s utility for various classes of sce
narios but also will generate recognitionrate benchmarks for perceptual systems
that do not use various IPUS components�


 IPUS and SPA Design

Traditionally the focus in SPA design has been to develop SPAs that extract� as
precisely as possible� all details of the desired information from the input signals�

�In the current implementation� signal data from the current block and the � most recent
blocks are bu
ered� Future con�gurations will have this bu
ering governed by a parameter�







The motivation for this design paradigm has been that such SPAs could provide
precise information that would e�ciently constrain interpretation search and pro
duce interpretations with low uncertainty� This strategy is appropriate provided it
can be guaranteed that the signal understanding system will not encounter signals
which violate the underlying assumptions made in the design of those SPAs� This
premise� however� does not appear appropriate for perceptual systems operating
in complex environments ����� Since in such domains the SPA assumptions will
often be violated� it seems unreasonable to devote computational resources to the
extraction of detailed and precise information that is likely to be misleading�
The IPUS architecture has important implications for SPA design because it en

courages the development and application of fast� highly specialized� theoretically
sound SPAs for reprocessing in appropriate contexts� IPUS provides a framework
for using such SPAs in strategies where the initial signal processing sacri�ces detail
and precision� which are then sought during the signal reprocessing phase when a
better assessment of the signal environment is available� The advantage of sacri�c
ing precision and detail in the initial signal processing is twofold� the initial signal
processing can be more computationally e�cient and the discrepancy detection
following it is not encumbered by needless quantities of detail�
In the course of our own research on the acoustic interpretation testbed� we have

developed a novel algorithm ���� for computing an approximation to the STFT�
This approximation retains the major features in the regular STFT output but its
computation requires essentially no multiplications �a major part of regular STFT
computation� and signi�cantly fewer additions than the regular STFT�

� Future Research

In addition to our work on designing new SPAs and on developing statistical rela
tionships among scenarios� distortion rates� and IPUS components� e�ectiveness�
we are extending our testbed�s control plans to explore the issue of scaling� Specif
ically� we are investigating the use of approximate processing and modellearning�
In con�guration C�
� which is currently under development� the testbed control

plans have been changed to accomodate a larger library of �� realworld sounds
with more complicated structure� The strategies in the new control plans still
rely on the basic IPUS framework but now incorporate more goaldirected pro
cessing of microstreams and do not propagate the contour interpretations in a
bottomup manner to the microstream level� The processing strategies incorpo
rate approximateknowledge peak clustering algorithms to constrain sourcemodel
selection�
The frequency features of the sound models used in the testbed trace were hand
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crafted in a timeconsuming process� When dealing with environments with large
numbers of signal objects� it will be desirable to automate the modelacquisition
process� The construction of these models will require the identi�cation of features
that avoid distortions caused by SPAs and�or model interactions as much as pos
sible� Research is being done on incorporating the IPUS reprocessing loop into a
framework for learning acoustic source models ����
On initial consideration� it might seem that the time required by multiple

reprocessings under IPUS would be unacceptably high in noisy environments�
However� because traditional systems continuously sample several frontends� data
while IPUSbased systems selectively sample several frontend processings� data�
the IPUS paradigm should decrease the expected processing time for contexts re
quiring several independent processing views� We are working on verifying this
claim�

�� Summary

In this paper we have considered the problem of signal understanding in complex
environments involving interacting objects which mask and�or distort data cor
relates of their respective features� This implies that during its operation� the
perceptual system must continually update� in a contextdependent fashion� what
featureset to focus upon and what SPAs to use in order to extract the features�
data correlates� It is important to observe that the selection of a particular SPA is
determined not only by the subset of features whose data correlates are sought� but
also the presence of data unrelated to those features� We have argued that adap
tive selection of features and their corresponding SPAs requires sophisticated but
principled control of the interactions between the actions of highlevel knowledge
sources and the actions of SPAs in a signal understanding system� Motivated by
this insight� we have formulated the IPUS architecture for the integrated processing
and understanding of signals�
IPUS provides a framework for structuring bidirectional interaction between

the search for SPAs appropriate to the environment and the search for interpre
tation models to explain the SPAs� output data� The availability of a formal
signal processing theory is an important criterion for determining the architec
ture�s applicability to any particular domain� IPUS allows system developers to
organize diverse signal processing knowledge along the lines of formal concepts
such as SPA processing models� discrepancy tests� distortion operators� and SPA
application strategies� A major contribution of the architecture is to formalize and
unify frontend SPA recon�guration performed for interpretation processes �e�g�
di�erential diagnosis� with that performed for data correlate re�nement� under
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discrepancy diagnosis� This results in a single reprocessing concept driven by the
presence of SOUs�
Our sound understanding testbed experiments indicate that the basic function

ality of the architecture�s components and their interrelationships are realizable�
We believe the IPUS architecture is applicable to any signal understanding do
mains for which the SPAs have a rich underlying theory� This view is supported
by the similarities shared between the testbed�s acoustic domain theory and that
of many other signal domains such as sonar ��	�� weather radar �	�� music ����� and
biomedical signals ��
��
In conclusion� we have shown how knowledge from formal signal processing

theory regarding the e�ectiveness of speci�c SPA con�gurations for particular en
vironments can be used to develop a highly adaptive signal understanding archi
tecture� This architecture tightly integrates the search for the appropriate SPA
con�guration with the search for plausible interpretations of the SPA output data�
In our opinion� this dual search� informed by formal signal processing theory� is
a necessary component of perceptual systems that must interact with complex
environments�
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